mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-30 21:21:10 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1070 lines
		
	
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1070 lines
		
	
	
	
		
			30 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /**************************************************************************/
 | |
| /*  voxelizer.cpp                                                         */
 | |
| /**************************************************************************/
 | |
| /*                         This file is part of:                          */
 | |
| /*                             GODOT ENGINE                               */
 | |
| /*                        https://godotengine.org                         */
 | |
| /**************************************************************************/
 | |
| /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
 | |
| /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur.                  */
 | |
| /*                                                                        */
 | |
| /* Permission is hereby granted, free of charge, to any person obtaining  */
 | |
| /* a copy of this software and associated documentation files (the        */
 | |
| /* "Software"), to deal in the Software without restriction, including    */
 | |
| /* without limitation the rights to use, copy, modify, merge, publish,    */
 | |
| /* distribute, sublicense, and/or sell copies of the Software, and to     */
 | |
| /* permit persons to whom the Software is furnished to do so, subject to  */
 | |
| /* the following conditions:                                              */
 | |
| /*                                                                        */
 | |
| /* The above copyright notice and this permission notice shall be         */
 | |
| /* included in all copies or substantial portions of the Software.        */
 | |
| /*                                                                        */
 | |
| /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,        */
 | |
| /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF     */
 | |
| /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
 | |
| /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY   */
 | |
| /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,   */
 | |
| /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE      */
 | |
| /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                 */
 | |
| /**************************************************************************/
 | |
| 
 | |
| #include "voxelizer.h"
 | |
| 
 | |
| #include "core/config/project_settings.h"
 | |
| 
 | |
| static _FORCE_INLINE_ void get_uv_and_normal(const Vector3 &p_pos, const Vector3 *p_vtx, const Vector2 *p_uv, const Vector3 *p_normal, Vector2 &r_uv, Vector3 &r_normal) {
 | |
| 	if (p_pos.is_equal_approx(p_vtx[0])) {
 | |
| 		r_uv = p_uv[0];
 | |
| 		r_normal = p_normal[0];
 | |
| 		return;
 | |
| 	}
 | |
| 	if (p_pos.is_equal_approx(p_vtx[1])) {
 | |
| 		r_uv = p_uv[1];
 | |
| 		r_normal = p_normal[1];
 | |
| 		return;
 | |
| 	}
 | |
| 	if (p_pos.is_equal_approx(p_vtx[2])) {
 | |
| 		r_uv = p_uv[2];
 | |
| 		r_normal = p_normal[2];
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	Vector3 v0 = p_vtx[1] - p_vtx[0];
 | |
| 	Vector3 v1 = p_vtx[2] - p_vtx[0];
 | |
| 	Vector3 v2 = p_pos - p_vtx[0];
 | |
| 
 | |
| 	real_t d00 = v0.dot(v0);
 | |
| 	real_t d01 = v0.dot(v1);
 | |
| 	real_t d11 = v1.dot(v1);
 | |
| 	real_t d20 = v2.dot(v0);
 | |
| 	real_t d21 = v2.dot(v1);
 | |
| 	real_t denom = (d00 * d11 - d01 * d01);
 | |
| 	if (denom == 0) {
 | |
| 		r_uv = p_uv[0];
 | |
| 		r_normal = p_normal[0];
 | |
| 		return;
 | |
| 	}
 | |
| 	real_t v = (d11 * d20 - d01 * d21) / denom;
 | |
| 	real_t w = (d00 * d21 - d01 * d20) / denom;
 | |
| 	real_t u = 1.0f - v - w;
 | |
| 
 | |
| 	r_uv = p_uv[0] * u + p_uv[1] * v + p_uv[2] * w;
 | |
| 	r_normal = (p_normal[0] * u + p_normal[1] * v + p_normal[2] * w).normalized();
 | |
| }
 | |
| 
 | |
| void Voxelizer::_plot_face(int p_idx, int p_level, int p_x, int p_y, int p_z, const Vector3 *p_vtx, const Vector3 *p_normal, const Vector2 *p_uv, const MaterialCache &p_material, const AABB &p_aabb) {
 | |
| 	if (p_level == cell_subdiv) {
 | |
| 		//plot the face by guessing its albedo and emission value
 | |
| 
 | |
| 		//find best axis to map to, for scanning values
 | |
| 		int closest_axis = 0;
 | |
| 		real_t closest_dot = 0;
 | |
| 
 | |
| 		Plane plane = Plane(p_vtx[0], p_vtx[1], p_vtx[2]);
 | |
| 		Vector3 normal = plane.normal;
 | |
| 
 | |
| 		for (int i = 0; i < 3; i++) {
 | |
| 			Vector3 axis;
 | |
| 			axis[i] = 1.0;
 | |
| 			real_t dot = Math::abs(normal.dot(axis));
 | |
| 			if (i == 0 || dot > closest_dot) {
 | |
| 				closest_axis = i;
 | |
| 				closest_dot = dot;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		Vector3 axis;
 | |
| 		axis[closest_axis] = 1.0;
 | |
| 		Vector3 t1;
 | |
| 		t1[(closest_axis + 1) % 3] = 1.0;
 | |
| 		Vector3 t2;
 | |
| 		t2[(closest_axis + 2) % 3] = 1.0;
 | |
| 
 | |
| 		t1 *= p_aabb.size[(closest_axis + 1) % 3] / real_t(color_scan_cell_width);
 | |
| 		t2 *= p_aabb.size[(closest_axis + 2) % 3] / real_t(color_scan_cell_width);
 | |
| 
 | |
| 		Color albedo_accum;
 | |
| 		Color emission_accum;
 | |
| 		Vector3 normal_accum;
 | |
| 
 | |
| 		float alpha = 0.0;
 | |
| 
 | |
| 		//map to a grid average in the best axis for this face
 | |
| 		for (int i = 0; i < color_scan_cell_width; i++) {
 | |
| 			Vector3 ofs_i = real_t(i) * t1;
 | |
| 
 | |
| 			for (int j = 0; j < color_scan_cell_width; j++) {
 | |
| 				Vector3 ofs_j = real_t(j) * t2;
 | |
| 
 | |
| 				Vector3 from = p_aabb.position + ofs_i + ofs_j;
 | |
| 				Vector3 to = from + t1 + t2 + axis * p_aabb.size[closest_axis];
 | |
| 				Vector3 half = (to - from) * 0.5;
 | |
| 
 | |
| 				//is in this cell?
