mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-31 13:41:03 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			2409 lines
		
	
	
	
		
			86 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2409 lines
		
	
	
	
		
			86 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /**************************************************************************/
 | |
| /*  lightmapper_rd.cpp                                                    */
 | |
| /**************************************************************************/
 | |
| /*                         This file is part of:                          */
 | |
| /*                             GODOT ENGINE                               */
 | |
| /*                        https://godotengine.org                         */
 | |
| /**************************************************************************/
 | |
| /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
 | |
| /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur.                  */
 | |
| /*                                                                        */
 | |
| /* Permission is hereby granted, free of charge, to any person obtaining  */
 | |
| /* a copy of this software and associated documentation files (the        */
 | |
| /* "Software"), to deal in the Software without restriction, including    */
 | |
| /* without limitation the rights to use, copy, modify, merge, publish,    */
 | |
| /* distribute, sublicense, and/or sell copies of the Software, and to     */
 | |
| /* permit persons to whom the Software is furnished to do so, subject to  */
 | |
| /* the following conditions:                                              */
 | |
| /*                                                                        */
 | |
| /* The above copyright notice and this permission notice shall be         */
 | |
| /* included in all copies or substantial portions of the Software.        */
 | |
| /*                                                                        */
 | |
| /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,        */
 | |
| /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF     */
 | |
| /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
 | |
| /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY   */
 | |
| /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,   */
 | |
| /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE      */
 | |
| /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                 */
 | |
| /**************************************************************************/
 | |
| 
 | |
| #include "lightmapper_rd.h"
 | |
| 
 | |
| #include "core/string/print_string.h"
 | |
| #include "lm_blendseams.glsl.gen.h"
 | |
| #include "lm_compute.glsl.gen.h"
 | |
| #include "lm_raster.glsl.gen.h"
 | |
| 
 | |
| #include "core/config/project_settings.h"
 | |
| #include "core/io/dir_access.h"
 | |
| #include "core/math/geometry_2d.h"
 | |
| #include "editor/editor_paths.h"
 | |
| #include "editor/editor_settings.h"
 | |
| #include "servers/rendering/rendering_device_binds.h"
 | |
| #include "servers/rendering/rendering_server_globals.h"
 | |
| 
 | |
| #if defined(VULKAN_ENABLED)
 | |
| #include "drivers/vulkan/rendering_context_driver_vulkan.h"
 | |
| #endif
 | |
| #if defined(METAL_ENABLED)
 | |
| #include "drivers/metal/rendering_context_driver_metal.h"
 | |
| #endif
 | |
| 
 | |
| //uncomment this if you want to see textures from all the process saved
 | |
| //#define DEBUG_TEXTURES
 | |
| 
 | |
| void LightmapperRD::add_mesh(const MeshData &p_mesh) {
 | |
| 	ERR_FAIL_COND(p_mesh.albedo_on_uv2.is_null() || p_mesh.albedo_on_uv2->is_empty());
 | |
| 	ERR_FAIL_COND(p_mesh.emission_on_uv2.is_null() || p_mesh.emission_on_uv2->is_empty());
 | |
| 	ERR_FAIL_COND(p_mesh.albedo_on_uv2->get_width() != p_mesh.emission_on_uv2->get_width());
 | |
| 	ERR_FAIL_COND(p_mesh.albedo_on_uv2->get_height() != p_mesh.emission_on_uv2->get_height());
 | |
| 	ERR_FAIL_COND(p_mesh.points.is_empty());
 | |
| 	MeshInstance mi;
 | |
| 	mi.data = p_mesh;
 | |
| 	mesh_instances.push_back(mi);
 | |
| }
 | |
| 
 | |
| void LightmapperRD::add_directional_light(const String &p_name, bool p_static, const Vector3 &p_direction, const Color &p_color, float p_energy, float p_indirect_energy, float p_angular_distance, float p_shadow_blur) {
 | |
| 	Light l;
 | |
| 	l.type = LIGHT_TYPE_DIRECTIONAL;
 | |
| 	l.direction[0] = p_direction.x;
 | |
| 	l.direction[1] = p_direction.y;
 | |
| 	l.direction[2] = p_direction.z;
 | |
| 	l.color[0] = p_color.r;
 | |
| 	l.color[1] = p_color.g;
 | |
| 	l.color[2] = p_color.b;
 | |
| 	l.energy = p_energy;
 | |
| 	l.indirect_energy = p_indirect_energy;
 | |
| 	l.static_bake = p_static;
 | |
| 	l.size = Math::tan(Math::deg_to_rad(p_angular_distance));
 | |
| 	l.shadow_blur = p_shadow_blur;
 | |
| 	lights.push_back(l);
 | |
| 
 | |
| 	LightMetadata md;
 | |
| 	md.name = p_name;
 | |
| 	md.type = LIGHT_TYPE_DIRECTIONAL;
 | |
| 	light_metadata.push_back(md);
 | |
| }
 | |
| 
 | |
| void LightmapperRD::add_omni_light(const String &p_name, bool p_static, const Vector3 &p_position, const Color &p_color, float p_energy, float p_indirect_energy, float p_range, float p_attenuation, float p_size, float p_shadow_blur) {
 | |
| 	Light l;
 | |
| 	l.type = LIGHT_TYPE_OMNI;
 | |
| 	l.position[0] = p_position.x;
 | |
| 	l.position[1] = p_position.y;
 | |
| 	l.position[2] = p_position.z;
 | |
| 	l.range = p_range;
 | |
| 	l.attenuation = p_attenuation;
 | |
| 	l.color[0] = p_color.r;
 | |
| 	l.color[1] = p_color.g;
 | |
| 	l.color[2] = p_color.b;
 | |
| 	l.energy = p_energy;
 | |
| 	l.indirect_energy = p_indirect_energy;
 | |
| 	l.static_bake = p_static;
 | |
| 	l.size = p_size;
 | |
| 	l.shadow_blur = p_shadow_blur;
 | |
| 	lights.push_back(l);
 | |
| 
 | |
| 	LightMetadata md;
 | |
| 	md.name = p_name;
 | |
| 	md.type = LIGHT_TYPE_OMNI;
 | |
| 	light_metadata.push_back(md);
 | |
| }
 | |
| 
 | |
| void LightmapperRD::add_spot_light(const String &p_name, bool p_static, const Vector3 &p_position, const Vector3 p_direction, const Color &p_color, float p_energy, float p_indirect_energy, float p_range, float p_attenuation, float p_spot_angle, float p_spot_attenuation, float p_size, float p_shadow_blur) {
 | |
| 	Light l;
 | |
| 	l.type = LIGHT_TYPE_SPOT;
 | |
| 	l.position[0] = p_position.x;
 | |
| 	l.position[1] = p_position.y;
 | |
| 	l.position[2] = p_position.z;
 | |
| 	l.direction[0] = p_direction.x;
 | |
| 	l.direction[1] = p_direction.y;
 | |
| 	l.direction[2] = p_direction.z;
 | |
| 	l.range = p_range;
 | |
| 	l.attenuation = p_attenuation;
 | |
| 	l.cos_spot_angle = Math::cos(Math::deg_to_rad(p_spot_angle));
 | |
| 	l.inv_spot_attenuation = 1.0f / p_spot_attenuation;
 | |
| 	l.color[0] = p_color.r;
 | |
| 	l.color[1] = p_color.g;
 | |
| 	l.color[2] = p_color.b;
 | |
| 	l.energy = p_energy;
 | |
| 	l.indirect_energy = p_indirect_energy;
 | |
| 	l.static_bake = p_static;
 | |
| 	l.size = p_size;
 | |
| 	l.shadow_blur = p_shadow_blur;
 | |
| 	lights.push_back(l);
 | |
| 
 | |
| 	LightMetadata md;
 | |
| 	md.name = p_name;
 | |
| 	md.type = LIGHT_TYPE_SPOT;
 | |
| 	light_metadata.push_back(md);
 | |
| }
 | |
| 
 | |
| void LightmapperRD::add_probe(const Vector3 &p_position) {
 | |
| 	Probe probe;
 | |
| 	probe.position[0] = p_position.x;
 | |
| 	probe.position[1] = p_position.y;
 | |
| 	probe.position[2] = p_position.z;
 | |
| 	probe.position[3] = 0;
 | |
| 	probe_positions.push_back(probe);
 | |
| }
 | |
| 
 | |
| void LightmapperRD::_plot_triangle_into_triangle_index_list(int p_size, const Vector3i &p_ofs, const AABB &p_bounds, const Vector3 p_points[3], uint32_t p_triangle_index, LocalVector<TriangleSort> &p_triangles_sort, uint32_t p_grid_size) {
 | |
| 	int half_size = p_size / 2;
 | |
| 
 | |
| 	for (int i = 0; i < 8; i++) {
 | |
| 		AABB aabb = p_bounds;
 | |
| 		aabb.size *= 0.5;
 | |
| 		Vector3i n = p_ofs;
 | |
| 
 | |
| 		if (i & 1) {
 | |
| 			aabb.position.x += aabb.size.x;
 | |
| 			n.x += half_size;
 | |
| 		}
 | |
| 		if (i & 2) {
 | |
| 			aabb.position.y += aabb.size.y;
 | |
| 			n.y += half_size;
 | |
| 		}
 | |
| 		if (i & 4) {
 | |
| 			aabb.position.z += aabb.size.z;
 | |
| 			n.z += half_size;
 | |
| 		}
 | |
| 
 | |
| 		{
 | |
| 			Vector3 qsize = aabb.size * 0.5; //quarter size, for fast aabb test
 | |
| 
 | |
| 			if (!Geometry3D::triangle_box_overlap(aabb.position + qsize, qsize, p_points)) {
 | |
| 				//does not fit in child, go on
 | |
| 				continue;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (half_size == 1) {
 | |
| 			//got to the end
 | |
| 			TriangleSort ts;
 | |
| 			ts.cell_index = n.x + (n.y * p_grid_size) + (n.z * p_grid_size * p_grid_size);
 | |
| 			ts.triangle_index = p_triangle_index;
 | |
| 			ts.triangle_aabb.position = p_points[0];
 | |
| 			ts.triangle_aabb.size = Vector3();
 | |
| 			ts.triangle_aabb.expand_to(p_points[1]);
 | |
| 			ts.triangle_aabb.expand_to(p_points[2]);
 | |
| 			p_triangles_sort.push_back(ts);
 | |
| 		} else {
 | |
| 			_plot_triangle_into_triangle_index_list(half_size, n, aabb, p_points, p_triangle_index, p_triangles_sort, p_grid_size);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void LightmapperRD::_sort_triangle_clusters(uint32_t p_cluster_size, uint32_t p_cluster_index, uint32_t p_index_start, uint32_t p_count, LocalVector<TriangleSort> &p_triangle_sort, LocalVector<ClusterAABB> &p_cluster_aabb) {
 | |
| 	if (p_count == 0) {
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	// Compute AABB for all triangles in the range.
 | |
| 	SortArray<TriangleSort, TriangleSortAxis<0>> triangle_sorter_x;
 | |
| 	SortArray<TriangleSort, TriangleSortAxis<1>> triangle_sorter_y;
 | |
| 	SortArray<TriangleSort, TriangleSortAxis<2>> triangle_sorter_z;
 | |
| 	AABB cluster_aabb = p_triangle_sort[p_index_start].triangle_aabb;
 | |
| 	for (uint32_t i = 1; i < p_count; i++) {
 | |
| 		cluster_aabb.merge_with(p_triangle_sort[p_index_start + i].triangle_aabb);
 | |
| 	}
 | |
| 
 | |
| 	if (p_count > p_cluster_size) {
 | |
| 		int longest_axis_index = cluster_aabb.get_longest_axis_index();
 | |
| 		switch (longest_axis_index) {
 | |
| 			case 0:
 | |
| 				triangle_sorter_x.sort(&p_triangle_sort[p_index_start], p_count);
 | |
| 				break;
 | |
| 			case 1:
 | |
| 				triangle_sorter_y.sort(&p_triangle_sort[p_index_start], p_count);
 | |
| 				break;
 | |
| 			case 2:
 | |
| 				triangle_sorter_z.sort(&p_triangle_sort[p_index_start], p_count);
 | |
| 				break;
 | |
| 			default:
 | |
| 				DEV_ASSERT(false && "Invalid axis returned by AABB.");
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		uint32_t left_cluster_count = next_power_of_2(p_count / 2);
 | |
| 		left_cluster_count = MAX(left_cluster_count, p_cluster_size);
 | |
| 		left_cluster_count = MIN(left_cluster_count, p_count);
 | |
| 		_sort_triangle_clusters(p_cluster_size, p_cluster_index, p_index_start, left_cluster_count, p_triangle_sort, p_cluster_aabb);
 | |
| 
 | |
| 		if (left_cluster_count < p_count) {
 | |
| 			uint32_t cluster_index_right = p_cluster_index + (left_cluster_count / p_cluster_size);
 | |
| 			_sort_triangle_clusters(p_cluster_size, cluster_index_right, p_index_start + left_cluster_count, p_count - left_cluster_count, p_triangle_sort, p_cluster_aabb);
 | |
| 		}
 | |
| 	} else {
 | |
| 		ClusterAABB &aabb = p_cluster_aabb[p_cluster_index];
 | |
| 		Vector3 aabb_end = cluster_aabb.get_end();
 | |
| 		aabb.min_bounds[0] = cluster_aabb.position.x;
 | |
| 		aabb.min_bounds[1] = cluster_aabb.position.y;
 | |
| 		aabb.min_bounds[2] = cluster_aabb.position.z;
 | |
| 		aabb.max_bounds[0] = aabb_end.x;
 | |
| 		aabb.max_bounds[1] = aabb_end.y;
 | |
| 		aabb.max_bounds[2] = aabb_end.z;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| Lightmapper::BakeError LightmapperRD::_blit_meshes_into_atlas(int p_max_texture_size, int p_denoiser_range, Vector<Ref<Image>> &albedo_images, Vector<Ref<Image>> &emission_images, AABB &bounds, Size2i &atlas_size, int &atlas_slices, float p_supersampling_factor, BakeStepFunc p_step_function, void *p_bake_userdata) {
 | |
| 	Vector<Size2i> sizes;
 | |
| 
 | |
| 	for (int m_i = 0; m_i < mesh_instances.size(); m_i++) {
 | |
| 		MeshInstance &mi = mesh_instances.write[m_i];
 | |
| 		Size2i s = Size2i(mi.data.albedo_on_uv2->get_width(), mi.data.albedo_on_uv2->get_height());
 | |
| 		sizes.push_back(s);
 | |
| 		atlas_size = atlas_size.max(s + Size2i(2, 2).maxi(p_denoiser_range) * p_supersampling_factor);
 | |
| 	}
 | |
| 
 | |
| 	int max = nearest_power_of_2_templated(atlas_size.width);
 | |
| 	max = MAX(max, nearest_power_of_2_templated(atlas_size.height));
 | |
| 
 | |
| 	if (max > p_max_texture_size) {
 | |
| 		return BAKE_ERROR_TEXTURE_EXCEEDS_MAX_SIZE;
 | |
| 	}
 | |
| 
 | |
| 	if (p_step_function) {
 | |
| 		if (p_step_function(0.1, RTR("Determining optimal atlas size"), p_bake_userdata, true)) {
 | |
| 			return BAKE_ERROR_USER_ABORTED;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	atlas_size = Size2i(max, max);
 | |
| 
 | |
| 	Size2i best_atlas_size;
 | |
| 	int best_atlas_slices = 0;
 | |
| 	int best_atlas_memory = 0x7FFFFFFF;
 | |
| 	Vector<Vector3i> best_atlas_offsets;
 | |
| 
 | |
| 	// Determine best texture array atlas size by bruteforce fitting.
