// This file is part of meshoptimizer library; see meshoptimizer.h for version/license details #include "meshoptimizer.h" #include #include #include #include #ifndef TRACE #define TRACE 0 #endif #if TRACE #include #endif #if TRACE #define TRACESTATS(i) stats[i]++; #else #define TRACESTATS(i) (void)0 #endif // This work is based on: // Michael Garland and Paul S. Heckbert. Surface simplification using quadric error metrics. 1997 // Michael Garland. Quadric-based polygonal surface simplification. 1999 // Peter Lindstrom. Out-of-Core Simplification of Large Polygonal Models. 2000 // Matthias Teschner, Bruno Heidelberger, Matthias Mueller, Danat Pomeranets, Markus Gross. Optimized Spatial Hashing for Collision Detection of Deformable Objects. 2003 // Peter Van Sandt, Yannis Chronis, Jignesh M. Patel. Efficiently Searching In-Memory Sorted Arrays: Revenge of the Interpolation Search? 2019 // Hugues Hoppe. New Quadric Metric for Simplifying Meshes with Appearance Attributes. 1999 // Hugues Hoppe, Steve Marschner. Efficient Minimization of New Quadric Metric for Simplifying Meshes with Appearance Attributes. 2000 namespace meshopt { struct EdgeAdjacency { struct Edge { unsigned int next; unsigned int prev; }; unsigned int* offsets; Edge* data; }; static void prepareEdgeAdjacency(EdgeAdjacency& adjacency, size_t index_count, size_t vertex_count, meshopt_Allocator& allocator) { adjacency.offsets = allocator.allocate(vertex_count + 1); adjacency.data = allocator.allocate(index_count); } static void updateEdgeAdjacency(EdgeAdjacency& adjacency, const unsigned int* indices, size_t index_count, size_t vertex_count, const unsigned int* remap) { size_t face_count = index_count / 3; unsigned int* offsets = adjacency.offsets + 1; EdgeAdjacency::Edge* data = adjacency.data; // fill edge counts memset(offsets, 0, vertex_count * sizeof(unsigned int)); for (size_t i = 0; i < index_count; ++i) { unsigned int v = remap ? remap[indices[i]] : indices[i]; assert(v < vertex_count); offsets[v]++; } // fill offset table unsigned int offset = 0; for (size_t i = 0; i < vertex_count; ++i) { unsigned int count = offsets[i]; offsets[i] = offset; offset += count; } assert(offset == index_count); // fill edge data for (size_t i = 0; i < face_count; ++i) { unsigned int a = indices[i * 3 + 0], b = indices[i * 3 + 1], c = indices[i * 3 + 2]; if (remap) { a = remap[a]; b = remap[b]; c = remap[c]; } data[offsets[a]].next = b; data[offsets[a]].prev = c; offsets[a]++; data[offsets[b]].next = c; data[offsets[b]].prev = a; offsets[b]++; data[offsets[c]].next = a; data[offsets[c]].prev = b; offsets[c]++; } // finalize offsets adjacency.offsets[0] = 0; assert(adjacency.offsets[vertex_count] == index_count); } struct PositionHasher { const float* vertex_positions; size_t vertex_stride_float; const unsigned int* sparse_remap; size_t hash(unsigned int index) const { unsigned int ri = sparse_remap ? sparse_remap[index] : index; const unsigned int* key = reinterpret_cast(vertex_positions + ri * vertex_stride_float); unsigned int x = key[0], y = key[1], z = key[2]; // replace negative zero with zero x = (x == 0x80000000) ? 0 : x; y = (y == 0x80000000) ? 0 : y; z = (z == 0x80000000) ? 0 : z; // scramble bits to make sure that integer coordinates have entropy in lower bits x ^= x >> 17; y ^= y >> 17; z ^= z >> 17; // Optimized Spatial Hashing for Collision Detection of Deformable Objects return (x * 73856093) ^ (y * 19349663) ^ (z * 83492791); } bool equal(unsigned int lhs, unsigned int rhs) const { unsigned int li = sparse_remap ? sparse_remap[lhs] : lhs; unsigned int ri = sparse_remap ? sparse_remap[rhs] : rhs; const float* lv = vertex_positions + li * vertex_stride_float; const float* rv = vertex_positions + ri * vertex_stride_float; return lv[0] == rv[0] && lv[1] == rv[1] && lv[2] == rv[2]; } }; struct RemapHasher { unsigned int* remap; size_t hash(unsigned int id) const { return id * 0x5bd1e995; } bool equal(unsigned int lhs, unsigned int rhs) const { return remap[lhs] == rhs; } }; static size_t hashBuckets2(size_t count) { size_t buckets = 1; while (buckets < count + count / 4) buckets *= 2; return buckets; } template static T* hashLookup2(T* table, size_t buckets, const Hash& hash, const T& key, const T& empty) { assert(buckets > 0); assert((buckets & (buckets - 1)) == 0); size_t hashmod = buckets - 1; size_t bucket = hash.hash(key) & hashmod; for (size_t probe = 0; probe <= hashmod; ++probe) { T& item = table[bucket]; if (item == empty) return &item; if (hash.equal(item, key)) return &item; // hash collision, quadratic probing bucket = (bucket + probe + 1) & hashmod; } assert(false && "Hash table is full"); // unreachable return NULL; } static void buildPositionRemap(unsigned int* remap, unsigned int* wedge, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, const unsigned int* sparse_remap, meshopt_Allocator& allocator) { PositionHasher hasher = {vertex_positions_data, vertex_positions_stride / sizeof(float), sparse_remap}; size_t table_size = hashBuckets2(vertex_count); unsigned int* table = allocator.allocate(table_size); memset(table, -1, table_size * sizeof(unsigned int)); // build forward remap: for each vertex, which other (canonical) vertex does it map to? // we use position equivalence for this, and remap vertices to other existing vertices for (size_t i = 0; i < vertex_count; ++i) { unsigned int index = unsigned(i); unsigned int* entry = hashLookup2(table, table_size, hasher, index, ~0u); if (*entry == ~0u) *entry = index; remap[index] = *entry; } allocator.deallocate(table); if (!wedge) return; // build wedge table: for each vertex, which other vertex is the next wedge that also maps to the same vertex? // entries in table form a (cyclic) wedge loop per vertex; for manifold vertices, wedge[i] == remap[i] == i for (size_t i = 0; i < vertex_count; ++i) wedge[i] = unsigned(i); for (size_t i = 0; i < vertex_count; ++i) if (remap[i] != i) { unsigned int r = remap[i]; wedge[i] = wedge[r]; wedge[r] = unsigned(i); } } static unsigned int* buildSparseRemap(unsigned int* indices, size_t index_count, size_t vertex_count, size_t* out_vertex_count, meshopt_Allocator& allocator) { // use a bit set to compute the precise number of unique vertices unsigned char* filter = allocator.allocate((vertex_count + 7) / 8); memset(filter, 0, (vertex_count + 7) / 8); size_t unique = 0; for (size_t i = 0; i < index_count; ++i) { unsigned int index = indices[i]; assert(index < vertex_count); unique += (filter[index / 8] & (1 << (index % 8))) == 0; filter[index / 8] |= 1 << (index % 8); } unsigned int* remap = allocator.allocate(unique); size_t offset = 0; // temporary map dense => sparse; we allocate it last so that we can deallocate it size_t revremap_size = hashBuckets2(unique); unsigned int* revremap = allocator.allocate(revremap_size); memset(revremap, -1, revremap_size * sizeof(unsigned int)); // fill remap, using revremap as a helper, and rewrite indices in the same pass RemapHasher hasher = {remap}; for (size_t i = 0; i < index_count; ++i) { unsigned int index = indices[i]; unsigned int* entry = hashLookup2(revremap, revremap_size, hasher, index, ~0u); if (*entry == ~0u) { remap[offset] = index; *entry = unsigned(offset); offset++; } indices[i] = *entry; } allocator.deallocate(revremap); assert(offset == unique); *out_vertex_count = unique; return remap; } enum VertexKind { Kind_Manifold, // not on an attribute seam, not on any boundary Kind_Border, // not on an attribute seam, has exactly two open edges Kind_Seam, // on an attribute seam with exactly two attribute seam edges Kind_Complex, // none of the above; these vertices can move as long as all wedges move to the target vertex Kind_Locked, // none of the above; these vertices can't move Kind_Count }; // manifold vertices can collapse onto anything // border/seam vertices can collapse onto border/seam respectively, or locked // complex vertices can collapse onto complex/locked // a rule of thumb is that collapsing kind A into kind B preserves the kind B in the target vertex // for example, while we could collapse Complex into Manifold, this would mean the target vertex isn't Manifold anymore const unsigned char kCanCollapse[Kind_Count][Kind_Count] = { {1, 1, 1, 1, 1}, {0, 1, 0, 0, 1}, {0, 0, 1, 0, 1}, {0, 0, 0, 1, 1}, {0, 0, 0, 0, 0}, }; // if a vertex is manifold or seam, adjoining edges are guaranteed to have an opposite edge // note that for seam edges, the opposite edge isn't present in the attribute-based topology // but is present if you consider a position-only mesh variant // while many complex collapses have the opposite edge, since complex vertices collapse to the // same wedge, keeping opposite edges separate improves the quality by considering both targets const unsigned char kHasOpposite[Kind_Count][Kind_Count] = { {1, 1, 1, 1, 1}, {1, 0, 1, 0, 0}, {1, 1, 1, 0, 1}, {1, 0, 0, 0, 0}, {1, 0, 1, 0, 0}, }; static bool hasEdge(const EdgeAdjacency& adjacency, unsigned int a, unsigned int b) { unsigned int count = adjacency.offsets[a + 1] - adjacency.offsets[a]; const EdgeAdjacency::Edge* edges = adjacency.data + adjacency.offsets[a]; for (size_t i = 0; i < count; ++i) if (edges[i].next == b) return true; return false; } static bool hasEdge(const EdgeAdjacency& adjacency, unsigned int a, unsigned int b, const unsigned int* remap, const unsigned int* wedge) { unsigned int v = a; do { unsigned int count = adjacency.offsets[v + 1] - adjacency.offsets[v]; const EdgeAdjacency::Edge* edges = adjacency.data + adjacency.offsets[v]; for (size_t i = 0; i < count; ++i) if (remap[edges[i].next] == remap[b]) return true; v = wedge[v]; } while (v != a); return false; } static void classifyVertices(unsigned char* result, unsigned int* loop, unsigned int* loopback, size_t vertex_count, const EdgeAdjacency& adjacency, const unsigned int* remap, const unsigned int* wedge, const unsigned char* vertex_lock, const unsigned int* sparse_remap, unsigned int options) { memset(loop, -1, vertex_count * sizeof(unsigned int)); memset(loopback, -1, vertex_count * sizeof(unsigned int)); // incoming & outgoing open edges: ~0u if no open edges, i if there are more than 1 // note that this is the same data as required in loop[] arrays; loop[] data is only valid for border/seam // but here it's okay to fill the data out for other types of vertices as well unsigned int* openinc = loopback; unsigned int* openout = loop; for (size_t i = 0; i < vertex_count; ++i) { unsigned int vertex = unsigned(i); unsigned int count = adjacency.offsets[vertex + 1] - adjacency.offsets[vertex]; const EdgeAdjacency::Edge* edges = adjacency.data + adjacency.offsets[vertex]; for (size_t j = 0; j < count; ++j) { unsigned int target = edges[j].next; if (target == vertex) { // degenerate triangles have two distinct edges instead of three, and the self edge // is bi-directional by definition; this can break border/seam classification by "closing" // the open edge from another triangle and falsely marking the vertex as manifold // instead we mark the vertex as having >1 open edges which turns it into locked/complex openinc[vertex] = openout[vertex] = vertex; } else if (!hasEdge(adjacency, target, vertex)) { openinc[target] = (openinc[target] == ~0u) ? vertex : target; openout[vertex] = (openout[vertex] == ~0u) ? target : vertex; } } } #if TRACE size_t stats[4] = {}; #endif for (size_t i = 0; i < vertex_count; ++i) { if (remap[i] == i) { if (wedge[i] == i) { // no attribute seam, need to check if it's manifold unsigned int openi = openinc[i], openo = openout[i]; // note: we classify any vertices with no open edges as manifold // this is technically incorrect - if 4 triangles share an edge, we'll classify vertices as manifold // it's unclear if this is a problem in practice if (openi == ~0u && openo == ~0u) { result[i] = Kind_Manifold; } else if (openi != ~0u && openo != ~0u && remap[openi] == remap[openo] && openi != i) { // classify half-seams as seams (the branch below would mis-classify