mirror of
https://github.com/godotengine/godot.git
synced 2025-10-19 07:53:26 +00:00
Compare commits
6 commits
f41edf2a03
...
4389e0fd34
Author | SHA1 | Date | |
---|---|---|---|
![]() |
4389e0fd34 | ||
![]() |
5fc653c1ba | ||
![]() |
d78e3b050e | ||
![]() |
c59ef69184 | ||
![]() |
5b8789e83a | ||
![]() |
db9921b17f |
18 changed files with 303 additions and 54 deletions
|
@ -38,6 +38,7 @@
|
||||||
#include "core/error_macros.h"
|
#include "core/error_macros.h"
|
||||||
#include "core/os/memory.h"
|
#include "core/os/memory.h"
|
||||||
#include "core/safe_refcount.h"
|
#include "core/safe_refcount.h"
|
||||||
|
#include "core/span.h"
|
||||||
|
|
||||||
template <class T>
|
template <class T>
|
||||||
class Vector;
|
class Vector;
|
||||||
|
@ -132,6 +133,9 @@ public:
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
_FORCE_INLINE_ operator Span<T>() const { return Span<T>(ptr(), size()); }
|
||||||
|
_FORCE_INLINE_ Span<T> span() const { return operator Span<T>(); }
|
||||||
|
|
||||||
_FORCE_INLINE_ void clear() { resize(0); }
|
_FORCE_INLINE_ void clear() { resize(0); }
|
||||||
_FORCE_INLINE_ bool empty() const { return _ptr == nullptr; }
|
_FORCE_INLINE_ bool empty() const { return _ptr == nullptr; }
|
||||||
|
|
||||||
|
|
|
@ -35,6 +35,7 @@
|
||||||
#include "core/os/memory.h"
|
#include "core/os/memory.h"
|
||||||
#include "core/pool_vector.h"
|
#include "core/pool_vector.h"
|
||||||
#include "core/sort_array.h"
|
#include "core/sort_array.h"
|
||||||
|
#include "core/span.h"
|
||||||
#include "core/vector.h"
|
#include "core/vector.h"
|
||||||
|
|
||||||
#include <type_traits>
|
#include <type_traits>
|
||||||
|
@ -283,6 +284,9 @@ public:
|
||||||
return ret;
|
return ret;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
_FORCE_INLINE_ Span<T> span() const { return Span(data, count); }
|
||||||
|
_FORCE_INLINE_ operator Span<T>() const { return span(); }
|
||||||
|
|
||||||
_FORCE_INLINE_ LocalVector() {}
|
_FORCE_INLINE_ LocalVector() {}
|
||||||
_FORCE_INLINE_ LocalVector(const LocalVector &p_from) {
|
_FORCE_INLINE_ LocalVector(const LocalVector &p_from) {
|
||||||
resize(p_from.size());
|
resize(p_from.size());
|
||||||
|
@ -290,12 +294,21 @@ public:
|
||||||
data[i] = p_from.data[i];
|
data[i] = p_from.data[i];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
explicit LocalVector(const Span<T> &p_from) {
|
||||||
|
resize(p_from.size());
|
||||||
|
for (U i = 0; i < count; i++) {
|
||||||
|
data[i] = p_from[i];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
LocalVector(const Vector<T> &p_from) {
|
LocalVector(const Vector<T> &p_from) {
|
||||||
resize(p_from.size());
|
resize(p_from.size());
|
||||||
for (U i = 0; i < count; i++) {
|
for (U i = 0; i < count; i++) {
|
||||||
data[i] = p_from[i];
|
data[i] = p_from[i];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
LocalVector(const PoolVector<T> &p_from) {
|
LocalVector(const PoolVector<T> &p_from) {
|
||||||
resize(p_from.size());
|
resize(p_from.size());
|
||||||
typename PoolVector<T>::Read r = p_from.read();
|
typename PoolVector<T>::Read r = p_from.read();
|
||||||
|
|
|
@ -396,7 +396,7 @@ public:
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
Vector<Vector3> convex_points = Geometry::compute_convex_mesh_points(&p_convex[0], p_convex.size());
|
Vector<Vector3> convex_points = Geometry::compute_convex_mesh_points(p_convex);
|
||||||
if (convex_points.size() == 0) {
|
if (convex_points.size() == 0) {
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
|
@ -31,6 +31,7 @@
|
||||||
#ifndef DELAUNAY_H
|
#ifndef DELAUNAY_H
|
||||||
#define DELAUNAY_H
|
#define DELAUNAY_H
|
||||||
|
|
||||||
|
#include "core/local_vector.h"
|
||||||
#include "core/math/rect2.h"
|
#include "core/math/rect2.h"
|
||||||
|
|
||||||
class Delaunay2D {
|
class Delaunay2D {
|
||||||
|
@ -58,7 +59,7 @@ public:
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
static bool circum_circle_contains(const Vector<Vector2> &p_vertices, const Triangle &p_triangle, int p_vertex) {
|
static bool circum_circle_contains(const Span<Vector2> &p_vertices, const Triangle &p_triangle, int p_vertex) {
|
||||||
Vector2 p1 = p_vertices[p_triangle.points[0]];
|
Vector2 p1 = p_vertices[p_triangle.points[0]];
|
||||||
Vector2 p2 = p_vertices[p_triangle.points[1]];
|
Vector2 p2 = p_vertices[p_triangle.points[1]];
|
||||||
Vector2 p3 = p_vertices[p_triangle.points[2]];
|
Vector2 p3 = p_vertices[p_triangle.points[2]];
|
||||||
|
@ -77,7 +78,7 @@ public:
|
||||||
return d <= r;
|
return d <= r;
|
||||||
}
|
}
|
||||||
|
|
||||||
static bool edge_compare(const Vector<Vector2> &p_vertices, const Edge &p_a, const Edge &p_b) {
|
static bool edge_compare(const Span<Vector2> &p_vertices, const Edge &p_a, const Edge &p_b) {
|
||||||
if (p_vertices[p_a.edge[0]].is_equal_approx(p_vertices[p_b.edge[0]]) && p_vertices[p_a.edge[1]].is_equal_approx(p_vertices[p_b.edge[1]])) {
|
if (p_vertices[p_a.edge[0]].is_equal_approx(p_vertices[p_b.edge[0]]) && p_vertices[p_a.edge[1]].is_equal_approx(p_vertices[p_b.edge[1]])) {
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
@ -89,12 +90,12 @@ public:
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