 | |
| 	while (atlas_size.x <= p_max_texture_size && atlas_size.y <= p_max_texture_size) {
 | |
| 		Vector<Vector2i> source_sizes;
 | |
| 		Vector<int> source_indices;
 | |
| 		source_sizes.resize(sizes.size());
 | |
| 		source_indices.resize(sizes.size());
 | |
| 		for (int i = 0; i < source_indices.size(); i++) {
 | |
| 			// Add padding between lightmaps.
 | |
| 			// Scale the padding if the lightmap will be downsampled at the end of the baking process
 | |
| 			// Otherwise the padding would be insufficient.
 | |
| 			source_sizes.write[i] = sizes[i] + Vector2i(2, 2).maxi(p_denoiser_range) * p_supersampling_factor;
 | |
| 			source_indices.write[i] = i;
 | |
| 		}
 | |
| 		Vector<Vector3i> atlas_offsets;
 | |
| 		atlas_offsets.resize(source_sizes.size());
 | |
| 
 | |
| 		// Ensure the sizes can all fit into a single atlas layer.
 | |
| 		// This should always happen, and this check is only in place to prevent an infinite loop.
 | |
| 		for (int i = 0; i < source_sizes.size(); i++) {
 | |
| 			if (source_sizes[i] > atlas_size) {
 | |
| 				return BAKE_ERROR_ATLAS_TOO_SMALL;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		int slices = 0;
 | |
| 
 | |
| 		while (source_sizes.size() > 0) {
 | |
| 			Vector<Vector3i> offsets = Geometry2D::partial_pack_rects(source_sizes, atlas_size);
 | |
| 			Vector<int> new_indices;
 | |
| 			Vector<Vector2i> new_sources;
 | |
| 			for (int i = 0; i < offsets.size(); i++) {
 | |
| 				Vector3i ofs = offsets[i];
 | |
| 				int sidx = source_indices[i];
 | |
| 				if (ofs.z > 0) {
 | |
| 					//valid
 | |
| 					ofs.z = slices;
 | |
| 					atlas_offsets.write[sidx] = ofs + Vector3i(1, 1, 0); // Center lightmap in the reserved oversized region
 | |
| 				} else {
 | |
| 					new_indices.push_back(sidx);
 | |
| 					new_sources.push_back(source_sizes[i]);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			source_sizes = new_sources;
 | |
| 			source_indices = new_indices;
 | |
| 			slices++;
 | |
| 		}
 | |
| 
 | |
| 		int mem_used = atlas_size.x * atlas_size.y * slices;
 | |
| 		if (mem_used < best_atlas_memory) {
 | |
| 			best_atlas_size = atlas_size;
 | |
| 			best_atlas_offsets = atlas_offsets;
 | |
| 			best_atlas_slices = slices;
 | |
| 			best_atlas_memory = mem_used;
 | |
| 		}
 | |
| 
 | |
| 		if (atlas_size.width == atlas_size.height) {
 | |
| 			atlas_size.width *= 2;
 | |
| 		} else {
 | |
| 			atlas_size.height *= 2;
 | |
| 		}
 | |
| 	}
 | |
| 	atlas_size = best_atlas_size;
 | |
| 	atlas_slices = best_atlas_slices;
 | |
| 
 | |
| 	// apply the offsets and slice to all images, and also blit albedo and emission
 | |
| 	albedo_images.resize(atlas_slices);
 | |
| 	emission_images.resize(atlas_slices);
 | |
| 
 | |
| 	if (p_step_function) {
 | |
| 		if (p_step_function(0.2, RTR("Blitting albedo and emission"), p_bake_userdata, true)) {
 | |
| 			return BAKE_ERROR_USER_ABORTED;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (int i = 0; i < atlas_slices; i++) {
 | |
| 		Ref<Image> albedo = Image::create_empty(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBA8);
 | |
| 		albedo->set_as_black();
 | |
| 		albedo_images.write[i] = albedo;
 | |
| 
 | |
| 		Ref<Image> emission = Image::create_empty(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBAH);
 | |
| 		emission->set_as_black();
 | |
| 		emission_images.write[i] = emission;
 | |
| 	}
 | |
| 
 | |
| 	//assign uv positions
 | |
| 
 | |
| 	for (int m_i = 0; m_i < mesh_instances.size(); m_i++) {
 | |
| 		MeshInstance &mi = mesh_instances.write[m_i];
 | |
| 		mi.offset.x = best_atlas_offsets[m_i].x;
 | |
| 		mi.offset.y = best_atlas_offsets[m_i].y;
 | |
| 		mi.slice = best_atlas_offsets[m_i].z;
 | |
| 		albedo_images.write[mi.slice]->blit_rect(mi.data.albedo_on_uv2, Rect2i(Vector2i(), mi.data.albedo_on_uv2->get_size()), mi.offset);
 | |
| 		emission_images.write[mi.slice]->blit_rect(mi.data.emission_on_uv2, Rect2(Vector2i(), mi.data.emission_on_uv2->get_size()), mi.offset);
 | |
| 	}
 | |
| 
 | |
| 	return BAKE_OK;
 | |
| }
 | |
| 
 | |
| void LightmapperRD::_create_acceleration_structures(RenderingDevice *rd, Size2i atlas_size, int atlas_slices, AABB &bounds, int grid_size, uint32_t p_cluster_size, Vector<Probe> &p_probe_positions, GenerateProbes p_generate_probes, Vector<int> &slice_triangle_count, Vector<int> &slice_seam_count, RID &vertex_buffer, RID &triangle_buffer, RID &lights_buffer, RID &r_triangle_indices_buffer, RID &r_cluster_indices_buffer, RID &r_cluster_aabbs_buffer, RID &probe_positions_buffer, RID &grid_texture, RID &seams_buffer, BakeStepFunc p_step_function, void *p_bake_userdata) {
 | |
| 	HashMap<Vertex, uint32_t, VertexHash> vertex_map;
 | |
| 
 | |
| 	//fill triangles array and vertex array
 | |
| 	LocalVector<Triangle> triangles;
 | |
| 	LocalVector<Vertex> vertex_array;
 | |
| 	LocalVector<Seam> seams;
 | |
| 
 | |
| 	slice_triangle_count.resize(atlas_slices);
 | |
| 	slice_seam_count.resize(atlas_slices);
 | |
| 
 | |
| 	for (int i = 0; i < atlas_slices; i++) {
 | |
| 		slice_triangle_count.write[i] = 0;
 | |
| 		slice_seam_count.write[i] = 0;
 | |
| 	}
 | |
| 
 | |
| 	bounds = AABB();
 | |
| 
 | |
| 	for (int m_i = 0; m_i < mesh_instances.size(); m_i++) {
 | |
| 		if (p_step_function) {
 | |
| 			float p = float(m_i + 1) / MAX(1, mesh_instances.size()) * 0.1;
 | |
| 			p_step_function(0.3 + p, vformat(RTR("Plotting mesh into acceleration structure %d/%d"), m_i + 1, mesh_instances.size()), p_bake_userdata, false);
 | |
| 		}
 | |
| 
 | |
| 		HashMap<Edge, EdgeUV2, EdgeHash> edges;
 | |
| 
 | |
| 		MeshInstance &mi = mesh_instances.write[m_i];
 | |
| 
 | |
| 		Vector2 uv_scale = Vector2(mi.data.albedo_on_uv2->get_width(), mi.data.albedo_on_uv2->get_height()) / Vector2(atlas_size);
 | |
| 		Vector2 uv_offset = Vector2(mi.offset) / Vector2(atlas_size);
 | |
| 		if (m_i == 0) {
 | |
| 			bounds.position = mi.data.points[0];
 | |
| 		}
 | |
| 
 | |
| 		for (int i = 0; i < mi.data.points.size(); i += 3) {
 | |
| 			Vector3 vtxs[3] = { mi.data.points[i + 0], mi.data.points[i + 1], mi.data.points[i + 2] };
 | |
| 			Vector2 uvs[3] = { mi.data.uv2[i + 0] * uv_scale + uv_offset, mi.data.uv2[i + 1] * uv_scale + uv_offset, mi.data.uv2[i + 2] * uv_scale + uv_offset };
 | |
| 			Vector3 normal[3] = { mi.data.normal[i + 0], mi.data.normal[i + 1], mi.data.normal[i + 2] };
 | |
| 
 | |
| 			AABB taabb;
 | |
| 			Triangle t;
 | |
| 			t.slice = mi.slice;
 | |
| 			for (int k = 0; k < 3; k++) {
 | |
| 				bounds.expand_to(vtxs[k]);
 | |
| 
 | |
| 				Vertex v;
 | |
| 				v.position[0] = vtxs[k].x;
 | |
| 				v.position[1] = vtxs[k].y;
 | |
| 				v.position[2] = vtxs[k].z;
 | |
| 				v.uv[0] = uvs[k].x;
 | |
| 				v.uv[1] = uvs[k].y;
 | |
| 				v.normal_xy[0] = normal[k].x;
 | |
| 				v.normal_xy[1] = normal[k].y;
 | |
| 				v.normal_z = normal[k].z;
 | |
| 
 | |
| 				uint32_t *indexptr = vertex_map.getptr(v);
 | |
| 
 | |
| 				if (indexptr) {
 | |
| 					t.indices[k] = *indexptr;
 | |
| 				} else {
 | |
| 					uint32_t new_index = vertex_map.size();
 | |
| 					t.indices[k] = new_index;
 | |
| 					vertex_map[v] = new_index;
 | |
| 					vertex_array.push_back(v);
 | |
| 				}
 | |
| 
 | |
| 				if (k == 0) {
 | |
| 					taabb.position = vtxs[k];
 | |
| 				} else {
 | |
| 					taabb.expand_to(vtxs[k]);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			//compute seams that will need to be blended later
 | |
| 			for (int k = 0; k < 3; k++) {
 | |
| 				int n = (k + 1) % 3;
 | |
| 
 | |
| 				Edge edge(vtxs[k], vtxs[n], normal[k], normal[n]);
 | |
| 				Vector2i edge_indices(t.indices[k], t.indices[n]);
 | |
| 				EdgeUV2 uv2(uvs[k], uvs[n], edge_indices);
 | |
| 
 | |
| 				if (edge.b == edge.a) {
 | |
| 					continue; //degenerate, somehow
 | |
| 				}
 | |
| 				if (edge.b < edge.a) {
 | |
| 					SWAP(edge.a, edge.b);
 | |
| 					SWAP(edge.na, edge.nb);
 | |
| 					SWAP(uv2.a, uv2.b);
 | |
| 					SWAP(uv2.indices.x, uv2.indices.y);
 | |
| 					SWAP(edge_indices.x, edge_indices.y);
 | |
| 				}
 | |
| 
 | |
| 				EdgeUV2 *euv2 = edges.getptr(edge);
 | |
| 				if (!euv2) {
 | |
| 					edges[edge] = uv2;
 | |
| 				} else {
 | |
| 					if (*euv2 == uv2) {
 | |
| 						continue; // seam shared UV space, no need to blend
 | |
| 					}
 | |
| 					if (euv2->seam_found) {
 | |
| 						continue; //bad geometry
 | |
| 					}
 | |
| 
 | |
| 					Seam seam;
 | |
| 					seam.a = edge_indices;
 | |
| 					seam.b = euv2->indices;
 | |
| 					seam.slice = mi.slice;
 | |
| 					seams.push_back(seam);
 | |
| 					slice_seam_count.write[mi.slice]++;
 | |
| 					euv2->seam_found = true;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			t.min_bounds[0] = taabb.position.x;
 | |
| 			t.min_bounds[1] = taabb.position.y;
 | |
| 			t.min_bounds[2] = taabb.position.z;
 | |
| 			t.max_bounds[0] = taabb.position.x + MAX(taabb.size.x, 0.0001);
 | |
| 			t.max_bounds[1] = taabb.position.y + MAX(taabb.size.y, 0.0001);
 | |
| 			t.max_bounds[2] = taabb.position.z + MAX(taabb.size.z, 0.0001);
 | |
| 
 | |
| 			t.cull_mode = RS::CULL_MODE_BACK;
 | |
| 
 | |
| 			RID material = mi.data.material[i];
 | |
| 			if (material.is_valid()) {
 | |
| 				t.cull_mode = RSG::material_storage->material_get_cull_mode(material);
 | |
| 			}
 | |
| 			t.pad1 = 0; //make valgrind not complain
 | |
| 			triangles.push_back(t);
 | |
| 			slice_triangle_count.write[t.slice]++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	//also consider probe positions for bounds
 | |
| 	for (int i = 0; i < p_probe_positions.size(); i++) {
 | |
| 		Vector3 pp(p_probe_positions[i].position[0], p_probe_positions[i].position[1], p_probe_positions[i].position[2]);
 | |
| 		bounds.expand_to(pp);
 | |
| 	}
 | |
| 	bounds.grow_by(0.1); //grow a bit to avoid numerical error
 | |
| 
 | |
| 	triangles.sort(); //sort by slice
 | |
| 	seams.sort();
 | |
| 
 | |
| 	if (p_step_function) {
 | |
| 		p_step_function(0.4, RTR("Optimizing acceleration structure"), p_bake_userdata, true);
 | |
| 	}
 | |
| 
 | |
| 	//fill list of triangles in grid
 | |
| 	LocalVector<TriangleSort> triangle_sort;
 | |
| 	for (uint32_t i = 0; i < triangles.size(); i++) {
 | |
| 		const Triangle &t = triangles[i];
 | |
| 		Vector3 face[3] = {
 | |
| 			Vector3(vertex_array[t.indices[0]].position[0], vertex_array[t.indices[0]].position[1], vertex_array[t.indices[0]].position[2]),
 | |
| 			Vector3(vertex_array[t.indices[1]].position[0], vertex_array[t.indices[1]].position[1], vertex_array[t.indices[1]].position[2]),
 | |
| 			Vector3(vertex_array[t.indices[2]].position[0], vertex_array[t.indices[2]].position[1], vertex_array[t.indices[2]].position[2])
 | |
| 		};
 | |
| 		_plot_triangle_into_triangle_index_list(grid_size, Vector3i(), bounds, face, i, triangle_sort, grid_size);
 | |
| 	}
 | |
| 	//sort it
 | |
| 	triangle_sort.sort();
 | |
| 
 | |
| 	LocalVector<uint32_t> cluster_indices;
 | |
| 	LocalVector<ClusterAABB> cluster_aabbs;
 | |
| 	Vector<uint32_t> triangle_indices;
 | |
| 	triangle_indices.resize(triangle_sort.size());
 | |
| 	Vector<uint32_t> grid_indices;
 | |
| 	grid_indices.resize(grid_size * grid_size * grid_size * 2);
 | |
| 	memset(grid_indices.ptrw(), 0, grid_indices.size() * sizeof(uint32_t));
 | |
| 
 | |
| 	{
 | |
| 		// Fill grid with cell indices.