them as borders) // half-seam is a single vertex that connects to both vertices of a potential seam // treating these as seams allows collapsing the "full" seam vertex onto them result[i] = Kind_Seam; } else if (openi != i && openo != i) { result[i] = Kind_Border; } else { result[i] = Kind_Locked; TRACESTATS(0); } } else if (wedge[wedge[i]] == i) { // attribute seam; need to distinguish between Seam and Locked unsigned int w = wedge[i]; unsigned int openiv = openinc[i], openov = openout[i]; unsigned int openiw = openinc[w], openow = openout[w]; // seam should have one open half-edge for each vertex, and the edges need to "connect" - point to the same vertex post-remap if (openiv != ~0u && openiv != i && openov != ~0u && openov != i && openiw != ~0u && openiw != w && openow != ~0u && openow != w) { if (remap[openiv] == remap[openow] && remap[openov] == remap[openiw] && remap[openiv] != remap[openov]) { result[i] = Kind_Seam; } else { result[i] = Kind_Locked; TRACESTATS(1); } } else { result[i] = Kind_Locked; TRACESTATS(2); } } else { // more than one vertex maps to this one; we don't have classification available result[i] = Kind_Locked; TRACESTATS(3); } } else { assert(remap[i] < i); result[i] = result[remap[i]]; } } if (options & meshopt_SimplifyPermissive) for (size_t i = 0; i < vertex_count; ++i) if (result[i] == Kind_Seam || result[i] == Kind_Locked) { if (remap[i] != i) { // only process primary vertices; wedges will be updated to match the primary vertex result[i] = result[remap[i]]; continue; } bool protect = false; // vertex_lock may protect any wedge, not just the primary vertex, so we switch to complex only if no wedges are protected unsigned int v = unsigned(i); do { unsigned int rv = sparse_remap ? sparse_remap[v] : v; protect |= vertex_lock && (vertex_lock[rv] & meshopt_SimplifyVertex_Protect) != 0; v = wedge[v]; } while (v != i); // protect if any adjoining edge doesn't have an opposite edge (indicating vertex is on the border) do { const EdgeAdjacency::Edge* edges = &adjacency.data[adjacency.offsets[v]]; size_t count = adjacency.offsets[v + 1] - adjacency.offsets[v]; for (size_t j = 0; j < count; ++j) protect |= !hasEdge(adjacency, edges[j].next, v, remap, wedge); v = wedge[v]; } while (v != i); result[i] = protect ? result[i] : int(Kind_Complex); } if (vertex_lock) { // vertex_lock may lock any wedge, not just the primary vertex, so we need to lock the primary vertex and relock any wedges for (size_t i = 0; i < vertex_count; ++i) { unsigned int ri = sparse_remap ? sparse_remap[i] : unsigned(i); if (vertex_lock[ri] & meshopt_SimplifyVertex_Lock) result[remap[i]] = Kind_Locked; } for (size_t i = 0; i < vertex_count; ++i) if (result[remap[i]] == Kind_Locked) result[i] = Kind_Locked; } if (options & meshopt_SimplifyLockBorder) for (size_t i = 0; i < vertex_count; ++i) if (result[i] == Kind_Border) result[i] = Kind_Locked; #if TRACE printf("locked: many open edges %d, disconnected seam %d, many seam edges %d, many wedges %d\n", int(stats[0]), int(stats[1]), int(stats[2]), int(stats[3])); #endif } struct Vector3 { float x, y, z; }; static float rescalePositions(Vector3* result, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, const unsigned int* sparse_remap = NULL, float* out_offset = NULL) { size_t vertex_stride_float = vertex_positions_stride / sizeof(float); float minv[3] = {FLT_MAX, FLT_MAX, FLT_MAX}; float maxv[3] = {-FLT_MAX, -FLT_MAX, -FLT_MAX}; for (size_t i = 0; i < vertex_count; ++i) { unsigned int ri = sparse_remap ? sparse_remap[i] : unsigned(i); const float* v = vertex_positions_data + ri * vertex_stride_float; if (result) { result[i].x = v[0]; result[i].y = v[1]; result[i].z = v[2]; } for (int j = 0; j < 3; ++j) { float vj = v[j]; minv[j] = minv[j] > vj ? vj : minv[j]; maxv[j] = maxv[j] < vj ? vj : maxv[j]; } } float extent = 0.f; extent = (maxv[0] - minv[0]) < extent ? extent : (maxv[0] - minv[0]); extent = (maxv[1] - minv[1]) < extent ? extent : (maxv[1] - minv[1]); extent = (maxv[2] - minv[2]) < extent ? extent : (maxv[2] - minv[2]); if (result) { float scale = extent == 0 ? 0.f : 1.f / extent; for (size_t i = 0; i < vertex_count; ++i) { result[i].x = (result[i].x - minv[0]) * scale; result[i].y = (result[i].y - minv[1]) * scale; result[i].z = (result[i].z - minv[2]) * scale; } } if (out_offset) { out_offset[0] = minv[0]; out_offset[1] = minv[1]; out_offset[2] = minv[2]; } return extent; } static void rescaleAttributes(float* result, const float* vertex_attributes_data, size_t vertex_count, size_t vertex_attributes_stride, const float* attribute_weights, size_t attribute_count, const unsigned int* attribute_remap, const unsigned int* sparse_remap) { size_t vertex_attributes_stride_float = vertex_attributes_stride / sizeof(float); for (size_t i = 0; i < vertex_count; ++i) { unsigned int ri = sparse_remap ? sparse_remap[i] : unsigned(i); for (size_t k = 0; k < attribute_count; ++k) { unsigned int rk = attribute_remap[k]; float a = vertex_attributes_data[ri * vertex_attributes_stride_float + rk]; result[i * attribute_count + k] = a * attribute_weights[rk]; } } } static void finalizeVertices(float* vertex_positions_data, size_t vertex_positions_stride, float* vertex_attributes_data, size_t vertex_attributes_stride, const float* attribute_weights, size_t attribute_count, size_t vertex_count, const Vector3* vertex_positions, const float* vertex_attributes, const unsigned int* sparse_remap, const unsigned int* attribute_remap, float vertex_scale, const float* vertex_offset, const unsigned char* vertex_update) { size_t vertex_positions_stride_float = vertex_positions_stride / sizeof(float); size_t vertex_attributes_stride_float = vertex_attributes_stride / sizeof(float); for (size_t i = 0; i < vertex_count; ++i) { if (!vertex_update[i]) continue; unsigned int ri = sparse_remap ? sparse_remap[i] : unsigned(i); const Vector3& p = vertex_positions[i]; float* v = vertex_positions_data + ri * vertex_positions_stride_float; v[0] = p.x * vertex_scale + vertex_offset[0]; v[1] = p.y * vertex_scale + vertex_offset[1]; v[2] = p.z * vertex_scale + vertex_offset[2]; if (attribute_count) { const float* sa = vertex_attributes + i * attribute_count; float* va = vertex_attributes_data + ri * vertex_attributes_stride_float; for (size_t k = 0; k < attribute_count; ++k) { unsigned int rk = attribute_remap[k]; va[rk] = sa[k] / attribute_weights[rk]; } } } } static const size_t kMaxAttributes = 32; struct Quadric { // a00*x^2 + a11*y^2 + a22*z^2 + 2*a10*xy + 2*a20*xz + 2*a21*yz + 2*b0*x + 2*b1*y + 2*b2*z + c float a00, a11, a22; float a10, a20, a21; float b0, b1, b2, c; float w; }; struct QuadricGrad { // gx*x + gy*y + gz*z + gw float gx, gy, gz, gw; }; struct Reservoir { float x, y, z; float r, g, b; float w; }; struct Collapse { unsigned int v0; unsigned int v1; union { unsigned int bidi; float error; unsigned int errorui; }; }; static float normalize(Vector3& v) { float length = sqrtf(v.x * v.x + v.y * v.y + v.z * v.z); if (length > 0) { v.x /= length; v.y /= length; v.z /= length; } return length; } static void quadricAdd(Quadric& Q, const Quadric& R) { Q.a00 += R.a00; Q.a11 += R.a11; Q.a22 += R.a22; Q.a10 += R.a10; Q.a20 += R.a20; Q.a21 += R.a21; Q.b0 += R.b0; Q.b1 += R.b1; Q.b2 += R.b2; Q.c += R.c; Q.w += R.w; } static void quadricAdd(QuadricGrad& G, const QuadricGrad& R) { G.gx += R.gx; G.gy += R.gy; G.gz += R.gz; G.gw += R.gw; } static void quadricAdd(QuadricGrad* G, const QuadricGrad* R, size_t attribute_count) { for (size_t k = 0; k < attribute_count; ++k) { G[k].gx += R[k].gx; G[k].gy += R[k].gy; G[k].gz += R[k].gz; G[k].gw += R[k].gw; } } static float quadricEval(const Quadric& Q, const Vector3& v) { float rx = Q.b0; float ry = Q.b1; float rz = Q.b2; rx += Q.a10 * v.y; ry += Q.a21 * v.z; rz += Q.a20 * v.x; rx *= 2; ry *= 2; rz *= 2; rx += Q.a00 * v.x; ry += Q.a11 * v.y; rz += Q.a22 * v.z; float r = Q.c; r += rx * v.x; r += ry * v.y; r += rz * v.z; return r; } static float quadricError(const Quadric& Q, const Vector3& v) { float r = quadricEval(Q, v); float s = Q.w == 0.f ? 0.f : 1.f / Q.w; return fabsf(r) * s; } static float quadricError(const Quadric& Q, const QuadricGrad* G, size_t attribute_count, const Vector3& v, const float* va) { float r = quadricEval(Q, v); // see quadricFromAttributes for general derivation; here we need to add the parts of (eval(pos) - attr)^2 that depend on attr for (size_t k = 0; k < attribute_count; ++k) { float a = va[k]; float g = v.x * G[k].gx + v.y * G[k].gy + v.z * G[k].gz + G[k].gw; r += a * (a * Q.w - 2 * g); } // note: unlike position error, we do not normalize by Q.w to retain edge scaling as described in quadricFromAttributes return fabsf(r); } static void quadricFromPlane(Quadric& Q, float a, float b, float c, float d, float w) { float aw = a * w; float bw = b * w; float cw = c * w; float dw = d * w; Q.a00 = a * aw; Q.a11 = b * bw; Q.a22 = c * cw; Q.a10 = a * bw; Q.a20 = a * cw; Q.a21 = b * cw; Q.b0 = a * dw; Q.b1 = b * dw; Q.b2 = c * dw; Q.c = d * dw; Q.w = w; } static void quadricFromPoint(Quadric& Q, float x, float y, float z, float w) { Q.a00 = Q.a11 = Q.a22 = w; Q.a10 = Q.a20 = Q.a21 = 0; Q.b0 = -x * w; Q.b1 = -y * w; Q.b2 = -z * w; Q.c = (x * x + y * y + z * z) * w; Q.w = w; } static void quadricFromTriangle(Quadric& Q, const Vector3& p0, const Vector3& p1, const Vector3& p2, float weight) { Vector3 p10 = {p1.x - p0.x, p1.y - p0.y, p1.z - p0.z}; Vector3 p20 = {p2.x - p0.x, p2.y - p0.y, p2.z - p0.z}; // normal = cross(p1 - p0, p2 - p0) Vector3 normal = {p10.y * p20.z - p10.z * p20.y, p10.z * p20.x - p10.x * p20.z, p10.x * p20.y - p10.y * p20.x}; float area = normalize(normal); float distance = normal.x * p0.x + normal.y * p0.y + normal.z * p0.z; // we use sqrtf(area) so that the error is scaled linearly; this tends to improve silhouettes quadricFromPlane(Q, normal.x, normal.y, normal.z, -distance, sqrtf(area) * weight); } static void quadricFromTriangleEdge(Quadric& Q, const Vector3& p0, const Vector3& p1, const Vector3& p2, float weight) { Vector3 p10 = {p1.x - p0.x, p1.y - p0.y, p1.z - p0.z}; // edge length; keep squared length around for projection correction float lengthsq = p10.x * p10.x + p10.y * p10.y + p10.z * p10.z; float length = sqrtf(lengthsq); // p20p = length of projection of p2-p0 onto p1-p0; note that p10 is unnormalized so we need to correct it later Vector3 p20 = {p2.x - p0.x, p2.y - p0.y, p2.z - p0.z}; float p20p = p20.x * p10.x + p20.y * p10.y + p20.z * p10.z; // perp = perpendicular vector from p2 to line segment p1-p0 // note: since p10 is unnormalized we need to correct the projection; we scale p20 instead to take advantage of normalize below Vector3 perp = {p20.x * lengthsq - p10.x * p20p, p20.y * lengthsq - p10.y * p20p, p20.z * lengthsq - p10.z * p20p}; normalize(perp); float distance = perp.x * p0.x + perp.y * p0.y + perp.z * p0.z; // note: the weight is scaled linearly with edge length; this has to match the triangle weight quadricFromPlane(Q, perp.x, perp.y, perp.z, -distance, length * weight); } static void quadricFromAttributes(Quadric& Q, QuadricGrad* G, const Vector3& p0, const Vector3& p1, const Vector3& p2, const float* va0, const float* va1, const float* va2, size_t attribute_count) { // for each attribute we want to encode the following function into the quadric: // (eval(pos) - attr)^2 // where eval(pos) interpolates attribute across the triangle like so: // eval(pos) = pos.x * gx + pos.y * gy + pos.z * gz + gw // where gx/gy/gz/gw are gradients Vector3 p10 = {p1.x - p0.x, p1.y - p0.y, p1.z - p0.z}; Vector3 p20 = {p2.x - p0.x, p2.y - p0.y, p2.z - p0.z}; // normal = cross(p1 - p0, p2 - p0) Vector3 normal = {p10.y * p20.z - p10.z * p20.y, p10.z * p20.x - p10.x * p20.z, p10.x * p20.y - p10.y * p20.x}; float area = sqrtf(normal.x * normal.x + normal.y * normal.y + normal.z * normal.z) * 0.5f; // quadric is weighted with the square of edge length (= area) // this equalizes the units with the positional error (which, after normalization, is a square of distance) // as a result, a change in weighted attribute of 1 along distance d is approximately equivalent to a change in position of d float w = area; // we compute gradients using barycentric coordinates; barycentric coordinates can be computed as follows: // v = (d11 * d20 - d01 * d21) / denom // w = (d00 * d21 - d01 * d20) / denom // u = 1 - v - w // here v0, v1 are triangle edge vectors, v2 is a vector from point to triangle corner, and dij = dot(vi, vj) // note: v2 and d20/d21 can not be evaluated here as v2 is effectively an unknown variable; we need these only as variables for derivation of gradients const Vector3& v0 = p10; const Vector3& v1 = p20; float d00 = v0.x * v0.x + v0.y * v0.y + v0.z * v0.z; float d01 = v0.x * v1.x + v0.y * v1.y + v0.z * v1.z; float d11 = v1.x * v1.x + v1.y * v1.y + v1.z * v1.z; float denom = d00 * d11 - d01 * d01; float denomr = denom == 0 ? 