static Vector<Triangle> triangulate(const Vector<Vector2> &p_points) {
|
static Vector<Triangle> triangulate(const Span<Vector2> &p_points) {
|
||||||
Vector<Vector2> points = p_points;
|
LocalVector<Vector2> points(p_points);
|
||||||
Vector<Triangle> triangles;
|
Vector<Triangle> triangles;
|
||||||
|
|
||||||
Rect2 rect;
|
Rect2 rect;
|
||||||
for (int i = 0; i < p_points.size(); i++) {
|
for (uint32_t i = 0; i < p_points.size(); i++) {
|
||||||
if (i == 0) {
|
if (i == 0) {
|
||||||
rect.position = p_points[i];
|
rect.position = p_points[i];
|
||||||
} else {
|
} else {
|
||||||
|
@ -111,7 +112,7 @@ public:
|
||||||
|
|
||||||
triangles.push_back(Triangle(p_points.size() + 0, p_points.size() + 1, p_points.size() + 2));
|
triangles.push_back(Triangle(p_points.size() + 0, p_points.size() + 1, p_points.size() + 2));
|
||||||
|
|
||||||
for (int i = 0; i < p_points.size(); i++) {
|
for (uint32_t i = 0; i < p_points.size(); i++) {
|
||||||
//std::cout << "Traitement du point " << *p << std::endl;
|
//std::cout << "Traitement du point " << *p << std::endl;
|
||||||
//std::cout << "_triangles contains " << _triangles.size() << " elements" << std::endl;
|
//std::cout << "_triangles contains " << _triangles.size() << " elements" << std::endl;
|
||||||
|
|
||||||
|
@ -150,10 +151,12 @@ public:
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
int point_count = p_points.size();
|
||||||
|
|
||||||
for (int i = 0; i < triangles.size(); i++) {
|
for (int i = 0; i < triangles.size(); i++) {
|
||||||
bool invalid = false;
|
bool invalid = false;
|
||||||
for (int j = 0; j < 3; j++) {
|
for (int j = 0; j < 3; j++) {
|
||||||
if (triangles[i].points[j] >= p_points.size()) {
|
if (triangles[i].points[j] >= point_count) {
|
||||||
invalid = true;
|
invalid = true;
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
|
|
@ -1042,7 +1042,7 @@ struct _AtlasWorkRectResult {
|
||||||
int max_h;
|
int max_h;
|
||||||
};
|
};
|
||||||
|
|
||||||
void Geometry::make_atlas(const Vector<Size2i> &p_rects, Vector<Point2i> &r_result, Size2i &r_size) {
|
void Geometry::make_atlas(const Span<Size2i> &p_rects, Vector<Point2i> &r_result, Size2i &r_size) {
|
||||||
// Super simple, almost brute force scanline stacking fitter.
|
// Super simple, almost brute force scanline stacking fitter.
|
||||||
// It's pretty basic for now, but it tries to make sure that the aspect ratio of the
|
// It's pretty basic for now, but it tries to make sure that the aspect ratio of the
|
||||||
// resulting atlas is somehow square. This is necessary because video cards have limits.
|
// resulting atlas is somehow square. This is necessary because video cards have limits.
|
||||||
|
@ -1052,14 +1052,14 @@ void Geometry::make_atlas(const Vector<Size2i> &p_rects, Vector<Point2i> &r_resu
|
||||||
// 256x8192 atlas (won't work anywhere).
|
// 256x8192 atlas (won't work anywhere).
|
||||||
|
|
||||||
ERR_FAIL_COND(p_rects.size() == 0);
|
ERR_FAIL_COND(p_rects.size() == 0);
|
||||||
for (int i = 0; i < p_rects.size(); i++) {
|
for (uint32_t i = 0; i < p_rects.size(); i++) {
|
||||||
ERR_FAIL_COND(p_rects[i].width <= 0);
|
ERR_FAIL_COND(p_rects[i].width <= 0);
|
||||||
ERR_FAIL_COND(p_rects[i].height <= 0);
|
ERR_FAIL_COND(p_rects[i].height <= 0);
|
||||||
}
|
}
|
||||||
|
|
||||||
Vector<_AtlasWorkRect> wrects;
|
Vector<_AtlasWorkRect> wrects;
|
||||||
wrects.resize(p_rects.size());
|
wrects.resize(p_rects.size());
|
||||||
for (int i = 0; i < p_rects.size(); i++) {
|
for (uint32_t i = 0; i < p_rects.size(); i++) {
|
||||||
wrects.write[i].s = p_rects[i];
|
wrects.write[i].s = p_rects[i];
|
||||||
wrects.write[i].idx = i;
|
wrects.write[i].idx = i;
|
||||||
}
|
}
|
||||||
|
@ -1146,14 +1146,14 @@ void Geometry::make_atlas(const Vector<Size2i> &p_rects, Vector<Point2i> &r_resu
|
||||||
|
|
||||||
r_result.resize(p_rects.size());
|
r_result.resize(p_rects.size());
|
||||||
|
|
||||||
for (int i = 0; i < p_rects.size(); i++) {
|
for (uint32_t i = 0; i < p_rects.size(); i++) {
|
||||||
r_result.write[results[best].result[i].idx] = results[best].result[i].p;
|
r_result.write[results[best].result[i].idx] = results[best].result[i].p;
|
||||||
}
|
}
|
||||||
|
|
||||||
r_size = Size2(results[best].max_w, results[best].max_h);
|
r_size = Size2(results[best].max_w, results[best].max_h);
|
||||||
}
|
}
|
||||||
|
|
||||||
Vector<Vector<Point2>> Geometry::_polypaths_do_operation(PolyBooleanOperation p_op, const Vector<Point2> &p_polypath_a, const Vector<Point2> &p_polypath_b, bool is_a_open) {
|
Vector<Vector<Point2>> Geometry::_polypaths_do_operation(PolyBooleanOperation p_op, const Span<Point2> &p_polypath_a, const Span<Point2> &p_polypath_b, bool is_a_open) {
|
||||||
using namespace ClipperLib;
|
using namespace ClipperLib;
|
||||||
|
|
||||||
ClipType op = ctUnion;
|
ClipType op = ctUnion;
|
||||||
|
@ -1175,10 +1175,10 @@ Vector<Vector<Point2>> Geometry::_polypaths_do_operation(PolyBooleanOperation p_
|
||||||
Path path_a, path_b;
|
Path path_a, path_b;
|
||||||
|
|
||||||
// Need to scale points (Clipper's requirement for robust computation).
|
// Need to scale points (Clipper's requirement for robust computation).