 | |
| 		uint32_t last_cell = 0xFFFFFFFF;
 | |
| 		uint32_t *giw = grid_indices.ptrw();
 | |
| 		uint32_t cluster_count = 0;
 | |
| 		uint32_t solid_cell_count = 0;
 | |
| 		for (uint32_t i = 0; i < triangle_sort.size(); i++) {
 | |
| 			uint32_t cell = triangle_sort[i].cell_index;
 | |
| 			if (cell != last_cell) {
 | |
| 				giw[cell * 2 + 1] = solid_cell_count;
 | |
| 				solid_cell_count++;
 | |
| 			}
 | |
| 
 | |
| 			if ((giw[cell * 2] % p_cluster_size) == 0) {
 | |
| 				// Add an extra cluster every time the triangle counter reaches a multiple of the cluster size.
 | |
| 				cluster_count++;
 | |
| 			}
 | |
| 
 | |
| 			giw[cell * 2]++;
 | |
| 			last_cell = cell;
 | |
| 		}
 | |
| 
 | |
| 		// Build fixed-size triangle clusters for all the cells to speed up the traversal. A cell can hold multiple clusters that each contain a fixed
 | |
| 		// amount of triangles and an AABB. The tracer will check against the AABBs first to know whether it needs to visit the cell's triangles.
 | |
| 		//
 | |
| 		// The building algorithm will divide the triangles recursively contained inside each cell, sorting by the longest axis of the AABB on each step.
 | |
| 		//
 | |
| 		// - If the amount of triangles is less or equal to the cluster size, the AABB will be stored and the algorithm stops.
 | |
| 		//
 | |
| 		// - The division by two is increased to the next power of two of half the amount of triangles (with cluster size as the minimum value) to
 | |
| 		//   ensure the first half always fills the cluster.
 | |
| 
 | |
| 		cluster_indices.resize(solid_cell_count * 2);
 | |
| 		cluster_aabbs.resize(cluster_count);
 | |
| 
 | |
| 		uint32_t i = 0;
 | |
| 		uint32_t cluster_index = 0;
 | |
| 		uint32_t solid_cell_index = 0;
 | |
| 		uint32_t *tiw = triangle_indices.ptrw();
 | |
| 		while (i < triangle_sort.size()) {
 | |
| 			cluster_indices[solid_cell_index * 2] = cluster_index;
 | |
| 			cluster_indices[solid_cell_index * 2 + 1] = i;
 | |
| 
 | |
| 			uint32_t cell = triangle_sort[i].cell_index;
 | |
| 			uint32_t triangle_count = giw[cell * 2];
 | |
| 			uint32_t cell_cluster_count = (triangle_count + p_cluster_size - 1) / p_cluster_size;
 | |
| 			_sort_triangle_clusters(p_cluster_size, cluster_index, i, triangle_count, triangle_sort, cluster_aabbs);
 | |
| 
 | |
| 			for (uint32_t j = 0; j < triangle_count; j++) {
 | |
| 				tiw[i + j] = triangle_sort[i + j].triangle_index;
 | |
| 			}
 | |
| 
 | |
| 			i += triangle_count;
 | |
| 			cluster_index += cell_cluster_count;
 | |
| 			solid_cell_index++;
 | |
| 		}
 | |
| 	}
 | |
| #if 0
 | |
| 	for (int i = 0; i < grid_size; i++) {
 | |
| 		for (int j = 0; j < grid_size; j++) {
 | |
| 			for (int k = 0; k < grid_size; k++) {
 | |
| 				uint32_t index = i * (grid_size * grid_size) + j * grid_size + k;
 | |
| 				grid_indices.write[index * 2] = float(i) / grid_size * 255;
 | |
| 				grid_indices.write[index * 2 + 1] = float(j) / grid_size * 255;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| #if 0
 | |
| 	for (int i = 0; i < grid_size; i++) {
 | |
| 		Vector<uint8_t> grid_usage;
 | |
| 		grid_usage.resize(grid_size * grid_size);
 | |
| 		for (int j = 0; j < grid_usage.size(); j++) {
 | |
| 			uint32_t ofs = i * grid_size * grid_size + j;
 | |
| 			uint32_t count = grid_indices[ofs * 2];
 | |
| 			grid_usage.write[j] = count > 0 ? 255 : 0;
 | |
| 		}
 | |
| 
 | |
| 		Ref<Image> img = Image::create_from_data(grid_size, grid_size, false, Image::FORMAT_L8, grid_usage);
 | |
| 		img->save_png("res://grid_layer_" + itos(1000 + i).substr(1, 3) + ".png");
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/*****************************/
 | |
| 	/*** CREATE GPU STRUCTURES ***/
 | |
| 	/*****************************/
 | |
| 
 | |
| 	lights.sort();
 | |
| 	light_metadata.sort();
 | |
| 
 | |
| 	Vector<Vector2i> seam_buffer_vec;
 | |
| 	seam_buffer_vec.resize(seams.size() * 2);
 | |
| 	for (uint32_t i = 0; i < seams.size(); i++) {
 | |
| 		seam_buffer_vec.write[i * 2 + 0] = seams[i].a;
 | |
| 		seam_buffer_vec.write[i * 2 + 1] = seams[i].b;
 | |
| 	}
 | |
| 
 | |
| 	{ //buffers
 | |
| 		vertex_buffer = rd->storage_buffer_create(vertex_array.size(), vertex_array.span().reinterpret<uint8_t>());
 | |
| 
 | |
| 		triangle_buffer = rd->storage_buffer_create(triangles.size(), triangles.span().reinterpret<uint8_t>());
 | |
| 
 | |
| 		r_triangle_indices_buffer = rd->storage_buffer_create(triangle_indices.size(), triangle_indices.span().reinterpret<uint8_t>());
 | |
| 
 | |
| 		r_cluster_indices_buffer = rd->storage_buffer_create(cluster_indices.size(), cluster_indices.span().reinterpret<uint8_t>());
 | |
| 
 | |
| 		r_cluster_aabbs_buffer = rd->storage_buffer_create(cluster_aabbs.size(), cluster_aabbs.span().reinterpret<uint8_t>());
 | |
| 
 | |
| 		lights_buffer = rd->storage_buffer_create(lights.size() * sizeof(Light), lights.span().reinterpret<uint8_t>());
 | |
| 
 | |
| 		seams_buffer = rd->storage_buffer_create(seam_buffer_vec.size() * sizeof(Vector2i) * 2, seam_buffer_vec.span().reinterpret<uint8_t>());
 | |
| 
 | |
| 		probe_positions_buffer = rd->storage_buffer_create(p_probe_positions.size() * sizeof(Probe), p_probe_positions.span().reinterpret<uint8_t>());
 | |
| 	}
 | |
| 
 | |
| 	{ //grid
 | |
| 
 | |
| 		RD::TextureFormat tf;
 | |
| 		tf.width = grid_size;
 | |
| 		tf.height = grid_size;
 | |
| 		tf.depth = grid_size;
 | |
| 		tf.texture_type = RD::TEXTURE_TYPE_3D;
 | |
| 		tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT;
 | |
| 
 | |
| 		Vector<Vector<uint8_t>> texdata;
 | |
| 		texdata.resize(1);
 | |
| 		//grid and indices
 | |
| 		tf.format = RD::DATA_FORMAT_R32G32_UINT;
 | |
| 		texdata.write[0] = grid_indices.to_byte_array();
 | |
| 		grid_texture = rd->texture_create(tf, RD::TextureView(), texdata);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void LightmapperRD::_raster_geometry(RenderingDevice *rd, Size2i atlas_size, int atlas_slices, int grid_size, AABB bounds, float p_bias, Vector<int> slice_triangle_count, RID position_tex, RID unocclude_tex, RID normal_tex, RID raster_depth_buffer, RID rasterize_shader, RID raster_base_uniform) {
 | |
| 	Vector<RID> framebuffers;
 | |
| 
 | |
| 	for (int i = 0; i < atlas_slices; i++) {
 | |
| 		RID slice_pos_tex = rd->texture_create_shared_from_slice(RD::TextureView(), position_tex, i, 0);
 | |
| 		RID slice_unoc_tex = rd->texture_create_shared_from_slice(RD::TextureView(), unocclude_tex, i, 0);
 | |
| 		RID slice_norm_tex = rd->texture_create_shared_from_slice(RD::TextureView(), normal_tex, i, 0);
 | |
| 		Vector<RID> fb;
 | |
| 		fb.push_back(slice_pos_tex);
 | |
| 		fb.push_back(slice_norm_tex);
 | |
| 		fb.push_back(slice_unoc_tex);
 | |
| 		fb.push_back(raster_depth_buffer);
 | |
| 		framebuffers.push_back(rd->framebuffer_create(fb));
 | |
| 	}
 | |
| 
 | |
| 	RD::PipelineDepthStencilState ds;
 | |
| 	ds.enable_depth_test = true;
 | |
| 	ds.enable_depth_write = true;
 | |
| 	ds.depth_compare_operator = RD::COMPARE_OP_LESS; //so it does render same pixel twice
 | |
| 
 | |
| 	RID raster_pipeline = rd->render_pipeline_create(rasterize_shader, rd->framebuffer_get_format(framebuffers[0]), RD::INVALID_FORMAT_ID, RD::RENDER_PRIMITIVE_TRIANGLES, RD::PipelineRasterizationState(), RD::PipelineMultisampleState(), ds, RD::PipelineColorBlendState::create_disabled(3), 0);
 | |
| 	RID raster_pipeline_wire;
 | |
| 	{
 | |
| 		RD::PipelineRasterizationState rw;
 | |
| 		rw.wireframe = true;
 | |
| 		raster_pipeline_wire = rd->render_pipeline_create(rasterize_shader, rd->framebuffer_get_format(framebuffers[0]), RD::INVALID_FORMAT_ID, RD::RENDER_PRIMITIVE_TRIANGLES, rw, RD::PipelineMultisampleState(), ds, RD::PipelineColorBlendState::create_disabled(3), 0);
 | |
| 	}
 | |
| 
 | |
| 	uint32_t triangle_offset = 0;
 | |
| 	Vector<Color> clear_colors;
 | |
| 	clear_colors.push_back(Color(0, 0, 0, 0));
 | |
| 	clear_colors.push_back(Color(0, 0, 0, 0));
 | |
| 	clear_colors.push_back(Color(0, 0, 0, 0));
 | |
| 
 | |
| 	for (int i = 0; i < atlas_slices; i++) {
 | |
| 		RasterPushConstant raster_push_constant;
 | |
| 		raster_push_constant.atlas_size[0] = atlas_size.x;
 | |
| 		raster_push_constant.atlas_size[1] = atlas_size.y;
 | |
| 		raster_push_constant.base_triangle = triangle_offset;
 | |
| 		raster_push_constant.to_cell_offset[0] = bounds.position.x;
 | |
| 		raster_push_constant.to_cell_offset[1] = bounds.position.y;
 | |
| 		raster_push_constant.to_cell_offset[2] = bounds.position.z;
 | |
| 		raster_push_constant.bias = p_bias;
 | |
| 		raster_push_constant.to_cell_size[0] = (1.0 / bounds.size.x) * float(grid_size);
 | |
| 		raster_push_constant.to_cell_size[1] = (1.0 / bounds.size.y) * float(grid_size);
 | |
| 		raster_push_constant.to_cell_size[2] = (1.0 / bounds.size.z) * float(grid_size);
 | |
| 		raster_push_constant.grid_size[0] = grid_size;
 | |
| 		raster_push_constant.grid_size[1] = grid_size;
 | |
| 		raster_push_constant.grid_size[2] = grid_size;
 | |
| 
 | |
| 		// Half pixel offset is required so the rasterizer doesn't output face edges directly aligned into pixels.
 | |
| 		// This fixes artifacts where the pixel would be traced from the edge of a face, causing half the rays to
 | |
| 		// be outside of the boundaries of the geometry. See <https://github.com/godotengine/godot/issues/69126>.
