// This file is part of meshoptimizer library; see meshoptimizer.h for version/license details #include "meshoptimizer.h" #include #include #include #include // This work is based on: // Graham Wihlidal. Optimizing the Graphics Pipeline with Compute. 2016 // Matthaeus Chajdas. GeometryFX 1.2 - Cluster Culling. 2016 // Jack Ritter. An Efficient Bounding Sphere. 1990 // Thomas Larsson. Fast and Tight Fitting Bounding Spheres. 2008 // Ingo Wald, Vlastimil Havran. On building fast kd-Trees for Ray Tracing, and on doing that in O(N log N). 2006 namespace meshopt { // This must be <= 256 since meshlet indices are stored as bytes const size_t kMeshletMaxVertices = 256; // A reasonable limit is around 2*max_vertices or less const size_t kMeshletMaxTriangles = 512; // We keep a limited number of seed triangles and add a few triangles per finished meshlet const size_t kMeshletMaxSeeds = 256; const size_t kMeshletAddSeeds = 4; // To avoid excessive recursion for malformed inputs, we limit the maximum depth of the tree const int kMeshletMaxTreeDepth = 50; struct TriangleAdjacency2 { unsigned int* counts; unsigned int* offsets; unsigned int* data; }; static void buildTriangleAdjacency(TriangleAdjacency2& adjacency, const unsigned int* indices, size_t index_count, size_t vertex_count, meshopt_Allocator& allocator) { size_t face_count = index_count / 3; // allocate arrays adjacency.counts = allocator.allocate(vertex_count); adjacency.offsets = allocator.allocate(vertex_count); adjacency.data = allocator.allocate(index_count); // fill triangle counts memset(adjacency.counts, 0, vertex_count * sizeof(unsigned int)); for (size_t i = 0; i < index_count; ++i) { assert(indices[i] < vertex_count); adjacency.counts[indices[i]]++; } // fill offset table unsigned int offset = 0; for (size_t i = 0; i < vertex_count; ++i) { adjacency.offsets[i] = offset; offset += adjacency.counts[i]; } assert(offset == index_count); // fill triangle data for (size_t i = 0; i < face_count; ++i) { unsigned int a = indices[i * 3 + 0], b = indices[i * 3 + 1], c = indices[i * 3 + 2]; adjacency.data[adjacency.offsets[a]++] = unsigned(i); adjacency.data[adjacency.offsets[b]++] = unsigned(i); adjacency.data[adjacency.offsets[c]++] = unsigned(i); } // fix offsets that have been disturbed by the previous pass for (size_t i = 0; i < vertex_count; ++i) { assert(adjacency.offsets[i] >= adjacency.counts[i]); adjacency.offsets[i] -= adjacency.counts[i]; } } static void buildTriangleAdjacencySparse(TriangleAdjacency2& adjacency, const unsigned int* indices, size_t index_count, size_t vertex_count, meshopt_Allocator& allocator) { size_t face_count = index_count / 3; // sparse mode can build adjacency more quickly by ignoring unused vertices, using a bit to mark visited vertices const unsigned int sparse_seen = 1u << 31; assert(index_count < sparse_seen); // allocate arrays adjacency.counts = allocator.allocate(vertex_count); adjacency.offsets = allocator.allocate(vertex_count); adjacency.data = allocator.allocate(index_count); // fill triangle counts for (size_t i = 0; i < index_count; ++i) assert(indices[i] < vertex_count); for (size_t i = 0; i < index_count; ++i) adjacency.counts[indices[i]] = 0; for (size_t i = 0; i < index_count; ++i) adjacency.counts[indices[i]]++; // fill offset table; uses sparse_seen bit to tag visited vertices unsigned int offset = 0; for (size_t i = 0; i < index_count; ++i) { unsigned int v = indices[i]; if ((adjacency.counts[v] & sparse_seen) == 0) { adjacency.offsets[v] = offset; offset += adjacency.counts[v]; adjacency.counts[v] |= sparse_seen; } } assert(offset == index_count); // fill triangle data for (size_t i = 0; i < face_count; ++i) { unsigned int a = indices[i * 3 + 0], b = indices[i * 3 + 1], c = indices[i * 3 + 2]; adjacency.data[adjacency.offsets[a]++] = unsigned(i); adjacency.data[adjacency.offsets[b]++] = unsigned(i); adjacency.data[adjacency.offsets[c]++] = unsigned(i); } // fix offsets that have been disturbed by the previous pass // also fix counts (that were marked with sparse_seen by the first pass) for (size_t i = 0; i < index_count; ++i) { unsigned int v = indices[i]; if (adjacency.counts[v] & sparse_seen) { adjacency.counts[v] &= ~sparse_seen; assert(adjacency.offsets[v] >= adjacency.counts[v]); adjacency.offsets[v] -= adjacency.counts[v]; } } } static void computeBoundingSphere(float result[4], const float* points, size_t count, size_t points_stride, const float* radii, size_t radii_stride, size_t axis_count) { static const float kAxes[7][3] = { // X, Y, Z {1, 0, 0}, {0, 1, 0}, {0, 0, 1}, // XYZ, -XYZ, X-YZ, XY-Z; normalized to unit length {0.57735026f, 0.57735026f, 0.57735026f}, {-0.57735026f, 0.57735026f, 0.57735026f}, {0.57735026f, -0.57735026f, 0.57735026f}, {0.57735026f, 0.57735026f, -0.57735026f}, }; assert(count > 0); assert(axis_count <= sizeof(kAxes) / sizeof(kAxes[0])); size_t points_stride_float = points_stride / sizeof(float); size_t radii_stride_float = radii_stride / sizeof(float); // find extremum points along all axes; for each axis we get a pair of points with min/max coordinates size_t pmin[7], pmax[7]; float tmin[7], tmax[7]; for (size_t axis = 0; axis < axis_count; ++axis) { pmin[axis] = pmax[axis] = 0; tmin[axis] = FLT_MAX; tmax[axis] = -FLT_MAX; } for (size_t i = 0; i < count; ++i) { const float* p = points + i * points_stride_float; float r = radii[i * radii_stride_float]; for (size_t axis = 0; axis < axis_count; ++axis) { const float* ax = kAxes[axis]; float tp = ax[0] * p[0] + ax[1] * p[1] + ax[2] * p[2]; float tpmin = tp - r, tpmax = tp + r; pmin[axis] = (tpmin < tmin[axis]) ? i : pmin[axis]; pmax[axis] = (tpmax > tmax[axis]) ? i : pmax[axis]; tmin[axis] = (tpmin < tmin[axis]) ? tpmin : tmin[axis]; tmax[axis] = (tpmax > tmax[axis]) ? tpmax : tmax[axis]; } } // find the pair of points with largest distance size_t paxis = 0; float paxisdr = 0; for (size_t axis = 0; axis < axis_count; ++axis) { const float* p1 = points + pmin[axis] * points_stride_float; const float* p2 = points + pmax[axis] * points_stride_float; float r1 = radii[pmin[axis] * radii_stride_float]; float r2 = radii[pmax[axis] * radii_stride_float]; float d2 = (p2[0] - p1[0]) * (p2[0] - p1[0]) + (p2[1] - p1[1]) * (p2[1] - p1[1]) + (p2[2] - p1[2]) * (p2[2] - p1[2]); float dr = sqrtf(d2) + r1 + r2; if (dr > paxisdr) { paxisdr = dr; paxis = axis; } } // use the longest segment as the initial sphere diameter const float* p1 = points + pmin[paxis] * points_stride_float; const float* p2 = points + pmax[paxis] * points_stride_float; float r1 = radii[pmin[paxis] * radii_stride_float]; float r2 = radii[pmax[paxis] * radii_stride_float]; float paxisd = sqrtf((p2[0] - p1[0]) * (p2[0] - p1[0]) + (p2[1] - p1[1]) * (p2[1] - p1[1]) + (p2[2] - p1[2]) * (p2[2] - p1[2])); float paxisk = paxisd > 0 ? (paxisd + r2 - r1) / (2 * paxisd) : 0.f; float center[3] = {p1[0] + (p2[0] - p1[0]) * paxisk, p1[1] + (p2[1] - p1[1]) * paxisk, p1[2] + (p2[2] - p1[2]) * paxisk}; float