 | |
| 				if (!Geometry3D::triangle_box_overlap(from + half, half, p_vtx)) {
 | |
| 					continue; //face does not span this cell
 | |
| 				}
 | |
| 
 | |
| 				//go from -size to +size*2 to avoid skipping collisions
 | |
| 				Vector3 ray_from = from + (t1 + t2) * 0.5 - axis * p_aabb.size[closest_axis];
 | |
| 				Vector3 ray_to = ray_from + axis * p_aabb.size[closest_axis] * 2;
 | |
| 
 | |
| 				if (normal.dot(ray_from - ray_to) < 0) {
 | |
| 					SWAP(ray_from, ray_to);
 | |
| 				}
 | |
| 
 | |
| 				Vector3 intersection;
 | |
| 
 | |
| 				if (!plane.intersects_segment(ray_from, ray_to, &intersection)) {
 | |
| 					if (Math::abs(plane.distance_to(ray_from)) < Math::abs(plane.distance_to(ray_to))) {
 | |
| 						intersection = plane.project(ray_from);
 | |
| 					} else {
 | |
| 						intersection = plane.project(ray_to);
 | |
| 					}
 | |
| 				}
 | |
| 
 | |
| 				intersection = Face3(p_vtx[0], p_vtx[1], p_vtx[2]).get_closest_point_to(intersection);
 | |
| 
 | |
| 				Vector2 uv;
 | |
| 				Vector3 lnormal;
 | |
| 				get_uv_and_normal(intersection, p_vtx, p_uv, p_normal, uv, lnormal);
 | |
| 				if (lnormal == Vector3()) { //just in case normal is not provided
 | |
| 					lnormal = normal;
 | |
| 				}
 | |
| 
 | |
| 				int uv_x = CLAMP(int(Math::fposmod(uv.x, (real_t)1.0) * bake_texture_size), 0, bake_texture_size - 1);
 | |
| 				int uv_y = CLAMP(int(Math::fposmod(uv.y, (real_t)1.0) * bake_texture_size), 0, bake_texture_size - 1);
 | |
| 
 | |
| 				int ofs = uv_y * bake_texture_size + uv_x;
 | |
| 				albedo_accum.r += p_material.albedo[ofs].r;
 | |
| 				albedo_accum.g += p_material.albedo[ofs].g;
 | |
| 				albedo_accum.b += p_material.albedo[ofs].b;
 | |
| 				albedo_accum.a += p_material.albedo[ofs].a;
 | |
| 
 | |
| 				emission_accum.r += p_material.emission[ofs].r;
 | |
| 				emission_accum.g += p_material.emission[ofs].g;
 | |
| 				emission_accum.b += p_material.emission[ofs].b;
 | |
| 
 | |
| 				normal_accum += lnormal;
 | |
| 
 | |
| 				alpha += 1.0;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (alpha == 0) {
 | |
| 			//could not in any way get texture information.. so use closest point to center
 | |
| 
 | |
| 			Face3 f(p_vtx[0], p_vtx[1], p_vtx[2]);
 | |
| 			Vector3 inters = f.get_closest_point_to(p_aabb.get_center());
 | |
| 
 | |
| 			Vector3 lnormal;
 | |
| 			Vector2 uv;
 | |
| 			get_uv_and_normal(inters, p_vtx, p_uv, p_normal, uv, normal);
 | |
| 			if (lnormal == Vector3()) { //just in case normal is not provided
 | |
| 				lnormal = normal;
 | |
| 			}
 | |
| 
 | |
| 			int uv_x = CLAMP(Math::fposmod(uv.x, (real_t)1.0) * bake_texture_size, 0, bake_texture_size - 1);
 | |
| 			int uv_y = CLAMP(Math::fposmod(uv.y, (real_t)1.0) * bake_texture_size, 0, bake_texture_size - 1);
 | |
| 
 | |
| 			int ofs = uv_y * bake_texture_size + uv_x;
 | |
| 
 | |
| 			alpha = 1.0 / (color_scan_cell_width * color_scan_cell_width);
 | |
| 
 | |
| 			albedo_accum.r = p_material.albedo[ofs].r * alpha;
 | |
| 			albedo_accum.g = p_material.albedo[ofs].g * alpha;
 | |
| 			albedo_accum.b = p_material.albedo[ofs].b * alpha;
 | |
| 			albedo_accum.a = p_material.albedo[ofs].a * alpha;
 | |
| 
 | |
| 			emission_accum.r = p_material.emission[ofs].r * alpha;
 | |
| 			emission_accum.g = p_material.emission[ofs].g * alpha;
 | |
| 			emission_accum.b = p_material.emission[ofs].b * alpha;
 | |
| 
 | |
| 			normal_accum = lnormal * alpha;
 | |
| 
 | |
| 		} else {
 | |
| 			float accdiv = 1.0 / (color_scan_cell_width * color_scan_cell_width);
 | |
| 			alpha *= accdiv;
 | |
| 
 | |
| 			albedo_accum.r *= accdiv;
 | |
| 			albedo_accum.g *= accdiv;
 | |
| 			albedo_accum.b *= accdiv;
 | |
| 			albedo_accum.a *= accdiv;
 | |
| 
 | |
| 			emission_accum.r *= accdiv;
 | |
| 			emission_accum.g *= accdiv;
 | |
| 			emission_accum.b *= accdiv;
 | |
| 
 | |
| 			normal_accum *= accdiv;
 | |
| 		}
 | |
| 
 | |
| 		//put this temporarily here, corrected in a later step
 | |
| 		bake_cells.write[p_idx].albedo[0] += albedo_accum.r;
 | |
| 		bake_cells.write[p_idx].albedo[1] += albedo_accum.g;
 | |
| 		bake_cells.write[p_idx].albedo[2] += albedo_accum.b;
 | |
| 		bake_cells.write[p_idx].emission[0] += emission_accum.r;
 | |
| 		bake_cells.write[p_idx].emission[1] += emission_accum.g;
 | |
| 		bake_cells.write[p_idx].emission[2] += emission_accum.b;
 | |
| 		bake_cells.write[p_idx].normal[0] += normal_accum.x;
 | |
| 		bake_cells.write[p_idx].normal[1] += normal_accum.y;
 | |
| 		bake_cells.write[p_idx].normal[2] += normal_accum.z;
 | |
| 		bake_cells.write[p_idx].alpha += alpha;
 | |
| 
 | |
| 	} else {
 | |
| 		//go down
 | |
| 
 | |
| 		int half = (1 << cell_subdiv) >> (p_level + 1);
 | |
| 		for (int i = 0; i < 8; i++) {
 | |
| 			AABB aabb = p_aabb;
 | |
| 			aabb.size *= 0.5;
 | |
| 
 | |
| 			int nx = p_x;
 | |
| 			int ny = p_y;
 | |
| 			int nz = p_z;
 | |
| 
 | |
| 			if (i & 1) {
 | |
| 				aabb.position.x += aabb.size.x;
 | |
| 				nx += half;
 | |
| 			}
 | |
| 			if (i & 2) {
 | |
| 				aabb.position.y += aabb.size.y;
 | |
| 				ny += half;
 | |
| 			}
 | |
| 			if (i & 4) {
 | |
| 				aabb.position.z += aabb.size.z;
 | |
| 				nz += half;
 | |
| 			}
 | |
| 			//make sure to not plot beyond limits
 | |
| 			if (nx < 0 || nx >= axis_cell_size[0] || ny < 0 || ny >= axis_cell_size[1] || nz < 0 || nz >= axis_cell_size[2]) {