|
||||||
for (int i = 0; i != p_polypath_a.size(); ++i) {
|
for (uint32_t i = 0; i != p_polypath_a.size(); ++i) {
|
||||||
path_a << IntPoint(p_polypath_a[i].x * (real_t)SCALE_FACTOR, p_polypath_a[i].y * (real_t)SCALE_FACTOR);
|
path_a << IntPoint(p_polypath_a[i].x * (real_t)SCALE_FACTOR, p_polypath_a[i].y * (real_t)SCALE_FACTOR);
|
||||||
}
|
}
|
||||||
for (int i = 0; i != p_polypath_b.size(); ++i) {
|
for (uint32_t i = 0; i != p_polypath_b.size(); ++i) {
|
||||||
path_b << IntPoint(p_polypath_b[i].x * (real_t)SCALE_FACTOR, p_polypath_b[i].y * (real_t)SCALE_FACTOR);
|
path_b << IntPoint(p_polypath_b[i].x * (real_t)SCALE_FACTOR, p_polypath_b[i].y * (real_t)SCALE_FACTOR);
|
||||||
}
|
}
|
||||||
Clipper clp;
|
Clipper clp;
|
||||||
|
@ -1212,7 +1212,7 @@ Vector<Vector<Point2>> Geometry::_polypaths_do_operation(PolyBooleanOperation p_
|
||||||
return polypaths;
|
return polypaths;
|
||||||
}
|
}
|
||||||
|
|
||||||
Vector<Vector<Point2>> Geometry::_polypath_offset(const Vector<Point2> &p_polypath, real_t p_delta, PolyJoinType p_join_type, PolyEndType p_end_type) {
|
Vector<Vector<Point2>> Geometry::_polypath_offset(const Span<Point2> &p_polypath, real_t p_delta, PolyJoinType p_join_type, PolyEndType p_end_type) {
|
||||||
using namespace ClipperLib;
|
using namespace ClipperLib;
|
||||||
|
|
||||||
JoinType jt = jtSquare;
|
JoinType jt = jtSquare;
|
||||||
|
@ -1252,7 +1252,7 @@ Vector<Vector<Point2>> Geometry::_polypath_offset(const Vector<Point2> &p_polypa
|
||||||
Path path;
|
Path path;
|
||||||
|
|
||||||
// Need to scale points (Clipper's requirement for robust computation).
|
// Need to scale points (Clipper's requirement for robust computation).
|
||||||
for (int i = 0; i != p_polypath.size(); ++i) {
|
for (uint32_t i = 0; i != p_polypath.size(); ++i) {
|
||||||
path << IntPoint(p_polypath[i].x * (real_t)SCALE_FACTOR, p_polypath[i].y * (real_t)SCALE_FACTOR);
|
path << IntPoint(p_polypath[i].x * (real_t)SCALE_FACTOR, p_polypath[i].y * (real_t)SCALE_FACTOR);
|
||||||
}
|
}
|
||||||
co.AddPath(path, jt, et);
|
co.AddPath(path, jt, et);
|
||||||
|
@ -1398,11 +1398,13 @@ bool Geometry::convex_hull_intersects_convex_hull(const Plane *p_planes_a, int p
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
Vector<Vector3> Geometry::compute_convex_mesh_points(const Plane *p_planes, int p_plane_count, real_t p_epsilon) {
|
Vector<Vector3> Geometry::compute_convex_mesh_points(const Span<Plane> &p_planes, real_t p_epsilon) {
|
||||||
Vector<Vector3> points;
|
Vector<Vector3> points;
|
||||||
|
|
||||||
// Iterate through every unique combination of any three planes.
|
// Iterate through every unique combination of any three planes.
|
||||||
for (int i = p_plane_count - 1; i >= 0; i--) {
|
int plane_count = p_planes.size();
|
||||||
|
|
||||||
|
for (int i = plane_count - 1; i >= 0; i--) {
|
||||||
for (int j = i - 1; j >= 0; j--) {
|
for (int j = i - 1; j >= 0; j--) {
|
||||||
for (int k = j - 1; k >= 0; k--) {
|
for (int k = j - 1; k >= 0; k--) {
|
||||||
// Find the point where these planes all cross over (if they
|
// Find the point where these planes all cross over (if they
|
||||||
|
@ -1412,7 +1414,7 @@ Vector<Vector3> Geometry::compute_convex_mesh_points(const Plane *p_planes, int
|
||||||
// See if any *other* plane excludes this point because it's
|
// See if any *other* plane excludes this point because it's
|
||||||
// on the wrong side.
|
// on the wrong side.
|
||||||
bool excluded = false;
|
bool excluded = false;
|
||||||
for (int n = 0; n < p_plane_count; n++) {
|
for (int n = 0; n < plane_count; n++) {
|
||||||
if (n != i && n != j && n != k) {
|
if (n != i && n != j && n != k) {
|
||||||
real_t dist = p_planes[n].distance_to(convex_shape_point);
|
real_t dist = p_planes[n].distance_to(convex_shape_point);
|
||||||
if (dist > p_epsilon) {
|
if (dist > p_epsilon) {
|
||||||
|
@ -1434,7 +1436,7 @@ Vector<Vector3> Geometry::compute_convex_mesh_points(const Plane *p_planes, int
|
||||||
return points;
|
return points;
|
||||||
}
|
}
|
||||||
|
|
||||||
Vector<Geometry::PackRectsResult> Geometry::partial_pack_rects(const Vector<Vector2i> &p_sizes, const Size2i &p_atlas_size) {
|
Vector<Geometry::PackRectsResult> Geometry::partial_pack_rects(const Span<Vector2i> &p_sizes, const Size2i &p_atlas_size) {
|
||||||
Vector<stbrp_node> nodes;
|
Vector<stbrp_node> nodes;
|
||||||
nodes.resize(p_atlas_size.width);
|
nodes.resize(p_atlas_size.width);
|
||||||
memset(nodes.ptrw(), 0, sizeof(stbrp_node) * nodes.size());
|
memset(nodes.ptrw(), 0, sizeof(stbrp_node) * nodes.size());
|
||||||
|
@ -1445,7 +1447,7 @@ Vector<Geometry::PackRectsResult> Geometry::partial_pack_rects(const Vector<Vect
|
||||||
Vector<stbrp_rect> rects;
|
Vector<stbrp_rect> rects;
|
||||||
rects.resize(p_sizes.size());
|
rects.resize(p_sizes.size());
|
||||||
|
|
||||||
for (int i = 0; i < p_sizes.size(); i++) {
|
for (uint32_t i = 0; i < p_sizes.size(); i++) {
|
||||||
rects.write[i].id = i;
|
rects.write[i].id = i;
|
||||||
rects.write[i].w = p_sizes[i].width;
|
rects.write[i].w = p_sizes[i].width;
|
||||||
rects.write[i].h = p_sizes[i].height;
|
rects.write[i].h = p_sizes[i].height;
|
||||||
|
@ -1459,7 +1461,7 @@ Vector<Geometry::PackRectsResult> Geometry::partial_pack_rects(const Vector<Vect
|
||||||
Vector<PackRectsResult> ret;
|
Vector<PackRectsResult> ret;
|
||||||
ret.resize(p_sizes.size());
|
ret.resize(p_sizes.size());
|
||||||
|
|
||||||
for (int i = 0; i < p_sizes.size(); i++) {
|
for (uint32_t i = 0; i < p_sizes.size(); i++) {
|
||||||
ret.write[rects[i].id] = { rects[i].x, rects[i].y, static_cast<bool>(rects[i].was_packed) };
|
