mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-31 13:41:03 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			348 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			348 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*************************************************************************/
 | |
| /*  math_funcs.h                                                         */
 | |
| /*************************************************************************/
 | |
| /*                       This file is part of:                           */
 | |
| /*                           GODOT ENGINE                                */
 | |
| /*                    http://www.godotengine.org                         */
 | |
| /*************************************************************************/
 | |
| /* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur.                 */
 | |
| /*                                                                       */
 | |
| /* Permission is hereby granted, free of charge, to any person obtaining */
 | |
| /* a copy of this software and associated documentation files (the       */
 | |
| /* "Software"), to deal in the Software without restriction, including   */
 | |
| /* without limitation the rights to use, copy, modify, merge, publish,   */
 | |
| /* distribute, sublicense, and/or sell copies of the Software, and to    */
 | |
| /* permit persons to whom the Software is furnished to do so, subject to */
 | |
| /* the following conditions:                                             */
 | |
| /*                                                                       */
 | |
| /* The above copyright notice and this permission notice shall be        */
 | |
| /* included in all copies or substantial portions of the Software.       */
 | |
| /*                                                                       */
 | |
| /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */
 | |
| /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */
 | |
| /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
 | |
| /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */
 | |
| /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */
 | |
| /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */
 | |
| /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */
 | |
| /*************************************************************************/
 | |
| #ifndef MATH_FUNCS_H
 | |
| #define MATH_FUNCS_H
 | |
| 
 | |
| #include "typedefs.h"
 | |
| #include "math_defs.h"
 | |
| #include "pcg.h"
 | |
| 
 | |
| #include <math.h>
 | |
| #include <float.h>
 | |
| 	
 | |
| #define Math_PI 3.14159265358979323846
 | |
| #define Math_SQRT12 0.7071067811865475244008443621048490
 | |
| #define Math_LN2 0.693147180559945309417
 | |
| #define Math_INF INFINITY
 | |
| #define Math_NAN NAN
 | |
| 
 | |
| class Math {
 | |
| 
 | |
| 	static pcg32_random_t default_pcg;
 | |
| 
 | |
| public:
 | |
| 	Math() {} // useless to instance
 | |
| 
 | |
| 	enum {
 | |
| 		RANDOM_MAX=4294967295L
 | |
| 	};
 | |
| 
 | |
| 
 | |
| 	static _ALWAYS_INLINE_ double sin(double p_x) { return ::sin(p_x); }
 | |
| 	static _ALWAYS_INLINE_ float sin(float p_x) { return ::sinf(p_x); }
 | |
| 
 | |
| 	static _ALWAYS_INLINE_ double cos(double p_x) { return ::cos(p_x); }
 | |
| 	static _ALWAYS_INLINE_ float cos(float p_x) { return ::cosf(p_x); }
 | |
| 
 | |
| 	static _ALWAYS_INLINE_ double tan(double p_x) { return ::tan(p_x); }
 | |
| 	static _ALWAYS_INLINE_ float tan(float p_x) { return ::tanf(p_x); }
 | |
| 
 | |
| 	static _ALWAYS_INLINE_ double sinh(double p_x) { return ::sinh(p_x); }
 | |
| 	static _ALWAYS_INLINE_ float sinh(float p_x) { return ::sinhf(p_x); }
 | |
| 
 | |
| 	static _ALWAYS_INLINE_ double cosh(double p_x) { return ::cosh(p_x); }
 | |
| 	static _ALWAYS_INLINE_ float cosh(float p_x) { return ::coshf(p_x); }
 | |
| 
 | |
| 	static _ALWAYS_INLINE_ double tanh(double p_x) { return ::tanh(p_x); }
 | |
| 	static _ALWAYS_INLINE_ float tanh(float p_x) { return ::tanhf(p_x); }
 | |
| 
 | |
| 	static _ALWAYS_INLINE_ double asin(double p_x) { return ::asin(p_x); }
 | |
| 	static _ALWAYS_INLINE_ float asin(float p_x) { return ::asinf(p_x); }
 | |
| 
 | |
| 	static _ALWAYS_INLINE_ double acos(double p_x) { return ::acos(p_x); }
 | |
| 	static _ALWAYS_INLINE_ float acos(float p_x) { return ::acosf(p_x); }
 | |
| 
 | |
| 	static _ALWAYS_INLINE_ double atan(double p_x) { return ::atan(p_x); }
 | |
| 	static _ALWAYS_INLINE_ float atan(float p_x) { return ::atanf(p_x); }
 | |
| 
 | |
| 	static _ALWAYS_INLINE_ double atan2(double p_y, double p_x) { return ::atan2(p_y,p_x); }
 | |
| 	static _ALWAYS_INLINE_ float atan2(float p_y, float p_x) { return ::atan2f(p_y,p_x); }
 | |
| 
 | |
| 	static _ALWAYS_INLINE_ double sqrt(double p_x) { return ::sqrt(p_x); }
 | |
| 	static _ALWAYS_INLINE_ float sqrt(float p_x) { return ::sqrtf(p_x); }
 | |
| 
 | |
| 	static _ALWAYS_INLINE_ double fmod(double p_x,double p_y) { return ::fmod(p_x,p_y); }
 | |
| 	static _ALWAYS_INLINE_ float fmod(float p_x,float p_y) { return ::fmodf(p_x,p_y); }
 | |
| 
 | |
| 	static _ALWAYS_INLINE_ double floor(double p_x) { return ::floor(p_x); }
 | |
| 	static _ALWAYS_INLINE_ float floor(float p_x) { return ::floorf(p_x); }
 | |
| 
 | |
| 	static _ALWAYS_INLINE_ double ceil(double p_x) { return ::ceil(p_x); }
 | |
| 	static _ALWAYS_INLINE_ float ceil(float p_x) { return ::ceilf(p_x); }
 | |
| 
 | |
| 	static _ALWAYS_INLINE_ double pow(double p_x, double p_y) { return ::pow(p_x,p_y); }
 | |
| 	static _ALWAYS_INLINE_ float pow(float p_x, float p_y) { return ::powf(p_x,p_y); }
 | |
| 
 | |
| 	static _ALWAYS_INLINE_ double log(double p_x) { return ::log(p_x); }
 | |
| 	static _ALWAYS_INLINE_ float log(float p_x) { return ::logf(p_x); }
 | |
| 
 | |
| 	static _ALWAYS_INLINE_ double exp(double p_x) { return ::exp(p_x); }
 | |
| 	static _ALWAYS_INLINE_ float exp(float p_x) { return ::expf(p_x); }
 | |
| 
 | |
| 	static _ALWAYS_INLINE_ bool is_nan(double p_val) { return (p_val!=p_val); }
 | |
| 	static _ALWAYS_INLINE_ bool is_nan(float p_val) { return (p_val!=p_val); }
 | |
| 
 | |
| 	static _ALWAYS_INLINE_ bool is_inf(double p_val) {
 | |
| 	#ifdef _MSC_VER
 | |
| 		return !_finite(p_val);
 | |
| 	#else
 | |
| 		return isinf(p_val);
 | |
| 	#endif
 | |
| 	}
 | |
| 	
 | |
| 	static _ALWAYS_INLINE_ bool is_inf(float p_val) {
 | |
| 	#ifdef _MSC_VER
 | |
| 		return !_finite(p_val);
 | |
| 	#else
 | |
| 		return isinf(p_val);
 | |
| 	#endif
 | |
| 	}
 | |
| 	
 | |
| 	static _ALWAYS_INLINE_ double abs(double g) { return absd(g); }
 | |
| 	static _ALWAYS_INLINE_ float abs(float g) { return absf(g); }
 | |
| 	static _ALWAYS_INLINE_ int abs(int g) { return g > 0 ? g : -g; }
 | |
| 
 | |
| 	static _ALWAYS_INLINE_ double fposmod(double p_x,double p_y) { return (p_x>=0) ? Math::fmod(p_x,p_y) : p_y-Math::fmod(-p_x,p_y); }
 | |
| 	static _ALWAYS_INLINE_ float fposmod(float p_x,float p_y) { return (p_x>=0) ? Math::fmod(p_x,p_y) : p_y-Math::fmod(-p_x,p_y); }
 | |
| 
 | |
| 	static _ALWAYS_INLINE_ double deg2rad(double p_y) { return p_y*Math_PI/180.0; }
 | |
| 	static _ALWAYS_INLINE_ float deg2rad(float p_y) { return p_y*Math_PI/180.0; }
 | |
| 
 | |
| 	static _ALWAYS_INLINE_ double rad2deg(double p_y) { return p_y*180.0/Math_PI; }
 | |
| 	static _ALWAYS_INLINE_ float rad2deg(float p_y) { return p_y*180.0/Math_PI; }
 | |
| 
 | |
| 	static _ALWAYS_INLINE_ double lerp(double a, double b, double c) { return a+(b-a)*c; }
 | |
| 	static _ALWAYS_INLINE_ float lerp(float a, float b, float c) { return a+(b-a)*c; }
 | |
| 
 | |
| 	static _ALWAYS_INLINE_ double linear2db(double p_linear) { return Math::log( p_linear ) * 8.6858896380650365530225783783321; }
 | |
| 	static _ALWAYS_INLINE_ float linear2db(float p_linear) { return Math::log( p_linear ) * 8.6858896380650365530225783783321; }
 | |
| 
 | |
| 	static _ALWAYS_INLINE_ double db2linear(double p_db) { return Math::exp( p_db * 0.11512925464970228420089957273422 ); }
 | |
| 	static _ALWAYS_INLINE_ float db2linear(float p_db) { return Math::exp( p_db * 0.11512925464970228420089957273422 ); }
 | |
| 
 | |
| 	static _ALWAYS_INLINE_ double round(double p_val) { return (p_val>=0) ? Math::floor(p_val+0.5) : -Math::floor(-p_val+0.5); }
 | |
| 	static _ALWAYS_INLINE_ float round(float p_val) { return (p_val>=0) ? Math::floor(p_val+0.5) : -Math::floor(-p_val+0.5); }
 | |
| 
 | |
| 	// double only, as these functions are mainly used by the editor and not performance-critical,
 | |
| 	static double ease(double p_x, double p_c);
 | |
| 	static int step_decimals(double p_step);
 | |
| 	static double stepify(double p_value,double p_step);
 | |
| 	static double dectime(double p_value,double p_amount, double p_step);
 | |
| 
 | |
| 	static uint32_t larger_prime(uint32_t p_val);
 | |
| 
 | |
| 	static void seed(uint64_t x=0);
 | |
| 	static void randomize();
 | |
| 	static uint32_t rand_from_seed(uint64_t *seed);
 | |
| 	static uint32_t rand();
 | |
| 	static _ALWAYS_INLINE_ double randf() { return (double)rand() / (double)Math::RANDOM_MAX; }
 | |
| 	static _ALWAYS_INLINE_ float randd() { return (float)rand() / (float)Math::RANDOM_MAX; }
 | |
| 
 | |
| 	static double random(double from, double to);
 | |
| 	static float random(float from, float to);
 | |
| 	static real_t random(int from, int to) { return (real_t)random((real_t)from, (real_t)to); }
 | |
| 
 | |
| 
 | |
| 	static _ALWAYS_INLINE_ bool isequal_approx(real_t a, real_t b) {
 | |
| 		// TODO: Comparing floats for approximate-equality is non-trivial.
 | |
| 		// Using epsilon should cover the typical cases in Godot (where a == b is used to compare two reals), such as matrix and vector comparison operators.
 | |
| 		// A proper implementation in terms of ULPs should eventually replace the contents of this function.
 | |
| 		// See https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/ for details.
 | |
| 
 | |
| 		return abs(a-b) < CMP_EPSILON;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	static _ALWAYS_INLINE_ float absf(float g) {
 | |
| 
 | |
| 		union {
 | |
| 			float f;
 | |
| 			uint32_t i;
 | |
| 		} u;
 | |
| 
 | |
| 		u.f=g;
 | |
| 		u.i&=2147483647u;
 | |
| 		return u.f;
 | |
| 	}
 | |
| 
 | |
| 	static _ALWAYS_INLINE_ double absd(double g) {
 | |
| 
 | |
| 		union {
 | |
| 			double d;
 | |
| 			uint64_t i;
 | |
| 		} u;
 | |
| 		u.d=g;
 | |
| 		u.i&=(uint64_t)9223372036854775807ll;
 | |
| 		return u.d;
 | |
| 	}
 | |
| 
 | |
| 	//this function should be as fast as possible and rounding mode should not matter
 | |
| 	static _ALWAYS_INLINE_ int fast_ftoi(float a) {
 | |
| 
 | |
| 		static int b;
 | |
| 
 | |
| #if (defined(_WIN32_WINNT) && _WIN32_WINNT >= 0x0603) || WINAPI_FAMILY == WINAPI_FAMILY_PHONE_APP // windows 8 phone?
 | |
| 		b = (int)((a>0.0) ? (a + 0.5):(a -0.5));
 | |
| 
 | |
| #elif defined(_MSC_VER) && _MSC_VER < 1800
 | |
| 		__asm fld a
 | |
| 		__asm fistp b
 | |
| /*#elif defined( __GNUC__ ) && ( defined( __i386__ ) || defined( __x86_64__ ) )
 | |
| 		// use AT&T inline assembly style, document that
 | |
| 		// we use memory as output (=m) and input (m)
 | |
| 		__asm__ __volatile__ (
 | |
| 		"flds %1        \n\t"
 | |
| 		"fistpl %0      \n\t"
 | |
| 		: "=m" (b)
 | |
| 		: "m" (a));*/
 | |
| 
 | |
| #else
 | |
| 		b=lrintf(a); //assuming everything but msvc 2012 or earlier has lrint
 | |
| #endif
 | |
| 		return	b;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| #if defined(__GNUC__)
 | |
| 
 | |
| 	static _ALWAYS_INLINE_ int64_t dtoll(double p_double) { return (int64_t)p_double; } ///@TODO OPTIMIZE
 | |
| 	static _ALWAYS_INLINE_ int64_t dtoll(float p_float) { return (int64_t)p_float; } ///@TODO OPTIMIZE and rename
 | |
| #else
 | |
| 
 | |
| 	static _ALWAYS_INLINE_ int64_t dtoll(double p_double) { return (int64_t)p_double; } ///@TODO OPTIMIZE
 | |
| 	static _ALWAYS_INLINE_ int64_t dtoll(float p_float) { return (int64_t)p_float; } ///@TODO OPTIMIZE and rename
 | |
| #endif
 | |
| 
 | |
| 
 | |
| 	static _ALWAYS_INLINE_ uint32_t halfbits_to_floatbits(uint16_t h)
 | |
| 	{
 | |
| 	    uint16_t h_exp, h_sig;
 | |
| 	    uint32_t f_sgn, f_exp, f_sig;
 | |
| 
 | |
| 	    h_exp = (h&0x7c00u);
 | |
| 	    f_sgn = ((uint32_t)h&0x8000u) << 16;
 | |
| 	    switch (h_exp) {
 | |
| 		case 0x0000u: /* 0 or subnormal */
 | |
| 		    h_sig = (h&0x03ffu);
 | |
| 		    /* Signed zero */
 | |
| 		    if (h_sig == 0) {
 | |
| 			return f_sgn;
 | |
| 		    }
 | |
| 		    /* Subnormal */