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			{
 | |
| 				AABB test_aabb = aabb;
 | |
| 				//test_aabb.grow_by(test_aabb.get_longest_axis_size()*0.05); //grow a bit to avoid numerical error in real-time
 | |
| 				Vector3 qsize = test_aabb.size * 0.5; //quarter size, for fast aabb test
 | |
| 
 | |
| 				if (!Geometry3D::triangle_box_overlap(test_aabb.position + qsize, qsize, p_vtx)) {
 | |
| 					//if (!Face3(p_vtx[0],p_vtx[1],p_vtx[2]).intersects_aabb2(aabb)) {
 | |
| 					//does not fit in child, go on
 | |
| 					continue;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if (bake_cells[p_idx].children[i] == CHILD_EMPTY) {
 | |
| 				//sub cell must be created
 | |
| 
 | |
| 				uint32_t child_idx = bake_cells.size();
 | |
| 				bake_cells.write[p_idx].children[i] = child_idx;
 | |
| 				bake_cells.resize(bake_cells.size() + 1);
 | |
| 				bake_cells.write[child_idx].level = p_level + 1;
 | |
| 				bake_cells.write[child_idx].x = nx / half;
 | |
| 				bake_cells.write[child_idx].y = ny / half;
 | |
| 				bake_cells.write[child_idx].z = nz / half;
 | |
| 			}
 | |
| 
 | |
| 			_plot_face(bake_cells[p_idx].children[i], p_level + 1, nx, ny, nz, p_vtx, p_normal, p_uv, p_material, aabb);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| Vector<Color> Voxelizer::_get_bake_texture(Ref<Image> p_image, const Color &p_color_mul, const Color &p_color_add) {
 | |
| 	Vector<Color> ret;
 | |
| 
 | |
| 	if (p_image.is_null() || p_image->is_empty()) {
 | |
| 		ret.resize(bake_texture_size * bake_texture_size);
 | |
| 		for (int i = 0; i < bake_texture_size * bake_texture_size; i++) {
 | |
| 			ret.write[i] = p_color_add;
 | |
| 		}
 | |
| 
 | |
| 		return ret;
 | |
| 	}
 | |
| 	p_image = p_image->duplicate();
 | |
| 
 | |
| 	if (p_image->is_compressed()) {
 | |
| 		p_image->decompress();
 | |
| 	}
 | |
| 	p_image->convert(Image::FORMAT_RGBA8);
 | |
| 	p_image->resize(bake_texture_size, bake_texture_size, Image::INTERPOLATE_CUBIC);
 | |
| 
 | |
| 	const uint8_t *r = p_image->get_data().ptr();
 | |
| 	ret.resize(bake_texture_size * bake_texture_size);
 | |
| 
 | |
| 	for (int i = 0; i < bake_texture_size * bake_texture_size; i++) {
 | |
| 		Color c;
 | |
| 		c.r = (r[i * 4 + 0] / 255.0) * p_color_mul.r + p_color_add.r;
 | |
| 		c.g = (r[i * 4 + 1] / 255.0) * p_color_mul.g + p_color_add.g;
 | |
| 		c.b = (r[i * 4 + 2] / 255.0) * p_color_mul.b + p_color_add.b;
 | |
| 
 | |
| 		c.a = r[i * 4 + 3] / 255.0;
 | |
| 
 | |
| 		ret.write[i] = c;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| Voxelizer::MaterialCache Voxelizer::_get_material_cache(Ref<Material> p_material) {
 | |
| 	// This way of obtaining materials is inaccurate and also does not support some compressed formats very well.
 | |
| 	Ref<BaseMaterial3D> mat = p_material;
 | |
| 
 | |
| 	Ref<Material> material = mat; //hack for now
 | |
| 
 | |
| 	if (material_cache.has(material)) {
 | |
| 		return material_cache[material];
 | |
| 	}
 | |
| 
 | |
| 	MaterialCache mc;
 | |
| 
 | |
| 	if (mat.is_valid()) {
 | |
| 		Ref<Texture2D> albedo_tex = mat->get_texture(BaseMaterial3D::TEXTURE_ALBEDO);
 | |
| 
 | |
| 		Ref<Image> img_albedo;
 | |
| 		if (albedo_tex.is_valid()) {
 | |
| 			img_albedo = albedo_tex->get_image();
 | |
| 			mc.albedo = _get_bake_texture(img_albedo, mat->get_albedo(), Color(0, 0, 0)); // albedo texture, color is multiplicative
 | |
| 		} else {
 | |
| 			mc.albedo = _get_bake_texture(img_albedo, Color(1, 1, 1), mat->get_albedo()); // no albedo texture, color is additive
 | |
| 		}
 | |
| 		if (mat->get_feature(BaseMaterial3D::FEATURE_EMISSION)) {
 | |
| 			Ref<Texture2D> emission_tex = mat->get_texture(BaseMaterial3D::TEXTURE_EMISSION);
 | |
| 
 | |
| 			Color emission_col = mat->get_emission();
 | |
| 			float emission_energy = mat->get_emission_energy_multiplier() * exposure_normalization;
 | |
| 			if (GLOBAL_GET("rendering/lights_and_shadows/use_physical_light_units")) {
 | |
| 				emission_energy *= mat->get_emission_intensity();
 | |
| 			}
 | |
| 
 | |
| 			Ref<Image> img_emission;
 | |
| 
 | |
| 			if (emission_tex.is_valid()) {
 | |
| 				img_emission = emission_tex->get_image();
 | |
| 			}
 | |
| 
 | |
| 			if (mat->get_emission_operator() == BaseMaterial3D::EMISSION_OP_ADD) {
 | |
| 				mc.emission = _get_bake_texture(img_emission, Color(1, 1, 1) * emission_energy, emission_col * emission_energy);
 | |
| 			} else {
 | |
| 				mc.emission = _get_bake_texture(img_emission, emission_col * emission_energy, Color(0, 0, 0));
 | |
| 			}
 | |
| 		} else {
 | |
| 			Ref<Image> empty;
 | |
| 			mc.emission = _get_bake_texture(empty, Color(0, 0, 0), Color(0, 0, 0));
 | |
| 		}
 | |
| 
 | |
| 	} else {
 | |
| 		Ref<Image> empty;
 | |
| 
 | |
| 		mc.albedo = _get_bake_texture(empty, Color(0, 0, 0), Color(1, 1, 1));
 | |
| 		mc.emission = _get_bake_texture(empty, Color(0, 0, 0), Color(0, 0, 0));
 | |
| 	}
 | |
| 
 | |
| 	material_cache[p_material] = mc;
 | |
| 	return mc;
 | |
| }
 | |
| 
 | |
| int Voxelizer::get_bake_steps(Ref<Mesh> &p_mesh) const {
 | |
| 	int bake_total = 0;
 | |
| 	for (int i = 0; i < p_mesh->get_surface_count(); i++) {
 | |
| 		if (p_mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES) {
 | |
| 			continue; // Only triangles.