ret.write[rects[i].id] = { rects[i].x, rects[i].y, static_cast<bool>(rects[i].was_packed) };
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -772,41 +772,41 @@ public:
|
||||||
END_ROUND
|
END_ROUND
|
||||||
};
|
};
|
||||||
|
|
||||||
static Vector<Vector<Point2>> merge_polygons_2d(const Vector<Point2> &p_polygon_a, const Vector<Point2> &p_polygon_b) {
|
static Vector<Vector<Point2>> merge_polygons_2d(const Span<Point2> &p_polygon_a, const Span<Point2> &p_polygon_b) {
|
||||||
return _polypaths_do_operation(OPERATION_UNION, p_polygon_a, p_polygon_b);
|
return _polypaths_do_operation(OPERATION_UNION, p_polygon_a, p_polygon_b);
|
||||||
}
|
}
|
||||||
|
|
||||||
static Vector<Vector<Point2>> clip_polygons_2d(const Vector<Point2> &p_polygon_a, const Vector<Point2> &p_polygon_b) {
|
static Vector<Vector<Point2>> clip_polygons_2d(const Span<Point2> &p_polygon_a, const Span<Point2> &p_polygon_b) {
|
||||||
return _polypaths_do_operation(OPERATION_DIFFERENCE, p_polygon_a, p_polygon_b);
|
return _polypaths_do_operation(OPERATION_DIFFERENCE, p_polygon_a, p_polygon_b);
|
||||||
}
|
}
|
||||||
|
|
||||||
static Vector<Vector<Point2>> intersect_polygons_2d(const Vector<Point2> &p_polygon_a, const Vector<Point2> &p_polygon_b) {
|
static Vector<Vector<Point2>> intersect_polygons_2d(const Span<Point2> &p_polygon_a, const Span<Point2> &p_polygon_b) {
|
||||||
return _polypaths_do_operation(OPERATION_INTERSECTION, p_polygon_a, p_polygon_b);
|
return _polypaths_do_operation(OPERATION_INTERSECTION, p_polygon_a, p_polygon_b);
|
||||||
}
|
}
|
||||||
|
|
||||||
static Vector<Vector<Point2>> exclude_polygons_2d(const Vector<Point2> &p_polygon_a, const Vector<Point2> &p_polygon_b) {
|
static Vector<Vector<Point2>> exclude_polygons_2d(const Span<Point2> &p_polygon_a, const Span<Point2> &p_polygon_b) {
|
||||||
return _polypaths_do_operation(OPERATION_XOR, p_polygon_a, p_polygon_b);
|
return _polypaths_do_operation(OPERATION_XOR, p_polygon_a, p_polygon_b);
|
||||||
}
|
}
|
||||||
|
|
||||||
static Vector<Vector<Point2>> clip_polyline_with_polygon_2d(const Vector<Vector2> &p_polyline, const Vector<Vector2> &p_polygon) {
|
static Vector<Vector<Point2>> clip_polyline_with_polygon_2d(const Span<Vector2> &p_polyline, const Span<Vector2> &p_polygon) {
|
||||||
return _polypaths_do_operation(OPERATION_DIFFERENCE, p_polyline, p_polygon, true);
|
return _polypaths_do_operation(OPERATION_DIFFERENCE, p_polyline, p_polygon, true);
|
||||||
}
|
}
|
||||||
|
|
||||||
static Vector<Vector<Point2>> intersect_polyline_with_polygon_2d(const Vector<Vector2> &p_polyline, const Vector<Vector2> &p_polygon) {
|
static Vector<Vector<Point2>> intersect_polyline_with_polygon_2d(const Span<Vector2> &p_polyline, const Span<Vector2> &p_polygon) {
|
||||||
return _polypaths_do_operation(OPERATION_INTERSECTION, p_polyline, p_polygon, true);
|
return _polypaths_do_operation(OPERATION_INTERSECTION, p_polyline, p_polygon, true);
|
||||||
}
|
}
|
||||||
|
|
||||||
static Vector<Vector<Point2>> offset_polygon_2d(const Vector<Vector2> &p_polygon, real_t p_delta, PolyJoinType p_join_type) {
|
static Vector<Vector<Point2>> offset_polygon_2d(const Span<Vector2> &p_polygon, real_t p_delta, PolyJoinType p_join_type) {
|
||||||
return _polypath_offset(p_polygon, p_delta, p_join_type, END_POLYGON);
|
return _polypath_offset(p_polygon, p_delta, p_join_type, END_POLYGON);
|
||||||
}
|
}
|
||||||
|
|
||||||
static Vector<Vector<Point2>> offset_polyline_2d(const Vector<Vector2> &p_polygon, real_t p_delta, PolyJoinType p_join_type, PolyEndType p_end_type) {
|
static Vector<Vector<Point2>> offset_polyline_2d(const Span<Vector2> &p_polygon, real_t p_delta, PolyJoinType p_join_type, PolyEndType p_end_type) {
|
||||||
ERR_FAIL_COND_V_MSG(p_end_type == END_POLYGON, Vector<Vector<Point2>>(), "Attempt to offset a polyline like a polygon (use offset_polygon_2d instead).");
|
ERR_FAIL_COND_V_MSG(p_end_type == END_POLYGON, Vector<Vector<Point2>>(), "Attempt to offset a polyline like a polygon (use offset_polygon_2d instead).");
|
||||||
|
|
||||||
return _polypath_offset(p_polygon, p_delta, p_join_type, p_end_type);
|
return _polypath_offset(p_polygon, p_delta, p_join_type, p_end_type);
|
||||||
}
|
}
|
||||||
|
|
||||||
static Vector<int> triangulate_delaunay_2d(const Vector<Vector2> &p_points) {
|
static Vector<int> triangulate_delaunay_2d(const Span<Vector2> &p_points) {
|
||||||
Vector<Delaunay2D::Triangle> tr = Delaunay2D::triangulate(p_points);
|
Vector<Delaunay2D::Triangle> tr = Delaunay2D::triangulate(p_points);
|
||||||
Vector<int> triangles;
|
Vector<int> triangles;
|
||||||
|
|
||||||
|
@ -818,7 +818,7 @@ public:
|
||||||
return triangles;
|
return triangles;
|
||||||
}
|
}
|
||||||
|
|
||||||
static Vector<int> triangulate_polygon(const Vector<Vector2> &p_polygon) {
|
static Vector<int> triangulate_polygon(const Span<Vector2> &p_polygon) {
|
||||||
Vector<int> triangles;
|
Vector<int> triangles;
|
||||||
if (!Triangulate::triangulate(p_polygon, triangles)) {
|
if (!Triangulate::triangulate(p_polygon, triangles)) {
|
||||||
return Vector<int>(); //fail
|
return Vector<int>(); //fail
|
||||||
|
@ -826,7 +826,7 @@ public:
|
||||||
return triangles;
|
return triangles;
|
||||||
}
|
}
|
||||||
|
|
||||||
static bool is_polygon_clockwise(const Vector<Vector2> &p_polygon) {
|
static bool is_polygon_clockwise(const Span<Vector2> &p_polygon) {
|
||||||
int c = p_polygon.size();
|
int c = p_polygon.size();
|
||||||
if (c < 3) {
|
if (c < 3) {
|
||||||
return false;
|
return false;
|
||||||
|
@ -843,7 +843,7 @@ public:
|
||||||
}
|
}
|
||||||
|
|
||||||
// Alternate implementation that should be faster.