radius = paxisdr / 2; // iteratively adjust the sphere up until all points fit for (size_t i = 0; i < count; ++i) { const float* p = points + i * points_stride_float; float r = radii[i * radii_stride_float]; float d2 = (p[0] - center[0]) * (p[0] - center[0]) + (p[1] - center[1]) * (p[1] - center[1]) + (p[2] - center[2]) * (p[2] - center[2]); float d = sqrtf(d2); if (d + r > radius) { float k = d > 0 ? (d + r - radius) / (2 * d) : 0.f; center[0] += k * (p[0] - center[0]); center[1] += k * (p[1] - center[1]); center[2] += k * (p[2] - center[2]); radius = (radius + d + r) / 2; } } result[0] = center[0]; result[1] = center[1]; result[2] = center[2]; result[3] = radius; } struct Cone { float px, py, pz; float nx, ny, nz; }; static float getDistance(float dx, float dy, float dz, bool aa) { if (!aa) return sqrtf(dx * dx + dy * dy + dz * dz); float rx = fabsf(dx), ry = fabsf(dy), rz = fabsf(dz); float rxy = rx > ry ? rx : ry; return rxy > rz ? rxy : rz; } static float getMeshletScore(float distance, float spread, float cone_weight, float expected_radius) { if (cone_weight < 0) return 1 + distance / expected_radius; float cone = 1.f - spread * cone_weight; float cone_clamped = cone < 1e-3f ? 1e-3f : cone; return (1 + distance / expected_radius * (1 - cone_weight)) * cone_clamped; } static Cone getMeshletCone(const Cone& acc, unsigned int triangle_count) { Cone result = acc; float center_scale = triangle_count == 0 ? 0.f : 1.f / float(triangle_count); result.px *= center_scale; result.py *= center_scale; result.pz *= center_scale; float axis_length = result.nx * result.nx + result.ny * result.ny + result.nz * result.nz; float axis_scale = axis_length == 0.f ? 0.f : 1.f / sqrtf(axis_length); result.nx *= axis_scale; result.ny *= axis_scale; result.nz *= axis_scale; return result; } static float computeTriangleCones(Cone* triangles, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride) { (void)vertex_count; size_t vertex_stride_float = vertex_positions_stride / sizeof(float); size_t face_count = index_count / 3; float mesh_area = 0; for (size_t i = 0; i < face_count; ++i) { unsigned int a = indices[i * 3 + 0], b = indices[i * 3 + 1], c = indices[i * 3 + 2]; assert(a < vertex_count && b < vertex_count && c < vertex_count); const float* p0 = vertex_positions + vertex_stride_float * a; const float* p1 = vertex_positions + vertex_stride_float * b; const float* p2 = vertex_positions + vertex_stride_float * c; float p10[3] = {p1[0] - p0[0], p1[1] - p0[1], p1[2] - p0[2]}; float p20[3] = {p2[0] - p0[0], p2[1] - p0[1], p2[2] - p0[2]}; float normalx = p10[1] * p20[2] - p10[2] * p20[1]; float normaly = p10[2] * p20[0] - p10[0] * p20[2]; float normalz = p10[0] * p20[1] - p10[1] * p20[0]; float area = sqrtf(normalx * normalx + normaly * normaly + normalz * normalz); float invarea = (area == 0.f) ? 0.f : 1.f / area; triangles[i].px = (p0[0] + p1[0] + p2[0]) / 3.f; triangles[i].py = (p0[1] + p1[1] + p2[1]) / 3.f; triangles[i].pz = (p0[2] + p1[2] + p2[2]) / 3.f; triangles[i].nx = normalx * invarea; triangles[i].ny = normaly * invarea; triangles[i].nz = normalz * invarea; mesh_area += area; } return mesh_area; } static void finishMeshlet(meshopt_Meshlet& meshlet, unsigned char* meshlet_triangles) { size_t offset = meshlet.triangle_offset + meshlet.triangle_count * 3; // fill 4b padding with 0 while (offset & 3) meshlet_triangles[offset++] = 0; } static bool appendMeshlet(meshopt_Meshlet& meshlet, unsigned int a, unsigned int b, unsigned int c, short* used, meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, size_t meshlet_offset, size_t max_vertices, size_t max_triangles, bool split = false) { short& av = used[a]; short& bv = used[b]; short& cv = used[c]; bool result = false; int used_extra = (av < 0) + (bv < 0) + (cv < 0); if (meshlet.vertex_count + used_extra > max_vertices || meshlet.triangle_count >= max_triangles || split) { meshlets[meshlet_offset] = meshlet; for (size_t j = 0; j < meshlet.vertex_count; ++j) used[meshlet_vertices[meshlet.vertex_offset + j]] = -1; finishMeshlet(meshlet, meshlet_triangles); meshlet.vertex_offset += meshlet.vertex_count; meshlet.triangle_offset += (meshlet.triangle_count * 3 + 3) & ~3; // 4b padding meshlet.vertex_count = 0; meshlet.triangle_count = 0; result = true; } if (av < 0) { av = short(meshlet.vertex_count); meshlet_vertices[meshlet.vertex_offset + meshlet.vertex_count++] = a; } if (bv < 0) { bv = short(meshlet.vertex_count); meshlet_vertices[meshlet.vertex_offset + meshlet.vertex_count++] = b; } if (cv < 0) { cv = short(meshlet.vertex_count); meshlet_vertices[meshlet.vertex_offset + meshlet.vertex_count++] = c; } meshlet_triangles[meshlet.triangle_offset + meshlet.triangle_count * 3 + 0] = (unsigned char)av; meshlet_triangles[meshlet.triangle_offset + meshlet.triangle_count * 3 + 1] = (unsigned char)bv; meshlet_triangles[meshlet.triangle_offset + meshlet.triangle_count * 3 + 2] = (unsigned char)cv; meshlet.triangle_count++; return result; } static unsigned int getNeighborTriangle(const meshopt_Meshlet& meshlet, const Cone& meshlet_cone, const unsigned int* meshlet_vertices, const unsigned int* indices, const TriangleAdjacency2& adjacency, const Cone* triangles, const unsigned int* live_triangles, const short* used, float meshlet_expected_radius, float cone_weight) { unsigned int best_triangle = ~0u; int best_priority = 5; float best_score = FLT_MAX; for (size_t i = 0; i < meshlet.vertex_count; ++i) { unsigned int index = meshlet_vertices[meshlet.vertex_offset + i]; unsigned int* neighbors = &adjacency.data[0] + adjacency.offsets[index]; size_t neighbors_size = adjacency.counts[index]; for (size_t j = 0; j < neighbors_size; ++j) { unsigned int triangle = neighbors[j]; unsigned int a = indices[triangle * 3 + 0], b = indices[triangle * 3 + 1], c = indices[triangle * 3 + 2]; int extra = (used[a] < 0) + (used[b] < 0) + (used[c] < 0); assert(extra <= 2); int priority = -1; // triangles that don't add new vertices to meshlets are max. priority if (extra == 0) priority = 0; // artificially increase the priority of dangling triangles as they're expensive to add to new meshlets else if (live_triangles[a] == 1 || live_triangles[b] == 1 || live_triangles[c] == 1) priority = 1; // if two vertices have live count of 2, removing this triangle will make another triangle dangling which is good for overall flow else if ((live_triangles[a] == 2) + (live_triangles[b] == 2) + (live_triangles[c] == 2) >= 2) priority = 1 + extra; // otherwise adjust priority to be after the above cases, 3 or 4 based on used[] count else priority = 2 + extra; // since topology-based priority is always more important than the score, we can skip scoring in some cases if (priority > best_priority) continue; const Cone& tri_cone = triangles[triangle]; float dx = tri_cone.px - meshlet_cone.px, dy = tri_cone.py - meshlet_cone.py, dz = tri_cone.pz - meshlet_cone.pz; float distance = getDistance(dx, dy, dz, cone_weight < 0); float spread = tri_cone.nx * meshlet_cone.nx + tri_cone.ny * meshlet_cone.ny + tri_cone.nz * meshlet_cone.nz; float score = getMeshletScore(distance, spread, cone_weight, meshlet_expected_radius); // note that topology-based priority is always more important than the score // this helps maintain reasonable effectiveness of meshlet data and reduces scoring cost if (priority < best_priority || score < best_score) { best_triangle = triangle; best_priority = priority; best_score = score; } } } return best_triangle; } static size_t appendSeedTriangles(unsigned int* seeds, const meshopt_Meshlet& meshlet, const unsigned int* meshlet_vertices, const unsigned int* indices, const TriangleAdjacency2& adjacency, const Cone* triangles, const unsigned int* live_triangles, float cornerx, float cornery, float cornerz) { unsigned int best_seeds[kMeshletAddSeeds]; unsigned int best_live[kMeshletAddSeeds]; float best_score[kMeshletAddSeeds]; for (size_t i = 0; i < kMeshletAddSeeds; ++i) { best_seeds[i] = ~0u; best_live[i] = ~0u; best_score[i] = FLT_MAX; } for (size_t i = 0; i < meshlet.vertex_count; ++i) { unsigned int index = meshlet_vertices[meshlet.vertex_offset + i]; unsigned int best_neighbor = ~0u; unsigned int best_neighbor_live = ~0u; // find the neighbor with the smallest live metric unsigned int* neighbors = &adjacency.data[0] + adjacency.offsets[index]; size_t neighbors_size = adjacency.counts[index]; for (size_t j = 0; j < neighbors_size; ++j) { unsigned int triangle = neighbors[j]; unsigned int a = indices[triangle * 3 + 0], b = indices[triangle * 3 + 1], c = indices[triangle * 3 + 2]; unsigned int live = live_triangles[a] + live_triangles[b] + live_triangles[c]; if (live < best_neighbor_live) { best_neighbor = triangle; best_neighbor_live = live; } } // add the neighbor to the list of seeds; the list is unsorted and the replacement criteria is approximate if (best_neighbor == ~0u) continue; float best_neighbor_score = getDistance(triangles[best_neighbor].px - cornerx, triangles[best_neighbor].py - cornery, triangles[best_neighbor].pz - cornerz, false); for (size_t j = 0; j < kMeshletAddSeeds; ++j) { // non-strict comparison reduces the number of duplicate seeds (triangles adjacent to multiple vertices) if (best_neighbor_live < best_live[j] || (best_neighbor_live == best_live[j] && best_neighbor_score <= best_score[j])) { best_seeds[j] = best_neighbor; best_live[j] = best_neighbor_live; best_score[j] = best_neighbor_score; break; } } } // add surviving seeds to the meshlet size_t seed_count = 0; for (size_t i = 0; i < kMeshletAddSeeds; ++i) if (best_seeds[i] != ~0u) seeds[seed_count++] = best_seeds[i]; return seed_count; } static size_t pruneSeedTriangles(unsigned int* seeds, size_t seed_count, const unsigned char* emitted_flags) { size_t result = 0; for (size_t i = 0; i < seed_count; ++i) { unsigned int index = seeds[i]; seeds[result] = index; result += emitted_flags[index] == 0; } return result; } static unsigned int selectSeedTriangle(const unsigned int* seeds, size_t seed_count, const unsigned int* indices, const Cone* triangles, const unsigned int* live_triangles, float cornerx, float cornery, float cornerz) { unsigned int best_seed = ~0u; unsigned int best_live = ~0u; float best_score = FLT_MAX; for (size_t i = 0; i < seed_count; ++i) { unsigned int index = seeds[i]; unsigned int a = indices[index * 3 + 0], b = indices[index * 3 + 1], c = indices[index * 3 + 2]; unsigned int live = live_triangles[a] + live_triangles[b] + live_triangles[c]; float score = getDistance(triangles[index].px - cornerx, triangles[index].py - cornery, triangles[index].pz - cornerz, false); if (live < best_live || (live == best_live && score < best_score)) { best_seed = index; best_live = live; best_score = score; } } return best_seed; } struct KDNode { union { float split; unsigned int index; }; // leaves: axis = 3, children = number of extra points after this one (0 if 'index' is the only point) // branches: axis != 3, left subtree = skip 1, right subtree = skip 1+children unsigned int axis : 2; unsigned int children : 30; }; static size_t kdtreePartition(unsigned int* indices, size_t count, const float* points, size_t stride, unsigned int axis, float pivot) { size_t m = 0; // invariant: elements in range [0, m) are < pivot, elements in range [m, i) are >= pivot for (size_t i = 0; i < count; ++i) { float v = points[indices[i] * stride + axis]; // swap(m, i) unconditionally unsigned int t = indices[m]; indices[m] = indices[i]; indices[i] = t; // when v >= pivot, we swap i with m without advancing it, preserving invariants m += v < pivot; } return m; } static size_t kdtreeBuildLeaf(size_t offset, KDNode* nodes, size_t node_count, unsigned int* indices, size_t count) { assert(offset + count <= node_count); (void)node_count; KDNode& result = nodes[offset]; result.index = indices[0]; result.axis = 3; result.children = unsigned(count - 1); // all remaining points are stored in nodes immediately following the leaf for (size_t i = 1; i < count; ++i) { KDNode& tail = nodes[offset + i]; tail.index = indices[i]; tail.axis = 3; tail.children = ~0u >> 2; // bogus value to prevent misuse } return offset + count; } static size_t kdtreeBuild(size_t offset, KDNode* nodes, size_t node_count, const float* points, size_t stride, unsigned int* indices, size_t count, size_t leaf_size) { assert(count > 0); assert(offset < node_count); if (count <= leaf_size) return kdtreeBuildLeaf(offset, nodes, node_count, indices, count); float mean[3] = {}; float vars[3] = {}; float runc = 1, runs = 1; // gather statistics on the points in the subtree using Welford's algorithm for (size_t i = 0; i < count; ++i, runc += 1.f, runs = 1.f / runc) { const float* point = points + indices[i] * stride; for (int k = 0; k < 3; ++k) { float delta = point[k] - mean[k]; mean[k] += delta * runs; vars[k] += delta * (point[k] - mean[k]); } } // split axis is one where the variance is largest unsigned int axis = (vars[0] >= vars[1] && vars[0] >= vars[2]) ? 0 : (vars[1] >= vars[2] ? 1 : 2); float split = mean[axis]; size_t middle = kdtreePartition(indices, count, points, stride, axis, split); // when the partition is degenerate simply consolidate the points into a single node if (middle <= leaf_size / 2 || middle >= count - leaf_size / 2) return kdtreeBuildLeaf(offset, nodes, node_count, indices, count); KDNode& result = nodes[offset]; result.split = split; result.axis = axis; // left subtree is right after our node size_t next_offset = kdtreeBuild(offset + 1, nodes, node_count, points, stride, indices, middle, leaf_size); // distance to the right subtree is represented explicitly result.children = unsigned(next_offset - offset - 1); return kdtreeBuild(next_offset, nodes, node_count, points, stride, indices + middle, count - middle, leaf_size); } static void kdtreeNearest(KDNode* nodes, unsigned int root, const float* points, size_t stride, const unsigned char* emitted_flags, const float* position, bool aa, unsigned int& result, float& limit) { const KDNode& node = nodes[root]; if (node.axis == 3) { // leaf for (unsigned int i = 0; i <= node.children; ++i) { unsigned int index = nodes[root + i].index; if (emitted_flags[index]) continue; const float* point = points + index * stride; float dx = point[0] - position[0], dy = point[1] - position[1], dz = point[2] - position[2]; float distance = getDistance(dx, dy, dz, aa); if (distance < limit) { result = index; limit = distance; } } } else { // branch; we order recursion to process the node that search position is in first float delta = position[node.axis] - node.split; unsigned int first = (delta <= 0) ? 0 : node.children; unsigned int second = first ^ node.children; kdtreeNearest(nodes, root + 1 + first, points, stride, emitted_flags, position, aa, result, limit); // only process the other node if it can have a match based on closest distance so far if (fabsf(delta) <= limit) kdtreeNearest(nodes, root + 1 + second, points, stride, emitted_flags, position, aa, result, limit); } } struct BVHBox { float min[3]; float max[3]; }; static void boxMerge(BVHBox& box, const BVHBox& other) { for (int k = 0; k < 3; ++k) { box.min[k] = other.min[k] < box.min[k] ? other.min[k] : box.min[k]; box.max[k] = other.max[k] > box.max[k] ? other.max[k] : box.max[k]; } } inline float boxSurface(const BVHBox& box) { float sx = box.max[0] - box.min[0], sy = box.max[1] - box.min[1], sz = box.max[2] - box.min[2]; return sx * sy + sx * sz + sy * sz; } inline unsigned int radixFloat(unsigned int v) { // if sign bit is 0, flip sign bit // if sign bit is 1, flip everything unsigned int mask = (int(v) >> 31) | 0x80000000; return v ^ mask; } static void computeHistogram(unsigned int (&hist)[1024][3], const float* data, size_t count) { memset(hist, 0, sizeof(hist)); const unsigned int* bits = reinterpret_cast(data); // compute 3 10-bit histograms in parallel (dropping 2 LSB) for (size_t i = 0; i < count; ++i) { unsigned int id = radixFloat(bits[i]); hist[(id >> 2) & 1023][0]++; hist[(id >> 12) & 1023][1]++; hist[(id >> 22) & 1023][2]++; } unsigned int sum0 = 0, sum1 = 0, sum2 = 0; // replace histogram data with prefix histogram sums in-place for (int i = 0; i < 1024; ++i) { unsigned int hx = hist[i][0], hy = hist[i][1], hz = hist[i][2]; hist[i][0] = sum0; hist[i][1] = sum1; hist[i][2] = sum2; sum0 += hx; sum1 += hy; sum2 += hz; } assert(sum0 == count && sum1 == count && sum2 == count); } static void radixPass(unsigned int* destination, const unsigned int* source, const float* keys, size_t count, unsigned int (&hist)[1024][3], int pass) { const unsigned int* bits = reinterpret_cast(keys); int bitoff = pass * 10 + 2; // drop 2 LSB to be able to use 3 10-bit passes for (size_t i = 0; i < count; ++i) { unsigned int id = (radixFloat(bits[source[i]]) >> bitoff) & 1023; destination[hist[id][pass]++] = source[i]; } } static void bvhPrepare(BVHBox* boxes, float* centroids, const unsigned int* indices, size_t face_count, const float* vertex_positions, size_t vertex_count, size_t vertex_stride_float) { (void)vertex_count; for (size_t i = 0; i < face_count; ++i) { unsigned int a = indices[i * 3 + 0], b = indices[i * 3 + 1], c = indices[i * 3 + 2]; assert(a < vertex_count && b < vertex_count && c < vertex_count); const float* va = vertex_positions + vertex_stride_float * a; const float* vb = vertex_positions + vertex_stride_float * b; const float* vc = vertex_positions + vertex_stride_float * c; BVHBox& box = boxes[i]; for (int k = 0; k < 3; ++k) { box.min[k] = va[k] < vb[k] ? va[k] : vb[k]; box.min[k] = vc[k] < box.min[k] ? vc[k] : box.min[k]; box.max[k] = va[k] > vb[k] ? va[k] : vb[k]; box.max[k] = vc[k] > box.max[k] ? vc[k] : box.max[k]; centroids[i + face_count * k] = (box.min[k] + box.max[k]) / 2.f; } } } static bool bvhPackLeaf(unsigned char* boundary, const unsigned int* order, size_t count, short* used, const unsigned int* indices, size_t max_vertices) { // count number of unique vertices size_t used_vertices = 0; for (size_t i = 0; i < count; ++i) { unsigned int index = order[i]; unsigned int a = indices[index * 3 + 0], b = indices[index * 3 + 1], c = indices[index * 3 + 2]; used_vertices += (used[a] < 0) + (used[b] < 0) + (used[c] < 0); used[a] = used[b] = used[c] = 1; } // reset used[] for future invocations for (size_t i = 0; i < count; ++i) { unsigned int index = order[i]; unsigned int a = indices[index * 3 + 0], b = indices[index * 3 + 1], c = indices[index * 3 + 2]; used[a] = used[b] = used[c] = -1; } if (used_vertices > max_vertices) return false; // mark meshlet boundary for future reassembly assert(count > 0); boundary[0] = 1; memset(boundary + 1, 0, count - 1); return true; } static void bvhPackTail(unsigned char* boundary, const unsigned int* order, size_t count, short* used, const unsigned int* indices, size_t max_vertices, size_t max_triangles) { for (size_t i = 0; i < count;) { size_t chunk = i + max_triangles <= count ? max_triangles : count - i; if (bvhPackLeaf(boundary + i, order + i, chunk, used, indices, max_vertices)) { i += chunk; continue; } // chunk is vertex bound, split it into smaller meshlets assert(chunk > max_vertices / 3); bvhPackLeaf(boundary + i, order + i, max_vertices / 3, used, indices, max_vertices); i += max_vertices / 3; } } static bool bvhDivisible(size_t count, size_t min, size_t max) { // count is representable as a sum of values in [min..max] if if it in range of [k*min..k*min+k*(max-min)] // equivalent to ceil(count / max) <= floor(count / min), but the form below allows using idiv (see nv_cluster_builder) // we avoid expensive integer divisions in the common case where min is <= max/2 return min * 2 <= max ? count >= min : count % min <= (count / min) * (max - min); } static size_t bvhPivot(const BVHBox* boxes, const unsigned int* order, size_t count, void* scratch, size_t step, size_t min, size_t max, float fill, float* out_cost) { BVHBox accuml = boxes[order[0]], accumr = boxes[order[count - 1]]; float* costs = static_cast(scratch); // accumulate SAH cost in forward and backward directions for (size_t i = 0; i < count; ++i) { boxMerge(accuml, boxes[order[i]]); boxMerge(accumr, boxes[order[count - 1 - i]]); costs[i] = boxSurface(accuml); costs[i + count] = boxSurface(accumr); } bool aligned = count >= min * 2 && bvhDivisible(count, min, max); size_t end = aligned ? count - min : count - 1; float rmaxf = 1.f / float(int(max)); // find best split that minimizes SAH size_t bestsplit = 0; float bestcost = FLT_MAX; for (size_t i = min - 1; i < end; i += step) { size_t lsplit = i + 1, rsplit = count - (i + 1); if (!bvhDivisible(lsplit, min, max)) continue; if (aligned && !bvhDivisible(rsplit, min, max)) continue; // costs[x] = inclusive surface area of boxes[0..x] // costs[count-1-x] = inclusive surface area of boxes[x..count-1] float larea = costs[i], rarea = costs[(count - 1 - (i + 1)) + count]; float cost = larea * float(int(lsplit)) + rarea * float(int(rsplit)); if (cost > bestcost) continue; // fill cost; use floating point math to avoid expensive integer modulo int lrest = int(float(int(lsplit + max - 1)) * rmaxf) * int(max) - int(lsplit); int rrest = int(float(int(rsplit + max - 1)) * rmaxf) * int(max) - int(rsplit); cost += fill * (float(lrest) * larea + float(rrest) * rarea); if (cost < bestcost) { bestcost = cost; bestsplit = i + 1; } } *out_cost = bestcost; return bestsplit; } static void bvhPartition(unsigned int* target, const unsigned int* order, const unsigned char* sides, size_t split, size_t count) { size_t l = 0, r = split; for (size_t i = 0; i < count; ++i) { unsigned char side = sides[order[i]]; target[side ? r : l] = order[i]; l += 1; l -= side; r += side; } assert(l == split && r == count); } static void bvhSplit(const BVHBox* boxes, unsigned int* orderx, unsigned int* ordery, unsigned int* orderz, unsigned char* boundary, size_t count, int depth, void* scratch, short* used, const unsigned int* indices, size_t max_vertices, size_t min_triangles, size_t max_triangles, float fill_weight) { if (depth >= kMeshletMaxTreeDepth) return bvhPackTail(boundary, orderx, count, used, indices, max_vertices, max_triangles); if (count <= max_triangles && bvhPackLeaf(boundary, orderx, count, used, indices, max_vertices)) return; unsigned int* axes[3] = {orderx, ordery, orderz}; // we can use step=1 unconditionally but to reduce the cost for min=max case we use step=max size_t step = min_triangles == max_triangles && count > max_triangles ? max_triangles : 1; // if we could not pack the meshlet, we must be vertex bound size_t mint = count <= max_triangles && max_vertices / 3 < min_triangles ? max_vertices / 3 : min_triangles; // only use fill weight if we are optimizing for triangle count float fill = count <= max_triangles ? 0.f : fill_weight; // find best split that minimizes SAH int bestk = -1; size_t bestsplit = 0; float bestcost = FLT_MAX; for (int k = 0; k < 3; ++k) { float axiscost = FLT_MAX; size_t axissplit = bvhPivot(boxes, axes[k], count, scratch, step, mint, max_triangles, fill, &axiscost); if (axissplit && axiscost < bestcost) { bestk = k; bestcost = axiscost; bestsplit = axissplit; } } // this may happen if SAH costs along the admissible splits are NaN if (bestk < 0) return bvhPackTail(boundary, orderx, count, used, indices, max_vertices, max_triangles); // mark sides of split for partitioning unsigned char* sides = static_cast(scratch) + count * sizeof(unsigned int); for (size_t i = 0; i < bestsplit; ++i) sides[axes[bestk][i]] = 0; for (size_t i = bestsplit; i < count; ++i) sides[axes[bestk][i]] = 1; // partition all axes into two sides, maintaining order unsigned int* temp = static_cast(scratch); for (int k = 0; k < 3; ++k) { if (k == bestk) continue; unsigned int* axis = axes[k]; memcpy(temp, axis, sizeof(unsigned int) * count); bvhPartition(axis, temp, sides, bestsplit, count); } bvhSplit(boxes, orderx, ordery, orderz, boundary, bestsplit, depth + 1, scratch, used, indices, max_vertices, min_triangles, max_triangles, fill_weight); bvhSplit(boxes, orderx + bestsplit, ordery + bestsplit, orderz + bestsplit, boundary + bestsplit, count - bestsplit, depth + 1, scratch, used, indices, max_vertices, min_triangles, max_triangles, fill_weight); } } // namespace meshopt size_t meshopt_buildMeshletsBound(size_t index_count, size_t max_vertices, size_t max_triangles) { using namespace meshopt; assert(index_count % 3 == 0); assert(max_vertices >= 3 && max_vertices <= kMeshletMaxVertices); assert(max_triangles >= 1 && max_triangles <= kMeshletMaxTriangles); assert(max_triangles % 4 == 0); // ensures the caller will compute output space properly as index data is 4b aligned (void)kMeshletMaxVertices; (void)kMeshletMaxTriangles; // meshlet construction is limited by max vertices and max triangles per meshlet // the worst case is that the input is an unindexed stream since this equally stresses both limits // note that we assume that in the worst case, we leave 2 vertices unpacked in each meshlet - if we have space for 3 we can pack any triangle size_t max_vertices_conservative = max_vertices - 2; size_t meshlet_limit_vertices = (index_count + max_vertices_conservative - 1) / max_vertices_conservative; size_t meshlet_limit_triangles = (index_count / 3 + max_triangles - 1) / max_triangles; return meshlet_limit_vertices > meshlet_limit_triangles ? meshlet_limit_vertices : meshlet_limit_triangles; } size_t meshopt_buildMeshletsFlex(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t min_triangles, size_t max_triangles, float cone_weight, float split_factor) { using namespace meshopt; assert(index_count % 3 == 0); assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256); assert(vertex_positions_stride % sizeof(float) == 0); assert(max_vertices >= 3 && max_vertices <= kMeshletMaxVertices); assert(min_triangles >= 1 && min_triangles <= max_triangles && max_triangles <= kMeshletMaxTriangles); assert(min_triangles % 4 == 0 && max_triangles % 4 == 0); // ensures the caller will compute output space properly as index data is 4b aligned assert(cone_weight <= 1); // negative cone weight switches metric to optimize for axis-aligned meshlets assert(split_factor >= 0); if (index_count == 0) return 0; meshopt_Allocator allocator; TriangleAdjacency2 adjacency = {}; if (vertex_count > index_count && index_count < (1u << 31)) buildTriangleAdjacencySparse(adjacency, indices, index_count, vertex_count, allocator); else buildTriangleAdjacency(adjacency, indices, index_count, vertex_count, allocator); // live triangle counts; note, we alias adjacency.counts as we remove triangles after emitting them so the counts always match unsigned int* live_triangles = adjacency.counts; size_t face_count = index_count / 3; unsigned char* emitted_flags = allocator.allocate(face_count); memset(emitted_flags, 0, face_count); // for each triangle, precompute centroid & normal to use for scoring Cone* triangles = allocator.allocate(face_count); float mesh_area = computeTriangleCones(triangles, indices, index_count, vertex_positions, vertex_count, vertex_positions_stride); // assuming each meshlet is a square patch, expected radius is sqrt(expected area) float triangle_area_avg = face_count == 0 ? 0.f : mesh_area / float(face_count) * 0.5f; float meshlet_expected_radius = sqrtf(triangle_area_avg * max_triangles) * 0.5f; // build a kd-tree for nearest neighbor lookup unsigned int* kdindices = allocator.allocate(face_count); for (size_t i = 0; i < face_count; ++i) kdindices[i] = unsigned(i); KDNode* nodes = allocator.allocate(face_count * 2); kdtreeBuild(0, nodes, face_count * 2, &triangles[0].px, sizeof(Cone) / sizeof(float), kdindices, face_count, /* leaf_size= */ 8); // find a specific corner of the mesh to use as a starting point for meshlet flow float cornerx = FLT_MAX, cornery = FLT_MAX, cornerz = FLT_MAX; for (size_t i = 0; i < face_count; ++i) { const Cone& tri = triangles[i]; cornerx = cornerx > tri.px ? tri.px : cornerx; cornery = cornery > tri.py ? tri.py : cornery; cornerz = cornerz > tri.pz ? tri.pz : cornerz; } // index of the vertex in the meshlet, -1 if the vertex isn't used short* used = allocator.allocate(vertex_count); memset(used, -1, vertex_count * sizeof(short)); // initial seed triangle is the one closest to the corner unsigned int initial_seed = ~0u; float initial_score = FLT_MAX; for (size_t i = 0; i < face_count; ++i) { const Cone& tri = triangles[i]; float score = getDistance(tri.px - cornerx, tri.py - cornery, tri.pz - cornerz, false); if (initial_seed == ~0u || score < initial_score) { initial_seed = unsigned(i); initial_score = score; } } // seed triangles to continue meshlet flow unsigned int seeds[kMeshletMaxSeeds] = {}; size_t seed_count = 0; meshopt_Meshlet meshlet = {}; size_t meshlet_offset = 0; Cone meshlet_cone_acc = {}; for (;;) { Cone meshlet_cone = getMeshletCone(meshlet_cone_acc, meshlet.triangle_count); unsigned int best_triangle = ~0u; // for the first triangle, we don't have a meshlet cone yet, so we use the initial seed // to continue the meshlet, we select an adjacent triangle based on connectivity and spatial scoring if (meshlet_offset == 0 && meshlet.triangle_count == 0) best_triangle = initial_seed; else best_triangle = getNeighborTriangle(meshlet, meshlet_cone, meshlet_vertices, indices, adjacency, triangles, live_triangles, used, meshlet_expected_radius, cone_weight); bool split = false; // when we run out of adjacent triangles we need to switch to spatial search; we currently just pick the closest triangle irrespective of connectivity if (best_triangle == ~0u) { float position[3] = {meshlet_cone.px, meshlet_cone.py, meshlet_cone.pz}; unsigned int index = ~0u; float distance = FLT_MAX; kdtreeNearest(nodes, 0, &triangles[0].px, sizeof(Cone) / sizeof(float), emitted_flags, position, cone_weight < 0.f, index, distance); best_triangle = index; split = meshlet.triangle_count >= min_triangles && split_factor > 0 && distance > meshlet_expected_radius * split_factor; } if (best_triangle == ~0u) break; int best_extra = (used[indices[best_triangle * 3 + 0]] < 0) + (used[indices[best_triangle * 3 + 1]] < 0) + (used[indices[best_triangle * 3 + 2]] < 0); // if the best triangle doesn't fit into current meshlet, we re-select using seeds to maintain global flow if (split || (meshlet.vertex_count + best_extra > max_vertices || meshlet.triangle_count >= max_triangles)) { seed_count = pruneSeedTriangles(seeds, seed_count, emitted_flags); seed_count = (seed_count + kMeshletAddSeeds <= kMeshletMaxSeeds) ? seed_count : kMeshletMaxSeeds - kMeshletAddSeeds; seed_count += appendSeedTriangles(seeds + seed_count, meshlet, meshlet_vertices, indices, adjacency, triangles, live_triangles, cornerx, cornery, cornerz); unsigned int best_seed = selectSeedTriangle(seeds, seed_count, indices, triangles, live_triangles, cornerx, cornery, cornerz); // we may not find a valid seed triangle if the mesh is disconnected as seeds are based on adjacency best_triangle = best_seed != ~0u ? best_seed : best_triangle; } unsigned int a = indices[best_triangle * 3 + 0], b = indices[best_triangle * 3 + 1], c = indices[best_triangle * 3 + 2]; assert(a < vertex_count && b < vertex_count && c < vertex_count); // add meshlet to the output; when the current meshlet is full we reset the accumulated bounds if (appendMeshlet(meshlet, a, b, c, used, meshlets, meshlet_vertices, meshlet_triangles, meshlet_offset, max_vertices, max_triangles, split)) { meshlet_offset++; memset(&meshlet_cone_acc, 0, sizeof(meshlet_cone_acc)); } // remove emitted triangle from adjacency data // this makes sure that we spend less time traversing these lists on subsequent iterations // live triangle counts are updated as a byproduct of these adjustments for (size_t k = 0; k < 3; ++k) { unsigned int index = indices[best_triangle * 3 + k]; unsigned int* neighbors = &adjacency.data[0] + adjacency.offsets[index]; size_t neighbors_size = adjacency.counts[index]; for (size_t i = 0; i < neighbors_size; ++i) { unsigned int tri = neighbors[i]; if (tri == best_triangle) { neighbors[i] = neighbors[neighbors_size - 1]; adjacency.counts[index]--; break; } } } // update aggregated meshlet cone data for scoring subsequent triangles meshlet_cone_acc.px += triangles[best_triangle].px; meshlet_cone_acc.py += triangles[best_triangle].py; meshlet_cone_acc.pz += triangles[best_triangle].pz; meshlet_cone_acc.nx += triangles[best_triangle].nx; meshlet_cone_acc.ny += triangles[best_triangle].ny; meshlet_cone_acc.nz += triangles[best_triangle].nz; assert(!emitted_flags[best_triangle]); emitted_flags[best_triangle] = 1; } if (meshlet.triangle_count) { finishMeshlet(meshlet, meshlet_triangles); meshlets[meshlet_offset++] = meshlet; } assert(meshlet_offset <= meshopt_buildMeshletsBound(index_count, max_vertices, min_triangles)); return meshlet_offset; } size_t meshopt_buildMeshlets(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t max_triangles, float cone_weight) { assert(cone_weight >= 0); // to use negative cone weight, use meshopt_buildMeshletsFlex return meshopt_buildMeshletsFlex(meshlets, meshlet_vertices, meshlet_triangles, indices, index_count, vertex_positions, vertex_count, vertex_positions_stride, max_vertices, max_triangles, max_triangles, cone_weight, 0.0f); } size_t meshopt_buildMeshletsScan(meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const unsigned int* indices, size_t index_count, size_t vertex_count, size_t max_vertices, size_t max_triangles) { using namespace meshopt; assert(index_count % 3 == 0); assert(max_vertices >= 3 && max_vertices <= kMeshletMaxVertices); assert(max_triangles >= 1 && max_triangles <= kMeshletMaxTriangles); assert(max_triangles % 4 == 0); // ensures the caller will compute output space properly as index data is 4b aligned meshopt_Allocator allocator; // index of the vertex in the meshlet, -1 if the vertex isn't used short* used = allocator.allocate(vertex_count); memset(used, -1, vertex_count * sizeof(short)); meshopt_Meshlet meshlet = {}; size_t meshlet_offset = 0; for (size_t i = 0; i < index_count; i += 3) { unsigned int a = indices[i + 0], b = indices[i + 1], c = indices[i + 2]; assert(a < vertex_count && b < vertex_count && c < vertex_count); // appends triangle to the meshlet and writes previous meshlet to the output if full meshlet_offset += appendMeshlet(meshlet, a, b, c, used, meshlets, meshlet_vertices, meshlet_triangles, meshlet_offset, max_vertices, max_triangles); } if (meshlet.triangle_count) { finishMeshlet(meshlet, meshlet_triangles); meshlets[meshlet_offset++] = meshlet; } assert(meshlet_offset <= meshopt_buildMeshletsBound(index_count, max_vertices, max_triangles)); return meshlet_offset; } size_t meshopt_buildMeshletsSpatial(struct meshopt_Meshlet* meshlets, unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t max_vertices, size_t min_triangles, size_t max_triangles, float fill_weight) { using namespace meshopt; assert(index_count % 3 == 0); assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256); assert(vertex_positions_stride % sizeof(float) == 0); assert(max_vertices >= 3 && max_vertices <= kMeshletMaxVertices); assert(min_triangles >= 1 && min_triangles <= max_triangles && max_triangles <= kMeshletMaxTriangles); assert(min_triangles % 4 == 0 && max_triangles % 4 == 0); // ensures the caller will compute output space properly as index data is 4b aligned if (index_count == 0) return 0; size_t face_count = index_count / 3; size_t vertex_stride_float = vertex_positions_stride / sizeof(float); meshopt_Allocator allocator; // 3 floats plus 1 uint for sorting, or // 2 floats for SAH costs, or // 1 uint plus 1 byte for partitioning float* scratch = allocator.allocate(face_count * 4); // compute bounding boxes and centroids for sorting BVHBox* boxes = allocator.allocate(face_count); bvhPrepare(boxes, scratch, indices, face_count, vertex_positions, vertex_count, vertex_stride_float); unsigned int* axes = allocator.allocate(face_count * 3); unsigned int* temp = reinterpret_cast(scratch) + face_count * 3; for (int k = 0; k < 3; ++k) { unsigned int* order = axes + k * face_count; const float* keys = scratch + k * face_count; unsigned int hist[1024][3]; computeHistogram(hist, keys, face_count); // 3-pass radix sort computes the resulting order into axes for (size_t i = 0; i < face_count; ++i) temp[i] = unsigned(i); radixPass(order, temp, keys, face_count, hist, 0); radixPass(temp, order, keys, face_count, hist, 1); radixPass(order, temp, keys, face_count, hist, 2); } // index of the vertex in the meshlet, -1 if the vertex isn't used short* used = allocator.allocate(vertex_count); memset(used, -1, vertex_count * sizeof(short)); unsigned char* boundary = allocator.allocate(face_count); bvhSplit(boxes, &axes[0], &axes[face_count], &axes[face_count * 2], boundary, face_count, 0, scratch, used, indices, max_vertices, min_triangles, max_triangles, fill_weight); // compute the desired number of meshlets; note that on some meshes with a lot of vertex bound clusters this might go over the bound size_t meshlet_count = 0; for (size_t i = 0; i < face_count; ++i) { assert(boundary[i] <= 1); meshlet_count += boundary[i]; } size_t meshlet_bound = meshopt_buildMeshletsBound(index_count, max_vertices, min_triangles); // pack triangles into meshlets according to the order and boundaries marked by bvhSplit meshopt_Meshlet meshlet = {}; size_t meshlet_offset = 0; size_t meshlet_pending = meshlet_count; for (size_t i = 0; i < face_count; ++i) { assert(boundary[i] <= 1); bool split = i > 0 && boundary[i] == 1; // while we are over the limit, we ignore boundary[] data and disable splits until we free up enough space if (split && meshlet_count > meshlet_bound && meshlet_offset + meshlet_pending >= meshlet_bound) split = false; unsigned int index = axes[i]; assert(index < face_count); unsigned int a = indices[index * 3 + 0], b = indices[index * 3 + 1], c = indices[index * 3 + 2]; // appends triangle to the meshlet and writes previous meshlet to the output if full meshlet_offset += appendMeshlet(meshlet, a, b, c, used, meshlets, meshlet_vertices, meshlet_triangles, meshlet_offset, max_vertices, max_triangles, split); meshlet_pending -= boundary[i]; } if (meshlet.triangle_count) { finishMeshlet(meshlet, meshlet_triangles); meshlets[meshlet_offset++] = meshlet; } assert(meshlet_offset <= meshlet_bound); return meshlet_offset; } meshopt_Bounds meshopt_computeClusterBounds(const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride) { using namespace meshopt; assert(index_count % 3 == 0); assert(index_count / 3 <= kMeshletMaxTriangles); assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256); assert(vertex_positions_stride % sizeof(float) == 0); (void)vertex_count; size_t vertex_stride_float = vertex_positions_stride / sizeof(float); // compute triangle normals and gather triangle corners float normals[kMeshletMaxTriangles][3]; float corners[kMeshletMaxTriangles][3][3]; size_t triangles = 0; for (size_t i = 0; i < index_count; i += 3) { unsigned int a = indices[i + 0], b = indices[i + 1], c = indices[i + 2]; assert(a < vertex_count && b < vertex_count && c < vertex_count); const float* p0 = vertex_positions + vertex_stride_float * a; const float* p1 = vertex_positions + vertex_stride_float * b; const float* p2 = vertex_positions + vertex_stride_float * c; float p10[3] = {p1[0] - p0[0], p1[1] - p0[1], p1[2] - p0[2]}; float p20[3] = {p2[0] - p0[0], p2[1] - p0[1], p2[2] - p0[2]}; float normalx = p10[1] * p20[2] - p10[2] * p20[1]; float normaly = p10[2] * p20[0] - p10[0] * p20[2]; float normalz = p10[0] * p20[1] - p10[1] * p20[0]; float area = sqrtf(normalx * normalx + normaly * normaly + normalz * normalz); // no need to include degenerate triangles - they will be invisible anyway if (area == 0.f) continue; // record triangle normals & corners for future use; normal and corner 0 define a plane equation normals[triangles][0] = normalx / area; normals[triangles][1] = normaly / area; normals[triangles][2] = normalz / area; memcpy(corners[triangles][0], p0, 3 * sizeof(float)); memcpy(corners[triangles][1], p1, 3 * sizeof(float)); memcpy(corners[triangles][2], p2, 3 * sizeof(float)); triangles++; } meshopt_Bounds bounds = {}; // degenerate cluster, no valid triangles => trivial reject (cone data is 0) if (triangles == 0) return bounds; const float rzero = 0.f; // compute cluster bounding sphere; we'll use the center to determine normal cone apex as well float psphere[4] = {}; computeBoundingSphere(psphere, corners[0][0], triangles * 3, sizeof(float) * 3, &rzero, 0, 7); float center[3] = {psphere[0], psphere[1], psphere[2]}; // treating triangle normals as points, find the bounding sphere - the sphere center determines the optimal cone axis float nsphere[4] = {}; computeBoundingSphere(nsphere, normals[0], triangles, sizeof(float) * 3, &rzero, 0, 3); float axis[3] = {nsphere[0], nsphere[1], nsphere[2]}; float axislength = sqrtf(axis[0] * axis[0] + axis[1] * axis[1] + axis[2] * axis[2]); float invaxislength = axislength == 0.f ? 0.f : 1.f / axislength; axis[0] *= invaxislength; axis[1] *= invaxislength; axis[2] *= invaxislength; // compute a tight cone around all normals, mindp = cos(angle/2) float mindp = 1.f; for (size_t i = 0; i < triangles; ++i) { float dp = normals[i][0] * axis[0] + normals[i][1] * axis[1] + normals[i][2] * axis[2]; mindp = (dp < mindp) ? dp : mindp; } // fill bounding sphere info; note that below we can return bounds without cone information for degenerate cones bounds.center[0] = center[0]; bounds.center[1] = center[1]; bounds.center[2] = center[2]; bounds.radius = psphere[3]; // degenerate cluster, normal cone is larger than a hemisphere => trivial accept // note that if mindp is positive but close to 0, the triangle intersection code below gets less stable // we arbitrarily decide that if a normal cone is ~168 degrees wide or more, the cone isn't useful if (mindp <= 0.1f) { bounds.cone_cutoff = 1; bounds.cone_cutoff_s8 = 127; return bounds; } float maxt = 0; // we need to find the point on center-t*axis ray that lies in negative half-space of all triangles for (size_t i = 0; i < triangles; ++i) { // dot(center-t*axis-corner, trinormal) = 0 // dot(center-corner, trinormal) - t * dot(axis, trinormal) = 0 float cx = center[0] - corners[i][0][0]; float cy = center[1] - corners[i][0][1]; float cz = center[2] - corners[i][0][2]; float dc = cx * normals[i][0] + cy * normals[i][1] + cz * normals[i][2]; float dn = axis[0] * normals[i][0] + axis[1] * normals[i][1] + axis[2] * normals[i][2]; // dn should be larger than mindp cutoff above assert(dn > 0.f); float t = dc / dn; maxt = (t > maxt) ? t : maxt; } // cone apex should be in the negative half-space of all cluster triangles by construction bounds.cone_apex[0] = center[0] - axis[0] * maxt; bounds.cone_apex[1] = center[1] - axis[1] * maxt; bounds.cone_apex[2] = center[2] - axis[2] * maxt; // note: this axis is the axis of the normal cone, but our test for perspective camera effectively negates the axis bounds.cone_axis[0] = axis[0]; bounds.cone_axis[1] = axis[1]; bounds.cone_axis[2] = axis[2]; // cos(a) for normal cone is mindp; we need to add 90 degrees on both sides and invert the cone // which gives us -cos(a+90) = -(-sin(a)) = sin(a) = sqrt(1 - cos^2(a)) bounds.cone_cutoff = sqrtf(1 - mindp * mindp); // quantize axis & cutoff to 8-bit SNORM format bounds.cone_axis_s8[0] = (signed char)(meshopt_quantizeSnorm(bounds.cone_axis[0], 8)); bounds.cone_axis_s8[1] = (signed char)(meshopt_quantizeSnorm(bounds.cone_axis[1], 8)); bounds.cone_axis_s8[2] = (signed char)(meshopt_quantizeSnorm(bounds.cone_axis[2], 8)); // for the 8-bit test to be conservative, we need to adjust the cutoff by measuring the max. error float cone_axis_s8_e0 = fabsf(bounds.cone_axis_s8[0] / 127.f - bounds.cone_axis[0]); float cone_axis_s8_e1 = fabsf(bounds.cone_axis_s8[1] / 127.f - bounds.cone_axis[1]); float cone_axis_s8_e2 = fabsf(bounds.cone_axis_s8[2] / 127.f - bounds.cone_axis[2]); // note that we need to round this up instead of rounding to nearest, hence +1 int cone_cutoff_s8 = int(127 * (bounds.cone_cutoff + cone_axis_s8_e0 + cone_axis_s8_e1 + cone_axis_s8_e2) + 1); bounds.cone_cutoff_s8 = (cone_cutoff_s8 > 127) ? 127 : (signed char)(cone_cutoff_s8); return bounds; } meshopt_Bounds meshopt_computeMeshletBounds(const unsigned int* meshlet_vertices, const unsigned char* meshlet_triangles, size_t triangle_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride) { using namespace meshopt; assert(triangle_count <= kMeshletMaxTriangles); assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256); assert(vertex_positions_stride % sizeof(float) == 0); unsigned int indices[kMeshletMaxTriangles * 3]; for (size_t i = 0; i < triangle_count * 3; ++i) { unsigned int index = meshlet_vertices[meshlet_triangles[i]]; assert(index < vertex_count); indices[i] = index; } return meshopt_computeClusterBounds(indices, triangle_count * 3, vertex_positions, vertex_count, vertex_positions_stride); } meshopt_Bounds meshopt_computeSphereBounds(const float* positions, size_t count, size_t positions_stride, const float* radii, size_t radii_stride) { using namespace meshopt; assert(positions_stride >= 12 && positions_stride <= 256); assert(positions_stride % sizeof(float) == 0); assert((radii_stride >= 4 && radii_stride <= 256) || radii == NULL); assert(radii_stride % sizeof(float) == 0); meshopt_Bounds bounds = {}; if (count == 0) return bounds; const float rzero = 0.f; float psphere[4] = {}; computeBoundingSphere(psphere, positions, count, positions_stride, radii ? radii : &rzero, radii ? radii_stride : 0, 7); bounds.center[0] = psphere[0]; bounds.center[1] = psphere[1]; bounds.center[2] = psphere[2]; bounds.radius = psphere[3]; return bounds; } void meshopt_optimizeMeshlet(unsigned int* meshlet_vertices, unsigned char* meshlet_triangles, size_t triangle_count, size_t vertex_count) { using namespace meshopt; assert(triangle_count <= kMeshletMaxTriangles); assert(vertex_count <= kMeshletMaxVertices); unsigned char* indices = meshlet_triangles; unsigned int* vertices = meshlet_vertices; // cache tracks vertex timestamps (corresponding to triangle index! all 3 vertices are added at the same time and never removed) unsigned char cache[kMeshletMaxVertices]; memset(cache, 0, vertex_count); // note that we start from a value that means all vertices aren't in cache unsigned char cache_last = 128; const unsigned char cache_cutoff = 3; // 3 triangles = ~5..9 vertices depending on reuse for (size_t i = 0; i < triangle_count; ++i) { int next = -1; int next_match = -1; for (size_t j = i; j < triangle_count; ++j) { unsigned char a = indices[j * 3 + 0], b = indices[j * 3 + 1], c = indices[j * 3 + 2]; assert(a < vertex_count && b < vertex_count && c < vertex_count); // score each triangle by how many vertices are in cache // note: the distance is computed using unsigned 8-bit values, so cache timestamp overflow is handled gracefully int aok = (unsigned char)(cache_last - cache[a]) < cache_cutoff; int bok = (unsigned char)(cache_last - cache[b]) < cache_cutoff; int cok = (unsigned char)(cache_last - cache[c]) < cache_cutoff; if (aok + bok + cok > next_match) { next = (int)j; next_match = aok + bok + cok; // note that we could end up with all 3 vertices in the cache, but 2 is enough for ~strip traversal if (next_match >= 2) break; } } assert(next >= 0); unsigned char a = indices[next * 3 + 0], b = indices[next * 3 + 1], c = indices[next * 3 + 2]; // shift triangles before the next one forward so that we always keep an ordered partition // note: this could have swapped triangles [i] and [next] but that distorts the order and may skew the output sequence memmove(indices + (i + 1) * 3, indices + i * 3, (next - i) * 3 * sizeof(unsigned char)); indices[i * 3 + 0] = a; indices[i * 3 + 1] = b; indices[i * 3 + 2] = c; // cache timestamp is the same between all vertices of each triangle to reduce overflow cache_last++; cache[a] = cache_last; cache[b] = cache_last; cache[c] = cache_last; } // reorder meshlet vertices for access locality assuming index buffer is scanned sequentially unsigned int order[kMeshletMaxVertices]; short remap[kMeshletMaxVertices]; memset(remap, -1, vertex_count * sizeof(short)); size_t vertex_offset = 0; for (size_t i = 0; i < triangle_count * 3; ++i) { short& r = remap[indices[i]]; if (r < 0) { r = short(vertex_offset); order[vertex_offset] = vertices[indices[i]]; vertex_offset++; } indices[i] = (unsigned char)r; } assert(vertex_offset <= vertex_count); memcpy(vertices, order, vertex_offset * sizeof(unsigned int)); }