 | |
| 		}
 | |
| 		Array a = p_mesh->surface_get_arrays(i);
 | |
| 		Vector<Vector3> vertices = a[Mesh::ARRAY_VERTEX];
 | |
| 		Vector<int> index = a[Mesh::ARRAY_INDEX];
 | |
| 		bake_total += (index.size() > 0 ? index.size() : vertices.size()) / 3;
 | |
| 	}
 | |
| 	return bake_total;
 | |
| }
 | |
| 
 | |
| Voxelizer::BakeResult Voxelizer::plot_mesh(const Transform3D &p_xform, Ref<Mesh> &p_mesh, const Vector<Ref<Material>> &p_materials, const Ref<Material> &p_override_material, BakeStepFunc p_bake_step_func) {
 | |
| 	ERR_FAIL_COND_V_MSG(!p_xform.is_finite(), BAKE_RESULT_INVALID_PARAMETER, "Invalid mesh bake transform.");
 | |
| 
 | |
| 	// Precalculate for transforming vertex normals
 | |
| 	Basis normal_xform = p_xform.basis.inverse().transposed();
 | |
| 
 | |
| 	int bake_total = get_bake_steps(p_mesh), bake_current = 0;
 | |
| 
 | |
| 	for (int i = 0; i < p_mesh->get_surface_count(); i++) {
 | |
| 		if (p_mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES) {
 | |
| 			continue; //only triangles
 | |
| 		}
 | |
| 
 | |
| 		Ref<Material> src_material;
 | |
| 
 | |
| 		if (p_override_material.is_valid()) {
 | |
| 			src_material = p_override_material;
 | |
| 		} else if (i < p_materials.size() && p_materials[i].is_valid()) {
 | |
| 			src_material = p_materials[i];
 | |
| 		} else {
 | |
| 			src_material = p_mesh->surface_get_material(i);
 | |
| 		}
 | |
| 		MaterialCache material = _get_material_cache(src_material);
 | |
| 
 | |
| 		Array a = p_mesh->surface_get_arrays(i);
 | |
| 
 | |
| 		Vector<Vector3> vertices = a[Mesh::ARRAY_VERTEX];
 | |
| 		const Vector3 *vr = vertices.ptr();
 | |
| 		Vector<Vector2> uv = a[Mesh::ARRAY_TEX_UV];
 | |
| 		const Vector2 *uvr = nullptr;
 | |
| 		Vector<Vector3> normals = a[Mesh::ARRAY_NORMAL];
 | |
| 		const Vector3 *nr = nullptr;
 | |
| 		Vector<int> index = a[Mesh::ARRAY_INDEX];
 | |
| 
 | |
| 		if (uv.size()) {
 | |
| 			uvr = uv.ptr();
 | |
| 		}
 | |
| 
 | |
| 		if (normals.size()) {
 | |
| 			nr = normals.ptr();
 | |
| 		}
 | |
| 
 | |
| 		if (index.size()) {
 | |
| 			int facecount = index.size() / 3;
 | |
| 			const int *ir = index.ptr();
 | |
| 
 | |
| 			for (int j = 0; j < facecount; j++) {
 | |
| 				Vector3 vtxs[3];
 | |
| 				Vector2 uvs[3];
 | |
| 				Vector3 normal[3];
 | |
| 
 | |
| 				bake_current++;
 | |
| 				if (p_bake_step_func != nullptr && (bake_current & 2047) == 1) {
 | |
| 					if (p_bake_step_func(bake_current, bake_total)) {
 | |
| 						return BAKE_RESULT_CANCELLED;
 | |
| 					}
 | |
| 				}
 | |
| 
 | |
| 				for (int k = 0; k < 3; k++) {
 | |
| 					vtxs[k] = p_xform.xform(vr[ir[j * 3 + k]]);
 | |
| 				}
 | |
| 
 | |
| 				if (uvr) {
 | |
| 					for (int k = 0; k < 3; k++) {
 | |
| 						uvs[k] = uvr[ir[j * 3 + k]];
 | |
| 					}
 | |
| 				}
 | |
| 
 | |
| 				if (nr) {
 | |
| 					for (int k = 0; k < 3; k++) {
 | |
| 						normal[k] = normal_xform.xform(nr[ir[j * 3 + k]]).normalized();
 | |
| 					}
 | |
| 				}
 | |
| 
 | |
| 				//test against original bounds
 | |
| 				if (!Geometry3D::triangle_box_overlap(original_bounds.get_center(), original_bounds.size * 0.5, vtxs)) {
 | |
| 					continue;
 | |
| 				}
 | |
| 				//plot
 | |
| 				_plot_face(0, 0, 0, 0, 0, vtxs, normal, uvs, material, po2_bounds);
 | |
| 			}
 | |
| 
 | |
| 		} else {
 | |
| 			int facecount = vertices.size() / 3;
 | |
| 
 | |
| 			for (int j = 0; j < facecount; j++) {
 | |
| 				Vector3 vtxs[3];
 | |
| 				Vector2 uvs[3];
 | |
| 				Vector3 normal[3];
 | |
| 
 | |
| 				bake_current++;
 | |
| 				if (p_bake_step_func != nullptr && (bake_current & 2047) == 1) {
 | |
| 					if (p_bake_step_func(bake_current, bake_total)) {
 | |
| 						return BAKE_RESULT_CANCELLED;
 | |
| 					}
 | |
| 				}
 | |
| 
 | |
| 				for (int k = 0; k < 3; k++) {
 | |
| 					vtxs[k] = p_xform.xform(vr[j * 3 + k]);
 | |
| 				}
 | |
| 
 | |
| 				if (uvr) {
 | |
| 					for (int k = 0; k < 3; k++) {
 | |
| 						uvs[k] = uvr[j * 3 + k];
 | |
| 					}
 | |
| 				}
 | |
| 
 | |
| 				if (nr) {
 | |
| 					for (int k = 0; k < 3; k++) {
 | |
| 						normal[k] = nr[j * 3 + k];
 | |
| 					}
 | |
| 				}
 | |
| 
 | |
| 				//test against original bounds
 | |
| 				if (!Geometry3D::triangle_box_overlap(original_bounds.get_center(), original_bounds.size * 0.5, vtxs)) {
 | |
| 					continue;
 | |
| 				}
 | |
| 				//plot face
 | |
| 				_plot_face(0, 0, 0, 0, 0, vtxs, normal, uvs, material, po2_bounds);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	max_original_cells = bake_cells.size();