|
// Alternate implementation that should be faster.
|
||||||
static bool is_point_in_polygon(const Vector2 &p_point, const Vector<Vector2> &p_polygon) {
|
static bool is_point_in_polygon(const Vector2 &p_point, const Span<Vector2> &p_polygon) {
|
||||||
int c = p_polygon.size();
|
int c = p_polygon.size();
|
||||||
if (c < 3) {
|
if (c < 3) {
|
||||||
return false;
|
return false;
|
||||||
|
@ -1008,23 +1008,23 @@ public:
|
||||||
static void sort_polygon_winding(Vector<Vector2> &r_verts, bool p_clockwise = true);
|
static void sort_polygon_winding(Vector<Vector2> &r_verts, bool p_clockwise = true);
|
||||||
static real_t find_polygon_area(const Vector3 *p_verts, int p_num_verts);
|
static real_t find_polygon_area(const Vector3 *p_verts, int p_num_verts);
|
||||||
|
|
||||||
static void make_atlas(const Vector<Size2i> &p_rects, Vector<Point2i> &r_result, Size2i &r_size);
|
static void make_atlas(const Span<Size2i> &p_rects, Vector<Point2i> &r_result, Size2i &r_size);
|
||||||
|
|
||||||
struct PackRectsResult {
|
struct PackRectsResult {
|
||||||
int x;
|
int x;
|
||||||
int y;
|
int y;
|
||||||
bool packed;
|
bool packed;
|
||||||
};
|
};
|
||||||
static Vector<PackRectsResult> partial_pack_rects(const Vector<Vector2i> &p_sizes, const Size2i &p_atlas_size);
|
static Vector<PackRectsResult> partial_pack_rects(const Span<Vector2i> &p_sizes, const Size2i &p_atlas_size);
|
||||||
|
|
||||||
static Vector<Vector3> compute_convex_mesh_points(const Plane *p_planes, int p_plane_count, real_t p_epsilon = CMP_EPSILON);
|
static Vector<Vector3> compute_convex_mesh_points(const Span<Plane> &p_planes, real_t p_epsilon = CMP_EPSILON);
|
||||||
static bool convex_hull_intersects_convex_hull(const Plane *p_planes_a, int p_plane_count_a, const Plane *p_planes_b, int p_plane_count_b);
|
static bool convex_hull_intersects_convex_hull(const Plane *p_planes_a, int p_plane_count_a, const Plane *p_planes_b, int p_plane_count_b);
|
||||||
static real_t calculate_convex_hull_volume(const Geometry::MeshData &p_md);
|
static real_t calculate_convex_hull_volume(const Geometry::MeshData &p_md);
|
||||||
static bool verify_indices(const int *p_indices, int p_num_indices, int p_num_vertices);
|
static bool verify_indices(const int *p_indices, int p_num_indices, int p_num_vertices);
|
||||||
|
|
||||||
private:
|
private:
|
||||||
static Vector<Vector<Point2>> _polypaths_do_operation(PolyBooleanOperation p_op, const Vector<Point2> &p_polypath_a, const Vector<Point2> &p_polypath_b, bool is_a_open = false);
|
static Vector<Vector<Point2>> _polypaths_do_operation(PolyBooleanOperation p_op, const Span<Point2> &p_polypath_a, const Span<Point2> &p_polypath_b, bool is_a_open = false);
|
||||||
static Vector<Vector<Point2>> _polypath_offset(const Vector<Point2> &p_polypath, real_t p_delta, PolyJoinType p_join_type, PolyEndType p_end_type);
|
static Vector<Vector<Point2>> _polypath_offset(const Span<Point2> &p_polypath, real_t p_delta, PolyJoinType p_join_type, PolyEndType p_end_type);
|
||||||
};
|
};
|
||||||
|
|
||||||
#endif // GEOMETRY_H
|
#endif // GEOMETRY_H
|
||||||
|
|
|
@ -1575,7 +1575,7 @@ OCTREE_FUNC(int)::cull_convex(const Vector<Plane> &p_convex, T **p_result_array,
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
Vector<Vector3> convex_points = Geometry::compute_convex_mesh_points(&p_convex[0], p_convex.size());
|
Vector<Vector3> convex_points = Geometry::compute_convex_mesh_points(p_convex);
|
||||||
if (convex_points.size() == 0) {
|
if (convex_points.size() == 0) {
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
|
@ -30,7 +30,7 @@
|
||||||
|
|
||||||
#include "triangulate.h"
|
#include "triangulate.h"
|
||||||
|
|
||||||
real_t Triangulate::get_area(const Vector<Vector2> &contour) {
|
real_t Triangulate::get_area(const Span<Vector2> &contour) {
|
||||||
int n = contour.size();
|
int n = contour.size();
|
||||||
const Vector2 *c = &contour[0];
|
const Vector2 *c = &contour[0];
|
||||||
|
|
||||||
|
@ -78,7 +78,7 @@ bool Triangulate::is_inside_triangle(real_t Ax, real_t Ay,
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
bool Triangulate::snip(const Vector<Vector2> &p_contour, int u, int v, int w, int n, const Vector<int> &V, bool relaxed) {
|
bool Triangulate::snip(const Span<Vector2> &p_contour, int u, int v, int w, int n, const Span<int> &V, bool relaxed) {
|
||||||
int p;
|
int p;
|
||||||
real_t Ax, Ay, Bx, By, Cx, Cy, Px, Py;
|
real_t Ax, Ay, Bx, By, Cx, Cy, Px, Py;
|
||||||
const Vector2 *contour = &p_contour[0];
|
const Vector2 *contour = &p_contour[0];
|
||||||
|
@ -117,7 +117,7 @@ bool Triangulate::snip(const Vector<Vector2> &p_contour, int u, int v, int w, in
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
bool Triangulate::triangulate(const Vector<Vector2> &contour, Vector<int> &result) {
|
bool Triangulate::triangulate(const Span<Vector2> &contour, Vector<int> &result) {
|
||||||
/* allocate and initialize list of Vertices in polygon */
|
/* allocate and initialize list of Vertices in polygon */
|
||||||
|
|
||||||
int n = contour.size();
|
int n = contour.size();
|
||||||
|
|
|
@ -41,10 +41,10 @@ class Triangulate {
|
||||||
public:
|
public:
|
||||||
// triangulate a contour/polygon, places results in STL vector
|
// triangulate a contour/polygon, places results in STL vector
|
||||||
// as series of triangles.
