// This file is part of meshoptimizer library; see meshoptimizer.h for version/license details #include "meshoptimizer.h" #include #include #include // This work is based on: // Fabian Giesen. Decoding Morton codes. 2009 namespace meshopt { // "Insert" two 0 bits after each of the 20 low bits of x inline unsigned long long part1By2(unsigned long long x) { x &= 0x000fffffull; // x = ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- jihg fedc ba98 7654 3210 x = (x ^ (x << 32)) & 0x000f00000000ffffull; // x = ---- ---- ---- jihg ---- ---- ---- ---- ---- ---- ---- ---- fedc ba98 7654 3210 x = (x ^ (x << 16)) & 0x000f0000ff0000ffull; // x = ---- ---- ---- jihg ---- ---- ---- ---- fedc ba98 ---- ---- ---- ---- 7654 3210 x = (x ^ (x << 8)) & 0x000f00f00f00f00full; // x = ---- ---- ---- jihg ---- ---- fedc ---- ---- ba98 ---- ---- 7654 ---- ---- 3210 x = (x ^ (x << 4)) & 0x00c30c30c30c30c3ull; // x = ---- ---- ji-- --hg ---- fe-- --dc ---- ba-- --98 ---- 76-- --54 ---- 32-- --10 x = (x ^ (x << 2)) & 0x0249249249249249ull; // x = ---- --j- -i-- h--g --f- -e-- d--c --b- -a-- 9--8 --7- -6-- 5--4 --3- -2-- 1--0 return x; } static void computeOrder(unsigned long long* result, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride, bool morton) { size_t vertex_stride_float = vertex_positions_stride / sizeof(float); float minv[3] = {FLT_MAX, FLT_MAX, FLT_MAX}; float maxv[3] = {-FLT_MAX, -FLT_MAX, -FLT_MAX}; for (size_t i = 0; i < vertex_count; ++i) { const float* v = vertex_positions_data + i * vertex_stride_float; for (int j = 0; j < 3; ++j) { float vj = v[j]; minv[j] = minv[j] > vj ? vj : minv[j]; maxv[j] = maxv[j] < vj ? vj : maxv[j]; } } float extent = 0.f; extent = (maxv[0] - minv[0]) < extent ? extent : (maxv[0] - minv[0]); extent = (maxv[1] - minv[1]) < extent ? extent : (maxv[1] - minv[1]); extent = (maxv[2] - minv[2]) < extent ? extent : (maxv[2] - minv[2]); // rescale each axis to 16 bits to get 48-bit Morton codes float scale = extent == 0 ? 0.f : 65535.f / extent; // generate Morton order based on the position inside a unit cube for (size_t i = 0; i < vertex_count; ++i) { const float* v = vertex_positions_data + i * vertex_stride_float; int x = int((v[0] - minv[0]) * scale + 0.5f); int y = int((v[1] - minv[1]) * scale + 0.5f); int z = int((v[2] - minv[2]) * scale + 0.5f); if (morton) result[i] = part1By2(x) | (part1By2(y) << 1) | (part1By2(z) << 2); else result[i] = ((unsigned long long)x << 0) | ((unsigned long long)y << 20) | ((unsigned long long)z << 40); } } static void radixSort10(unsigned int* destination, const unsigned int* source, const unsigned short* keys, size_t count) { unsigned int hist[1024]; memset(hist, 0, sizeof(hist)); // compute histogram (assume keys are 10-bit) for (size_t i = 0; i < count; ++i) hist[keys[i]]++; unsigned int sum = 0; // replace histogram data with prefix histogram sums in-place for (int i = 0; i < 1024; ++i) { unsigned int h = hist[i]; hist[i] = sum; sum += h; } assert(sum == count); // reorder values for (size_t i = 0; i < count; ++i) { unsigned int id = keys[source[i]]; destination[hist[id]++] = source[i]; } } static void computeHistogram(unsigned int (&hist)[256][2], const unsigned short* data, size_t count) { memset(hist, 0, sizeof(hist)); // compute 2 8-bit histograms in parallel for (size_t i = 0; i < count; ++i) { unsigned long long id = data[i]; hist[(id >> 0) & 255][0]++; hist[(id >> 8) & 255][1]++; } unsigned int sum0 = 0, sum1 = 0; // replace histogram data with prefix histogram sums in-place for (int i = 0; i < 256; ++i) { unsigned int h0 = hist[i][0], h1 = hist[i][1]; hist[i][0] = sum0; hist[i][1] = sum1; sum0 += h0; sum1 += h1; } assert(sum0 == count && sum1 == count); } static void radixPass(unsigned int* destination, const unsigned int* source, const unsigned short* keys, size_t count, unsigned int (&hist)[256][2], int pass) { int bitoff = pass * 8; for (size_t i = 0; i < count; ++i) { unsigned int id = unsigned(keys[source[i]] >> bitoff) & 255; destination[hist[id][pass]++] = source[i]; } } static void partitionPoints(unsigned int* target, const unsigned int* order, const unsigned char* sides, size_t split, size_t count) { size_t l = 0, r = split; for (size_t i = 0; i < count; ++i) { unsigned char side = sides[order[i]]; target[side ? r : l] = order[i]; l += 1; l -= side; r += side; } assert(l == split && r == count); } static void splitPoints(unsigned int* destination, unsigned int* orderx, unsigned int* ordery, unsigned int* orderz, const unsigned long long* keys, size_t count, void* scratch, size_t cluster_size) { if (count <= cluster_size) { memcpy(destination, orderx, count * sizeof(unsigned int)); return; } unsigned int* axes[3] = {orderx, ordery, orderz}; int bestk = -1; unsigned int bestdim = 0; for (int k = 0; k < 3; ++k) { const unsigned int mask = (1 << 20) - 1; unsigned int dim = (unsigned(keys[axes[k][count - 1]] >> (k * 20)) & mask) - (unsigned(keys[axes[k][0]] >> (k * 20)) & mask); if (dim >= bestdim) { bestk = k; bestdim = dim; } } assert(bestk >= 0); // split roughly in half, with the left split always being aligned