 | |
| 
 | |
| 	return BAKE_RESULT_OK;
 | |
| }
 | |
| 
 | |
| void Voxelizer::_sort() {
 | |
| 	// cells need to be sorted by level and coordinates
 | |
| 	// it is important that level has more priority (for compute), and that Z has the least,
 | |
| 	// given it may aid older implementations plot using GPU
 | |
| 
 | |
| 	Vector<CellSort> sorted_cells;
 | |
| 	uint32_t cell_count = bake_cells.size();
 | |
| 	sorted_cells.resize(cell_count);
 | |
| 	{
 | |
| 		CellSort *sort_cellsp = sorted_cells.ptrw();
 | |
| 		const Cell *bake_cellsp = bake_cells.ptr();
 | |
| 
 | |
| 		for (uint32_t i = 0; i < cell_count; i++) {
 | |
| 			sort_cellsp[i].x = bake_cellsp[i].x;
 | |
| 			sort_cellsp[i].y = bake_cellsp[i].y;
 | |
| 			sort_cellsp[i].z = bake_cellsp[i].z;
 | |
| 			sort_cellsp[i].level = bake_cellsp[i].level;
 | |
| 			sort_cellsp[i].index = i;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	sorted_cells.sort();
 | |
| 
 | |
| 	//verify just in case, index 0 must be level 0
 | |
| 	ERR_FAIL_COND(sorted_cells[0].level != 0);
 | |
| 
 | |
| 	Vector<Cell> new_bake_cells;
 | |
| 	new_bake_cells.resize(cell_count);
 | |
| 	Vector<uint32_t> reverse_map;
 | |
| 
 | |
| 	{
 | |
| 		reverse_map.resize(cell_count);
 | |
| 		const CellSort *sort_cellsp = sorted_cells.ptr();
 | |
| 		uint32_t *reverse_mapp = reverse_map.ptrw();
 | |
| 
 | |
| 		for (uint32_t i = 0; i < cell_count; i++) {
 | |
| 			reverse_mapp[sort_cellsp[i].index] = i;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	{
 | |
| 		const CellSort *sort_cellsp = sorted_cells.ptr();
 | |
| 		const Cell *bake_cellsp = bake_cells.ptr();
 | |
| 		const uint32_t *reverse_mapp = reverse_map.ptr();
 | |
| 		Cell *new_bake_cellsp = new_bake_cells.ptrw();
 | |
| 
 | |
| 		for (uint32_t i = 0; i < cell_count; i++) {
 | |
| 			//copy to new cell
 | |
| 			new_bake_cellsp[i] = bake_cellsp[sort_cellsp[i].index];
 | |
| 			//remap children
 | |
| 			for (uint32_t j = 0; j < 8; j++) {
 | |
| 				if (new_bake_cellsp[i].children[j] != CHILD_EMPTY) {
 | |
| 					new_bake_cellsp[i].children[j] = reverse_mapp[new_bake_cellsp[i].children[j]];
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	bake_cells = new_bake_cells;
 | |
| 	sorted = true;
 | |
| }
 | |
| 
 | |
| void Voxelizer::_fixup_plot(int p_idx, int p_level) {
 | |
| 	if (p_level == cell_subdiv) {
 | |
| 		leaf_voxel_count++;
 | |
| 		float alpha = bake_cells[p_idx].alpha;
 | |
| 
 | |
| 		bake_cells.write[p_idx].albedo[0] /= alpha;
 | |
| 		bake_cells.write[p_idx].albedo[1] /= alpha;
 | |
| 		bake_cells.write[p_idx].albedo[2] /= alpha;
 | |
| 
 | |
| 		//transfer emission to light
 | |
| 		bake_cells.write[p_idx].emission[0] /= alpha;
 | |
| 		bake_cells.write[p_idx].emission[1] /= alpha;
 | |
| 		bake_cells.write[p_idx].emission[2] /= alpha;
 | |
| 
 | |
| 		bake_cells.write[p_idx].normal[0] /= alpha;
 | |
| 		bake_cells.write[p_idx].normal[1] /= alpha;
 | |
| 		bake_cells.write[p_idx].normal[2] /= alpha;
 | |
| 
 | |
| 		Vector3 n(bake_cells[p_idx].normal[0], bake_cells[p_idx].normal[1], bake_cells[p_idx].normal[2]);
 | |
| 		if (n.length() < 0.01) {
 | |
| 			//too much fight over normal, zero it
 | |
| 			bake_cells.write[p_idx].normal[0] = 0;
 | |
| 			bake_cells.write[p_idx].normal[1] = 0;
 | |
| 			bake_cells.write[p_idx].normal[2] = 0;
 | |
| 		} else {
 | |
| 			n.normalize();
 | |
| 			bake_cells.write[p_idx].normal[0] = n.x;
 | |
| 			bake_cells.write[p_idx].normal[1] = n.y;
 | |
| 			bake_cells.write[p_idx].normal[2] = n.z;
 | |
| 		}
 | |
| 
 | |
| 		bake_cells.write[p_idx].alpha = 1.0;
 | |
| 
 | |
| 		/*if (bake_light.size()) {
 | |
| 			for(int i=0;i<6;i++) {
 | |
| 			}
 | |
| 		}*/
 | |
| 
 | |
| 	} else {
 | |
| 		//go down
 | |
| 
 | |
| 		bake_cells.write[p_idx].emission[0] = 0;
 | |
| 		bake_cells.write[p_idx].emission[1] = 0;
 | |
| 		bake_cells.write[p_idx].emission[2] = 0;
 | |
| 		bake_cells.write[p_idx].normal[0] = 0;
 | |
| 		bake_cells.write[p_idx].normal[1] = 0;
 | |
| 		bake_cells.write[p_idx].normal[2] = 0;
 | |
| 		bake_cells.write[p_idx].albedo[0] = 0;
 | |
| 		bake_cells.write[p_idx].albedo[1] = 0;
 | |
| 		bake_cells.write[p_idx].albedo[2] = 0;
 | |
| 
 | |
| 		float alpha_average = 0;
 | |
| 
 | |
| 		for (int i = 0; i < 8; i++) {
 | |
| 			uint32_t child = bake_cells[p_idx].children[i];
 | |
| 
 | |
| 			if (child == CHILD_EMPTY) {
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			_fixup_plot(child, p_level + 1);
 | |
| 			alpha_average += bake_cells[child].alpha;
 | |
| 		}
 | |
| 
 | |
| 		bake_cells.write[p_idx].alpha = alpha_average / 8.0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void Voxelizer::begin_bake(int p_subdiv, const AABB &p_bounds, float p_exposure_normalization) {
 | |
| 	sorted = false;
 | |
| 	original_bounds = p_bounds;
 | |
| 	cell_subdiv = p_subdiv;
 | |
| 	exposure_normalization = p_exposure_normalization;
 | |
| 	bake_cells.resize(1);
 | |
| 	material_cache.clear();
 | |
| 
 | |
| 	//find out the actual real bounds, power of 2, which gets the highest subdivision
 | |
| 	po2_bounds = p_bounds;
 | |
| 	int longest_axis = po2_bounds.get_longest_axis_index();
 | |
| 	axis_cell_size[longest_axis] = 1 << cell_subdiv;
 | |
| 	leaf_voxel_count = 0;
 | |
| 
 | |
| 	for (int i = 0; i < 3; i++) {
 | |
| 		if (i == longest_axis) {
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		axis_cell_size[i] = axis_cell_size[longest_axis];
 | |
| 		real_t axis_size = po2_bounds.size[longest_axis];
 | |
| 
 | |
| 		//shrink until fit subdiv
 | |
| 		while (axis_size / 2.0 >= po2_bounds.size[i]) {
 | |
| 			axis_size /= 2.0;
 | |
| 			axis_cell_size[i] >>= 1;
 | |
| 		}
 | |
| 
 | |
| 		po2_bounds.size[i] = po2_bounds.size[longest_axis];
 | |
| 	}
 | |
| 
 | |
| 	Transform3D to_bounds;
 | |
| 	to_bounds.basis.scale(Vector3(po2_bounds.size[longest_axis], po2_bounds.size[longest_axis], po2_bounds.size[longest_axis]));
 | |
| 	to_bounds.origin = po2_bounds.position;
 | |
| 
 | |
| 	Transform3D to_grid;
 | |
| 	to_grid.basis.scale(Vector3(axis_cell_size[longest_axis], axis_cell_size[longest_axis], axis_cell_size[longest_axis]));
 | |
| 
 | |
| 	to_cell_space = to_grid * to_bounds.affine_inverse();
 | |
| 
 | |
| 	cell_size = po2_bounds.size[longest_axis] / axis_cell_size[longest_axis];
 | |
| }
 | |
| 
 | |
| void Voxelizer::end_bake() {
 | |
| 	if (!sorted) {
 | |
| 		_sort();
 | |
| 	}
 | |
| 	_fixup_plot(0, 0);
 | |
| }
 | |
| 
 | |
| //create the data for rendering server
 | |
| 
 | |
| int Voxelizer::get_voxel_gi_octree_depth() const {
 | |
| 	return cell_subdiv;
 | |
| }
 | |
| 
 | |
| Vector3i Voxelizer::get_voxel_gi_octree_size() const {
 | |
| 	return Vector3i(axis_cell_size[0], axis_cell_size[1], axis_cell_size[2]);
 | |
| }
 | |
| 
 | |
| int Voxelizer::get_voxel_gi_cell_count() const {
 | |
| 	return bake_cells.size();
 | |
| }
 | |
| 
 | |
| Vector<uint8_t> Voxelizer::get_voxel_gi_octree_cells() const {
 | |
| 	Vector<uint8_t> data;
 | |
| 	data.resize((8 * 4) * bake_cells.size()); //8 uint32t values
 | |
| 	{
 | |
| 		uint8_t *w = data.ptrw();
 | |
| 		uint32_t *children_cells = (uint32_t *)w;
 | |
| 		const Cell *cells = bake_cells.ptr();
 | |
| 
 | |
| 		uint32_t cell_count = bake_cells.size();
 | |
| 
 | |
| 		for (uint32_t i = 0; i < cell_count; i++) {
 | |
| 			for (uint32_t j = 0; j < 8; j++) {
 | |
| 				children_cells[i * 8 + j] = cells[i].children[j];
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return data;
 | |
| }
 | |
| 
 | |
| Vector<uint8_t> Voxelizer::get_voxel_gi_data_cells() const {
 | |
| 	Vector<uint8_t> data;
 | |
| 	data.resize((4 * 4) * bake_cells.size()); //8 uint32t values
 | |
| 	{
 | |
| 		uint8_t *w = data.ptrw();
 | |
| 		uint32_t *dataptr = (uint32_t *)w;
 | |
| 		const Cell *cells = bake_cells.ptr();
 | |
| 
 | |
| 		uint32_t cell_count = bake_cells.size();
 | |
| 
 | |
| 		for (uint32_t i = 0; i < cell_count; i++) {
 | |
| 			{ //position
 | |
| 
 | |
| 				uint32_t x = cells[i].x;
 | |
| 				uint32_t y = cells[i].y;
 | |
| 				uint32_t z = cells[i].z;
 | |
| 
 | |
| 				uint32_t position = x;
 | |
| 				position |= y << 11;
 | |
| 				position |= z << 21;
 | |
| 
 | |
| 				dataptr[i * 4 + 0] = position;
 | |
| 			}
 | |
| 
 | |
| 			{ //albedo + alpha
 | |
| 				uint32_t rgba = uint32_t(CLAMP(cells[i].alpha * 255.0, 0, 255)) << 24; //a
 | |
| 				rgba |= uint32_t(CLAMP(cells[i].albedo[2] * 255.0, 0, 255)) << 16; //b
 | |
| 				rgba |= uint32_t(CLAMP(cells[i].albedo[1] * 255.0, 0, 255)) << 8; //g
 | |
| 				rgba |= uint32_t(CLAMP(cells[i].albedo[0] * 255.0, 0, 255)); //r
 | |
| 
 | |
| 				dataptr[i * 4 + 1] = rgba;
 | |
| 			}
 | |
| 
 | |
| 			{ //emission, as rgbe9995
 | |
| 				Color emission = Color(cells[i].emission[0], cells[i].emission[1], cells[i].emission[2]);
 | |
| 				dataptr[i * 4 + 2] = emission.to_rgbe9995();
 | |
| 			}
 | |
| 
 | |
| 			{ //normal
 | |
| 
 | |
| 				Vector3 n(bake_cells[i].normal[0], bake_cells[i].normal[1], bake_cells[i].normal[2]);
 | |
| 				n.normalize();
 | |
| 
 | |
| 				uint32_t normal = uint32_t(uint8_t(int8_t(CLAMP(n.x * 127.0, -128, 127))));
 | |
| 				normal |= uint32_t(uint8_t(int8_t(CLAMP(n.y * 127.0, -128, 127)))) << 8;
 | |
| 				normal |= uint32_t(uint8_t(int8_t(CLAMP(n.z * 127.0, -128, 127)))) << 16;
 | |
| 
 | |
| 				dataptr[i * 4 + 3] = normal;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return data;
 | |
| }
 | |
| 
 | |
| Vector<int> Voxelizer::get_voxel_gi_level_cell_count() const {
 | |
| 	uint32_t cell_count = bake_cells.size();
 | |
| 	const Cell *cells = bake_cells.ptr();
 | |
| 	Vector<int> level_count;
 | |
| 	level_count.resize(cell_subdiv + 1); //remember, always x+1 levels for x subdivisions
 | |
| 	{
 | |
| 		int *w = level_count.ptrw();
 | |
| 		for (int i = 0; i < cell_subdiv + 1; i++) {
 | |
| 			w[i] = 0;
 | |
| 		}
 | |
| 
 | |
| 		for (uint32_t i = 0; i < cell_count; i++) {
 | |
| 			w[cells[i].level]++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return level_count;
 | |
| }
 | |
| 
 | |
| // euclidean distance computation based on:
 | |
| // https://prideout.net/blog/distance_fields/
 | |
| 
 | |
| #define square(m_s) ((m_s) * (m_s))
 | |
| #define INF 1e20
 | |
| 
 | |
| /* dt of 1d function using squared distance */
 | |
| static void edt(float *f, int stride, int n) {
 | |
| 	float *d = (float *)alloca(sizeof(float) * n + sizeof(int) * n + sizeof(float) * (n + 1));
 | |
| 	int *v = reinterpret_cast<int *>(&(d[n]));
 | |
| 	float *z = reinterpret_cast<float *>(&v[n]);
 | |
| 
 | |
| 	int k = 0;
 | |
| 	v[0] = 0;
 | |
| 	z[0] = -INF;
 | |
| 	z[1] = +INF;
 | |
| 	for (int q = 1; q <= n - 1; q++) {
 | |
| 		float s = ((f[q * stride] + square(q)) - (f[v[k] * stride] + square(v[k]))) / (2 * q - 2 * v[k]);
 | |
| 		while (s <= z[k]) {
 | |
| 			k--;
 | |
| 			s = ((f[q * stride] + square(q)) - (f[v[k] * stride] + square(v[k]))) / (2 * q - 2 * v[k]);
 | |
| 		}
 | |
| 		k++;
 | |
| 		v[k] = q;
 | |
| 
 | |
| 		z[k] = s;
 | |
| 		z[k + 1] = +INF;
 | |
| 	}
 | |
| 
 | |
| 	k = 0;
 | |
| 	for (int q = 0; q <= n - 1; q++) {
 | |
| 		while (z[k + 1] < q) {
 | |
| 			k++;
 | |
| 		}
 | |
| 		d[q] = square(q - v[k]) + f[v[k] * stride];
 | |
| 	}
 | |
| 
 | |
| 	for (int i = 0; i < n; i++) {
 | |
| 		f[i * stride] = d[i];
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #undef square
 | |
| 
 | |
| Voxelizer::BakeResult Voxelizer::get_sdf_3d_image(Vector<uint8_t> &r_image, BakeStepFunc p_bake_step_function) const {
 | |
| 	Vector3i octree_size = get_voxel_gi_octree_size();
 | |
| 
 | |
| 	uint32_t float_count = octree_size.x * octree_size.y * octree_size.z;
 | |
| 	float *work_memory = memnew_arr(float, float_count);
 | |
| 	for (uint32_t i = 0; i < float_count; i++) {
 | |
| 		work_memory[i] = INF;
 | |
| 	}
 | |
| 
 | |
| 	uint32_t y_mult = octree_size.x;
 | |
| 	uint32_t z_mult = y_mult * octree_size.y;
 | |
| 
 | |
| 	//plot solid cells
 | |
| 	{
 | |
| 		const Cell *cells = bake_cells.ptr();
 | |
| 		uint32_t cell_count = bake_cells.size();
 | |
| 
 | |
| 		for (uint32_t i = 0; i < cell_count; i++) {
 | |
| 			if (cells[i].level < cell_subdiv) {
 | |
| 				continue; //do not care about this level
 | |
| 			}
 | |
| 
 | |
| 			work_memory[cells[i].x + cells[i].y * y_mult + cells[i].z * z_mult] = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	//process in each direction
 | |
| 
 | |
| 	int bake_total = octree_size.x * 2 + octree_size.y, bake_current = 0;
 | |
| 
 | |
| 	//xy->z
 | |
| 
 | |
| 	for (int i = 0; i < octree_size.x; i++, bake_current++) {
 | |
| 		if (p_bake_step_function) {
 | |
| 			if (p_bake_step_function(bake_current, bake_total)) {
 | |
| 				memdelete_arr(work_memory);
 | |
| 				return BAKE_RESULT_CANCELLED;
 | |
| 			}
 | |
| 		}
 | |
| 		for (int j = 0; j < octree_size.y; j++) {
 | |
| 			edt(&work_memory[i + j * y_mult], z_mult, octree_size.z);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	//xz->y
 | |
| 
 | |
| 	for (int i = 0; i < octree_size.x; i++, bake_current++) {
 | |
| 		if (p_bake_step_function) {
 | |
| 			if (p_bake_step_function(bake_current, bake_total)) {
 | |
| 				memdelete_arr(work_memory);
 | |
| 				return BAKE_RESULT_CANCELLED;
 | |
| 			}
 | |
| 		}
 | |
| 		for (int j = 0; j < octree_size.z; j++) {
 | |
| 			edt(&work_memory[i + j * z_mult], y_mult, octree_size.y);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	//yz->x
 | |
| 	for (int i = 0; i < octree_size.y; i++, bake_current++) {
 | |
| 		if (p_bake_step_function) {
 | |
| 			if (p_bake_step_function(bake_current, bake_total)) {
 | |
| 				memdelete_arr(work_memory);
 | |
| 				return BAKE_RESULT_CANCELLED;
 | |
| 			}
 | |
| 		}
 | |
| 		for (int j = 0; j < octree_size.z; j++) {
 | |
| 			edt(&work_memory[i * y_mult + j * z_mult], 1, octree_size.x);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	r_image.resize(float_count);
 | |
| 	{
 | |
| 		uint8_t *w = r_image.ptrw();
 | |
| 		for (uint32_t i = 0; i < float_count; i++) {
 | |
| 			uint32_t d = uint32_t(Math::sqrt(work_memory[i]));
 | |
| 			if (d == 0) {
 | |
| 				w[i] = 0;
 | |
| 			} else {
 | |
| 				w[i] = MIN(d, 254u) + 1;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	memdelete_arr(work_memory);
 | |
| 
 | |
| 	return BAKE_RESULT_OK;
 | |
| }
 | |
| 
 | |
| #undef INF
 | |
| 
 | |
| void Voxelizer::_debug_mesh(int p_idx, int p_level, const AABB &p_aabb, Ref<MultiMesh> &p_multimesh, int &idx) {
 | |
| 	if (p_level == cell_subdiv - 1) {
 | |
| 		Vector3 center = p_aabb.get_center();
 | |
| 		Transform3D xform;
 | |
| 		xform.origin = center;
 | |
| 		xform.basis.scale(p_aabb.size * 0.5);
 | |
| 		p_multimesh->set_instance_transform(idx, xform);
 | |
| 		Color col;
 | |
| 		col = Color(bake_cells[p_idx].albedo[0], bake_cells[p_idx].albedo[1], bake_cells[p_idx].albedo[2]);
 | |
| 		//Color col = Color(bake_cells[p_idx].emission[0], bake_cells[p_idx].emission[1], bake_cells[p_idx].emission[2]);
 | |
| 		p_multimesh->set_instance_color(idx, col);
 | |
| 
 | |
| 		idx++;
 | |
| 
 | |
| 	} else {
 | |
| 		for (int i = 0; i < 8; i++) {
 | |
| 			uint32_t child = bake_cells[p_idx].children[i];
 | |
| 
 | |
| 			if (child == CHILD_EMPTY || child >= (uint32_t)max_original_cells) {
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			AABB aabb = p_aabb;
 | |
| 			aabb.size *= 0.5;
 | |
| 
 | |
| 			if (i & 1) {
 | |
| 				aabb.position.x += aabb.size.x;
 | |
| 			}
 | |
| 			if (i & 2) {
 | |
| 				aabb.position.y += aabb.size.y;
 | |
| 			}
 | |
| 			if (i & 4) {
 | |
| 				aabb.position.z += aabb.size.z;
 | |
| 			}
 | |
| 
 | |
| 			_debug_mesh(bake_cells[p_idx].children[i], p_level + 1, aabb, p_multimesh, idx);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| Ref<MultiMesh> Voxelizer::create_debug_multimesh() {
 | |
| 	Ref<MultiMesh> mm;
 | |
| 
 | |
| 	mm.instantiate();
 | |
| 
 | |
| 	mm->set_transform_format(MultiMesh::TRANSFORM_3D);
 | |
| 	mm->set_use_colors(true);
 | |
| 	mm->set_instance_count(leaf_voxel_count);
 | |
| 
 | |
| 	Ref<ArrayMesh> mesh;
 | |
| 	mesh.instantiate();
 | |
| 
 | |
| 	{
 | |
| 		Array arr;
 | |
| 		arr.resize(Mesh::ARRAY_MAX);
 | |
| 
 | |
| 		Vector<Vector3> vertices;
 | |
| 		Vector<Color> colors;
 | |
| #define ADD_VTX(m_idx)                      \
 | |
| 	vertices.push_back(face_points[m_idx]); \
 | |
| 	colors.push_back(Color(1, 1, 1, 1));
 | |
| 
 | |
| 		for (int i = 0; i < 6; i++) {
 | |
| 			Vector3 face_points[4];
 | |
| 
 | |
| 			for (int j = 0; j < 4; j++) {
 | |
| 				real_t v[3];
 | |
| 				v[0] = 1.0;
 | |
| 				v[1] = 1 - 2 * ((j >> 1) & 1);
 | |
| 				v[2] = v[1] * (1 - 2 * (j & 1));
 | |
| 
 | |
| 				for (int k = 0; k < 3; k++) {
 | |
| 					if (i < 3) {
 | |
| 						face_points[j][(i + k) % 3] = v[k];
 | |
| 					} else {
 | |
| 						face_points[3 - j][(i + k) % 3] = -v[k];
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			//tri 1
 | |
| 			ADD_VTX(0);
 | |
| 			ADD_VTX(1);
 | |
| 			ADD_VTX(2);
 | |
| 			//tri 2
 | |
| 			ADD_VTX(2);
 | |
| 			ADD_VTX(3);
 | |
| 			ADD_VTX(0);
 | |
| 		}
 | |
| 
 | |
| 		arr[Mesh::ARRAY_VERTEX] = vertices;
 | |
| 		arr[Mesh::ARRAY_COLOR] = colors;
 | |
| 		mesh->add_surface_from_arrays(Mesh::PRIMITIVE_TRIANGLES, arr);
 | |
| 	}
 | |
| 
 | |
| 	{
 | |
| 		Ref<StandardMaterial3D> fsm;
 | |
| 		fsm.instantiate();
 | |
| 		fsm->set_flag(StandardMaterial3D::FLAG_SRGB_VERTEX_COLOR, true);
 | |
| 		fsm->set_flag(StandardMaterial3D::FLAG_ALBEDO_FROM_VERTEX_COLOR, true);
 | |
| 		fsm->set_shading_mode(StandardMaterial3D::SHADING_MODE_UNSHADED);
 | |
| 		fsm->set_flag(StandardMaterial3D::FLAG_DISABLE_FOG, true);
 | |
| 		fsm->set_albedo(Color(1, 1, 1, 1));
 | |
| 
 | |
| 		mesh->surface_set_material(0, fsm);
 | |
| 	}
 | |
| 
 | |
| 	mm->set_mesh(mesh);
 | |
| 
 | |
| 	int idx = 0;
 | |
| 	_debug_mesh(0, 0, po2_bounds, mm, idx);
 | |
| 
 | |
| 	return mm;
 | |
| }
 | |
| 
 | |
| Transform3D Voxelizer::get_to_cell_space_xform() const {
 | |
| 	return to_cell_space;
 | |
| }
 | |
| 
 | |
| Voxelizer::Voxelizer() {
 | |
| }
 | 