|
// as series of triangles.
|
||||||
static bool triangulate(const Vector<Vector2> &contour, Vector<int> &result);
|
static bool triangulate(const Span<Vector2> &contour, Vector<int> &result);
|
||||||
|
|
||||||
// compute area of a contour/polygon
|
// compute area of a contour/polygon
|
||||||
static real_t get_area(const Vector<Vector2> &contour);
|
static real_t get_area(const Span<Vector2> &contour);
|
||||||
|
|
||||||
// decide if point Px/Py is inside triangle defined by
|
// decide if point Px/Py is inside triangle defined by
|
||||||
// (Ax,Ay) (Bx,By) (Cx,Cy)
|
// (Ax,Ay) (Bx,By) (Cx,Cy)
|
||||||
|
@ -55,7 +55,7 @@ public:
|
||||||
bool include_edges);
|
bool include_edges);
|
||||||
|
|
||||||
private:
|
private:
|
||||||
static bool snip(const Vector<Vector2> &p_contour, int u, int v, int w, int n, const Vector<int> &V, bool relaxed);
|
static bool snip(const Span<Vector2> &p_contour, int u, int v, int w, int n, const Span<int> &V, bool relaxed);
|
||||||
};
|
};
|
||||||
|
|
||||||
#endif // TRIANGULATE_H
|
#endif // TRIANGULATE_H
|
||||||
|
|
|
@ -424,6 +424,9 @@ public:
|
||||||
return find(p_val) != -1;
|
return find(p_val) != -1;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
_FORCE_INLINE_ Span<T> span() const { return Span(read().ptr(), (uint32_t)size()); }
|
||||||
|
_FORCE_INLINE_ operator Span<T>() const { return span(); }
|
||||||
|
|
||||||
inline int size() const;
|
inline int size() const;
|
||||||
inline bool empty() const;
|
inline bool empty() const;
|
||||||
T get(int p_index) const;
|
T get(int p_index) const;
|
||||||
|
|
220
core/span.h
Normal file
220
core/span.h
Normal file
|
@ -0,0 +1,220 @@
|
||||||
|
/**************************************************************************/
|
||||||
|
/* span.h */
|
||||||
|
/**************************************************************************/
|
||||||
|
/* This file is part of: */
|
||||||
|
/* GODOT ENGINE */
|
||||||
|
/* https://godotengine.org */
|
||||||
|
/**************************************************************************/
|
||||||
|
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
|
||||||
|
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
|
||||||
|
/* */
|
||||||
|
/* Permission is hereby granted, free of charge, to any person obtaining */
|
||||||
|
/* a copy of this software and associated documentation files (the */
|
||||||
|
/* "Software"), to deal in the Software without restriction, including */
|
||||||
|
/* without limitation the rights to use, copy, modify, merge, publish, */
|
||||||
|
/* distribute, sublicense, and/or sell copies of the Software, and to */
|
||||||
|
/* permit persons to whom the Software is furnished to do so, subject to */
|
||||||
|
/* the following conditions: */
|
||||||
|
/* */
|
||||||
|
/* The above copyright notice and this permission notice shall be */
|
||||||
|
/* included in all copies or substantial portions of the Software. */
|
||||||
|
/* */
|
||||||
|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
|
||||||
|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
|
||||||
|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
|
||||||
|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
|
||||||
|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
|
||||||
|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
|
||||||
|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
|
||||||
|
/**************************************************************************/
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include "core/error_macros.h"
|
||||||
|
#include "core/typedefs.h"
|
||||||
|
|
||||||
|
// Equivalent of std::span.
|
||||||
|
// Represents a view into a contiguous memory space.
|
||||||
|
// DISCLAIMER: This data type does not own the underlying buffer. DO NOT STORE IT.
|
||||||
|
// Additionally, for the lifetime of the Span, do not resize the buffer, and do not insert or remove elements from it.
|
||||||
|
// Failure to respect this may lead to crashes or undefined behavior.
|
||||||
|
template <typename T, class U = uint32_t>
|
||||||
|
class Span {
|
||||||
|
const T *_ptr = nullptr;
|
||||||
|
U _len = 0;
|
||||||
|
|
||||||
|
public:
|
||||||
|
static constexpr bool is_string = std::disjunction_v<
|
||||||
|
std::is_same<T, char>,
|
||||||
|
std::is_same<T, char16_t>,
|
||||||
|
std::is_same<T, char32_t>,
|
||||||
|
std::is_same<T, wchar_t>>;
|
||||||
|
|
||||||
|
_FORCE_INLINE_ constexpr Span() = default;
|
||||||
|
|
||||||
|
_FORCE_INLINE_ Span(const T *p_ptr, U p_len) :
|
||||||
|
_ptr(p_ptr), _len(p_len) {
|
||||||
|
#ifdef DEBUG_ENABLED
|
||||||
|
// TODO In c++20, make this check run only in non-consteval, and make this constructor constexpr.
|
||||||
|
if (_ptr == nullptr && _len > 0) {
|
||||||
|
ERR_PRINT("Internal bug, please report: Span was created from nullptr with size > 0. Recovering by using size = 0.");
|
||||||
|
_len = 0;
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
// Allows creating Span directly from C arrays and string literals.