 | |
| 		raster_push_constant.uv_offset[0] = -0.5f / float(atlas_size.x);
 | |
| 		raster_push_constant.uv_offset[1] = -0.5f / float(atlas_size.y);
 | |
| 
 | |
| 		RD::DrawListID draw_list = rd->draw_list_begin(framebuffers[i], RD::DRAW_CLEAR_ALL, clear_colors, 1.0f, 0, Rect2(), RDD::BreadcrumbMarker::LIGHTMAPPER_PASS);
 | |
| 		//draw opaque
 | |
| 		rd->draw_list_bind_render_pipeline(draw_list, raster_pipeline);
 | |
| 		rd->draw_list_bind_uniform_set(draw_list, raster_base_uniform, 0);
 | |
| 		rd->draw_list_set_push_constant(draw_list, &raster_push_constant, sizeof(RasterPushConstant));
 | |
| 		rd->draw_list_draw(draw_list, false, 1, slice_triangle_count[i] * 3);
 | |
| 		//draw wire
 | |
| 		rd->draw_list_bind_render_pipeline(draw_list, raster_pipeline_wire);
 | |
| 		rd->draw_list_bind_uniform_set(draw_list, raster_base_uniform, 0);
 | |
| 		rd->draw_list_set_push_constant(draw_list, &raster_push_constant, sizeof(RasterPushConstant));
 | |
| 		rd->draw_list_draw(draw_list, false, 1, slice_triangle_count[i] * 3);
 | |
| 
 | |
| 		rd->draw_list_end();
 | |
| 
 | |
| 		triangle_offset += slice_triangle_count[i];
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static Vector<RD::Uniform> dilate_or_denoise_common_uniforms(RID &p_source_light_tex, RID &p_dest_light_tex) {
 | |
| 	Vector<RD::Uniform> uniforms;
 | |
| 	{
 | |
| 		RD::Uniform u;
 | |
| 		u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
 | |
| 		u.binding = 0;
 | |
| 		u.append_id(p_dest_light_tex);
 | |
| 		uniforms.push_back(u);
 | |
| 	}
 | |
| 	{
 | |
| 		RD::Uniform u;
 | |
| 		u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
 | |
| 		u.binding = 1;
 | |
| 		u.append_id(p_source_light_tex);
 | |
| 		uniforms.push_back(u);
 | |
| 	}
 | |
| 
 | |
| 	return uniforms;
 | |
| }
 | |
| 
 | |
| LightmapperRD::BakeError LightmapperRD::_dilate(RenderingDevice *rd, Ref<RDShaderFile> &compute_shader, RID &compute_base_uniform_set, PushConstant &push_constant, RID &source_light_tex, RID &dest_light_tex, const Size2i &atlas_size, int atlas_slices) {
 | |
| 	Vector<RD::Uniform> uniforms = dilate_or_denoise_common_uniforms(source_light_tex, dest_light_tex);
 | |
| 
 | |
| 	RID compute_shader_dilate = rd->shader_create_from_spirv(compute_shader->get_spirv_stages("dilate"));
 | |
| 	ERR_FAIL_COND_V(compute_shader_dilate.is_null(), BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES); //internal check, should not happen
 | |
| 	RID compute_shader_dilate_pipeline = rd->compute_pipeline_create(compute_shader_dilate);
 | |
| 
 | |
| 	RID dilate_uniform_set = rd->uniform_set_create(uniforms, compute_shader_dilate, 1);
 | |
| 
 | |
| 	RD::ComputeListID compute_list = rd->compute_list_begin();
 | |
| 	rd->compute_list_bind_compute_pipeline(compute_list, compute_shader_dilate_pipeline);
 | |
| 	rd->compute_list_bind_uniform_set(compute_list, compute_base_uniform_set, 0);
 | |
| 	rd->compute_list_bind_uniform_set(compute_list, dilate_uniform_set, 1);
 | |
| 	push_constant.region_ofs[0] = 0;
 | |
| 	push_constant.region_ofs[1] = 0;
 | |
| 	Vector3i group_size(Math::division_round_up(atlas_size.x, 8), Math::division_round_up(atlas_size.y, 8), 1); //restore group size
 | |
| 
 | |
| 	for (int i = 0; i < atlas_slices; i++) {
 | |
| 		push_constant.atlas_slice = i;
 | |
| 		rd->compute_list_set_push_constant(compute_list, &push_constant, sizeof(PushConstant));
 | |
| 		rd->compute_list_dispatch(compute_list, group_size.x, group_size.y, group_size.z);
 | |
| 		//no barrier, let them run all together
 | |
| 	}
 | |
| 	rd->compute_list_end();
 | |
| 	rd->free(compute_shader_dilate);
 | |
| 
 | |
| #ifdef DEBUG_TEXTURES
 | |
| 	for (int i = 0; i < atlas_slices; i++) {
 | |
| 		Vector<uint8_t> s = rd->texture_get_data(source_light_tex, i);
 | |
| 		Ref<Image> img = Image::create_from_data(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBAH, s);
 | |
| 		img->convert(Image::FORMAT_RGBA8);
 | |
| 		img->save_png("res://5_dilated_" + itos(i) + ".png");
 | |
| 	}
 | |
| #endif
 | |
| 	return BAKE_OK;
 | |
| }
 | |
| 
 | |
| LightmapperRD::BakeError LightmapperRD::_pack_l1(RenderingDevice *rd, Ref<RDShaderFile> &compute_shader, RID &compute_base_uniform_set, PushConstant &push_constant, RID &source_light_tex, RID &dest_light_tex, const Size2i &atlas_size, int atlas_slices) {
 | |
| 	Vector<RD::Uniform> uniforms = dilate_or_denoise_common_uniforms(source_light_tex, dest_light_tex);
 | |
| 
 | |
| 	RID compute_shader_pack = rd->shader_create_from_spirv(compute_shader->get_spirv_stages("pack_coeffs"));
 | |
| 	ERR_FAIL_COND_V(compute_shader_pack.is_null(), BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES); //internal check, should not happen
 | |
| 	RID compute_shader_pack_pipeline = rd->compute_pipeline_create(compute_shader_pack);
 | |
| 
 | |
| 	RID dilate_uniform_set = rd->uniform_set_create(uniforms, compute_shader_pack, 1);
 | |
| 
 | |
| 	RD::ComputeListID compute_list = rd->compute_list_begin();
 | |
| 	rd->compute_list_bind_compute_pipeline(compute_list, compute_shader_pack_pipeline);
 | |
| 	rd->compute_list_bind_uniform_set(compute_list, compute_base_uniform_set, 0);
 | |
| 	rd->compute_list_bind_uniform_set(compute_list, dilate_uniform_set, 1);
 | |
| 	push_constant.region_ofs[0] = 0;
 | |
| 	push_constant.region_ofs[1] = 0;
 | |
| 	Vector3i group_size(Math::division_round_up(atlas_size.x, 8), Math::division_round_up(atlas_size.y, 8), 1); //restore group size
 | |
| 
 | |
| 	for (int i = 0; i < atlas_slices; i++) {
 | |
| 		push_constant.atlas_slice = i;
 | |
| 		rd->compute_list_set_push_constant(compute_list, &push_constant, sizeof(PushConstant));
 | |
| 		rd->compute_list_dispatch(compute_list, group_size.x, group_size.y, group_size.z);
 | |
| 		//no barrier, let them run all together
 | |
| 	}
 | |
| 	rd->compute_list_end();
 | |
| 	rd->free(compute_shader_pack);
 | |
| 
 | |
| 	return BAKE_OK;
 | |
| }
 | |
| 
 | |
| Error LightmapperRD::_store_pfm(RenderingDevice *p_rd, RID p_atlas_tex, int p_index, const Size2i &p_atlas_size, const String &p_name, bool p_shadowmask) {
 | |
| 	Vector<uint8_t> data = p_rd->texture_get_data(p_atlas_tex, p_index);
 | |
| 	Ref<Image> img = Image::create_from_data(p_atlas_size.width, p_atlas_size.height, false, p_shadowmask ? Image::FORMAT_RGBA8 : Image::FORMAT_RGBAH, data);
 | |
| 	img->convert(Image::FORMAT_RGBF);
 | |
| 	Vector<uint8_t> data_float = img->get_data();
 | |
| 
 | |
| 	Error err = OK;
 | |
| 	Ref<FileAccess> file = FileAccess::open(p_name, FileAccess::WRITE, &err);
 | |
| 	ERR_FAIL_COND_V_MSG(err, err, vformat("Can't save PFN at path: '%s'.", p_name));
 | |
| 	file->store_line("PF");
 | |
| 	file->store_line(vformat("%d %d", img->get_width(), img->get_height()));
 | |
| #ifdef BIG_ENDIAN_ENABLED
 | |
| 	file->store_line("1.0");
 | |
| #else
 | |
| 	file->store_line("-1.0");
 | |
| #endif
 | |
| 	file->store_buffer(data_float);
 | |
| 	file->close();
 | |
| 
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| Ref<Image> LightmapperRD::_read_pfm(const String &p_name, bool p_shadowmask) {
 | |
| 	Error err = OK;
 | |
| 	Ref<FileAccess> file = FileAccess::open(p_name, FileAccess::READ, &err);
 | |
| 	ERR_FAIL_COND_V_MSG(err, Ref<Image>(), vformat("Can't load PFM at path: '%s'.", p_name));
 | |
| 	ERR_FAIL_COND_V(file->get_line() != "PF", Ref<Image>());
 | |
| 
 | |
| 	Vector<String> new_size = file->get_line().split(" ");
 | |
| 	ERR_FAIL_COND_V(new_size.size() != 2, Ref<Image>());
 | |
| 	int new_width = new_size[0].to_int();
 | |
| 	int new_height = new_size[1].to_int();
 | |
| 
 | |
| 	float endian = file->get_line().to_float();
 | |
| 	Vector<uint8_t> new_data = file->get_buffer(file->get_length() - file->get_position());
 | |
| 	file->close();
 | |
| 
 | |
| #ifdef BIG_ENDIAN_ENABLED
 | |
| 	if (unlikely(endian < 0.0)) {
 | |
| 		uint32_t count = new_data.size() / 4;
 | |
| 		uint16_t *dst = (uint16_t *)new_data.ptrw();
 | |
| 		for (uint32_t j = 0; j < count; j++) {
 | |
| 			dst[j * 4] = BSWAP32(dst[j * 4]);
 | |
| 		}
 | |
| 	}
 | |
| #else
 | |
| 	if (unlikely(endian > 0.0)) {
 | |
| 		uint32_t count = new_data.size() / 4;
 | |
| 		uint16_t *dst = (uint16_t *)new_data.ptrw();
 | |
| 		for (uint32_t j = 0; j < count; j++) {
 | |
| 			dst[j * 4] = BSWAP32(dst[j * 4]);
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 	Ref<Image> img = Image::create_from_data(new_width, new_height, false, Image::FORMAT_RGBF, new_data);
 | |
| 	img->convert(p_shadowmask ? Image::FORMAT_RGBA8 : Image::FORMAT_RGBAH);
 | |
| 	return img;
 | |
| }
 | |
| 
 | |
| LightmapperRD::BakeError LightmapperRD::_denoise_oidn(RenderingDevice *p_rd, RID p_source_light_tex, RID p_source_normal_tex, RID p_dest_light_tex, const Size2i &p_atlas_size, int p_atlas_slices, bool p_bake_sh, bool p_shadowmask, const String &p_exe) {
 | |
| 	Ref<DirAccess> da = DirAccess::create(DirAccess::ACCESS_FILESYSTEM);
 | |
| 
 | |
| 	for (int i = 0; i < p_atlas_slices; i++) {
 | |
| 		String fname_norm_in = EditorPaths::get_singleton()->get_cache_dir().path_join(vformat("temp_norm_%d.pfm", i));
 | |
| 		_store_pfm(p_rd, p_source_normal_tex, i, p_atlas_size, fname_norm_in, false);
 | |
| 
 | |
| 		for (int j = 0; j < (p_bake_sh ? 4 : 1); j++) {
 | |
| 			int index = i * (p_bake_sh ? 4 : 1) + j;
 | |
| 			String fname_light_in = EditorPaths::get_singleton()->get_cache_dir().path_join(vformat("temp_light_%d.pfm", index));
 | |
| 			String fname_out = EditorPaths::get_singleton()->get_cache_dir().path_join(vformat("temp_denoised_%d.pfm", index));
 | |
| 
 | |
| 			_store_pfm(p_rd, p_source_light_tex, index, p_atlas_size, fname_light_in, p_shadowmask);
 | |
| 
 | |
| 			List<String> args;
 | |
| 			args.push_back("--device");
 | |
| 			args.push_back("default");
 | |
| 
 | |
| 			args.push_back("--filter");
 | |
| 			args.push_back("RTLightmap");
 | |
| 
 | |
| 			args.push_back(p_shadowmask ? "--ldr" : "--hdr");
 | |
| 			args.push_back(fname_light_in);
 | |
| 
 | |
| 			args.push_back("--nrm");
 | |
| 			args.push_back(fname_norm_in);
 | |
| 
 | |
| 			args.push_back("--output");
 | |
| 			args.push_back(fname_out);
 | |
| 
 | |
| 			String str;
 | |
| 			int exitcode = 0;
 | |
| 
 | |
| 			Error err = OS::get_singleton()->execute(p_exe, args, &str, &exitcode, true);
 | |
| 
 | |
| 			da->remove(fname_light_in);
 | |
| 
 | |
| 			if (err != OK || exitcode != 0) {
 | |
| 				da->remove(fname_out);
 | |
| 				print_verbose(str);
 | |
| 				ERR_FAIL_V_MSG(BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES, vformat("OIDN denoiser failed, return code: %d", exitcode));
 | |
| 			}
 | |
| 
 | |
| 			Ref<Image> img = _read_pfm(fname_out, p_shadowmask);
 | |
| 			da->remove(fname_out);
 | |
| 
 | |
| 			ERR_FAIL_COND_V(img.is_null(), BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES);
 | |
| 
 | |
| 			Vector<uint8_t> old_data = p_rd->texture_get_data(p_source_light_tex, index);
 | |
| 			Vector<uint8_t> new_data = img->get_data();
 | |
| 			img.unref(); // Avoid copy on write.
 | |
| 
 | |
| 			uint32_t count = old_data.size() / 2;
 | |
| 			const uint16_t *src = (const uint16_t *)old_data.ptr();
 | |
| 			uint16_t *dst = (uint16_t *)new_data.ptrw();
 | |
| 			for (uint32_t k = 0; k < count; k += 4) {
 | |
| 				dst[k + 3] = src[k + 3];
 | |
| 			}
 | |
| 
 | |
| 			p_rd->texture_update(p_dest_light_tex, index, new_data);
 | |
| 		}
 | |
| 		da->remove(fname_norm_in);
 | |
| 	}
 | |
| 	return BAKE_OK;
 | |
| }
 | |
| 
 | |
| LightmapperRD::BakeError LightmapperRD::_denoise(RenderingDevice *p_rd, Ref<RDShaderFile> &p_compute_shader, const RID &p_compute_base_uniform_set, PushConstant &p_push_constant, RID p_source_light_tex, RID p_source_normal_tex, RID p_dest_light_tex, RID p_unocclude_tex, float p_denoiser_strength, int p_denoiser_range, const Size2i &p_atlas_size, int p_atlas_slices, bool p_bake_sh, BakeStepFunc p_step_function, void *p_bake_userdata) {
 | |
| 	RID denoise_params_buffer = p_rd->uniform_buffer_create(sizeof(DenoiseParams));
 | |
| 	DenoiseParams denoise_params;
 | |
| 	denoise_params.spatial_bandwidth = 5.0f;
 | |
| 	denoise_params.light_bandwidth = p_denoiser_strength;
 | |
| 	denoise_params.albedo_bandwidth = 1.0f;
 | |
| 	denoise_params.normal_bandwidth = 0.1f;
 | |
| 	denoise_params.filter_strength = 10.0f;
 | |
| 	denoise_params.half_search_window = p_denoiser_range;
 | |
| 	p_rd->buffer_update(denoise_params_buffer, 0, sizeof(DenoiseParams), &denoise_params);
 | |
| 
 | |
| 	Vector<RD::Uniform> uniforms = dilate_or_denoise_common_uniforms(p_source_light_tex, p_dest_light_tex);
 | |
| 	{
 | |
| 		RD::Uniform u;
 | |
| 		u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
 | |
| 		u.binding = 2;
 | |
| 		u.append_id(p_source_normal_tex);
 | |
| 		uniforms.push_back(u);
 | |
| 	}
 | |
| 	{
 | |
| 		RD::Uniform u;
 | |
| 		u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
 | |
| 		u.binding = 3;
 | |
| 		u.append_id(p_unocclude_tex);
 | |
| 		uniforms.push_back(u);
 | |
| 	}
 | |
| 	{
 | |
| 		RD::Uniform u;
 | |
| 		u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
 | |
| 		u.binding = 4;
 | |
| 		u.append_id(denoise_params_buffer);
 | |
| 		uniforms.push_back(u);
 | |
| 	}
 | |
| 
 | |
| 	RID compute_shader_denoise = p_rd->shader_create_from_spirv(p_compute_shader->get_spirv_stages("denoise"));
 | |
| 	ERR_FAIL_COND_V(compute_shader_denoise.is_null(), BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES);
 | |
| 
 | |
| 	RID compute_shader_denoise_pipeline = p_rd->compute_pipeline_create(compute_shader_denoise);
 | |
| 	RID denoise_uniform_set = p_rd->uniform_set_create(uniforms, compute_shader_denoise, 1);
 | |
| 
 | |
| 	// We denoise in fixed size regions and synchronize execution to avoid GPU timeouts.
 | |
| 	// We use a region with 1/4 the amount of pixels if we're denoising SH lightmaps, as
 | |
| 	// all four of them are denoised in the shader in one dispatch.
 | |
| 	const int user_region_size = nearest_power_of_2_templated(int(GLOBAL_GET("rendering/lightmapping/bake_performance/region_size")));
 | |
| 	const int max_region_size = p_bake_sh ? user_region_size / 2 : user_region_size;
 | |
| 	int x_regions = Math::division_round_up(p_atlas_size.width, max_region_size);
 | |
| 	int y_regions = Math::division_round_up(p_atlas_size.height, max_region_size);
 | |
| 	for (int s = 0; s < p_atlas_slices; s++) {
 | |
| 		p_push_constant.atlas_slice = s;
 | |
| 
 | |
| 		for (int i = 0; i < x_regions; i++) {
 | |
| 			for (int j = 0; j < y_regions; j++) {
 | |
| 				int x = i * max_region_size;
 | |
| 				int y = j * max_region_size;
 | |
| 				int w = MIN((i + 1) * max_region_size, p_atlas_size.width) - x;
 | |
| 				int h = MIN((j + 1) * max_region_size, p_atlas_size.height) - y;
 | |
| 				p_push_constant.region_ofs[0] = x;
 | |
| 				p_push_constant.region_ofs[1] = y;
 | |
| 
 | |
| 				RD::ComputeListID compute_list = p_rd->compute_list_begin();
 | |
| 				p_rd->compute_list_bind_compute_pipeline(compute_list, compute_shader_denoise_pipeline);
 | |
| 				p_rd->compute_list_bind_uniform_set(compute_list, p_compute_base_uniform_set, 0);
 | |
| 				p_rd->compute_list_bind_uniform_set(compute_list, denoise_uniform_set, 1);
 | |
| 				p_rd->compute_list_set_push_constant(compute_list, &p_push_constant, sizeof(PushConstant));
 | |
| 				p_rd->compute_list_dispatch(compute_list, Math::division_round_up(w, 8), Math::division_round_up(h, 8), 1);
 | |
| 				p_rd->compute_list_end();
 | |
| 
 | |
| 				p_rd->submit();
 | |
| 				p_rd->sync();
 | |
| 			}
 | |
| 		}
 | |
| 		if (p_step_function) {
 | |
| 			int percent = (s + 1) * 100 / p_atlas_slices;
 | |
| 			float p = float(s) / p_atlas_slices * 0.1;
 | |
| 			if (p_step_function(0.8 + p, vformat(RTR("Denoising %d%%"), percent), p_bake_userdata, false)) {
 | |
| 				return BAKE_ERROR_USER_ABORTED;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	p_rd->free(compute_shader_denoise);
 | |
| 	p_rd->free(denoise_params_buffer);
 | |
| 
 | |
| 	return BAKE_OK;
 | |
| }
 | |
| 
 | |
| LightmapperRD::BakeError LightmapperRD::bake(BakeQuality p_quality, bool p_use_denoiser, float p_denoiser_strength, int p_denoiser_range, int p_bounces, float p_bounce_indirect_energy, float p_bias, int p_max_texture_size, bool p_bake_sh, bool p_bake_shadowmask, bool p_texture_for_bounces, GenerateProbes p_generate_probes, const Ref<Image> &p_environment_panorama, const Basis &p_environment_transform, BakeStepFunc p_step_function, void *p_bake_userdata, float p_exposure_normalization, float p_supersampling_factor) {
 | |
| 	int denoiser = GLOBAL_GET("rendering/lightmapping/denoising/denoiser");
 | |
| 	String oidn_path = EDITOR_GET("filesystem/tools/oidn/oidn_denoise_path");
 | |
| 
 | |
| 	if (p_use_denoiser && denoiser == 1) {
 | |
| 		// OIDN (external).
 | |
| 		Ref<DirAccess> da = DirAccess::create(DirAccess::ACCESS_FILESYSTEM);
 | |
| 
 | |
| 		if (da->dir_exists(oidn_path)) {
 | |
| 			if (OS::get_singleton()->get_name() == "Windows") {
 | |
| 				oidn_path = oidn_path.path_join("oidnDenoise.exe");
 | |
| 			} else {
 | |
| 				oidn_path = oidn_path.path_join("oidnDenoise");
 | |
| 			}
 | |
| 		}
 | |
| 		ERR_FAIL_COND_V_MSG(oidn_path.is_empty() || !da->file_exists(oidn_path), BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES, "OIDN denoiser is selected in the project settings, but no or invalid OIDN executable path is configured in the editor settings.");
 | |
| 	}
 | |
| 
 | |
| 	if (p_step_function) {
 | |
| 		p_step_function(0.0, RTR("Begin Bake"), p_bake_userdata, true);
 | |
| 	}
 | |
| 	lightmap_textures.clear();
 | |
| 	shadowmask_textures.clear();
 | |
| 	int grid_size = 128;
 | |
| 
 | |
| 	/* STEP 1: Fetch material textures and compute the bounds */
 | |
| 
 | |
| 	AABB bounds;
 | |
| 	Size2i atlas_size;
 | |
| 	int atlas_slices;
 | |
| 	Vector<Ref<Image>> albedo_images;
 | |
| 	Vector<Ref<Image>> emission_images;
 | |
| 
 | |
| 	BakeError bake_error = _blit_meshes_into_atlas(p_max_texture_size, p_denoiser_range, albedo_images, emission_images, bounds, atlas_size, atlas_slices, p_supersampling_factor, p_step_function, p_bake_userdata);
 | |
| 	if (bake_error != BAKE_OK) {
 | |
| 		return bake_error;
 | |
| 	}
 | |
| 
 | |
| 	// Find any directional light suitable for shadowmasking.
 | |
| 	if (p_bake_shadowmask) {
 | |
| 		bool found = false;
 | |
| 		for (int i = 0; i < lights.size(); i++) {
 | |
| 			if (lights[i].type == LightType::LIGHT_TYPE_DIRECTIONAL && !lights[i].static_bake) {
 | |
| 				found = true;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (!found) {
 | |
| 			p_bake_shadowmask = false;
 | |
| 			WARN_PRINT("Shadowmask disabled: no directional light with their bake mode set to dynamic exists.");
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| #ifdef DEBUG_TEXTURES
 | |
| 	for (int i = 0; i < atlas_slices; i++) {
 | |
| 		albedo_images[i]->save_png("res://0_albedo_" + itos(i) + ".png");
 | |
| 		emission_images[i]->save_png("res://0_emission_" + itos(i) + ".png");
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	// Attempt to create a local device by requesting it from rendering server first.
 | |
| 	// If that fails because the current renderer is not implemented on top of RD, we fall back to creating
 | |
| 	// a local rendering device manually depending on the current platform.