0.f : 1.f / denom; // precompute gradient factors // these are derived by directly computing derivative of eval(pos) = a0 * u + a1 * v + a2 * w and factoring out expressions that are shared between attributes float gx1 = (d11 * v0.x - d01 * v1.x) * denomr; float gx2 = (d00 * v1.x - d01 * v0.x) * denomr; float gy1 = (d11 * v0.y - d01 * v1.y) * denomr; float gy2 = (d00 * v1.y - d01 * v0.y) * denomr; float gz1 = (d11 * v0.z - d01 * v1.z) * denomr; float gz2 = (d00 * v1.z - d01 * v0.z) * denomr; memset(&Q, 0, sizeof(Quadric)); Q.w = w; for (size_t k = 0; k < attribute_count; ++k) { float a0 = va0[k], a1 = va1[k], a2 = va2[k]; // compute gradient of eval(pos) for x/y/z/w // the formulas below are obtained by directly computing derivative of eval(pos) = a0 * u + a1 * v + a2 * w float gx = gx1 * (a1 - a0) + gx2 * (a2 - a0); float gy = gy1 * (a1 - a0) + gy2 * (a2 - a0); float gz = gz1 * (a1 - a0) + gz2 * (a2 - a0); float gw = a0 - p0.x * gx - p0.y * gy - p0.z * gz; // quadric encodes (eval(pos)-attr)^2; this means that the resulting expansion needs to compute, for example, pos.x * pos.y * K // since quadrics already encode factors for pos.x * pos.y, we can accumulate almost everything in basic quadric fields // note: for simplicity we scale all factors by weight here instead of outside the loop Q.a00 += w * (gx * gx); Q.a11 += w * (gy * gy); Q.a22 += w * (gz * gz); Q.a10 += w * (gy * gx); Q.a20 += w * (gz * gx); Q.a21 += w * (gz * gy); Q.b0 += w * (gx * gw); Q.b1 += w * (gy * gw); Q.b2 += w * (gz * gw); Q.c += w * (gw * gw); // the only remaining sum components are ones that depend on attr; these will be addded during error evaluation, see quadricError G[k].gx = w * gx; G[k].gy = w * gy; G[k].gz = w * gz; G[k].gw = w * gw; } } static void quadricVolumeGradient(QuadricGrad& G, const Vector3& p0, const Vector3& p1, const Vector3& p2) { Vector3 p10 = {p1.x - p0.x, p1.y - p0.y, p1.z - p0.z}; Vector3 p20 = {p2.x - p0.x, p2.y - p0.y, p2.z - p0.z}; // normal = cross(p1 - p0, p2 - p0) Vector3 normal = {p10.y * p20.z - p10.z * p20.y, p10.z * p20.x - p10.x * p20.z, p10.x * p20.y - p10.y * p20.x}; float area = normalize(normal) * 0.5f; G.gx = normal.x * area; G.gy = normal.y * area; G.gz = normal.z * area; G.gw = (-p0.x * normal.x - p0.y * normal.y - p0.z * normal.z) * area; } static bool quadricSolve(Vector3& p, const Quadric& Q, const QuadricGrad& GV) { // solve A*p = -b where A is the quadric matrix and b is the linear term float a00 = Q.a00, a11 = Q.a11, a22 = Q.a22; float a10 = Q.a10, a20 = Q.a20, a21 = Q.a21; float x0 = -Q.b0, x1 = -Q.b1, x2 = -Q.b2; float eps = 1e-6f * Q.w; // LDL decomposition: A = LDL^T float d0 = a00; float l10 = a10 / d0; float l20 = a20 / d0; float d1 = a11 - a10 * l10; float dl21 = a21 - a20 * l10; float l21 = dl21 / d1; float d2 = a22 - a20 * l20 - dl21 * l21; // solve L*y = x float y0 = x0; float y1 = x1 - l10 * y0; float y2 = x2 - l20 * y0 - l21 * y1; // solve D*z = y float z0 = y0 / d0; float z1 = y1 / d1; float z2 = y2 / d2; // augment system with linear constraint GV using Lagrange multiplier float a30 = GV.gx, a31 = GV.gy, a32 = GV.gz; float x3 = -GV.gw; float l30 = a30 / d0; float dl31 = a31 - a30 * l10; float l31 = dl31 / d1; float dl32 = a32 - a30 * l20 - dl31 * l21; float l32 = dl32 / d2; float d3 = 0.f - a30 * l30 - dl31 * l31 - dl32 * l32; float y3 = x3 - l30 * y0 - l31 * y1 - l32 * y2; float z3 = fabsf(d3) > eps ? y3 / d3 : 0.f; // if d3 is zero, we can ignore the constraint // substitute L^T*p = z float lambda = z3; float pz = z2 - l32 * lambda; float py = z1 - l21 * pz - l31 * lambda; float px = z0 - l10 * py - l20 * pz - l30 * lambda; p.x = px; p.y = py; p.z = pz; return fabsf(d0) > eps && fabsf(d1) > eps && fabsf(d2) > eps; } static void quadricReduceAttributes(Quadric& Q, const Quadric& A, const QuadricGrad* G, size_t attribute_count) { // update vertex quadric with attribute quadric; multiply by vertex weight to minimize normalized error Q.a00 += A.a00 * Q.w; Q.a11 += A.a11 * Q.w; Q.a22 += A.a22 * Q.w; Q.a10 += A.a10 * Q.w; Q.a20 += A.a20 * Q.w; Q.a21 += A.a21 * Q.w; Q.b0 += A.b0 * Q.w; Q.b1 += A.b1 * Q.w; Q.b2 += A.b2 * Q.w; float iaw = A.w == 0 ? 0.f : Q.w / A.w; // update linear system based on attribute gradients (BB^T/a) for (size_t k = 0; k < attribute_count; ++k) { const QuadricGrad& g = G[k]; Q.a00 -= (g.gx * g.gx) * iaw; Q.a11 -= (g.gy * g.gy) * iaw; Q.a22 -= (g.gz * g.gz) * iaw; Q.a10 -= (g.gx * g.gy) * iaw; Q.a20 -= (g.gx * g.gz) * iaw; Q.a21 -= (g.gy * g.gz) * iaw; Q.b0 -= (g.gx * g.gw) * iaw; Q.b1 -= (g.gy * g.gw) * iaw; Q.b2 -= (g.gz * g.gw) * iaw; } } static void fillFaceQuadrics(Quadric* vertex_quadrics, QuadricGrad* volume_gradients, const unsigned int* indices, size_t index_count, const Vector3* vertex_positions, const unsigned int* remap) { for (size_t i = 0; i < index_count; i += 3) { unsigned int i0 = indices[i + 0]; unsigned int i1 = indices[i + 1]; unsigned int i2 = indices[i + 2]; Quadric Q; quadricFromTriangle(Q, vertex_positions[i0], vertex_positions[i1], vertex_positions[i2], 1.f); quadricAdd(vertex_quadrics[remap[i0]], Q); quadricAdd(vertex_quadrics[remap[i1]], Q); quadricAdd(vertex_quadrics[remap[i2]], Q); if (volume_gradients) { QuadricGrad GV; quadricVolumeGradient(GV, vertex_positions[i0], vertex_positions[i1], vertex_positions[i2]); quadricAdd(volume_gradients[remap[i0]], GV); quadricAdd(volume_gradients[remap[i1]], GV); quadricAdd(volume_gradients[remap[i2]], GV); } } } static void fillVertexQuadrics(Quadric* vertex_quadrics, const Vector3* vertex_positions, size_t vertex_count, const unsigned int* remap, unsigned int options) { // by default, we use a very small weight to improve triangulation and numerical stability without affecting the shape or error float factor = (options & meshopt_SimplifyRegularize) ? 1e-1f : 1e-7f; for (size_t i = 0; i < vertex_count; ++i) { if (remap[i] != i) continue; const Vector3& p = vertex_positions[i]; float w = vertex_quadrics[i].w * factor; Quadric Q; quadricFromPoint(Q, p.x, p.y, p.z, w); quadricAdd(vertex_quadrics[i], Q); } } static void fillEdgeQuadrics(Quadric* vertex_quadrics, const unsigned int* indices, size_t index_count, const Vector3* vertex_positions, const unsigned int* remap, const unsigned char* vertex_kind, const unsigned int* loop, const unsigned int* loopback) { for (size_t i = 0; i < index_count; i += 3) { static const int next[4] = {1, 2, 0, 1}; for (int e = 0; e < 3; ++e) { unsigned int i0 = indices[i + e]; unsigned int i1 = indices[i + next[e]]; unsigned char k0 = vertex_kind[i0]; unsigned char k1 = vertex_kind[i1]; // check that either i0 or i1 are border/seam and are on the same edge loop // note that we need to add the error even for edged that connect e.g. border & locked // if we don't do that, the adjacent border->border edge won't have correct errors for corners if (k0 != Kind_Border && k0 != Kind_Seam && k1 != Kind_Border && k1 != Kind_Seam) continue; if ((k0 == Kind_Border || k0 == Kind_Seam) && loop[i0] != i1) continue; if ((k1 == Kind_Border || k1 == Kind_Seam) && loopback[i1] != i0) continue; unsigned int i2 = indices[i + next[e + 1]]; // we try hard to maintain border edge geometry; seam edges can move more freely // due to topological restrictions on collapses, seam quadrics slightly improves collapse structure but aren't critical const float kEdgeWeightSeam = 0.5f; // applied twice due to opposite edges const float kEdgeWeightBorder = 10.f; float edgeWeight = (k0 == Kind_Border || k1 == Kind_Border) ? kEdgeWeightBorder : kEdgeWeightSeam; Quadric Q; quadricFromTriangleEdge(Q, vertex_positions[i0], vertex_positions[i1], vertex_positions[i2], edgeWeight); Quadric QT; quadricFromTriangle(QT, vertex_positions[i0], vertex_positions[i1], vertex_positions[i2], edgeWeight); // mix edge quadric with triangle quadric to stabilize collapses in both directions; both quadrics inherit edge weight so that their error is added QT.w = 0; quadricAdd(Q, QT); quadricAdd(vertex_quadrics[remap[i0]], Q); quadricAdd(vertex_quadrics[remap[i1]], Q); } } } static void fillAttributeQuadrics(Quadric* attribute_quadrics, QuadricGrad* attribute_gradients, const unsigned int* indices, size_t index_count, const Vector3* vertex_positions, const float* vertex_attributes, size_t attribute_count) { for (size_t i = 0; i < index_count; i += 3) { unsigned int i0 = indices[i + 0]; unsigned int i1 = indices[i + 1]; unsigned int i2 = indices[i + 2]; Quadric QA; QuadricGrad G[kMaxAttributes]; quadricFromAttributes(QA, G, vertex_positions[i0], vertex_positions[i1], vertex_positions[i2], &vertex_attributes[i0 * attribute_count], &vertex_attributes[i1 * attribute_count], &vertex_attributes[i2 * attribute_count], attribute_count); quadricAdd(attribute_quadrics[i0], QA); quadricAdd(attribute_quadrics[i1], QA); quadricAdd(attribute_quadrics[i2], QA); quadricAdd(&attribute_gradients[i0 * attribute_count], G, attribute_count); quadricAdd(&attribute_gradients[i1 * attribute_count], G, attribute_count); quadricAdd(&attribute_gradients[i2 * attribute_count], G, attribute_count); } } // does triangle ABC flip when C is replaced with D? static bool hasTriangleFlip(const Vector3& a, const Vector3& b, const Vector3& c, const Vector3& d) { Vector3 eb = {b.x - a.x, b.y - a.y, b.z - a.z}; Vector3 ec = {c.x - a.x, c.y - a.y, c.z - a.z}; Vector3 ed = {d.x - a.x, d.y - a.y, d.z - a.z}; Vector3 nbc = {eb.y * ec.z - eb.z * ec.y, eb.z * ec.x - eb.x * ec.z, eb.x * ec.y - eb.y * ec.x}; Vector3 nbd = {eb.y * ed.z - eb.z * ed.y, eb.z * ed.x - eb.x * ed.z, eb.x * ed.y - eb.y * ed.x}; float ndp = nbc.x * nbd.x + nbc.y * nbd.y + nbc.z * nbd.z; float abc = nbc.x * nbc.x + nbc.y * nbc.y + nbc.z * nbc.z; float abd = nbd.x * nbd.x + nbd.y * nbd.y + nbd.z * nbd.z; // scale is cos(angle); somewhat arbitrarily set to ~75 degrees // note that the "pure" check is ndp <= 0 (90 degree cutoff) but that allows flipping through a series of close-to-90 collapses return ndp <= 0.25f * sqrtf(abc * abd); } static bool hasTriangleFlips(const EdgeAdjacency& adjacency, const Vector3* vertex_positions, const unsigned int* collapse_remap, unsigned int i0, unsigned int i1) { assert(collapse_remap[i0] == i0); assert(collapse_remap[i1] == i1); const Vector3& v0 = vertex_positions[i0]; const Vector3& v1 = vertex_positions[i1]; const EdgeAdjacency::Edge* edges = &adjacency.data[adjacency.offsets[i0]]; size_t count = adjacency.offsets[i0 + 1] - adjacency.offsets[i0]; for (size_t i = 0; i < count; ++i) { unsigned int a = collapse_remap[edges[i].next]; unsigned int b = collapse_remap[edges[i].prev]; // skip triangles that will get collapsed by i0->i1 collapse or already got collapsed previously if (a == i1 || b == i1 || a == b) continue; // early-out when at least one triangle flips due to a collapse if (hasTriangleFlip(vertex_positions[a], vertex_positions[b], v0, v1)) { #if TRACE >= 2 printf("edge block %d -> %d: flip welded %d %d %d\n", i0, i1, a, i0, b); #endif return true; } } return false; } static bool hasTriangleFlips(const EdgeAdjacency& adjacency, const Vector3* vertex_positions, unsigned int i0, const Vector3& v1) { const Vector3& v0 = vertex_positions[i0]; const EdgeAdjacency::Edge* edges = &adjacency.data[adjacency.offsets[i0]]; size_t count = adjacency.offsets[i0 + 1] - adjacency.offsets[i0]; for (size_t i = 0; i < count; ++i) { unsigned int a = edges[i].next, b = edges[i].prev; if (hasTriangleFlip(vertex_positions[a], vertex_positions[b], v0, v1)) return true; } return false; } static float getNeighborhoodRadius(const EdgeAdjacency& adjacency, const Vector3* vertex_positions, unsigned int i0) { const Vector3& v0 = vertex_positions[i0]; const EdgeAdjacency::Edge* edges = &adjacency.data[adjacency.offsets[i0]]; size_t count = adjacency.offsets[i0 + 1] - adjacency.offsets[i0]; float result = 0.f; for (size_t i = 0; i < count; ++i) { unsigned int a = edges[i].next, b = edges[i].prev; const Vector3& va = vertex_positions[a]; const Vector3& vb = vertex_positions[b]; float da = (va.x - v0.x) * (va.x - v0.x) + (va.y - v0.y) * (va.y - v0.y) + (va.z - v0.z) * (va.z - v0.z); float db = (vb.x - v0.x) * (vb.x - v0.x) + (vb.y - v0.y) * (vb.y - v0.y) + (vb.z - v0.z) * (vb.z - v0.z); result = result < da ? da : result; result = result < db ? db : result; } return sqrtf(result); } static size_t boundEdgeCollapses(const EdgeAdjacency& adjacency, size_t vertex_count, size_t index_count, unsigned char* vertex_kind) { size_t dual_count = 0; for (size_t i = 0; i < vertex_count; ++i) { unsigned char k = vertex_kind[i]; unsigned int e = adjacency.offsets[i + 1] - adjacency.offsets[i]; dual_count += (k == Kind_Manifold || k == Kind_Seam) ? e : 0; } assert(dual_count <= index_count); // pad capacity by 3 so that we can check for overflow once per triangle instead of once per edge return (index_count - dual_count / 2) + 3; } static size_t pickEdgeCollapses(Collapse* collapses, size_t collapse_capacity, const unsigned int* indices, size_t index_count, const unsigned int* remap, const unsigned char* vertex_kind, const unsigned int* loop, const unsigned int* loopback) { size_t collapse_count = 0; for (size_t i = 0; i < index_count; i += 3) { static const int next[3] = {1, 2, 0}; // this should never happen as boundEdgeCollapses should give an upper bound for the collapse count, but in an unlikely event it does we can just drop extra collapses if (collapse_count + 3 > collapse_capacity) break; for (int e = 0; e < 3; ++e) { unsigned int i0 = indices[i + e]; unsigned int i1 = indices[i + next[e]]; // this can happen either when input has a zero-length edge, or when we perform collapses for complex // topology w/seams and collapse a manifold vertex that connects to both wedges onto one of them // we leave edges like this alone since they may be important for preserving mesh integrity if (remap[i0] == remap[i1]) continue; unsigned char k0 = vertex_kind[i0]; unsigned char k1 = vertex_kind[i1]; // the edge has to be collapsible in at least one direction if (!(kCanCollapse[k0][k1] | kCanCollapse[k1][k0])) continue; // manifold and seam edges should occur twice (i0->i1 and i1->i0) - skip redundant edges if (kHasOpposite[k0][k1] && remap[i1] > remap[i0]) continue; // two vertices are on a border or a seam, but there's no direct edge between them // this indicates that they belong to two different edge loops and we should not collapse this edge // loop[] and loopback[] track half edges so we only need to check one of them if ((k0 == Kind_Border || k0 == Kind_Seam) && k1 != Kind_Manifold && loop[i0] != i1) continue; if ((k1 == Kind_Border || k1 == Kind_Seam) && k0 != Kind_Manifold && loopback[i1] != i0) continue; // edge can be collapsed in either direction - we will pick the one with minimum error // note: we evaluate error later during collapse ranking, here we just tag the edge as bidirectional if (kCanCollapse[k0][k1] & kCanCollapse[k1][k0]) { Collapse c = {i0, i1, {/* bidi= */ 1}}; collapses[collapse_count++] = c; } else { // edge can only be collapsed in one direction unsigned int e0 = kCanCollapse[k0][k1] ? i0 : i1; unsigned int e1 = kCanCollapse[k0][k1] ? i1 : i0; Collapse c = {e0, e1, {/* bidi= */ 0}}; collapses[collapse_count++] = c; } } } return collapse_count; } static void rankEdgeCollapses(Collapse* collapses, size_t collapse_count, const Vector3* vertex_positions, const float* vertex_attributes, const Quadric* vertex_quadrics, const Quadric* attribute_quadrics, const QuadricGrad* attribute_gradients, size_t attribute_count, const unsigned int* remap, const unsigned int* wedge, const unsigned char* vertex_kind, const unsigned int* loop, const unsigned int* loopback) { for (size_t i = 0; i < collapse_count; ++i) { Collapse& c = collapses[i]; unsigned int i0 = c.v0; unsigned int i1 = c.v1; bool bidi = c.bidi; float ei = quadricError(vertex_quadrics[remap[i0]], vertex_positions[i1]); float ej = bidi ? quadricError(vertex_quadrics[remap[i1]], vertex_positions[i0]) : FLT_MAX; #if TRACE >= 3 float di = ei, dj = ej; #endif if (attribute_count) { ei += quadricError(attribute_quadrics[i0], &attribute_gradients[i0 * attribute_count], attribute_count, vertex_positions[i1], &vertex_attributes[i1 * attribute_count]); ej += bidi ? quadricError(attribute_quadrics[i1], &attribute_gradients[i1 * attribute_count], attribute_count, vertex_positions[i0], &vertex_attributes[i0 * attribute_count]) : 0; // seam edges need to aggregate attribute errors between primary and secondary edges, as attribute quadrics are separate if (vertex_kind[i0] == Kind_Seam) { // for seam collapses we need to find the seam pair; this is a bit tricky since we need to rely on edge loops as target vertex may be locked (and thus have more than two wedges) unsigned int s0 = wedge[i0]; unsigned int s1 = loop[i0] == i1 ? loopback[s0] : loop[s0]; assert(wedge[s0] == i0); // s0 may be equal to i0 for half-seams assert(s1 != ~0u && remap[s1] == remap[i1]); // note: this should never happen due to the assertion above, but when disabled if we ever hit this case we'll get a memory safety issue; for now play it safe s1 = (s1 != ~0u) ? s1 : wedge[i1]; ei += quadricError(attribute_quadrics[s0], &attribute_gradients[s0 * attribute_count], attribute_count, vertex_positions[s1], &vertex_attributes[s1 * attribute_count]); ej += bidi ? quadricError(attribute_quadrics[s1], &attribute_gradients[s1 * attribute_count], attribute_count, vertex_positions[s0], &vertex_attributes[s0 * attribute_count]) : 0; } else { // complex edges can have multiple wedges, so we need to aggregate errors for all wedges // this is different from seams (where we aggregate pairwise) because all wedges collapse onto the same target if (vertex_kind[i0] == Kind_Complex) for (unsigned int v = wedge[i0]; v != i0; v = wedge[v]) ei += quadricError(attribute_quadrics[v], &attribute_gradients[v * attribute_count], attribute_count, vertex_positions[i1], &vertex_attributes[i1 * attribute_count]); if (vertex_kind[i1] == Kind_Complex && bidi) for (unsigned int v = wedge[i1]; v != i1; v = wedge[v]) ej += quadricError(attribute_quadrics[v], &attribute_gradients[v * attribute_count], attribute_count, vertex_positions[i0], &vertex_attributes[i0 * attribute_count]); } } // pick edge direction with minimal error (branchless) bool rev = bidi & (ej < ei); c.v0 = rev ? i1 : i0; c.v1 = rev ? i0 : i1; c.error = ej < ei ? ej : ei; #if TRACE >= 3 if (bidi) printf("edge eval %d -> %d: error %f (pos %f, attr %f); reverse %f (pos %f, attr %f)\n", rev ? i1 : i0, rev ? i0 : i1, sqrtf(rev ? ej : ei), sqrtf(rev ? dj : di), sqrtf(rev ? ej - dj : ei - di), sqrtf(rev ? ei : ej), sqrtf(rev ? di : dj), sqrtf(rev ? ei - di : ej - dj)); else printf("edge eval %d -> %d: error %f (pos %f, attr %f)\n", i0, i1, sqrtf(c.error), sqrtf(di), sqrtf(ei - di)); #endif } } static void sortEdgeCollapses(unsigned int* sort_order, const Collapse* collapses, size_t collapse_count) { // we use counting sort to order collapses by error; since the exact sort order is not as critical, // only top 12 bits of exponent+mantissa (8 bits of exponent and 4 bits of mantissa) are used. // to avoid excessive stack usage, we clamp the exponent range as collapses with errors much higher than 1 are not useful. const unsigned int sort_bits = 12; const unsigned int sort_bins = 2048 + 512; // exponent range [-127, 32) // fill histogram for counting sort unsigned int histogram[sort_bins]; memset(histogram, 0, sizeof(histogram)); for (size_t i = 0; i < collapse_count; ++i) { // skip sign bit since error is non-negative unsigned int error = collapses[i].errorui; unsigned int key = (error << 1) >> (32 - sort_bits); key = key < sort_bins ? key : sort_bins - 1; histogram[key]++; } // compute offsets based on histogram data size_t histogram_sum = 0; for (size_t i = 0; i < sort_bins; ++i) { size_t count = histogram[i]; histogram[i] = unsigned(histogram_sum); histogram_sum += count; } assert(histogram_sum == collapse_count); // compute sort order based on offsets for (size_t i = 0; i < collapse_count; ++i) { // skip sign bit since error is non-negative unsigned int error = collapses[i].errorui; unsigned int key = (error << 1) >> (32 - sort_bits); key = key < sort_bins ? key : sort_bins - 1; sort_order[histogram[key]++] = unsigned(i); } } static size_t performEdgeCollapses(unsigned int* collapse_remap, unsigned char* collapse_locked, const Collapse* collapses, size_t collapse_count, const unsigned int* collapse_order, const unsigned int* remap, const unsigned int* wedge, const unsigned char* vertex_kind, const unsigned int* loop, const unsigned int* loopback, const Vector3* vertex_positions, const EdgeAdjacency& adjacency, size_t triangle_collapse_goal, float error_limit, float& result_error) { size_t edge_collapses = 0; size_t triangle_collapses = 0; // most collapses remove 2 triangles; use this to establish a bound on the pass in terms of error limit // note that edge_collapse_goal is an estimate; triangle_collapse_goal will be used to actually limit collapses size_t edge_collapse_goal = triangle_collapse_goal / 2; #if TRACE size_t stats[7] = {}; #endif for (size_t i = 0; i < collapse_count; ++i) { const Collapse& c = collapses[collapse_order[i]]; TRACESTATS(0); if (c.error > error_limit) { TRACESTATS(4); break; } if (triangle_collapses >= triangle_collapse_goal) { TRACESTATS(5); break; } // we limit the error in each pass based on the error of optimal last collapse; since many collapses will be locked // as they will share vertices with other successfull collapses, we need to increase the acceptable error by some factor float error_goal = edge_collapse_goal < collapse_count ? 1.5f * collapses[collapse_order[edge_collapse_goal]].error : FLT_MAX; // on average, each collapse is expected to lock 6 other collapses; to avoid degenerate passes on meshes with odd // topology, we only abort if we got over 1/6 collapses accordingly. if (c.error > error_goal && c.error > result_error && triangle_collapses > triangle_collapse_goal / 6) { TRACESTATS(6); break; } unsigned int i0 = c.v0; unsigned int i1 = c.v1; unsigned int r0 = remap[i0]; unsigned int r1 = remap[i1]; unsigned char kind = vertex_kind[i0]; // we don't collapse vertices that had source or target vertex involved in a collapse // it's important to not move the vertices twice since it complicates the tracking/remapping logic // it's important to not move other vertices towards a moved vertex to preserve error since we don't re-rank collapses mid-pass if (collapse_locked[r0] | collapse_locked[r1]) { TRACESTATS(1); continue; } if (hasTriangleFlips(adjacency, vertex_positions, collapse_remap, r0, r1)) { // adjust collapse goal since this collapse is invalid and shouldn't factor into error goal edge_collapse_goal++; TRACESTATS(2); continue; } #if TRACE >= 2 printf("edge commit %d -> %d: kind %d->%d, error %f\n", i0, i1, vertex_kind[i0], vertex_kind[i1], sqrtf(c.error)); #endif assert(collapse_remap[r0] == r0); assert(collapse_remap[r1] == r1); if (kind == Kind_Complex) { // remap all vertices in the complex to the target vertex unsigned int v = i0; do { collapse_remap[v] = i1; v = wedge[v]; } while (v != i0); } else if (kind == Kind_Seam) { // for seam collapses we need to move the seam pair together; this is a bit tricky since we need to rely on edge loops as target vertex may be locked (and thus have more than two wedges) unsigned int s0 = wedge[i0]; unsigned int s1 = loop[i0] == i1 ? loopback[s0] : loop[s0]; assert(wedge[s0] == i0); // s0 may be equal to i0 for half-seams assert(s1 != ~0u && remap[s1] == r1); // additional asserts to verify that the seam pair is consistent assert(kind != vertex_kind[i1] || s1 == wedge[i1]); assert(loop[i0] == i1 || loopback[i0] == i1); assert(loop[s0] == s1 || loopback[s0] == s1); // note: this should never happen due to the assertion above, but when disabled if we ever hit this case we'll get a memory safety issue; for now play it safe s1 = (s1 != ~0u) ? s1 : wedge[i1]; collapse_remap[i0] = i1; collapse_remap[s0] = s1; } else { assert(wedge[i0] == i0); collapse_remap[i0] = i1; } // note: we technically don't need to lock r1 if it's a locked vertex, as it can't move and its quadric won't be used // however, this results in slightly worse error on some meshes because the locked collapses get an unfair advantage wrt scheduling collapse_locked[r0] = 1; collapse_locked[r1] = 1; // border edges collapse 1 triangle, other edges collapse 2 or more triangle_collapses += (kind == Kind_Border) ? 1 : 2; edge_collapses++; result_error = result_error < c.error ? c.error : result_error; } #if TRACE float error_goal_last = edge_collapse_goal < collapse_count ? 1.5f * collapses[collapse_order[edge_collapse_goal]].error : FLT_MAX; float error_goal_limit = error_goal_last < error_limit ? error_goal_last : error_limit; printf("removed %d triangles, error %e (goal %e); evaluated %d/%d collapses (done %d, skipped %d, invalid %d); %s\n", int(triangle_collapses), sqrtf(result_error), sqrtf(error_goal_limit), int(stats[0]), int(collapse_count), int(edge_collapses), int(stats[1]), int(stats[2]), stats[4] ? "error limit" : (stats[5] ? "count limit" : (stats[6] ? "error goal" : "out of collapses"))); #endif return edge_collapses; } static void updateQuadrics(const unsigned int* collapse_remap, size_t vertex_count, Quadric* vertex_quadrics, QuadricGrad* volume_gradients, Quadric* attribute_quadrics, QuadricGrad* attribute_gradients, size_t attribute_count, const Vector3* vertex_positions, const unsigned int* remap, float& vertex_error) { for (size_t i = 0; i < vertex_count; ++i) { if (collapse_remap[i] == i) continue; unsigned int i0 = unsigned(i); unsigned int i1 = collapse_remap[i]; unsigned int r0 = remap[i0]; unsigned int r1 = remap[i1]; // ensure we only update vertex_quadrics once: primary vertex must be moved if any wedge is moved if (i0 == r0) { quadricAdd(vertex_quadrics[r1], vertex_quadrics[r0]); if (volume_gradients) quadricAdd(volume_gradients[r1], volume_gradients[r0]); } if (attribute_count) { quadricAdd(attribute_quadrics[i1], attribute_quadrics[i0]); quadricAdd(&attribute_gradients[i1 * attribute_count], &attribute_gradients[i0 * attribute_count], attribute_count); if (i0 == r0) { // when attributes are used, distance error needs to be recomputed as collapses don't track it; it is safe to do this after the quadric adjustment float derr = quadricError(vertex_quadrics[r0], vertex_positions[r1]); vertex_error = vertex_error < derr ? derr : vertex_error; } } } } static void solveQuadrics(Vector3* vertex_positions, float* vertex_attributes, size_t vertex_count, const Quadric* vertex_quadrics, const QuadricGrad* volume_gradients, const Quadric* attribute_quadrics, const QuadricGrad* attribute_gradients, size_t attribute_count, const unsigned int* remap, const unsigned int* wedge, const EdgeAdjacency& adjacency, const unsigned char* vertex_kind, const unsigned char* vertex_update) { #if TRACE size_t stats[5] = {}; #endif for (size_t i = 0; i < vertex_count; ++i) { if (!vertex_update[i]) continue; // moving externally locked vertices is prohibited // moving vertices on an attribute discontinuity may result in extrapolating UV outside of the chart bounds // moving vertices on a border requires a stronger edge quadric to preserve the border geometry if (vertex_kind[i] == Kind_Locked || vertex_kind[i] == Kind_Seam || vertex_kind[i] == Kind_Border) continue; if (remap[i] != i) { vertex_positions[i] = vertex_positions[remap[i]]; continue; } TRACESTATS(0); const Vector3& vp = vertex_positions[i]; Quadric Q = vertex_quadrics[i]; QuadricGrad GV = {}; // add a point quadric for regularization to stabilize the solution Quadric R; quadricFromPoint(R, vp.x, vp.y, vp.z, Q.w * 1e-4f); quadricAdd(Q, R); if (attribute_count) { // optimal point simultaneously minimizes attribute quadrics for all wedges unsigned int v = unsigned(i); do { quadricReduceAttributes(Q, attribute_quadrics[v], &attribute_gradients[v * attribute_count], attribute_count); v = wedge[v]; } while (v != i); // minimizing attribute quadrics results in volume loss so we incorporate volume gradient as a constraint if (volume_gradients) GV = volume_gradients[i]; } Vector3 p; if (!quadricSolve(p, Q, GV)) { TRACESTATS(2); continue; } // reject updates that move the vertex too far from its neighborhood // this detects and fixes most cases when the quadric is not well-defined float nr = getNeighborhoodRadius(adjacency, vertex_positions, unsigned(i)); float dp = (p.x - vp.x) * (p.x - vp.x) + (p.y - vp.y) * (p.y - vp.y) + (p.z - vp.z) * (p.z - vp.z); if (dp > nr * nr) { TRACESTATS(3); continue; } // reject updates that would flip a neighboring triangle, as we do for edge collapse if (hasTriangleFlips(adjacency, vertex_positions, unsigned(i), p)) { TRACESTATS(4); continue; } TRACESTATS(1); vertex_positions[i] = p; } #if TRACE printf("updated %d/%d positions; failed solve %d bounds %d flip %d\n", int(stats[1]), int(stats[0]), int(stats[2]), int(stats[3]), int(stats[4])); #endif if (attribute_count == 0) return; for (size_t i = 0; i < vertex_count; ++i) { if (!vertex_update[i]) continue; // updating externally locked vertices is prohibited if (vertex_kind[i] == Kind_Locked) continue; const Vector3& p = vertex_positions[remap[i]]; const Quadric& A = attribute_quadrics[i]; float iw = A.w == 0 ? 0.f : 1.f / A.w; for (size_t k = 0; k < attribute_count; ++k) { const QuadricGrad& G = attribute_gradients[i * attribute_count + k]; vertex_attributes[i * attribute_count + k] = (G.gx * p.x + G.gy * p.y + G.gz * p.z + G.gw) * iw; } } } static size_t remapIndexBuffer(unsigned int* indices, size_t index_count, const unsigned int* collapse_remap, const unsigned int* remap) { size_t write = 0; for (size_t i = 0; i < index_count; i += 3) { unsigned int v0 = collapse_remap[indices[i + 0]]; unsigned int v1 = collapse_remap[indices[i + 1]]; unsigned int v2 = collapse_remap[indices[i + 2]]; // we never move the vertex twice during a single pass assert(collapse_remap[v0] == v0); assert(collapse_remap[v1] == v1); assert(collapse_remap[v2] == v2); // collapse zero area triangles even if they are not topologically degenerate // this is required to cleanup manifold->seam collapses when a vertex is collapsed onto a seam pair // as well as complex collapses and some other cases where cross wedge collapses are performed unsigned int r0 = remap[v0]; unsigned int r1 = remap[v1]; unsigned int r2 = remap[v2]; if (r0 != r1 && r0 != r2 && r1 != r2) { indices[write + 0] = v0; indices[write + 1] = v1; indices[write + 2] = v2; write += 3; } } return write; } static void remapEdgeLoops(unsigned int* loop, size_t vertex_count, const unsigned int* collapse_remap) { for (size_t i = 0; i < vertex_count; ++i) { // note: this is a no-op for vertices that were remapped // ideally we would clear the loop entries for those for consistency, even though they aren't going to be used // however, the remapping process needs loop information for remapped vertices, so this would require a separate pass if (loop[i] != ~0u) { unsigned int l = loop[i]; unsigned int r = collapse_remap[l]; // i == r is a special case when the seam edge is collapsed in a direction opposite to where loop goes if (i == r) loop[i] = (loop[l] != ~0u) ? collapse_remap[loop[l]] : ~0u; else loop[i] = r; } } } static unsigned int follow(unsigned int* parents, unsigned int index) { while (index != parents[index]) { unsigned int parent = parents[index]; parents[index] = parents[parent]; index = parent; } return index; } static size_t buildComponents(unsigned int* components, size_t vertex_count, const unsigned int* indices, size_t index_count, const unsigned int* remap) { for (size_t i = 0; i < vertex_count; ++i) components[i] = unsigned(i); // compute a unique (but not sequential!) index for each component via union-find for (size_t i = 0; i < index_count; i += 3) { static const int next[4] = {1, 2, 0, 1}; for (int e = 0; e < 3; ++e) { unsigned int i0 = indices[i + e]; unsigned int i1 = indices[i + next[e]]; unsigned int r0 = remap[i0]; unsigned int r1 = remap[i1]; r0 = follow(components, r0); r1 = follow(components, r1); // merge components with larger indices into components with smaller indices // this guarantees that the root of the component is always the one with the smallest index if (r0 != r1) components[r0 < r1 ? r1 : r0] = r0 < r1 ? r0 : r1; } } // make sure each element points to the component root *before* we renumber the components for (size_t i = 0; i < vertex_count; ++i) if (remap[i] == i) components[i] = follow(components, unsigned(i)); unsigned int next_component = 0; // renumber components using sequential indices // a sequential pass is sufficient because component root always has the smallest index // note: it is unsafe to use follow() in this pass because we're replacing component links with sequential indices inplace for (size_t i = 0; i < vertex_count; ++i) { if (remap[i] == i) { unsigned int root = components[i]; assert(root <= i); // make sure we already computed the component for non-roots components[i] = (root == i) ? next_component++ : components[root]; } else { assert(remap[i] < i); // make sure we already computed the component components[i] = components[remap[i]]; } } return next_component; } static void measureComponents(float* component_errors, size_t component_count, const unsigned int* components, const Vector3* vertex_positions, size_t vertex_count) { memset(component_errors, 0, component_count * 4 * sizeof(float)); // compute approximate sphere center for each component as an average for (size_t i = 0; i < vertex_count; ++i) { unsigned int c = components[i]; assert(components[i] < component_count); Vector3 v = vertex_positions[i]; // copy avoids aliasing issues component_errors[c * 4 + 0] += v.x; component_errors[c * 4 + 1] += v.y; component_errors[c * 4 + 2] += v.z; component_errors[c * 4 + 3] += 1; // weight } // complete the center computation, and reinitialize [3] as a radius for (size_t i = 0; i < component_count; ++i) { float w = component_errors[i * 4 + 3]; float iw = w == 0.f ? 0.f : 1.f / w; component_errors[i * 4 + 0] *= iw; component_errors[i * 4 + 1] *= iw; component_errors[i * 4 + 2] *= iw; component_errors[i * 4 + 3] = 0; // radius } // compute squared radius for each component for (size_t i = 0; i < vertex_count; ++i) { unsigned int c = components[i]; float dx = vertex_positions[i].x - component_errors[c * 4 + 0]; float dy = vertex_positions[i].y - component_errors[c * 4 + 1]; float dz = vertex_positions[i].z - component_errors[c * 4 + 2]; float r = dx * dx + dy * dy + dz * dz; component_errors[c * 4 + 3] = component_errors[c * 4 + 3] < r ? r : component_errors[c * 4 + 3]; } // we've used the output buffer as scratch space, so we need to move the results to proper indices for (size_t i = 0; i < component_count; ++i) { #if TRACE >= 2 printf("component %d: center %f %f %f, error %e\n", int(i), component_errors[i * 4 + 0], component_errors[i * 4 + 1], component_errors[i * 4 + 2], sqrtf(component_errors[i * 4 + 3])); #endif // note: we keep the squared error to make it match quadric error metric component_errors[i] = component_errors[i * 4 + 3]; } } static size_t pruneComponents(unsigned int* indices, size_t index_count, const unsigned int* components, const float* component_errors, size_t component_count, float error_cutoff, float& nexterror) { (void)component_count; size_t write = 0; float min_error = FLT_MAX; for (size_t i = 0; i < index_count; i += 3) { unsigned int v0 = indices[i + 0], v1 = indices[i + 1], v2 = indices[i + 2]; unsigned int c = components[v0]; assert(c == components[v1] && c == components[v2]); if (component_errors[c] > error_cutoff) { min_error = min_error > component_errors[c] ? component_errors[c] : min_error; indices[write + 0] = v0; indices[write + 1] = v1; indices[write + 2] = v2; write += 3; } } #if TRACE size_t pruned_components = 0; for (size_t i = 0; i < component_count; ++i) pruned_components += (component_errors[i] >= nexterror && component_errors[i] <= error_cutoff); printf("pruned %d triangles in %d components (goal %e); next %e\n", int((index_count - write) / 3), int(pruned_components), sqrtf(error_cutoff), min_error < FLT_MAX ? sqrtf(min_error) : min_error * 2); #endif // update next error with the smallest error of the remaining components nexterror = min_error; return write; } struct CellHasher { const unsigned int* vertex_ids; size_t hash(unsigned int i) const { unsigned int h = vertex_ids[i]; // MurmurHash2 finalizer h ^= h >> 13; h *= 0x5bd1e995; h ^= h >> 15; return h; } bool equal(unsigned int lhs, unsigned int rhs) const { return vertex_ids[lhs] == vertex_ids[rhs]; } }; struct IdHasher { size_t hash(unsigned int id) const { unsigned int h = id; // MurmurHash2 finalizer h ^= h >> 13; h *= 0x5bd1e995; h ^= h >> 15; return h; } bool equal(unsigned int lhs, unsigned int rhs) const { return lhs == rhs; } }; struct TriangleHasher { const unsigned int* indices; size_t hash(unsigned int i) const { const unsigned int* tri = indices + i * 3; // Optimized Spatial Hashing for Collision Detection of Deformable Objects return (tri[0] * 73856093) ^ (tri[1] * 19349663) ^ (tri[2] * 83492791); } bool equal(unsigned int lhs, unsigned int rhs) const { const unsigned int* lt = indices + lhs * 3; const unsigned int* rt = indices + rhs * 3; return lt[0] == rt[0] && lt[1] == rt[1] && lt[2] == rt[2]; } }; static void computeVertexIds(unsigned int* vertex_ids, const Vector3* vertex_positions, const unsigned char* vertex_lock, size_t vertex_count, int grid_size) { assert(grid_size >= 1 && grid_size <= 1024); float cell_scale = float(grid_size - 1); for (size_t i = 0; i < vertex_count; ++i) { const Vector3& v = vertex_positions[i]; int xi = int(v.x * cell_scale + 0.5f); int yi = int(v.y * cell_scale + 0.5f); int zi = int(v.z * cell_scale + 0.5f); if (vertex_lock && (vertex_lock[i] & meshopt_SimplifyVertex_Lock)) vertex_ids[i] = (1 << 30) | unsigned(i); else vertex_ids[i] = (xi << 20) | (yi << 10) | zi; } } static size_t countTriangles(const unsigned int* vertex_ids, const unsigned int* indices, size_t index_count) { size_t result = 0; for (size_t i = 0; i < index_count; i += 3) { unsigned int id0 = vertex_ids[indices[i + 0]]; unsigned int id1 = vertex_ids[indices[i + 1]]; unsigned int id2 = vertex_ids[indices[i + 2]]; result += (id0 != id1) & (id0 != id2) & (id1 != id2); } return result; } static size_t fillVertexCells(unsigned int* table, size_t table_size, unsigned int* vertex_cells, const unsigned int* vertex_ids, size_t vertex_count) { CellHasher hasher = {vertex_ids}; memset(table, -1, table_size * sizeof(unsigned int)); size_t result = 0; for (size_t i = 0; i < vertex_count; ++i) { unsigned int* entry = hashLookup2(table, table_size, hasher, unsigned(i), ~0u); if (*entry == ~0u) { *entry = unsigned(i); vertex_cells[i] = unsigned(result++); } else { vertex_cells[i] = vertex_cells[*entry]; } } return result; } static size_t countVertexCells(unsigned int* table, size_t table_size, const unsigned int* vertex_ids, size_t vertex_count) { IdHasher hasher; memset(table, -1, table_size * sizeof(unsigned int)); size_t result = 0; for (size_t i = 0; i < vertex_count; ++i) { unsigned int id = vertex_ids[i]; unsigned int* entry = hashLookup2(table, table_size, hasher, id, ~0u); result += (*entry == ~0u); *entry = id; } return result; } static void fillCellQuadrics(Quadric* cell_quadrics, const unsigned int* indices, size_t index_count, const Vector3* vertex_positions, const unsigned int* vertex_cells) { for (size_t i = 0; i < index_count; i += 3) { unsigned int i0 = indices[i + 0]; unsigned int i1 = indices[i + 1]; unsigned int i2 = indices[i + 2]; unsigned int c0 = vertex_cells[i0]; unsigned int c1 = vertex_cells[i1]; unsigned int c2 = vertex_cells[i2]; int single_cell = (c0 == c1) & (c0 == c2); Quadric Q; quadricFromTriangle(Q, vertex_positions[i0], vertex_positions[i1], vertex_positions[i2], single_cell ? 3.f : 1.f); if (single_cell) { quadricAdd(cell_quadrics[c0], Q); } else { quadricAdd(cell_quadrics[c0], Q); quadricAdd(cell_quadrics[c1], Q); quadricAdd(cell_quadrics[c2], Q); } } } static void fillCellReservoirs(Reservoir* cell_reservoirs, size_t cell_count, const Vector3* vertex_positions, const float* vertex_colors, size_t vertex_colors_stride, size_t vertex_count, const unsigned int* vertex_cells) { static const float dummy_color[] = {0.f, 0.f, 0.f}; size_t vertex_colors_stride_float = vertex_colors_stride / sizeof(float); for (size_t i = 0; i < vertex_count; ++i) { unsigned int cell = vertex_cells[i]; const Vector3& v = vertex_positions[i]; Reservoir& r = cell_reservoirs[cell]; const float* color = vertex_colors ? &vertex_colors[i * vertex_colors_stride_float] : dummy_color; r.x += v.x; r.y += v.y; r.z += v.z; r.r += color[0]; r.g += color[1]; r.b += color[2]; r.w += 1.f; } for (size_t i = 0; i < cell_count; ++i) { Reservoir& r = cell_reservoirs[i]; float iw = r.w == 0.f ? 0.f : 1.f / r.w; r.x *= iw; r.y *= iw; r.z *= iw; r.r *= iw; r.g *= iw; r.b *= iw; } } static void fillCellRemap(unsigned int* cell_remap, float* cell_errors, size_t cell_count, const unsigned int* vertex_cells, const Quadric* cell_quadrics, const Vector3* vertex_positions, size_t vertex_count) { memset(cell_remap, -1, cell_count * sizeof(unsigned int)); for (size_t i = 0; i < vertex_count; ++i) { unsigned int cell = vertex_cells[i]; float error = quadricError(cell_quadrics[cell], vertex_positions[i]); if (cell_remap[cell] == ~0u || cell_errors[cell] > error) { cell_remap[cell] = unsigned(i); cell_errors[cell] = error; } } } static void fillCellRemap(unsigned int* cell_remap, float* cell_errors, size_t cell_count, const unsigned int* vertex_cells, const Reservoir* cell_reservoirs, const Vector3* vertex_positions, const float* vertex_colors, size_t vertex_colors_stride, float color_weight, size_t vertex_count) { static const float dummy_color[] = {0.f, 0.f, 0.f}; size_t vertex_colors_stride_float = vertex_colors_stride / sizeof(float); memset(cell_remap, -1, cell_count * sizeof(unsigned int)); for (size_t i = 0; i < vertex_count; ++i) { unsigned int cell = vertex_cells[i]; const Vector3& v = vertex_positions[i]; const Reservoir& r = cell_reservoirs[cell]; const float* color = vertex_colors ? &vertex_colors[i * vertex_colors_stride_float] : dummy_color; float pos_error = (v.x - r.x) * (v.x - r.x) + (v.y - r.y) * (v.y - r.y) + (v.z - r.z) * (v.z - r.z); float col_error = (color[0] - r.r) * (color[0] - r.r) + (color[1] - r.g) * (color[1] - r.g) + (color[2] - r.b) * (color[2] - r.b); float error = pos_error + color_weight * col_error; if (cell_remap[cell] == ~0u || cell_errors[cell] > error) { cell_remap[cell] = unsigned(i); cell_errors[cell] = error; } } } static size_t filterTriangles(unsigned int* destination, unsigned int* tritable, size_t tritable_size, const unsigned int* indices, size_t index_count, const unsigned int* vertex_cells, const unsigned int* cell_remap) { TriangleHasher hasher = {destination}; memset(tritable, -1, tritable_size * sizeof(unsigned int)); size_t result = 0; for (size_t i = 0; i < index_count; i += 3) { unsigned int c0 = vertex_cells[indices[i + 0]]; unsigned int c1 = vertex_cells[indices[i + 1]]; unsigned int c2 = vertex_cells[indices[i + 2]]; if (c0 != c1 && c0 != c2 && c1 != c2) { unsigned int a = cell_remap[c0]; unsigned int b = cell_remap[c1]; unsigned int c = cell_remap[c2]; if (b < a && b < c) { unsigned int t = a; a = b, b = c, c = t; } else if (c < a && c < b) { unsigned int t = c; c = b, b = a, a = t; } destination[result * 3 + 0] = a; destination[result * 3 + 1] = b; destination[result * 3 + 2] = c; unsigned int* entry = hashLookup2(tritable, tritable_size, hasher, unsigned(result), ~0u); if (*entry == ~0u) *entry = unsigned(result++); } } return result * 3; } static float interpolate(float y, float x0, float y0, float x1, float y1, float x2, float y2) { // three point interpolation from "revenge of interpolation search" paper float num = (y1 - y) * (x1 - x2) * (x1 - x0) * (y2 - y0); float den = (y2 - y) * (x1 - x2) * (y0 - y1) + (y0 - y) * (x1 - x0) * (y1 - y2); return x1 + num / den; } } // namespace meshopt // Note: this is only exposed for development purposes; do *not* use enum { meshopt_SimplifyInternalSolve = 1 << 29, meshopt_SimplifyInternalDebug = 1 << 30 }; size_t meshopt_simplifyEdge(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, const float* vertex_attributes_data, size_t vertex_attributes_stride, const float* attribute_weights, size_t attribute_count, const unsigned char* vertex_lock, size_t target_index_count, float target_error, unsigned int options, float* out_result_error) { using namespace meshopt; assert(index_count % 3 == 0); assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256); assert(vertex_positions_stride % sizeof(float) == 0); assert(target_index_count <= index_count); assert(target_error >= 0); assert((options & ~(meshopt_SimplifyLockBorder | meshopt_SimplifySparse | meshopt_SimplifyErrorAbsolute | meshopt_SimplifyPrune | meshopt_SimplifyRegularize | meshopt_SimplifyPermissive | meshopt_SimplifyInternalSolve | meshopt_SimplifyInternalDebug)) == 0); assert(vertex_attributes_stride >= attribute_count * sizeof(float) && vertex_attributes_stride <= 256); assert(vertex_attributes_stride % sizeof(float) == 0); assert(attribute_count <= kMaxAttributes); for (size_t i = 0; i < attribute_count; ++i) assert(attribute_weights[i] >= 0); meshopt_Allocator allocator; unsigned int* result = destination; if (result != indices) memcpy(result, indices, index_count * sizeof(unsigned int)); // build an index remap and update indices/vertex_count to minimize the subsequent work // note: as a consequence, errors will be computed relative to the subset extent unsigned int* sparse_remap = NULL; if (options & meshopt_SimplifySparse) sparse_remap = buildSparseRemap(result, index_count, vertex_count, &vertex_count, allocator); // build adjacency information EdgeAdjacency adjacency = {}; prepareEdgeAdjacency(adjacency, index_count, vertex_count, allocator); updateEdgeAdjacency(adjacency, result, index_count, vertex_count, NULL); // build position remap that maps each vertex to the one with identical position // wedge table stores next vertex with identical position for each vertex unsigned int* remap = allocator.allocate(vertex_count); unsigned int* wedge = allocator.allocate(vertex_count); buildPositionRemap(remap, wedge, vertex_positions_data, vertex_count, vertex_positions_stride, sparse_remap, allocator); // classify vertices; vertex kind determines collapse rules, see kCanCollapse unsigned char* vertex_kind = allocator.allocate(vertex_count); unsigned int* loop = allocator.allocate(vertex_count); unsigned int* loopback = allocator.allocate(vertex_count); classifyVertices(vertex_kind, loop, loopback, vertex_count, adjacency, remap, wedge, vertex_lock, sparse_remap, options); #if TRACE size_t unique_positions = 0; for (size_t i = 0; i < vertex_count; ++i) unique_positions += remap[i] == i; printf("position remap: %d vertices => %d