|
||||||
|
template <size_t N>
|
||||||
|
_FORCE_INLINE_ constexpr Span(const T (&p_array)[N]) :
|
||||||
|
_ptr(p_array), _len(N) {
|
||||||
|
if constexpr (is_string) {
|
||||||
|
// Cut off the \0 terminator implicitly added to string literals.
|
||||||
|
if (N > 0 && p_array[N - 1] == '\0') {
|
||||||
|
_len--;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
_FORCE_INLINE_ constexpr U size() const { return _len; }
|
||||||
|
_FORCE_INLINE_ constexpr bool is_empty() const { return _len == 0; }
|
||||||
|
|
||||||
|
_FORCE_INLINE_ constexpr const T *ptr() const { return _ptr; }
|
||||||
|
|
||||||
|
// NOTE: Span subscripts sanity check the bounds to avoid undefined behavior.
|
||||||
|
// This is slower than direct buffer access and can prevent autovectorization.
|
||||||
|
// If the bounds are known, use ptr() subscript instead.
|
||||||
|
_FORCE_INLINE_ constexpr const T &operator[](U p_idx) const {
|
||||||
|
CRASH_COND(p_idx >= _len);
|
||||||
|
return _ptr[p_idx];
|
||||||
|
}
|
||||||
|
|
||||||
|
_FORCE_INLINE_ constexpr const T *begin() const { return _ptr; }
|
||||||
|
_FORCE_INLINE_ constexpr const T *end() const { return _ptr + _len; }
|
||||||
|
|
||||||
|
template <typename T1>
|
||||||
|
_FORCE_INLINE_ constexpr Span<T1> reinterpret() const {
|
||||||
|
return Span<T1>(reinterpret_cast<const T1 *>(_ptr), _len * sizeof(T) / sizeof(T1));
|
||||||
|
}
|
||||||
|
|
||||||
|
// Algorithms.
|
||||||
|
constexpr int64_t find(const T &p_val, U p_from = 0) const;
|
||||||
|
constexpr int64_t find_sequence(const Span<T> &p_span, U p_from = 0) const;
|
||||||
|
constexpr int64_t rfind(const T &p_val, U p_from) const;
|
||||||
|
_FORCE_INLINE_ constexpr int64_t rfind(const T &p_val) const { return rfind(p_val, size() - 1); }
|
||||||
|
constexpr int64_t rfind_sequence(const Span<T> &p_span, U p_from) const;
|
||||||
|
_FORCE_INLINE_ constexpr int64_t rfind_sequence(const Span<T> &p_span) const { return rfind_sequence(p_span, size() - p_span.size()); }
|
||||||
|
constexpr U count(const T &p_val) const;
|
||||||
|
/// Find the index of the given value using binary search.
|
||||||
|
/// Note: Assumes that elements in the span are sorted. Otherwise, use find() instead.
|
||||||
|
template <typename Comparator = Comparator<T>>
|
||||||
|
constexpr U bisect(const T &p_value, bool p_before, Comparator compare = Comparator()) const;
|
||||||
|
|
||||||
|
/// The caller is responsible to ensure size() > 0.
|
||||||
|
constexpr T max() const;
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename T, class U>
|
||||||
|
constexpr int64_t Span<T, U>::find(const T &p_val, U p_from) const {
|
||||||
|
for (U i = p_from; i < size(); i++) {
|
||||||
|
if (ptr()[i] == p_val) {
|
||||||
|
return i;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T, class U>
|
||||||
|
constexpr int64_t Span<T, U>::find_sequence(const Span<T> &p_span, U p_from) const {
|
||||||
|
for (U i = p_from; i <= size() - p_span.size(); i++) {
|
||||||
|
bool found = true;
|
||||||
|
for (U j = 0; j < p_span.size(); j++) {
|
||||||
|
if (ptr()[i + j] != p_span.ptr()[j]) {
|
||||||
|
found = false;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (found) {
|
||||||
|
return i;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T, class U>
|
||||||
|
constexpr int64_t Span<T, U>::rfind(const T &p_val, U p_from) const {
|
||||||
|
for (int64_t i = p_from; i >= 0; i--) {
|
||||||
|
if (ptr()[i] == p_val) {
|
||||||
|
return i;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T, class U>
|
||||||
|
constexpr int64_t Span<T, U>::rfind_sequence(const Span<T> &p_span, U p_from) const {
|
||||||
|
for (int64_t i = p_from; i >= 0; i--) {
|
||||||
|
bool found = true;
|
||||||
|
for (U j = 0; j < p_span.size(); j++) {
|
||||||
|
if (ptr()[i + j] != p_span.ptr()[j]) {
|
||||||
|
found = false;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (found) {
|
||||||
|
return i;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T, class U>
|
||||||
|
constexpr U Span<T, U>::count(const T &p_val) const {
|
||||||
|
U amount = 0;
|
||||||
|
for (U i = 0; i < size(); i++) {
|
||||||
|
if (ptr()[i] == p_val) {
|
||||||
|
amount++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return amount;
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T, class U>
|
||||||
|
template <typename Comparator>
|
||||||
|
constexpr U Span<T, U>::bisect(const T &p_value, bool p_before, Comparator compare) const {
|
||||||
|
U lo = 0;
|
||||||
|
U hi = size();
|
||||||
|
if (p_before) {
|
||||||
|
while (lo < hi) {
|
||||||
|
const U mid = (lo + hi) / 2;
|
||||||
|
if (compare(ptr()[mid], p_value)) {
|
||||||
|
lo = mid + 1;
|
||||||
|
} else {
|
||||||
|
hi = mid;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
while (lo < hi) {
|
||||||
|
const U mid = (lo + hi) / 2;
|
||||||
|
if (compare(p_value, ptr()[mid])) {
|
||||||
|
hi = mid;
|
||||||
|
} else {
|
||||||
|
lo = mid + 1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return lo;
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T, class U>
|
||||||
|
constexpr T Span<T, U>::max() const {
|
||||||
|
DEV_ASSERT(size() > 0);
|
||||||
|
T max_val = _ptr[0];
|
||||||
|
for (U i = 1; i < _len; ++i) {
|
||||||
|
if (_ptr[i] > max_val) {
|
||||||
|
max_val = _ptr[i];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return max_val;
|
||||||
|
}
|
|
@ -84,6 +84,10 @@ public:
|
||||||