to cluster size size_t split = ((count / 2) + cluster_size - 1) / cluster_size * cluster_size; assert(split > 0 && split < count); // mark sides of split for partitioning unsigned char* sides = static_cast(scratch) + count * sizeof(unsigned int); for (size_t i = 0; i < split; ++i) sides[axes[bestk][i]] = 0; for (size_t i = split; i < count; ++i) sides[axes[bestk][i]] = 1; // partition all axes into two sides, maintaining order unsigned int* temp = static_cast(scratch); for (int k = 0; k < 3; ++k) { if (k == bestk) continue; unsigned int* axis = axes[k]; memcpy(temp, axis, sizeof(unsigned int) * count); partitionPoints(axis, temp, sides, split, count); } splitPoints(destination, orderx, ordery, orderz, keys, split, scratch, cluster_size); splitPoints(destination + split, orderx + split, ordery + split, orderz + split, keys, count - split, scratch, cluster_size); } } // namespace meshopt void meshopt_spatialSortRemap(unsigned int* destination, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride) { using namespace meshopt; assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256); assert(vertex_positions_stride % sizeof(float) == 0); meshopt_Allocator allocator; unsigned long long* keys = allocator.allocate(vertex_count); computeOrder(keys, vertex_positions, vertex_count, vertex_positions_stride, /* morton= */ true); unsigned int* scratch = allocator.allocate(vertex_count * 2); // 4b for order + 2b for keys unsigned short* keyk = (unsigned short*)(scratch + vertex_count); for (size_t i = 0; i < vertex_count; ++i) destination[i] = unsigned(i); unsigned int* order[] = {scratch, destination}; // 5-pass radix sort computes the resulting order into scratch for (int k = 0; k < 5; ++k) { // copy 10-bit key segments into keyk to reduce cache pressure during radix pass for (size_t i = 0; i < vertex_count; ++i) keyk[i] = (unsigned short)((keys[i] >> (k * 10)) & 1023); radixSort10(order[k % 2], order[(k + 1) % 2], keyk, vertex_count); } // since our remap table is mapping old=>new, we need to reverse it for (size_t i = 0; i < vertex_count; ++i) destination[scratch[i]] = unsigned(i); } void meshopt_spatialSortTriangles(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride) { using namespace meshopt; assert(index_count % 3 == 0); assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256); assert(vertex_positions_stride % sizeof(float) == 0); (void)vertex_count; size_t face_count = index_count / 3; size_t vertex_stride_float = vertex_positions_stride / sizeof(float); meshopt_Allocator allocator; float* centroids = allocator.allocate(face_count * 3); for (size_t i = 0; i < face_count; ++i) { unsigned int a = indices[i * 3 + 0], b = indices[i * 3 + 1], c = indices[i * 3 + 2]; assert(a < vertex_count && b < vertex_count && c < vertex_count); const float* va = vertex_positions + a * vertex_stride_float; const float* vb = vertex_positions + b * vertex_stride_float; const float* vc = vertex_positions + c * vertex_stride_float; centroids[i * 3 + 0] = (va[0] + vb[0] + vc[0]) / 3.f; centroids[i * 3 + 1] = (va[1] + vb[1] + vc[1]) / 3.f; centroids[i * 3 + 2] = (va[2] + vb[2] + vc[2]) / 3.f; } unsigned int* remap = allocator.allocate(face_count); meshopt_spatialSortRemap(remap, centroids, face_count, sizeof(float) * 3); // support in-order remap if (destination == indices) { unsigned int* indices_copy = allocator.allocate(index_count); memcpy(indices_copy, indices, index_count * sizeof(unsigned int)); indices = indices_copy; } for (size_t i = 0; i < face_count; ++i) { unsigned int a = indices[i * 3 + 0], b = indices[i * 3 + 1], c = indices[i * 3 + 2]; unsigned int r = remap[i]; destination[r * 3 + 0] = a; destination[r * 3 + 1] = b; destination[r * 3 + 2] = c; } } void meshopt_spatialClusterPoints(unsigned int* destination, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride, size_t cluster_size) { using namespace meshopt; assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256); assert(vertex_positions_stride % sizeof(float) == 0); assert(cluster_size > 0); meshopt_Allocator allocator; unsigned long long* keys = allocator.allocate(vertex_count); computeOrder(keys, vertex_positions, vertex_count, vertex_positions_stride, /* morton= */ false); unsigned int* order = allocator.allocate(vertex_count * 3); unsigned int* scratch = allocator.allocate(vertex_count * 2); // 4b for order + 1b for side or 2b for keys unsigned short* keyk = reinterpret_cast(scratch + vertex_count); for (int k = 0; k < 3; ++k) { // copy 16-bit key segments into keyk to reduce cache pressure during radix pass for (size_t i = 0; i < vertex_count; ++i) keyk[i] = (unsigned short)(keys[i] >> (k * 20)); unsigned int hist[256][2]; computeHistogram(hist, keyk, vertex_count); for (size_t i = 0; i < vertex_count; ++i) order[k * vertex_count + i] = unsigned(i); radixPass(scratch, order + k * vertex_count, keyk, vertex_count, hist, 0); radixPass(order + k * vertex_count, scratch, keyk, vertex_count, hist, 1); } splitPoints(destination, order, order + vertex_count, order + 2 * vertex_count, keys, vertex_count, scratch, cluster_size); }