positions\n", int(vertex_count), int(unique_positions)); size_t kinds[Kind_Count] = {}; for (size_t i = 0; i < vertex_count; ++i) kinds[vertex_kind[i]] += remap[i] == i; printf("kinds: manifold %d, border %d, seam %d, complex %d, locked %d\n", int(kinds[Kind_Manifold]), int(kinds[Kind_Border]), int(kinds[Kind_Seam]), int(kinds[Kind_Complex]), int(kinds[Kind_Locked])); #endif Vector3* vertex_positions = allocator.allocate(vertex_count); float vertex_offset[3] = {}; float vertex_scale = rescalePositions(vertex_positions, vertex_positions_data, vertex_count, vertex_positions_stride, sparse_remap, vertex_offset); float* vertex_attributes = NULL; unsigned int attribute_remap[kMaxAttributes]; if (attribute_count) { // remap attributes to only include ones with weight > 0 to minimize memory/compute overhead for quadrics size_t attributes_used = 0; for (size_t i = 0; i < attribute_count; ++i) if (attribute_weights[i] > 0) attribute_remap[attributes_used++] = unsigned(i); attribute_count = attributes_used; vertex_attributes = allocator.allocate(vertex_count * attribute_count); rescaleAttributes(vertex_attributes, vertex_attributes_data, vertex_count, vertex_attributes_stride, attribute_weights, attribute_count, attribute_remap, sparse_remap); } Quadric* vertex_quadrics = allocator.allocate(vertex_count); memset(vertex_quadrics, 0, vertex_count * sizeof(Quadric)); Quadric* attribute_quadrics = NULL; QuadricGrad* attribute_gradients = NULL; QuadricGrad* volume_gradients = NULL; if (attribute_count) { attribute_quadrics = allocator.allocate(vertex_count); memset(attribute_quadrics, 0, vertex_count * sizeof(Quadric)); attribute_gradients = allocator.allocate(vertex_count * attribute_count); memset(attribute_gradients, 0, vertex_count * attribute_count * sizeof(QuadricGrad)); if (options & meshopt_SimplifyInternalSolve) { volume_gradients = allocator.allocate(vertex_count); memset(volume_gradients, 0, vertex_count * sizeof(QuadricGrad)); } } fillFaceQuadrics(vertex_quadrics, volume_gradients, result, index_count, vertex_positions, remap); fillVertexQuadrics(vertex_quadrics, vertex_positions, vertex_count, remap, options); fillEdgeQuadrics(vertex_quadrics, result, index_count, vertex_positions, remap, vertex_kind, loop, loopback); if (attribute_count) fillAttributeQuadrics(attribute_quadrics, attribute_gradients, result, index_count, vertex_positions, vertex_attributes, attribute_count); unsigned int* components = NULL; float* component_errors = NULL; size_t component_count = 0; float component_nexterror = 0; if (options & meshopt_SimplifyPrune) { components = allocator.allocate(vertex_count); component_count = buildComponents(components, vertex_count, result, index_count, remap); component_errors = allocator.allocate(component_count * 4); // overallocate for temporary use inside measureComponents measureComponents(component_errors, component_count, components, vertex_positions, vertex_count); component_nexterror = FLT_MAX; for (size_t i = 0; i < component_count; ++i) component_nexterror = component_nexterror > component_errors[i] ? component_errors[i] : component_nexterror; #if TRACE printf("components: %d (min error %e)\n", int(component_count), sqrtf(component_nexterror)); #endif } #if TRACE size_t pass_count = 0; #endif size_t collapse_capacity = boundEdgeCollapses(adjacency, vertex_count, index_count, vertex_kind); Collapse* edge_collapses = allocator.allocate(collapse_capacity); unsigned int* collapse_order = allocator.allocate(collapse_capacity); unsigned int* collapse_remap = allocator.allocate(vertex_count); unsigned char* collapse_locked = allocator.allocate(vertex_count); size_t result_count = index_count; float result_error = 0; float vertex_error = 0; // target_error input is linear; we need to adjust it to match quadricError units float error_scale = (options & meshopt_SimplifyErrorAbsolute) ? vertex_scale : 1.f; float error_limit = (target_error * target_error) / (error_scale * error_scale); while (result_count > target_index_count) { // note: throughout the simplification process adjacency structure reflects welded topology for result-in-progress updateEdgeAdjacency(adjacency, result, result_count, vertex_count, remap); size_t edge_collapse_count = pickEdgeCollapses(edge_collapses, collapse_capacity, result, result_count, remap, vertex_kind, loop, loopback); assert(edge_collapse_count <= collapse_capacity); // no edges can be collapsed any more due to topology restrictions if (edge_collapse_count == 0) break; #if TRACE printf("pass %d:%c", int(pass_count++), TRACE >= 2 ? '\n' : ' '); #endif rankEdgeCollapses(edge_collapses, edge_collapse_count, vertex_positions, vertex_attributes, vertex_quadrics, attribute_quadrics, attribute_gradients, attribute_count, remap, wedge, vertex_kind, loop, loopback); sortEdgeCollapses(collapse_order, edge_collapses, edge_collapse_count); size_t triangle_collapse_goal = (result_count - target_index_count) / 3; for (size_t i = 0; i < vertex_count; ++i) collapse_remap[i] = unsigned(i); memset(collapse_locked, 0, vertex_count); size_t collapses = performEdgeCollapses(collapse_remap, collapse_locked, edge_collapses, edge_collapse_count, collapse_order, remap, wedge, vertex_kind, loop, loopback, vertex_positions, adjacency, triangle_collapse_goal, error_limit, result_error); // no edges can be collapsed any more due to hitting the error limit or triangle collapse limit if (collapses == 0) break; updateQuadrics(collapse_remap, vertex_count, vertex_quadrics, volume_gradients, attribute_quadrics, attribute_gradients, attribute_count, vertex_positions, remap, vertex_error); // updateQuadrics will update vertex error if we use attributes, but if we don't then result_error and vertex_error are equivalent vertex_error = attribute_count == 0 ? result_error : vertex_error; // note: we update loops following edge collapses, but after this we might still have stale loop data // this can happen when a triangle with a loop edge gets collapsed along a non-loop edge // that works since a loop that points to a vertex that is no longer connected is not affecting collapse logic remapEdgeLoops(loop, vertex_count, collapse_remap); remapEdgeLoops(loopback, vertex_count, collapse_remap); result_count = remapIndexBuffer(result, result_count, collapse_remap, remap); if ((options & meshopt_SimplifyPrune) && result_count > target_index_count && component_nexterror <= vertex_error) result_count = pruneComponents(result, result_count, components, component_errors, component_count, vertex_error, component_nexterror); } // at this point, component_nexterror might be stale: component it references may have been removed through a series of edge collapses bool component_nextstale = true; // we're done with the regular simplification but we're still short of the target; try pruning more aggressively towards error_limit while ((options & meshopt_SimplifyPrune) && result_count > target_index_count && component_nexterror <= error_limit) { #if TRACE printf("pass %d: cleanup; ", int(pass_count++)); #endif float component_cutoff = component_nexterror * 1.5f < error_limit ? component_nexterror * 1.5f : error_limit; // track maximum error in eligible components as we are increasing resulting error float component_maxerror = 0; for (size_t i = 0; i < component_count; ++i) if (component_errors[i] > component_maxerror && component_errors[i] <= component_cutoff) component_maxerror = component_errors[i]; size_t new_count = pruneComponents(result, result_count, components, component_errors, component_count, component_cutoff, component_nexterror); if (new_count == result_count && !component_nextstale) break; component_nextstale = false; // pruneComponents guarantees next error is up to date result_count = new_count; result_error = result_error < component_maxerror ? component_maxerror : result_error; vertex_error = vertex_error < component_maxerror ? component_maxerror : vertex_error; } #if TRACE printf("result: %d triangles, error: %e (pos %.3e); total %d passes\n", int(result_count / 3), sqrtf(result_error), sqrtf(vertex_error), int(pass_count)); #endif // if solve is requested, update input buffers destructively from internal data if (options & meshopt_SimplifyInternalSolve) { unsigned char* vertex_update = collapse_locked; // reuse as scratch space memset(vertex_update, 0, vertex_count); // limit quadric solve to vertices that are still used in the result for (size_t i = 0; i < result_count; ++i) { unsigned int v = result[i]; // recomputing externally locked vertices may result in floating point drift vertex_update[v] = vertex_kind[v] != Kind_Locked; } // edge adjacency may be stale as we haven't updated it after last series of edge collapses updateEdgeAdjacency(adjacency, result, result_count, vertex_count, remap); solveQuadrics(vertex_positions, vertex_attributes, vertex_count, vertex_quadrics, volume_gradients, attribute_quadrics, attribute_gradients, attribute_count, remap, wedge, adjacency, vertex_kind, vertex_update); finalizeVertices(const_cast(vertex_positions_data), vertex_positions_stride, const_cast(vertex_attributes_data), vertex_attributes_stride, attribute_weights, attribute_count, vertex_count, vertex_positions, vertex_attributes, sparse_remap, attribute_remap, vertex_scale, vertex_offset, vertex_update); } // if debug visualization data is requested, fill it instead of index data; for simplicity, this doesn't work with sparsity if ((options & meshopt_SimplifyInternalDebug) && !sparse_remap) { assert(Kind_Count <= 8 && vertex_count < (1 << 28)); // 3 bit kind, 1 bit loop for (size_t i = 0; i < result_count; i += 3) { unsigned int a = result[i + 0], b = result[i + 1], c = result[i + 2]; result[i + 0] |= (vertex_kind[a] << 28) | (unsigned(loop[a] == b || loopback[b] == a) << 31); result[i + 1] |= (vertex_kind[b] << 28) | (unsigned(loop[b] == c || loopback[c] == b) << 31); result[i + 2] |= (vertex_kind[c] << 28) | (unsigned(loop[c] == a || loopback[a] == c) << 31); } } // convert resulting indices back into the dense space of the larger mesh if (sparse_remap) for (size_t i = 0; i < result_count; ++i) result[i] = sparse_remap[result[i]]; // result_error is quadratic; we need to remap it back to linear if (out_result_error) *out_result_error = sqrtf(result_error) * error_scale; return result_count; } size_t meshopt_simplify(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, size_t target_index_count, float target_error, unsigned int options, float* out_result_error) { assert((options & meshopt_SimplifyInternalSolve) == 0); // use meshopt_simplifyWithUpdate instead return meshopt_simplifyEdge(destination, indices, index_count, vertex_positions_data, vertex_count, vertex_positions_stride, NULL, 0, NULL, 0, NULL, target_index_count, target_error, options, out_result_error); } size_t meshopt_simplifyWithAttributes(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, const float* vertex_attributes_data, size_t vertex_attributes_stride, const float* attribute_weights, size_t attribute_count, const unsigned char* vertex_lock, size_t target_index_count, float target_error, unsigned int options, float* out_result_error) { assert((options & meshopt_SimplifyInternalSolve) == 0); // use meshopt_simplifyWithUpdate instead return meshopt_simplifyEdge(destination, indices, index_count, vertex_positions_data, vertex_count, vertex_positions_stride, vertex_attributes_data, vertex_attributes_stride, attribute_weights, attribute_count, vertex_lock, target_index_count, target_error, options, out_result_error); } size_t meshopt_simplifyWithUpdate(unsigned int* indices, size_t index_count, float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, float* vertex_attributes_data, size_t vertex_attributes_stride, const float* attribute_weights, size_t attribute_count, const unsigned char* vertex_lock, size_t target_index_count, float target_error, unsigned int options, float* out_result_error) { return meshopt_simplifyEdge(indices, indices, index_count, vertex_positions_data, vertex_count, vertex_positions_stride, vertex_attributes_data, vertex_attributes_stride, attribute_weights, attribute_count, vertex_lock, target_index_count, target_error, options | meshopt_SimplifyInternalSolve, out_result_error); } size_t meshopt_simplifySloppy(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, const unsigned char* vertex_lock, size_t target_index_count, float target_error, float* out_result_error) { using namespace meshopt; assert(index_count % 3 == 0); assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256); assert(vertex_positions_stride % sizeof(float) == 0); assert(target_index_count <= index_count); // we expect to get ~2 triangles/vertex in the output size_t target_cell_count = target_index_count / 6; meshopt_Allocator allocator; Vector3* vertex_positions = allocator.allocate(vertex_count); rescalePositions(vertex_positions, vertex_positions_data, vertex_count, vertex_positions_stride); // find the optimal grid size using guided binary search #if TRACE printf("source: %d vertices, %d triangles\n", int(vertex_count), int(index_count / 3)); printf("target: %d cells, %d triangles\n", int(target_cell_count), int(target_index_count / 3)); #endif unsigned int* vertex_ids = allocator.allocate(vertex_count); const int kInterpolationPasses = 5; // invariant: # of triangles in min_grid <= target_count int min_grid = int(1.f / (target_error < 1e-3f ? 