_FORCE_INLINE_ const T &get(int p_index) const { return _cowdata.get(p_index); }
|
_FORCE_INLINE_ const T &get(int p_index) const { return _cowdata.get(p_index); }
|
||||||
_FORCE_INLINE_ void set(int p_index, const T &p_elem) { _cowdata.set(p_index, p_elem); }
|
_FORCE_INLINE_ void set(int p_index, const T &p_elem) { _cowdata.set(p_index, p_elem); }
|
||||||
_FORCE_INLINE_ int size() const { return _cowdata.size(); }
|
_FORCE_INLINE_ int size() const { return _cowdata.size(); }
|
||||||
|
|
||||||
|
_FORCE_INLINE_ operator Span<T>() const { return _cowdata.span(); }
|
||||||
|
_FORCE_INLINE_ Span<T> span() const { return _cowdata.span(); }
|
||||||
|
|
||||||
Error resize(int p_size) { return _cowdata.resize(p_size); }
|
Error resize(int p_size) { return _cowdata.resize(p_size); }
|
||||||
_FORCE_INLINE_ const T &operator[](int p_index) const { return _cowdata.get(p_index); }
|
_FORCE_INLINE_ const T &operator[](int p_index) const { return _cowdata.get(p_index); }
|
||||||
Error insert(int p_pos, T p_val) { return _cowdata.insert(p_pos, p_val); }
|
Error insert(int p_pos, T p_val) { return _cowdata.insert(p_pos, p_val); }
|
||||||
|
|
|
@ -536,7 +536,7 @@ bool EditorSpatialGizmo::intersect_frustum(const Camera *p_camera, const Vector<
|
||||||
transformed_frustum.push_back(it.xform(p_frustum[i]));
|
transformed_frustum.push_back(it.xform(p_frustum[i]));
|
||||||
}
|
}
|
||||||
|
|
||||||
Vector<Vector3> convex_points = Geometry::compute_convex_mesh_points(p_frustum.ptr(), p_frustum.size());
|
Vector<Vector3> convex_points = Geometry::compute_convex_mesh_points(p_frustum);
|
||||||
|
|
||||||
if (collision_mesh->inside_convex_shape(transformed_frustum.ptr(), transformed_frustum.size(), convex_points.ptr(), convex_points.size(), mesh_scale)) {
|
if (collision_mesh->inside_convex_shape(transformed_frustum.ptr(), transformed_frustum.size(), convex_points.ptr(), convex_points.size(), mesh_scale)) {
|
||||||
return true;
|
return true;
|
||||||
|
|
|
@ -239,7 +239,7 @@ bool CollisionPolygon2D::_edit_use_rect() const {
|
||||||
}
|
}
|
||||||
|
|
||||||
bool CollisionPolygon2D::_edit_is_selected_on_click(const Point2 &p_point, double p_tolerance) const {
|
bool CollisionPolygon2D::_edit_is_selected_on_click(const Point2 &p_point, double p_tolerance) const {
|
||||||
return Geometry::is_point_in_polygon(p_point, Variant(polygon));
|
return Geometry::is_point_in_polygon(p_point, polygon);
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
|
|
@ -68,7 +68,7 @@ Rect2 OccluderPolygon2D::_edit_get_rect() const {
|
||||||
|
|
||||||
bool OccluderPolygon2D::_edit_is_selected_on_click(const Point2 &p_point, double p_tolerance) const {
|
bool OccluderPolygon2D::_edit_is_selected_on_click(const Point2 &p_point, double p_tolerance) const {
|
||||||
if (closed) {
|
if (closed) {
|
||||||
return Geometry::is_point_in_polygon(p_point, Variant(polygon));
|
return Geometry::is_point_in_polygon(p_point, polygon);
|
||||||
} else {
|
} else {
|
||||||
const real_t d = LINE_GRAB_WIDTH / 2 + p_tolerance;
|
const real_t d = LINE_GRAB_WIDTH / 2 + p_tolerance;
|
||||||
PoolVector<Vector2>::Read points = polygon.read();
|
PoolVector<Vector2>::Read points = polygon.read();
|
||||||
|
|
|
@ -73,7 +73,7 @@ bool NavigationPolygon::_edit_is_selected_on_click(const Point2 &p_point, double
|
||||||
if (outline_size < 3) {
|
if (outline_size < 3) {
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
if (Geometry::is_point_in_polygon(p_point, Variant(outline))) {
|
if (Geometry::is_point_in_polygon(p_point, outline)) {
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
|
@ -172,7 +172,7 @@ PoolVector<Vector3> Room::generate_points() {
|
||||||
scaled_epsilon = MAX(scaled_epsilon * 0.01, 0.001);
|
scaled_epsilon = MAX(scaled_epsilon * 0.01, 0.001);
|
||||||
|
|
||||||
LocalVector<Vector3, int32_t> pts;
|
LocalVector<Vector3, int32_t> pts;
|
||||||
pts = Geometry::compute_convex_mesh_points(&_planes[0], _planes.size(), scaled_epsilon);
|
pts = Geometry::compute_convex_mesh_points(Span<Plane>(_planes.ptr(), _planes.size()), scaled_epsilon);
|
||||||
|
|
||||||
// eliminate duplicates
|
// eliminate duplicates
|
||||||
for (int n = 0; n < pts.size(); n++) {
|
for (int n = 0; n < pts.size(); n++) {
|
||||||
|
|
|
@ -784,7 +784,7 @@ void RoomManager::_generate_room_overlap_zones() {
|
||||||
|
|
||||||
memcpy(dest, &other->_planes[0], other->_planes.size() * sizeof(Plane));
|
memcpy(dest, &other->_planes[0], other->_planes.size() * sizeof(Plane));
|
||||||
|
|
||||||
Vector<Vector3> overlap_pts = Geometry::compute_convex_mesh_points(planes.ptr(), planes.size());
|
Vector<Vector3> overlap_pts = Geometry::compute_convex_mesh_points(Span<Plane>(planes.ptr(), planes.size()));
|
||||||
|
|
||||||
if (overlap_pts.size() < 4) {
|
if (overlap_pts.size() < 4) {
|
||||||
continue;
|
continue;
|
||||||
|
@ -1642,7 +1642,7 @@ void RoomManager::_build_simplified_bound(const Room *p_room, Geometry::MeshData
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
Vector<Vector3> pts = Geometry::compute_convex_mesh_points(&r_planes[0], r_planes.size(), 0.001);
|
Vector<Vector3> pts = Geometry::compute_convex_mesh_points(Span<Plane>(r_planes.ptr(), r_planes.size()), 0.001);
|
||||||
Error err = _build_room_convex_hull(p_room, pts, r_md);
|
Error err = _build_room_convex_hull(p_room, pts, r_md);
|
||||||
|
|
||||||
if (err != OK) {
|
if (err != OK) {
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue