mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-31 13:41:03 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			239 lines
		
	
	
	
		
			7.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			239 lines
		
	
	
	
		
			7.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
| Bullet Continuous Collision Detection and Physics Library
 | |
| Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/
 | |
| 
 | |
| This software is provided 'as-is', without any express or implied warranty.
 | |
| In no event will the authors be held liable for any damages arising from the use of this software.
 | |
| Permission is granted to anyone to use this software for any purpose, 
 | |
| including commercial applications, and to alter it and redistribute it freely, 
 | |
| subject to the following restrictions:
 | |
| 
 | |
| 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | |
| 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | |
| 3. This notice may not be removed or altered from any source distribution.
 | |
| */
 | |
| 
 | |
| #include "btSolve2LinearConstraint.h"
 | |
| 
 | |
| #include "BulletDynamics/Dynamics/btRigidBody.h"
 | |
| #include "LinearMath/btVector3.h"
 | |
| #include "btJacobianEntry.h"
 | |
| 
 | |
| void btSolve2LinearConstraint::resolveUnilateralPairConstraint(
 | |
| 	btRigidBody* body1,
 | |
| 	btRigidBody* body2,
 | |
| 
 | |
| 	const btMatrix3x3& world2A,
 | |
| 	const btMatrix3x3& world2B,
 | |
| 
 | |
| 	const btVector3& invInertiaADiag,
 | |
| 	const btScalar invMassA,
 | |
| 	const btVector3& linvelA, const btVector3& angvelA,
 | |
| 	const btVector3& rel_posA1,
 | |
| 	const btVector3& invInertiaBDiag,
 | |
| 	const btScalar invMassB,
 | |
| 	const btVector3& linvelB, const btVector3& angvelB,
 | |
| 	const btVector3& rel_posA2,
 | |
| 
 | |
| 	btScalar depthA, const btVector3& normalA,
 | |
| 	const btVector3& rel_posB1, const btVector3& rel_posB2,
 | |
| 	btScalar depthB, const btVector3& normalB,
 | |
| 	btScalar& imp0, btScalar& imp1)
 | |
| {
 | |
| 	(void)linvelA;
 | |
| 	(void)linvelB;
 | |
| 	(void)angvelB;
 | |
| 	(void)angvelA;
 | |
| 
 | |
| 	imp0 = btScalar(0.);
 | |
| 	imp1 = btScalar(0.);
 | |
| 
 | |
| 	btScalar len = btFabs(normalA.length()) - btScalar(1.);
 | |
| 	if (btFabs(len) >= SIMD_EPSILON)
 | |
| 		return;
 | |
| 
 | |
| 	btAssert(len < SIMD_EPSILON);
 | |
| 
 | |
| 	//this jacobian entry could be re-used for all iterations
 | |
| 	btJacobianEntry jacA(world2A, world2B, rel_posA1, rel_posA2, normalA, invInertiaADiag, invMassA,
 | |
| 						 invInertiaBDiag, invMassB);
 | |
| 	btJacobianEntry jacB(world2A, world2B, rel_posB1, rel_posB2, normalB, invInertiaADiag, invMassA,
 | |
| 						 invInertiaBDiag, invMassB);
 | |
| 
 | |
| 	//const btScalar vel0 = jacA.getRelativeVelocity(linvelA,angvelA,linvelB,angvelB);
 | |
| 	//const btScalar vel1 = jacB.getRelativeVelocity(linvelA,angvelA,linvelB,angvelB);
 | |
| 
 | |
| 	const btScalar vel0 = normalA.dot(body1->getVelocityInLocalPoint(rel_posA1) - body2->getVelocityInLocalPoint(rel_posA1));
 | |
| 	const btScalar vel1 = normalB.dot(body1->getVelocityInLocalPoint(rel_posB1) - body2->getVelocityInLocalPoint(rel_posB1));
 | |
| 
 | |
| 	//	btScalar penetrationImpulse = (depth*contactTau*timeCorrection)  * massTerm;//jacDiagABInv
 | |
| 	btScalar massTerm = btScalar(1.) / (invMassA + invMassB);
 | |
| 
 | |
| 	// calculate rhs (or error) terms
 | |
| 	const btScalar dv0 = depthA * m_tau * massTerm - vel0 * m_damping;
 | |
| 	const btScalar dv1 = depthB * m_tau * massTerm - vel1 * m_damping;
 | |
| 
 | |
| 	// dC/dv * dv = -C
 | |
| 
 | |
| 	// jacobian * impulse = -error
 | |
| 	//
 | |
| 
 | |
| 	//impulse = jacobianInverse * -error
 | |
| 
 | |
| 	// inverting 2x2 symmetric system (offdiagonal are equal!)
 | |
| 	//
 | |
| 
 | |
| 	btScalar nonDiag = jacA.getNonDiagonal(jacB, invMassA, invMassB);
 | |
| 	btScalar invDet = btScalar(1.0) / (jacA.getDiagonal() * jacB.getDiagonal() - nonDiag * nonDiag);
 | |
| 
 | |
| 	//imp0 = dv0 * jacA.getDiagonal() * invDet + dv1 * -nonDiag * invDet;
 | |
| 	//imp1 = dv1 * jacB.getDiagonal() * invDet + dv0 * - nonDiag * invDet;
 | |
| 
 | |
| 	imp0 = dv0 * jacA.getDiagonal() * invDet + dv1 * -nonDiag * invDet;
 | |
| 	imp1 = dv1 * jacB.getDiagonal() * invDet + dv0 * -nonDiag * invDet;
 | |
| 
 | |
| 	//[a b]								  [d -c]
 | |
| 	//[c d] inverse = (1 / determinant) * [-b a] where determinant is (ad - bc)
 | |
| 
 | |
| 	//[jA nD] * [imp0] = [dv0]
 | |
| 	//[nD jB]   [imp1]   [dv1]
 | |
| }
 | |
| 
 | |
| void btSolve2LinearConstraint::resolveBilateralPairConstraint(
 | |
| 	btRigidBody* body1,
 | |
| 	btRigidBody* body2,
 | |
| 	const btMatrix3x3& world2A,
 | |
| 	const btMatrix3x3& world2B,
 | |
| 
 | |
| 	const btVector3& invInertiaADiag,
 | |
| 	const btScalar invMassA,
 | |
| 	const btVector3& linvelA, const btVector3& angvelA,
 | |
| 	const btVector3& rel_posA1,
 | |
| 	const btVector3& invInertiaBDiag,
 | |
| 	const btScalar invMassB,
 | |
| 	const btVector3& linvelB, const btVector3& angvelB,
 | |
| 	const btVector3& rel_posA2,
 | |
| 
 | |
| 	btScalar depthA, const btVector3& normalA,
 | |
| 	const btVector3& rel_posB1, const btVector3& rel_posB2,
 | |
| 	btScalar depthB, const btVector3& normalB,
 | |
| 	btScalar& imp0, btScalar& imp1)
 | |
| {
 | |
| 	(void)linvelA;
 | |
| 	(void)linvelB;
 | |
| 	(void)angvelA;
 | |
| 	(void)angvelB;
 | |
| 
 | |
| 	imp0 = btScalar(0.);
 | |
| 	imp1 = btScalar(0.);
 | |
| 
 | |
| 	btScalar len = btFabs(normalA.length()) - btScalar(1.);
 | |
| 	if (btFabs(len) >= SIMD_EPSILON)
 | |
| 		return;
 | |
| 
 | |
| 	btAssert(len < SIMD_EPSILON);
 | |
| 
 | |
| 	//this jacobian entry could be re-used for all iterations
 | |
| 	btJacobianEntry jacA(world2A, world2B, rel_posA1, rel_posA2, normalA, invInertiaADiag, invMassA,
 | |
| 						 invInertiaBDiag, invMassB);
 | |
| 	btJacobianEntry jacB(world2A, world2B, rel_posB1, rel_posB2, normalB, invInertiaADiag, invMassA,
 | |
| 						 invInertiaBDiag, invMassB);
 | |
| 
 | |
| 	//const btScalar vel0 = jacA.getRelativeVelocity(linvelA,angvelA,linvelB,angvelB);
 | |
| 	//const btScalar vel1 = jacB.getRelativeVelocity(linvelA,angvelA,linvelB,angvelB);
 | |
| 
 | |
| 	const btScalar vel0 = normalA.dot(body1->getVelocityInLocalPoint(rel_posA1) - body2->getVelocityInLocalPoint(rel_posA1));
 | |
| 	const btScalar vel1 = normalB.dot(body1->getVelocityInLocalPoint(rel_posB1) - body2->getVelocityInLocalPoint(rel_posB1));
 | |
| 
 | |
| 	// calculate rhs (or error) terms
 | |
| 	const btScalar dv0 = depthA * m_tau - vel0 * m_damping;
 | |
| 	const btScalar dv1 = depthB * m_tau - vel1 * m_damping;
 | |
| 
 | |
| 	// dC/dv * dv = -C
 | |
| 
 | |
| 	// jacobian * impulse = -error
 | |
| 	//
 | |
| 
 | |
| 	//impulse = jacobianInverse * -error
 | |
| 
 | |
| 	// inverting 2x2 symmetric system (offdiagonal are equal!)
 | |
| 	//
 | |
| 
 | |
| 	btScalar nonDiag = jacA.getNonDiagonal(jacB, invMassA, invMassB);
 | |
| 	btScalar invDet = btScalar(1.0) / (jacA.getDiagonal() * jacB.getDiagonal() - nonDiag * nonDiag);
 | |
| 
 | |
| 	//imp0 = dv0 * jacA.getDiagonal() * invDet + dv1 * -nonDiag * invDet;
 | |
| 	//imp1 = dv1 * jacB.getDiagonal() * invDet + dv0 * - nonDiag * invDet;
 | |
| 
 | |
| 	imp0 = dv0 * jacA.getDiagonal() * invDet + dv1 * -nonDiag * invDet;
 | |
| 	imp1 = dv1 * jacB.getDiagonal() * invDet + dv0 * -nonDiag * invDet;
 | |
| 
 | |
| 	//[a b]								  [d -c]
 | |
| 	//[c d] inverse = (1 / determinant) * [-b a] where determinant is (ad - bc)
 | |
| 
 | |
| 	//[jA nD] * [imp0] = [dv0]
 | |
| 	//[nD jB]   [imp1]   [dv1]
 | |
| 
 | |
| 	if (imp0 > btScalar(0.0))
 | |
| 	{
 | |
| 		if (imp1 > btScalar(0.0))
 | |
| 		{
 | |
| 			//both positive
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			imp1 = btScalar(0.);
 | |
| 
 | |
| 			// now imp0>0 imp1<0
 | |
| 			imp0 = dv0 / jacA.getDiagonal();
 | |
| 			if (imp0 > btScalar(0.0))
 | |
| 			{
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				imp0 = btScalar(0.);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		imp0 = btScalar(0.);
 | |
| 
 | |
| 		imp1 = dv1 / jacB.getDiagonal();
 | |
| 		if (imp1 <= btScalar(0.0))
 | |
| 		{
 | |
| 			imp1 = btScalar(0.);
 | |
| 			// now imp0>0 imp1<0
 | |
| 			imp0 = dv0 / jacA.getDiagonal();
 | |
| 			if (imp0 > btScalar(0.0))
 | |
| 			{
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				imp0 = btScalar(0.);
 | |
| 			}
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
| void btSolve2LinearConstraint::resolveAngularConstraint(	const btMatrix3x3& invInertiaAWS,
 | |
| 											const btScalar invMassA,
 | |
| 											const btVector3& linvelA,const btVector3& angvelA,
 | |
| 											const btVector3& rel_posA1,
 | |
| 											const btMatrix3x3& invInertiaBWS,
 | |
| 											const btScalar invMassB,
 | |
| 											const btVector3& linvelB,const btVector3& angvelB,
 | |
| 											const btVector3& rel_posA2,
 | |
| 
 | |
| 											btScalar depthA, const btVector3& normalA, 
 | |
| 											const btVector3& rel_posB1,const btVector3& rel_posB2,
 | |
| 											btScalar depthB, const btVector3& normalB, 
 | |
| 											btScalar& imp0,btScalar& imp1)
 | |
| {
 | |
| 
 | |
| }
 | |
| */
 | 