 | |
| 		    h_sig <<= 1;
 | |
| 		    while ((h_sig&0x0400u) == 0) {
 | |
| 			h_sig <<= 1;
 | |
| 			h_exp++;
 | |
| 		    }
 | |
| 		    f_exp = ((uint32_t)(127 - 15 - h_exp)) << 23;
 | |
| 		    f_sig = ((uint32_t)(h_sig&0x03ffu)) << 13;
 | |
| 		    return f_sgn + f_exp + f_sig;
 | |
| 		case 0x7c00u: /* inf or NaN */
 | |
| 		    /* All-ones exponent and a copy of the significand */
 | |
| 		    return f_sgn + 0x7f800000u + (((uint32_t)(h&0x03ffu)) << 13);
 | |
| 		default: /* normalized */
 | |
| 		    /* Just need to adjust the exponent and shift */
 | |
| 		    return f_sgn + (((uint32_t)(h&0x7fffu) + 0x1c000u) << 13);
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| 	static _ALWAYS_INLINE_ float halfptr_to_float(const uint16_t *h) {
 | |
| 
 | |
| 		union {
 | |
| 			uint32_t u32;
 | |
| 			float f32;
 | |
| 		} u;
 | |
| 
 | |
| 		u.u32=halfbits_to_floatbits(*h);
 | |
| 		return u.f32;
 | |
| 	}
 | |
| 
 | |
| 	static _ALWAYS_INLINE_ uint16_t make_half_float(float f) {
 | |
| 
 | |
| 	    union {
 | |
| 	       float fv;
 | |
| 	       uint32_t ui;
 | |
| 	    } ci;
 | |
| 	    ci.fv=f;
 | |
| 
 | |
| 	    uint32_t    x = ci.ui;
 | |
| 	    uint32_t    sign = (unsigned short)(x >> 31);
 | |
| 	    uint32_t    mantissa;
 | |
| 	    uint32_t    exp;
 | |
| 	    uint16_t          hf;
 | |
| 
 | |
| 	    // get mantissa
 | |
| 	    mantissa = x & ((1 << 23) - 1);
 | |
| 	    // get exponent bits
 | |
| 	    exp = x & (0xFF << 23);
 | |
| 	    if (exp >= 0x47800000)
 | |
| 	    {
 | |
| 		// check if the original single precision float number is a NaN
 | |
| 		if (mantissa && (exp == (0xFF << 23)))
 | |
| 		{
 | |
| 		    // we have a single precision NaN
 | |
| 		    mantissa = (1 << 23) - 1;
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 		    // 16-bit half-float representation stores number as Inf
 | |
| 		    mantissa = 0;
 | |
| 		}
 | |
| 		hf = (((uint16_t)sign) << 15) | (uint16_t)((0x1F << 10)) |
 | |
| 		      (uint16_t)(mantissa >> 13);
 | |
| 	    }
 | |
| 	    // check if exponent is <= -15
 | |
| 	    else if (exp <= 0x38000000)
 | |
| 	    {
 | |
| 
 | |
| 		/*// store a denorm half-float value or zero
 | |
| 		exp = (0x38000000 - exp) >> 23;
 | |
| 		mantissa >>= (14 + exp);
 | |
| 
 | |
| 		hf = (((uint16_t)sign) << 15) | (uint16_t)(mantissa);
 | |
| 		*/
 | |
| 		hf=0; //denormals do not work for 3D, convert to zero
 | |
| 	    }
 | |
| 	    else
 | |
| 	    {
 | |
| 		hf = (((uint16_t)sign) << 15) |
 | |
| 		      (uint16_t)((exp - 0x38000000) >> 13) |
 | |
| 		      (uint16_t)(mantissa >> 13);
 | |
| 	    }
 | |
| 
 | |
| 	    return hf;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 
 | |
| };
 | |
| 
 | |
| 
 | |
| 
 | |
| #endif // MATH_FUNCS_H
 | 