 | |
| 	Error err;
 | |
| 	RenderingContextDriver *rcd = nullptr;
 | |
| 	RenderingDevice *rd = RenderingServer::get_singleton()->create_local_rendering_device();
 | |
| 	if (rd == nullptr) {
 | |
| #if defined(RD_ENABLED)
 | |
| #if defined(METAL_ENABLED)
 | |
| 		rcd = memnew(RenderingContextDriverMetal);
 | |
| 		rd = memnew(RenderingDevice);
 | |
| #endif
 | |
| #if defined(VULKAN_ENABLED)
 | |
| 		if (rcd == nullptr) {
 | |
| 			rcd = memnew(RenderingContextDriverVulkan);
 | |
| 			rd = memnew(RenderingDevice);
 | |
| 		}
 | |
| #endif
 | |
| #endif
 | |
| 		if (rcd != nullptr && rd != nullptr) {
 | |
| 			err = rcd->initialize();
 | |
| 			if (err == OK) {
 | |
| 				err = rd->initialize(rcd);
 | |
| 			}
 | |
| 
 | |
| 			if (err != OK) {
 | |
| 				memdelete(rd);
 | |
| 				memdelete(rcd);
 | |
| 				rd = nullptr;
 | |
| 				rcd = nullptr;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ERR_FAIL_NULL_V(rd, BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES);
 | |
| 
 | |
| 	RID albedo_array_tex;
 | |
| 	RID emission_array_tex;
 | |
| 	RID normal_tex;
 | |
| 	RID position_tex;
 | |
| 	RID unocclude_tex;
 | |
| 	RID light_source_tex;
 | |
| 	RID light_dest_tex;
 | |
| 	RID light_accum_tex;
 | |
| 	RID light_accum_tex2;
 | |
| 	RID light_environment_tex;
 | |
| 	RID shadowmask_tex;
 | |
| 	RID shadowmask_tex2;
 | |
| 
 | |
| #define FREE_TEXTURES                \
 | |
| 	rd->free(albedo_array_tex);      \
 | |
| 	rd->free(emission_array_tex);    \
 | |
| 	rd->free(normal_tex);            \
 | |
| 	rd->free(position_tex);          \
 | |
| 	rd->free(unocclude_tex);         \
 | |
| 	rd->free(light_source_tex);      \
 | |
| 	rd->free(light_accum_tex2);      \
 | |
| 	rd->free(light_accum_tex);       \
 | |
| 	rd->free(light_environment_tex); \
 | |
| 	if (p_bake_shadowmask) {         \
 | |
| 		rd->free(shadowmask_tex);    \
 | |
| 		rd->free(shadowmask_tex2);   \
 | |
| 	}
 | |
| 
 | |
| 	{ // create all textures
 | |
| 
 | |
| 		Vector<Vector<uint8_t>> albedo_data;
 | |
| 		Vector<Vector<uint8_t>> emission_data;
 | |
| 		for (int i = 0; i < atlas_slices; i++) {
 | |
| 			albedo_data.push_back(albedo_images[i]->get_data());
 | |
| 			emission_data.push_back(emission_images[i]->get_data());
 | |
| 		}
 | |
| 
 | |
| 		RD::TextureFormat tf;
 | |
| 		tf.width = atlas_size.width;
 | |
| 		tf.height = atlas_size.height;
 | |
| 		tf.array_layers = atlas_slices;
 | |
| 		tf.texture_type = RD::TEXTURE_TYPE_2D_ARRAY;
 | |
| 		tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT;
 | |
| 		tf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
 | |
| 
 | |
| 		albedo_array_tex = rd->texture_create(tf, RD::TextureView(), albedo_data);
 | |
| 
 | |
| 		tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
 | |
| 
 | |
| 		emission_array_tex = rd->texture_create(tf, RD::TextureView(), emission_data);
 | |
| 
 | |
| 		//this will be rastered to
 | |
| 		tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
 | |
| 		normal_tex = rd->texture_create(tf, RD::TextureView());
 | |
| 		tf.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
 | |
| 		position_tex = rd->texture_create(tf, RD::TextureView());
 | |
| 		unocclude_tex = rd->texture_create(tf, RD::TextureView());
 | |
| 
 | |
| 		tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT | RD::TEXTURE_USAGE_CAN_COPY_TO_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT;
 | |
| 
 | |
| 		// shadowmask
 | |
| 		if (p_bake_shadowmask) {
 | |
| 			tf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
 | |
| 
 | |
| 			shadowmask_tex = rd->texture_create(tf, RD::TextureView());
 | |
| 			rd->texture_clear(shadowmask_tex, Color(0, 0, 0, 0), 0, 1, 0, atlas_slices);
 | |
| 
 | |
| 			shadowmask_tex2 = rd->texture_create(tf, RD::TextureView());
 | |
| 			rd->texture_clear(shadowmask_tex2, Color(0, 0, 0, 0), 0, 1, 0, atlas_slices);
 | |
| 		}
 | |
| 
 | |
| 		// lightmap
 | |
| 		tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
 | |
| 
 | |
| 		light_source_tex = rd->texture_create(tf, RD::TextureView());
 | |
| 		rd->texture_clear(light_source_tex, Color(0, 0, 0, 0), 0, 1, 0, atlas_slices);
 | |
| 
 | |
| 		if (p_bake_sh) {
 | |
| 			tf.array_layers *= 4;
 | |
| 		}
 | |
| 		light_accum_tex = rd->texture_create(tf, RD::TextureView());
 | |
| 		rd->texture_clear(light_accum_tex, Color(0, 0, 0, 0), 0, 1, 0, tf.array_layers);
 | |
| 		light_dest_tex = rd->texture_create(tf, RD::TextureView());
 | |
| 		rd->texture_clear(light_dest_tex, Color(0, 0, 0, 0), 0, 1, 0, tf.array_layers);
 | |
| 		light_accum_tex2 = light_dest_tex;
 | |
| 
 | |
| 		//env
 | |
| 		{
 | |
| 			Ref<Image> panorama_tex;
 | |
| 			if (p_environment_panorama.is_valid()) {
 | |
| 				panorama_tex = p_environment_panorama;
 | |
| 				panorama_tex->convert(Image::FORMAT_RGBAF);
 | |
| 			} else {
 | |
| 				panorama_tex.instantiate();
 | |
| 				panorama_tex->initialize_data(8, 8, false, Image::FORMAT_RGBAF);
 | |
| 				panorama_tex->fill(Color(0, 0, 0, 1));
 | |
| 			}
 | |
| 
 | |
| 			RD::TextureFormat tfp;
 | |
| 			tfp.width = panorama_tex->get_width();
 | |
| 			tfp.height = panorama_tex->get_height();
 | |
| 			tfp.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_CAN_UPDATE_BIT;
 | |
| 			tfp.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
 | |
| 
 | |
| 			Vector<Vector<uint8_t>> tdata;
 | |
| 			tdata.push_back(panorama_tex->get_data());
 | |
| 			light_environment_tex = rd->texture_create(tfp, RD::TextureView(), tdata);
 | |
| 
 | |
| #ifdef DEBUG_TEXTURES
 | |
| 			panorama_tex->save_exr("res://0_panorama.exr", false);
 | |
| #endif
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* STEP 2: create the acceleration structure for the GPU*/
 | |
| 
 | |
| 	Vector<int> slice_triangle_count;
 | |
| 	RID bake_parameters_buffer;
 | |
| 	RID vertex_buffer;
 | |
| 	RID triangle_buffer;
 | |
| 	RID lights_buffer;
 | |
| 	RID triangle_indices_buffer;
 | |
| 	RID cluster_indices_buffer;
 | |
| 	RID cluster_aabbs_buffer;
 | |
| 	RID grid_texture;
 | |
| 	RID seams_buffer;
 | |
| 	RID probe_positions_buffer;
 | |
| 
 | |
| 	Vector<int> slice_seam_count;
 | |
| 
 | |
| #define FREE_BUFFERS                   \
 | |
| 	rd->free(bake_parameters_buffer);  \
 | |
| 	rd->free(vertex_buffer);           \
 | |
| 	rd->free(triangle_buffer);         \
 | |
| 	rd->free(lights_buffer);           \
 | |
| 	rd->free(triangle_indices_buffer); \
 | |
| 	rd->free(cluster_indices_buffer);  \
 | |
| 	rd->free(cluster_aabbs_buffer);    \
 | |
| 	rd->free(grid_texture);            \
 | |
| 	rd->free(seams_buffer);            \
 | |
| 	rd->free(probe_positions_buffer);
 | |
| 
 | |
| 	const uint32_t cluster_size = 16;
 | |
| 	_create_acceleration_structures(rd, atlas_size, atlas_slices, bounds, grid_size, cluster_size, probe_positions, p_generate_probes, slice_triangle_count, slice_seam_count, vertex_buffer, triangle_buffer, lights_buffer, triangle_indices_buffer, cluster_indices_buffer, cluster_aabbs_buffer, probe_positions_buffer, grid_texture, seams_buffer, p_step_function, p_bake_userdata);
 | |
| 
 | |
| 	// The index of the directional light used for shadowmasking.
 | |
| 	int shadowmask_light_idx = -1;
 | |
| 
 | |
| 	// Find the directional light index in the sorted lights array.
 | |
| 	if (p_bake_shadowmask) {
 | |
| 		int shadowmask_lights_count = 0;
 | |
| 
 | |
| 		for (int i = 0; i < lights.size(); i++) {
 | |
| 			if (lights[i].type == LightType::LIGHT_TYPE_DIRECTIONAL && !lights[i].static_bake) {
 | |
| 				if (shadowmask_light_idx < 0) {
 | |
| 					shadowmask_light_idx = i;
 | |
| 				}
 | |
| 				shadowmask_lights_count += 1;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (shadowmask_lights_count > 1) {
 | |
| 			WARN_PRINT(
 | |
| 					vformat("%d directional lights detected for shadowmask baking. Only %s will be used.",
 | |
| 							shadowmask_lights_count, light_metadata[shadowmask_light_idx].name));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// Create global bake parameters buffer.
 | |
| 	BakeParameters bake_parameters;
 | |
| 	bake_parameters.world_size[0] = bounds.size.x;
 | |
| 	bake_parameters.world_size[1] = bounds.size.y;
 | |
| 	bake_parameters.world_size[2] = bounds.size.z;
 | |
| 	bake_parameters.bias = p_bias;
 | |
| 	bake_parameters.to_cell_offset[0] = bounds.position.x;
 | |
| 	bake_parameters.to_cell_offset[1] = bounds.position.y;
 | |
| 	bake_parameters.to_cell_offset[2] = bounds.position.z;
 | |
| 	bake_parameters.grid_size = grid_size;
 | |
| 	bake_parameters.to_cell_size[0] = (1.0 / bounds.size.x) * float(grid_size);
 | |
| 	bake_parameters.to_cell_size[1] = (1.0 / bounds.size.y) * float(grid_size);
 | |
| 	bake_parameters.to_cell_size[2] = (1.0 / bounds.size.z) * float(grid_size);
 | |
| 	bake_parameters.light_count = lights.size();
 | |
| 	bake_parameters.env_transform[0] = p_environment_transform.rows[0][0];
 | |
| 	bake_parameters.env_transform[1] = p_environment_transform.rows[1][0];
 | |
| 	bake_parameters.env_transform[2] = p_environment_transform.rows[2][0];
 | |
| 	bake_parameters.env_transform[3] = 0.0f;
 | |
| 	bake_parameters.env_transform[4] = p_environment_transform.rows[0][1];
 | |
| 	bake_parameters.env_transform[5] = p_environment_transform.rows[1][1];
 | |
| 	bake_parameters.env_transform[6] = p_environment_transform.rows[2][1];
 | |
| 	bake_parameters.env_transform[7] = 0.0f;
 | |
| 	bake_parameters.env_transform[8] = p_environment_transform.rows[0][2];
 | |
| 	bake_parameters.env_transform[9] = p_environment_transform.rows[1][2];
 | |
| 	bake_parameters.env_transform[10] = p_environment_transform.rows[2][2];
 | |
| 	bake_parameters.env_transform[11] = 0.0f;
 | |
| 	bake_parameters.atlas_size[0] = atlas_size.width;
 | |
| 	bake_parameters.atlas_size[1] = atlas_size.height;
 | |
| 	bake_parameters.exposure_normalization = p_exposure_normalization;
 | |
| 	bake_parameters.bounces = p_bounces;
 | |
| 	bake_parameters.bounce_indirect_energy = p_bounce_indirect_energy;
 | |
| 	bake_parameters.shadowmask_light_idx = shadowmask_light_idx;
 | |
| 	// Same number of rays for transparency regardless of quality (it's more of a retry rather than shooting new ones).
 | |
| 	bake_parameters.transparency_rays = GLOBAL_GET("rendering/lightmapping/bake_performance/max_transparency_rays");
 | |
| 	bake_parameters.supersampling_factor = p_supersampling_factor;
 | |
| 
 | |
| 	bake_parameters_buffer = rd->uniform_buffer_create(sizeof(BakeParameters));
 | |
| 	rd->buffer_update(bake_parameters_buffer, 0, sizeof(BakeParameters), &bake_parameters);
 | |
| 
 | |
| 	if (p_step_function) {
 | |
| 		if (p_step_function(0.47, RTR("Preparing shaders"), p_bake_userdata, true)) {
 | |
| 			FREE_TEXTURES
 | |
| 			FREE_BUFFERS
 | |
| 			memdelete(rd);
 | |
| 			if (rcd != nullptr) {
 | |
| 				memdelete(rcd);
 | |
| 			}
 | |
| 			return BAKE_ERROR_USER_ABORTED;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	//shaders
 | |
| 	Ref<RDShaderFile> raster_shader;
 | |
| 	raster_shader.instantiate();
 | |
| 	err = raster_shader->parse_versions_from_text(lm_raster_shader_glsl);
 | |
| 	if (err != OK) {
 | |
| 		raster_shader->print_errors("raster_shader");
 | |
| 
 | |
| 		FREE_TEXTURES
 | |
| 		FREE_BUFFERS
 | |
| 
 | |
| 		memdelete(rd);
 | |
| 
 | |
| 		if (rcd != nullptr) {
 | |
| 			memdelete(rcd);
 | |
| 		}
 | |
| 	}
 | |
| 	ERR_FAIL_COND_V(err != OK, BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES);
 | |
| 
 | |
| 	RID rasterize_shader = rd->shader_create_from_spirv(raster_shader->get_spirv_stages());
 | |
| 
 | |
| 	ERR_FAIL_COND_V(rasterize_shader.is_null(), BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES); //this is a bug check, though, should not happen
 | |
| 
 | |
| 	RID sampler;
 | |
| 	{
 | |
| 		RD::SamplerState s;
 | |
| 		s.mag_filter = RD::SAMPLER_FILTER_LINEAR;
 | |
| 		s.min_filter = RD::SAMPLER_FILTER_LINEAR;
 | |
| 		s.max_lod = 0;
 | |
| 
 | |
| 		sampler = rd->sampler_create(s);
 | |
| 	}
 | |
| 
 | |
| 	Vector<RD::Uniform> base_uniforms;
 | |
| 	{
 | |
| 		{
 | |
| 			RD::Uniform u;
 | |
| 			u.uniform_type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
 | |
| 			u.binding = 0;
 | |
| 			u.append_id(bake_parameters_buffer);
 | |
| 			base_uniforms.push_back(u);
 | |
| 		}
 | |
| 		{
 | |
| 			RD::Uniform u;
 | |
| 			u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
 | |
| 			u.binding = 1;
 | |
| 			u.append_id(vertex_buffer);
 | |
| 			base_uniforms.push_back(u);
 | |
| 		}
 | |
| 		{
 | |
| 			RD::Uniform u;
 | |
| 			u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
 | |
| 			u.binding = 2;
 | |
| 			u.append_id(triangle_buffer);
 | |
| 			base_uniforms.push_back(u);
 | |
| 		}
 | |
| 		{
 | |
| 			RD::Uniform u;
 | |
| 			u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
 | |
| 			u.binding = 3;
 | |
| 			u.append_id(triangle_indices_buffer);
 | |
| 			base_uniforms.push_back(u);
 | |
| 		}
 | |
| 		{
 | |
| 			RD::Uniform u;
 | |
| 			u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
 | |
| 			u.binding = 4;
 | |
| 			u.append_id(lights_buffer);
 | |
| 			base_uniforms.push_back(u);
 | |
| 		}
 | |
| 		{
 | |
| 			RD::Uniform u;
 | |
| 			u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
 | |
| 			u.binding = 5;
 | |
| 			u.append_id(seams_buffer);
 | |
| 			base_uniforms.push_back(u);
 | |
| 		}
 | |
| 		{
 | |
| 			RD::Uniform u;
 | |
| 			u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
 | |
| 			u.binding = 6;
 | |
| 			u.append_id(probe_positions_buffer);
 | |
| 			base_uniforms.push_back(u);
 | |
| 		}
 | |
| 		{
 | |
| 			RD::Uniform u;
 | |
| 			u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
 | |
| 			u.binding = 7;
 | |
| 			u.append_id(grid_texture);
 | |
| 			base_uniforms.push_back(u);
 | |
| 		}
 | |
| 		{
 | |
| 			RD::Uniform u;
 | |
| 			u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
 | |
| 			u.binding = 8;
 | |
| 			u.append_id(albedo_array_tex);
 | |
| 			base_uniforms.push_back(u);
 | |
| 		}
 | |
| 		{
 | |
| 			RD::Uniform u;
 | |
| 			u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
 | |
| 			u.binding = 9;
 | |
| 			u.append_id(emission_array_tex);
 | |
| 			base_uniforms.push_back(u);
 | |
| 		}
 | |
| 		{
 | |
| 			RD::Uniform u;
 | |
| 			u.uniform_type = RD::UNIFORM_TYPE_SAMPLER;
 | |
| 			u.binding = 10;
 | |
| 			u.append_id(sampler);
 | |
| 			base_uniforms.push_back(u);
 | |
| 		}
 | |
| 		{
 | |
| 			RD::Uniform u;
 | |
| 			u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
 | |
| 			u.binding = 11;
 | |
| 			u.append_id(cluster_indices_buffer);
 | |
| 			base_uniforms.push_back(u);
 | |
| 		}
 | |
| 		{
 | |
| 			RD::Uniform u;
 | |
| 			u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
 | |
| 			u.binding = 12;
 | |
| 			u.append_id(cluster_aabbs_buffer);
 | |
| 			base_uniforms.push_back(u);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	RID raster_base_uniform = rd->uniform_set_create(base_uniforms, rasterize_shader, 0);
 | |
| 	RID raster_depth_buffer;
 | |
| 	{
 | |
| 		RD::TextureFormat tf;
 | |
| 		tf.width = atlas_size.width;
 | |
| 		tf.height = atlas_size.height;
 | |
| 		tf.depth = 1;
 | |
| 		tf.texture_type = RD::TEXTURE_TYPE_2D;
 | |
| 		tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
 | |
| 		tf.format = RD::DATA_FORMAT_D32_SFLOAT;
 | |
| 		tf.is_discardable = true;
 | |
| 
 | |
| 		raster_depth_buffer = rd->texture_create(tf, RD::TextureView());
 | |
| 	}
 | |
| 
 | |
| 	rd->submit();
 | |
| 	rd->sync();
 | |
| 
 | |
| 	/* STEP 3: Raster the geometry to UV2 coords in the atlas textures GPU*/
 | |
| 
 | |
| 	_raster_geometry(rd, atlas_size, atlas_slices, grid_size, bounds, p_bias, slice_triangle_count, position_tex, unocclude_tex, normal_tex, raster_depth_buffer, rasterize_shader, raster_base_uniform);
 | |
| 
 | |
| #ifdef DEBUG_TEXTURES
 | |
| 
 | |
| 	for (int i = 0; i < atlas_slices; i++) {
 | |
| 		Vector<uint8_t> s = rd->texture_get_data(position_tex, i);
 | |
| 		Ref<Image> img = Image::create_from_data(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBAF, s);
 | |
| 		img->save_exr("res://1_position_" + itos(i) + ".exr", false);
 | |
| 
 | |
| 		s = rd->texture_get_data(normal_tex, i);
 | |
| 		img->set_data(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBAH, s);
 | |
| 		img->save_exr("res://1_normal_" + itos(i) + ".exr", false);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| #define FREE_RASTER_RESOURCES   \
 | |
| 	rd->free(rasterize_shader); \
 | |
| 	rd->free(sampler);          \
 | |
| 	rd->free(raster_depth_buffer);
 | |
| 
 | |
| 	/* Plot direct light */
 | |
| 
 | |
| 	Ref<RDShaderFile> compute_shader;
 | |
| 	String defines = "";
 | |
| 	defines += "\n#define CLUSTER_SIZE " + uitos(cluster_size) + "\n";
 | |
| 
 | |
| 	if (p_bake_sh) {
 | |
| 		defines += "\n#define USE_SH_LIGHTMAPS\n";
 | |
| 	}
 | |
| 
 | |
| 	if (p_texture_for_bounces) {
 | |
| 		defines += "\n#define USE_LIGHT_TEXTURE_FOR_BOUNCES\n";
 | |
| 	}
 | |
| 
 | |
| 	if (p_bake_shadowmask) {
 | |
| 		defines += "\n#define USE_SHADOWMASK\n";
 | |
| 	}
 | |
| 
 | |
| 	compute_shader.instantiate();
 | |
| 	err = compute_shader->parse_versions_from_text(lm_compute_shader_glsl, defines);
 | |
| 	if (err != OK) {
 | |
| 		FREE_TEXTURES
 | |
| 		FREE_BUFFERS
 | |
| 		FREE_RASTER_RESOURCES
 | |
| 		memdelete(rd);
 | |
| 
 | |
| 		if (rcd != nullptr) {
 | |
| 			memdelete(rcd);
 | |
| 		}
 | |
| 
 | |
| 		compute_shader->print_errors("compute_shader");
 | |
| 	}
 | |
| 	ERR_FAIL_COND_V(err != OK, BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES);
 | |
| 
 | |
| 	// Unoccluder
 | |
| 	RID compute_shader_unocclude = rd->shader_create_from_spirv(compute_shader->get_spirv_stages("unocclude"));
 | |
| 	ERR_FAIL_COND_V(compute_shader_unocclude.is_null(), BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES); // internal check, should not happen
 | |
| 	RID compute_shader_unocclude_pipeline = rd->compute_pipeline_create(compute_shader_unocclude);
 | |
| 
 | |
| 	// Direct light
 | |
| 	RID compute_shader_primary = rd->shader_create_from_spirv(compute_shader->get_spirv_stages("primary"));
 | |
| 	ERR_FAIL_COND_V(compute_shader_primary.is_null(), BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES); // internal check, should not happen
 | |
| 	RID compute_shader_primary_pipeline = rd->compute_pipeline_create(compute_shader_primary);
 | |
| 
 | |
| 	// Indirect light
 | |
| 	RID compute_shader_secondary = rd->shader_create_from_spirv(compute_shader->get_spirv_stages("secondary"));
 | |
| 	ERR_FAIL_COND_V(compute_shader_secondary.is_null(), BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES); //internal check, should not happen
 | |
| 	RID compute_shader_secondary_pipeline = rd->compute_pipeline_create(compute_shader_secondary);
 | |
| 
 | |
| 	// Light probes
 | |
| 	RID compute_shader_light_probes = rd->shader_create_from_spirv(compute_shader->get_spirv_stages("light_probes"));
 | |
| 	ERR_FAIL_COND_V(compute_shader_light_probes.is_null(), BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES); //internal check, should not happen
 | |
| 	RID compute_shader_light_probes_pipeline = rd->compute_pipeline_create(compute_shader_light_probes);
 | |
| 
 | |
| 	RID compute_base_uniform_set = rd->uniform_set_create(base_uniforms, compute_shader_primary, 0);
 | |
| 
 | |
| #define FREE_COMPUTE_RESOURCES          \
 | |
| 	rd->free(compute_shader_unocclude); \
 | |
| 	rd->free(compute_shader_primary);   \
 | |
| 	rd->free(compute_shader_secondary); \
 | |
| 	rd->free(compute_shader_light_probes);
 | |
| 
 | |
| 	Vector3i group_size(Math::division_round_up(atlas_size.x, 8), Math::division_round_up(atlas_size.y, 8), 1);
 | |
| 	rd->submit();
 | |
| 	rd->sync();
 | |
| 
 | |
| 	if (p_step_function) {
 | |
| 		if (p_step_function(0.49, RTR("Un-occluding geometry"), p_bake_userdata, true)) {
 | |
| 			FREE_TEXTURES
 | |
| 			FREE_BUFFERS
 | |
| 			FREE_RASTER_RESOURCES
 | |
| 			FREE_COMPUTE_RESOURCES
 | |
| 			memdelete(rd);
 | |
| 			if (rcd != nullptr) {
 | |
| 				memdelete(rcd);
 | |
| 			}
 | |
| 			return BAKE_ERROR_USER_ABORTED;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	PushConstant push_constant;
 | |
| 	push_constant.denoiser_range = p_use_denoiser ? p_denoiser_range : 1.0;
 | |
| 
 | |
| 	/* UNOCCLUDE */
 | |
| 	{
 | |
| 		Vector<RD::Uniform> uniforms;
 | |
| 		{
 | |
| 			{
 | |
| 				RD::Uniform u;
 | |
| 				u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
 | |
| 				u.binding = 0;
 | |
| 				u.append_id(position_tex);
 | |
| 				uniforms.push_back(u);
 | |
| 			}
 | |
| 			{
 | |
| 				RD::Uniform u;
 | |
| 				u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
 | |
| 				u.binding = 1;
 | |
| 				u.append_id(unocclude_tex);
 | |
| 				uniforms.push_back(u);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		RID unocclude_uniform_set = rd->uniform_set_create(uniforms, compute_shader_unocclude, 1);
 | |
| 
 | |
| 		RD::ComputeListID compute_list = rd->compute_list_begin();
 | |
| 		rd->compute_list_bind_compute_pipeline(compute_list, compute_shader_unocclude_pipeline);
 | |
| 		rd->compute_list_bind_uniform_set(compute_list, compute_base_uniform_set, 0);
 | |
| 		rd->compute_list_bind_uniform_set(compute_list, unocclude_uniform_set, 1);
 | |
| 
 | |
| 		for (int i = 0; i < atlas_slices; i++) {
 | |
| 			push_constant.atlas_slice = i;
 | |
| 			rd->compute_list_set_push_constant(compute_list, &push_constant, sizeof(PushConstant));
 | |
| 			rd->compute_list_dispatch(compute_list, group_size.x, group_size.y, group_size.z);
 | |
| 			//no barrier, let them run all together
 | |
| 		}
 | |
| 		rd->compute_list_end(); //done
 | |
| 	}
 | |
| 
 | |
| #ifdef DEBUG_TEXTURES
 | |
| 	for (int i = 0; i < atlas_slices; i++) {
 | |
| 		Vector<uint8_t> s = rd->texture_get_data(unocclude_tex, i);
 | |
| 		Ref<Image> img = Image::create_from_data(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBAF, s);
 | |
| 		img->save_exr("res://1_unocclude_" + itos(i) + ".exr", false);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	if (p_step_function) {
 | |
| 		if (p_step_function(0.5, RTR("Plot direct lighting"), p_bake_userdata, true)) {
 | |
| 			FREE_TEXTURES
 | |
| 			FREE_BUFFERS
 | |
| 			FREE_RASTER_RESOURCES
 | |
| 			FREE_COMPUTE_RESOURCES
 | |
| 			memdelete(rd);
 | |
| 			if (rcd != nullptr) {
 | |
| 				memdelete(rcd);
 | |
| 			}
 | |
| 			return BAKE_ERROR_USER_ABORTED;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	const int max_region_size = nearest_power_of_2_templated(int(GLOBAL_GET("rendering/lightmapping/bake_performance/region_size")));
 | |
| 	const int x_regions = Math::division_round_up(atlas_size.width, max_region_size);
 | |
| 	const int y_regions = Math::division_round_up(atlas_size.height, max_region_size);
 | |
| 
 | |
| 	// Set ray count to the quality used for direct light and bounces.
 | |
| 	switch (p_quality) {
 | |
| 		case BAKE_QUALITY_LOW: {
 | |
| 			push_constant.ray_count = GLOBAL_GET("rendering/lightmapping/bake_quality/low_quality_ray_count");
 | |
| 		} break;
 | |
| 		case BAKE_QUALITY_MEDIUM: {
 | |
| 			push_constant.ray_count = GLOBAL_GET("rendering/lightmapping/bake_quality/medium_quality_ray_count");
 | |
| 		} break;
 | |
| 		case BAKE_QUALITY_HIGH: {
 | |
| 			push_constant.ray_count = GLOBAL_GET("rendering/lightmapping/bake_quality/high_quality_ray_count");
 | |
| 		} break;
 | |
| 		case BAKE_QUALITY_ULTRA: {
 | |
| 			push_constant.ray_count = GLOBAL_GET("rendering/lightmapping/bake_quality/ultra_quality_ray_count");
 | |
| 		} break;
 | |
| 	}
 | |
| 
 | |
| 	push_constant.ray_count = CLAMP(push_constant.ray_count, 16u, 8192u);
 | |
| 
 | |
| 	/* PRIMARY (direct) LIGHT PASS */
 | |
| 	{
 | |
| 		Vector<RD::Uniform> uniforms;
 | |
| 		{
 | |
| 			{
 | |
| 				RD::Uniform u;
 | |
| 				u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
 | |
| 				u.binding = 0;
 | |
| 				u.append_id(light_source_tex);
 | |
| 				uniforms.push_back(u);
 | |
| 			}
 | |
| 			{
 | |
| 				RD::Uniform u;
 | |
| 				u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
 | |
| 				u.binding = 1;
 | |
| 				u.append_id(light_dest_tex); //will be unused
 | |
| 				uniforms.push_back(u);
 | |
| 			}
 | |
| 			{
 | |
| 				RD::Uniform u;
 | |
| 				u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
 | |
| 				u.binding = 2;
 | |
| 				u.append_id(position_tex);
 | |
| 				uniforms.push_back(u);
 | |
| 			}
 | |
| 			{
 | |
| 				RD::Uniform u;
 | |
| 				u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
 | |
| 				u.binding = 3;
 | |
| 				u.append_id(normal_tex);
 | |
| 				uniforms.push_back(u);
 | |
| 			}
 | |
| 			{
 | |
| 				RD::Uniform u;
 | |
| 				u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
 | |
| 				u.binding = 4;
 | |
| 				u.append_id(light_accum_tex);
 | |
| 				uniforms.push_back(u);
 | |
| 			}
 | |
| 
 | |
| 			if (p_bake_shadowmask) {
 | |
| 				RD::Uniform u;
 | |
| 				u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
 | |
| 				u.binding = 5;
 | |
| 				u.append_id(shadowmask_tex);
 | |
| 				uniforms.push_back(u);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		RID light_uniform_set = rd->uniform_set_create(uniforms, compute_shader_primary, 1);
 | |
| 
 | |
| 		int count = 0;
 | |
| 		for (int s = 0; s < atlas_slices; s++) {
 | |
| 			push_constant.atlas_slice = s;
 | |
| 
 | |
| 			for (int i = 0; i < x_regions; i++) {
 | |
| 				for (int j = 0; j < y_regions; j++) {
 | |
| 					int x = i * max_region_size;
 | |
| 					int y = j * max_region_size;
 | |
| 					int w = MIN((i + 1) * max_region_size, atlas_size.width) - x;
 | |
| 					int h = MIN((j + 1) * max_region_size, atlas_size.height) - y;
 | |
| 
 | |
| 					push_constant.region_ofs[0] = x;
 | |
| 					push_constant.region_ofs[1] = y;
 | |
| 
 | |
| 					group_size = Vector3i(Math::division_round_up(w, 8), Math::division_round_up(h, 8), 1);
 | |
| 					RD::ComputeListID compute_list = rd->compute_list_begin();
 | |
| 					rd->compute_list_bind_compute_pipeline(compute_list, compute_shader_primary_pipeline);
 | |
| 					rd->compute_list_bind_uniform_set(compute_list, compute_base_uniform_set, 0);
 | |
| 					rd->compute_list_bind_uniform_set(compute_list, light_uniform_set, 1);
 | |
| 					rd->compute_list_set_push_constant(compute_list, &push_constant, sizeof(PushConstant));
 | |
| 					rd->compute_list_dispatch(compute_list, group_size.x, group_size.y, group_size.z);
 | |
| 					rd->compute_list_end();
 | |
| 
 | |
| 					rd->submit();
 | |
| 					rd->sync();
 | |
| 
 | |
| 					count++;
 | |
| 					if (p_step_function) {
 | |
| 						int total = (atlas_slices * x_regions * y_regions);
 | |
| 						int percent = count * 100 / total;
 | |
| 						float p = float(count) / total * 0.1;
 | |
| 						if (p_step_function(0.5 + p, vformat(RTR("Plot direct lighting %d%%"), percent), p_bake_userdata, false)) {
 | |
| 							FREE_TEXTURES
 | |
| 							FREE_BUFFERS
 | |
| 							FREE_RASTER_RESOURCES
 | |
| 							FREE_COMPUTE_RESOURCES
 | |
| 							memdelete(rd);
 | |
| 							if (rcd != nullptr) {
 | |
| 								memdelete(rcd);
 | |
| 							}
 | |
| 							return BAKE_ERROR_USER_ABORTED;
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| #ifdef DEBUG_TEXTURES
 | |
| 
 | |
| 	for (int i = 0; i < atlas_slices; i++) {
 | |
| 		Vector<uint8_t> s = rd->texture_get_data(light_source_tex, i);
 | |
| 		Ref<Image> img = Image::create_from_data(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBAH, s);
 | |
| 		img->save_exr("res://2_light_primary_" + itos(i) + ".exr", false);
 | |
| 	}
 | |
| 
 | |
| 	if (p_bake_sh) {
 | |
| 		for (int i = 0; i < atlas_slices * 4; i++) {
 | |
| 			Vector<uint8_t> s = rd->texture_get_data(light_accum_tex, i);
 | |
| 			Ref<Image> img = Image::create_from_data(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBAH, s);
 | |
| 			img->save_exr("res://2_light_primary_accum_" + itos(i) + ".exr", false);
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/* SECONDARY (indirect) LIGHT PASS(ES) */
 | |
| 
 | |
| 	if (p_bounces > 0) {
 | |
| 		Vector<RD::Uniform> uniforms;
 | |
| 		{
 | |
| 			{
 | |
| 				// Unused.