1e-3f : (target_error < 1.f ? target_error : 1.f))); int max_grid = 1025; size_t min_triangles = 0; size_t max_triangles = index_count / 3; // when we're error-limited, we compute the triangle count for the min. size; this accelerates convergence and provides the correct answer when we can't use a larger grid if (min_grid > 1 || vertex_lock) { computeVertexIds(vertex_ids, vertex_positions, vertex_lock, vertex_count, min_grid); min_triangles = countTriangles(vertex_ids, indices, index_count); } // instead of starting in the middle, let's guess as to what the answer might be! triangle count usually grows as a square of grid size... int next_grid_size = int(sqrtf(float(target_cell_count)) + 0.5f); for (int pass = 0; pass < 10 + kInterpolationPasses; ++pass) { if (min_triangles >= target_index_count / 3 || max_grid - min_grid <= 1) break; // we clamp the prediction of the grid size to make sure that the search converges int grid_size = next_grid_size; grid_size = (grid_size <= min_grid) ? min_grid + 1 : (grid_size >= max_grid ? max_grid - 1 : grid_size); computeVertexIds(vertex_ids, vertex_positions, vertex_lock, vertex_count, grid_size); size_t triangles = countTriangles(vertex_ids, indices, index_count); #if TRACE printf("pass %d (%s): grid size %d, triangles %d, %s\n", pass, (pass == 0) ? "guess" : (pass <= kInterpolationPasses ? "lerp" : "binary"), grid_size, int(triangles), (triangles <= target_index_count / 3) ? "under" : "over"); #endif float tip = interpolate(float(size_t(target_index_count / 3)), float(min_grid), float(min_triangles), float(grid_size), float(triangles), float(max_grid), float(max_triangles)); if (triangles <= target_index_count / 3) { min_grid = grid_size; min_triangles = triangles; } else { max_grid = grid_size; max_triangles = triangles; } // we start by using interpolation search - it usually converges faster // however, interpolation search has a worst case of O(N) so we switch to binary search after a few iterations which converges in O(logN) next_grid_size = (pass < kInterpolationPasses) ? int(tip + 0.5f) : (min_grid + max_grid) / 2; } if (min_triangles == 0) { if (out_result_error) *out_result_error = 1.f; return 0; } // build vertex->cell association by mapping all vertices with the same quantized position to the same cell size_t table_size = hashBuckets2(vertex_count); unsigned int* table = allocator.allocate(table_size); unsigned int* vertex_cells = allocator.allocate(vertex_count); computeVertexIds(vertex_ids, vertex_positions, vertex_lock, vertex_count, min_grid); size_t cell_count = fillVertexCells(table, table_size, vertex_cells, vertex_ids, vertex_count); // build a quadric for each target cell Quadric* cell_quadrics = allocator.allocate(cell_count); memset(cell_quadrics, 0, cell_count * sizeof(Quadric)); fillCellQuadrics(cell_quadrics, indices, index_count, vertex_positions, vertex_cells); // for each target cell, find the vertex with the minimal error unsigned int* cell_remap = allocator.allocate(cell_count); float* cell_errors = allocator.allocate(cell_count); fillCellRemap(cell_remap, cell_errors, cell_count, vertex_cells, cell_quadrics, vertex_positions, vertex_count); // compute error float result_error = 0.f; for (size_t i = 0; i < cell_count; ++i) result_error = result_error < cell_errors[i] ? cell_errors[i] : result_error; // vertex collapses often result in duplicate triangles; we need a table to filter them out size_t tritable_size = hashBuckets2(min_triangles); unsigned int* tritable = allocator.allocate(tritable_size); // note: this is the first and last write to destination, which allows aliasing destination with indices size_t write = filterTriangles(destination, tritable, tritable_size, indices, index_count, vertex_cells, cell_remap); #if TRACE printf("result: grid size %d, %d cells, %d triangles (%d unfiltered), error %e\n", min_grid, int(cell_count), int(write / 3), int(min_triangles), sqrtf(result_error)); #endif if (out_result_error) *out_result_error = sqrtf(result_error); return write; } size_t meshopt_simplifyPrune(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, float target_error) { using namespace meshopt; assert(index_count % 3 == 0); assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256); assert(vertex_positions_stride % sizeof(float) == 0); assert(target_error >= 0); meshopt_Allocator allocator; unsigned int* result = destination; if (result != indices) memcpy(result, indices, index_count * sizeof(unsigned int)); // build position remap that maps each vertex to the one with identical position unsigned int* remap = allocator.allocate(vertex_count); buildPositionRemap(remap, NULL, vertex_positions_data, vertex_count, vertex_positions_stride, NULL, allocator); Vector3* vertex_positions = allocator.allocate(vertex_count); rescalePositions(vertex_positions, vertex_positions_data, vertex_count, vertex_positions_stride, NULL); unsigned int* components = allocator.allocate(vertex_count); size_t component_count = buildComponents(components, vertex_count, indices, index_count, remap); float* component_errors = allocator.allocate(component_count * 4); // overallocate for temporary use inside measureComponents measureComponents(component_errors, component_count, components, vertex_positions, vertex_count); float component_nexterror = 0; size_t result_count = pruneComponents(result, index_count, components, component_errors, component_count, target_error * target_error, component_nexterror); return result_count; } size_t meshopt_simplifyPoints(unsigned int* destination, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, const float* vertex_colors, size_t vertex_colors_stride, float color_weight, size_t target_vertex_count) { using namespace meshopt; assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256); assert(vertex_positions_stride % sizeof(float) == 0); assert(vertex_colors_stride == 0 || (vertex_colors_stride >= 12 && vertex_colors_stride <= 256)); assert(vertex_colors_stride % sizeof(float) == 0); assert(vertex_colors == NULL || vertex_colors_stride != 0); assert(target_vertex_count <= vertex_count); size_t target_cell_count = target_vertex_count; if (target_cell_count == 0) return 0; meshopt_Allocator allocator; Vector3* vertex_positions = allocator.allocate(vertex_count); rescalePositions(vertex_positions, vertex_positions_data, vertex_count, vertex_positions_stride); // find the optimal grid size using guided binary search #if TRACE printf("source: %d vertices\n", int(vertex_count)); printf("target: %d cells\n", int(target_cell_count)); #endif unsigned int* vertex_ids = allocator.allocate(vertex_count); size_t table_size = hashBuckets2(vertex_count); unsigned int* table = allocator.allocate(table_size); const int kInterpolationPasses = 5; // invariant: # of vertices in min_grid <= target_count int min_grid = 0; int max_grid = 1025; size_t min_vertices = 0; size_t max_vertices = vertex_count; // instead of starting in the middle, let's guess as to what the answer might be! triangle count usually grows as a square of grid size... int next_grid_size = int(sqrtf(float(target_cell_count)) + 0.5f); for (int pass = 0; pass < 10 + kInterpolationPasses; ++pass) { assert(min_vertices < target_vertex_count); assert(max_grid - min_grid > 1); // we clamp the prediction of the grid size to make sure that the search converges int grid_size = next_grid_size; grid_size = (grid_size <= min_grid) ? min_grid + 1 : (grid_size >= max_grid ? max_grid - 1 : grid_size); computeVertexIds(vertex_ids, vertex_positions, NULL, vertex_count, grid_size); size_t vertices = countVertexCells(table, table_size, vertex_ids, vertex_count); #if TRACE printf("pass %d (%s): grid size %d, vertices %d, %s\n", pass, (pass == 0) ? "guess" : (pass <= kInterpolationPasses ? "lerp" : "binary"), grid_size, int(vertices), (vertices <= target_vertex_count) ? "under" : "over"); #endif float tip = interpolate(float(target_vertex_count), float(min_grid), float(min_vertices), float(grid_size), float(vertices), float(max_grid), float(max_vertices)); if (vertices <= target_vertex_count) { min_grid = grid_size; min_vertices = vertices; } else { max_grid = grid_size; max_vertices = vertices; } if (vertices == target_vertex_count || max_grid - min_grid <= 1) break; // we start by using interpolation search - it usually converges faster // however, interpolation search has a worst case of O(N) so we switch to binary search after a few iterations which converges in O(logN) next_grid_size = (pass < kInterpolationPasses) ? int(tip + 0.5f) : (min_grid + max_grid) / 2; } if (min_vertices == 0) return 0; // build vertex->cell association by mapping all vertices with the same quantized position to the same cell unsigned int* vertex_cells = allocator.allocate(vertex_count); computeVertexIds(vertex_ids, vertex_positions, NULL, vertex_count, min_grid); size_t cell_count = fillVertexCells(table, table_size, vertex_cells, vertex_ids, vertex_count); // accumulate points into a reservoir for each target cell Reservoir* cell_reservoirs = allocator.allocate(cell_count); memset(cell_reservoirs, 0, cell_count * sizeof(Reservoir)); fillCellReservoirs(cell_reservoirs, cell_count, vertex_positions, vertex_colors, vertex_colors_stride, vertex_count, vertex_cells); // for each target cell, find the vertex with the minimal error unsigned int* cell_remap = allocator.allocate(cell_count); float* cell_errors = allocator.allocate(cell_count); // we scale the color weight to bring it to the same scale as position so that error addition makes sense float color_weight_scaled = color_weight * (min_grid == 1 ? 1.f : 1.f / (min_grid - 1)); fillCellRemap(cell_remap, cell_errors, cell_count, vertex_cells, cell_reservoirs, vertex_positions, vertex_colors, vertex_colors_stride, color_weight_scaled * color_weight_scaled, vertex_count); // copy results to the output assert(cell_count <= target_vertex_count); memcpy(destination, cell_remap, sizeof(unsigned int) * cell_count); #if TRACE // compute error float result_error = 0.f; for (size_t i = 0; i < cell_count; ++i) result_error = result_error < cell_errors[i] ? cell_errors[i] : result_error; printf("result: %d cells, %e error\n", int(cell_count), sqrtf(result_error)); #endif return cell_count; } float meshopt_simplifyScale(const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride) { using namespace meshopt; assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256); assert(vertex_positions_stride % sizeof(float) == 0); float extent = rescalePositions(NULL, vertex_positions, vertex_count, vertex_positions_stride); return extent; }