 | |
| 				RD::Uniform u;
 | |
| 				u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
 | |
| 				u.binding = 0;
 | |
| 				u.append_id(light_dest_tex);
 | |
| 				uniforms.push_back(u);
 | |
| 			}
 | |
| 			{
 | |
| 				RD::Uniform u;
 | |
| 				u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
 | |
| 				u.binding = 1;
 | |
| 				u.append_id(light_source_tex);
 | |
| 				uniforms.push_back(u);
 | |
| 			}
 | |
| 			{
 | |
| 				RD::Uniform u;
 | |
| 				u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
 | |
| 				u.binding = 2;
 | |
| 				u.append_id(position_tex);
 | |
| 				uniforms.push_back(u);
 | |
| 			}
 | |
| 			{
 | |
| 				RD::Uniform u;
 | |
| 				u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
 | |
| 				u.binding = 3;
 | |
| 				u.append_id(normal_tex);
 | |
| 				uniforms.push_back(u);
 | |
| 			}
 | |
| 			{
 | |
| 				RD::Uniform u;
 | |
| 				u.uniform_type = RD::UNIFORM_TYPE_IMAGE;
 | |
| 				u.binding = 4;
 | |
| 				u.append_id(light_accum_tex);
 | |
| 				uniforms.push_back(u);
 | |
| 			}
 | |
| 			{
 | |
| 				RD::Uniform u;
 | |
| 				u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
 | |
| 				u.binding = 5;
 | |
| 				u.append_id(light_environment_tex);
 | |
| 				uniforms.push_back(u);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		RID secondary_uniform_set;
 | |
| 		secondary_uniform_set = rd->uniform_set_create(uniforms, compute_shader_secondary, 1);
 | |
| 
 | |
| 		const int max_rays = GLOBAL_GET("rendering/lightmapping/bake_performance/max_rays_per_pass");
 | |
| 		int ray_iterations = Math::division_round_up((int32_t)push_constant.ray_count, max_rays);
 | |
| 
 | |
| 		if (p_step_function) {
 | |
| 			if (p_step_function(0.6, RTR("Integrate indirect lighting"), p_bake_userdata, true)) {
 | |
| 				FREE_TEXTURES
 | |
| 				FREE_BUFFERS
 | |
| 				FREE_RASTER_RESOURCES
 | |
| 				FREE_COMPUTE_RESOURCES
 | |
| 				memdelete(rd);
 | |
| 				if (rcd != nullptr) {
 | |
| 					memdelete(rcd);
 | |
| 				}
 | |
| 				return BAKE_ERROR_USER_ABORTED;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		int count = 0;
 | |
| 		for (int s = 0; s < atlas_slices; s++) {
 | |
| 			push_constant.atlas_slice = s;
 | |
| 
 | |
| 			for (int i = 0; i < x_regions; i++) {
 | |
| 				for (int j = 0; j < y_regions; j++) {
 | |
| 					int x = i * max_region_size;
 | |
| 					int y = j * max_region_size;
 | |
| 					int w = MIN((i + 1) * max_region_size, atlas_size.width) - x;
 | |
| 					int h = MIN((j + 1) * max_region_size, atlas_size.height) - y;
 | |
| 
 | |
| 					push_constant.region_ofs[0] = x;
 | |
| 					push_constant.region_ofs[1] = y;
 | |
| 
 | |
| 					group_size = Vector3i(Math::division_round_up(w, 8), Math::division_round_up(h, 8), 1);
 | |
| 
 | |
| 					for (int k = 0; k < ray_iterations; k++) {
 | |
| 						RD::ComputeListID compute_list = rd->compute_list_begin();
 | |
| 						rd->compute_list_bind_compute_pipeline(compute_list, compute_shader_secondary_pipeline);
 | |
| 						rd->compute_list_bind_uniform_set(compute_list, compute_base_uniform_set, 0);
 | |
| 						rd->compute_list_bind_uniform_set(compute_list, secondary_uniform_set, 1);
 | |
| 
 | |
| 						push_constant.ray_from = k * max_rays;
 | |
| 						push_constant.ray_to = MIN((k + 1) * max_rays, int32_t(push_constant.ray_count));
 | |
| 						rd->compute_list_set_push_constant(compute_list, &push_constant, sizeof(PushConstant));
 | |
| 						rd->compute_list_dispatch(compute_list, group_size.x, group_size.y, group_size.z);
 | |
| 
 | |
| 						rd->compute_list_end();
 | |
| 						rd->submit();
 | |
| 						rd->sync();
 | |
| 
 | |
| 						count++;
 | |
| 						if (p_step_function) {
 | |
| 							int total = (atlas_slices * x_regions * y_regions * ray_iterations);
 | |
| 							int percent = count * 100 / total;
 | |
| 							float p = float(count) / total * 0.1;
 | |
| 							if (p_step_function(0.6 + p, vformat(RTR("Integrate indirect lighting %d%%"), percent), p_bake_userdata, false)) {
 | |
| 								FREE_TEXTURES
 | |
| 								FREE_BUFFERS
 | |
| 								FREE_RASTER_RESOURCES
 | |
| 								FREE_COMPUTE_RESOURCES
 | |
| 								memdelete(rd);
 | |
| 								if (rcd != nullptr) {
 | |
| 									memdelete(rcd);
 | |
| 								}
 | |
| 								return BAKE_ERROR_USER_ABORTED;
 | |
| 							}
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* LIGHTPROBES */
 | |
| 
 | |
| 	RID light_probe_buffer;
 | |
| 
 | |
| 	if (probe_positions.size()) {
 | |
| 		light_probe_buffer = rd->storage_buffer_create(sizeof(float) * 4 * 9 * probe_positions.size());
 | |
| 
 | |
| 		if (p_step_function) {
 | |
| 			if (p_step_function(0.7, RTR("Baking light probes"), p_bake_userdata, true)) {
 | |
| 				FREE_TEXTURES
 | |
| 				FREE_BUFFERS
 | |
| 				FREE_RASTER_RESOURCES
 | |
| 				FREE_COMPUTE_RESOURCES
 | |
| 				if (probe_positions.size() > 0) {
 | |
| 					rd->free(light_probe_buffer);
 | |
| 				}
 | |
| 				memdelete(rd);
 | |
| 				if (rcd != nullptr) {
 | |
| 					memdelete(rcd);
 | |
| 				}
 | |
| 				return BAKE_ERROR_USER_ABORTED;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		Vector<RD::Uniform> uniforms;
 | |
| 		{
 | |
| 			{
 | |
| 				RD::Uniform u;
 | |
| 				u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
 | |
| 				u.binding = 0;
 | |
| 				u.append_id(light_probe_buffer);
 | |
| 				uniforms.push_back(u);
 | |
| 			}
 | |
| 			{
 | |
| 				RD::Uniform u;
 | |
| 				u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
 | |
| 				u.binding = 1;
 | |
| 				u.append_id(light_source_tex);
 | |
| 				uniforms.push_back(u);
 | |
| 			}
 | |
| 			{
 | |
| 				RD::Uniform u;
 | |
| 				u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
 | |
| 				u.binding = 2;
 | |
| 				u.append_id(light_environment_tex);
 | |
| 				uniforms.push_back(u);
 | |
| 			}
 | |
| 		}
 | |
| 		RID light_probe_uniform_set = rd->uniform_set_create(uniforms, compute_shader_light_probes, 1);
 | |
| 
 | |
| 		switch (p_quality) {
 | |
| 			case BAKE_QUALITY_LOW: {
 | |
| 				push_constant.ray_count = GLOBAL_GET("rendering/lightmapping/bake_quality/low_quality_probe_ray_count");
 | |
| 			} break;
 | |
| 			case BAKE_QUALITY_MEDIUM: {
 | |
| 				push_constant.ray_count = GLOBAL_GET("rendering/lightmapping/bake_quality/medium_quality_probe_ray_count");
 | |
| 			} break;
 | |
| 			case BAKE_QUALITY_HIGH: {
 | |
| 				push_constant.ray_count = GLOBAL_GET("rendering/lightmapping/bake_quality/high_quality_probe_ray_count");
 | |
| 			} break;
 | |
| 			case BAKE_QUALITY_ULTRA: {
 | |
| 				push_constant.ray_count = GLOBAL_GET("rendering/lightmapping/bake_quality/ultra_quality_probe_ray_count");
 | |
| 			} break;
 | |
| 		}
 | |
| 
 | |
| 		push_constant.ray_count = CLAMP(push_constant.ray_count, 16u, 8192u);
 | |
| 		push_constant.probe_count = probe_positions.size();
 | |
| 
 | |
| 		int max_rays = GLOBAL_GET("rendering/lightmapping/bake_performance/max_rays_per_probe_pass");
 | |
| 		int ray_iterations = Math::division_round_up((int32_t)push_constant.ray_count, max_rays);
 | |
| 
 | |
| 		for (int i = 0; i < ray_iterations; i++) {
 | |
| 			RD::ComputeListID compute_list = rd->compute_list_begin();
 | |
| 			rd->compute_list_bind_compute_pipeline(compute_list, compute_shader_light_probes_pipeline);
 | |
| 			rd->compute_list_bind_uniform_set(compute_list, compute_base_uniform_set, 0);
 | |
| 			rd->compute_list_bind_uniform_set(compute_list, light_probe_uniform_set, 1);
 | |
| 
 | |
| 			push_constant.ray_from = i * max_rays;
 | |
| 			push_constant.ray_to = MIN((i + 1) * max_rays, int32_t(push_constant.ray_count));
 | |
| 			rd->compute_list_set_push_constant(compute_list, &push_constant, sizeof(PushConstant));
 | |
| 			rd->compute_list_dispatch(compute_list, Math::division_round_up((int)probe_positions.size(), 64), 1, 1);
 | |
| 
 | |
| 			rd->compute_list_end(); //done
 | |
| 			rd->submit();
 | |
| 			rd->sync();
 | |
| 
 | |
| 			if (p_step_function) {
 | |
| 				int percent = i * 100 / ray_iterations;
 | |
| 				float p = float(i) / ray_iterations * 0.1;
 | |
| 				if (p_step_function(0.7 + p, vformat(RTR("Integrating light probes %d%%"), percent), p_bake_userdata, false)) {
 | |
| 					FREE_TEXTURES
 | |
| 					FREE_BUFFERS
 | |
| 					FREE_RASTER_RESOURCES
 | |
| 					FREE_COMPUTE_RESOURCES
 | |
| 					if (probe_positions.size() > 0) {
 | |
| 						rd->free(light_probe_buffer);
 | |
| 					}
 | |
| 					memdelete(rd);
 | |
| 					if (rcd != nullptr) {
 | |
| 						memdelete(rcd);
 | |
| 					}
 | |
| 					return BAKE_ERROR_USER_ABORTED;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| #if 0
 | |
| 	for (int i = 0; i < probe_positions.size(); i++) {
 | |
| 		Ref<Image> img = Image::create_empty(6, 4, false, Image::FORMAT_RGB8);
 | |
| 		for (int j = 0; j < 6; j++) {
 | |
| 			Vector<uint8_t> s = rd->texture_get_data(lightprobe_tex, i * 6 + j);
 | |
| 			Ref<Image> img2 = Image::create_from_data(2, 2, false, Image::FORMAT_RGBAF, s);
 | |
| 			img2->convert(Image::FORMAT_RGB8);
 | |
| 			img->blit_rect(img2, Rect2i(0, 0, 2, 2), Point2i((j % 3) * 2, (j / 3) * 2));
 | |
| 		}
 | |
| 		img->save_png("res://3_light_probe_" + itos(i) + ".png");
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/* DENOISE */
 | |
| 
 | |
| 	if (p_use_denoiser) {
 | |
| 		if (p_step_function) {
 | |
| 			if (p_step_function(0.8, RTR("Denoising"), p_bake_userdata, true)) {
 | |
| 				FREE_TEXTURES
 | |
| 				FREE_BUFFERS
 | |
| 				FREE_RASTER_RESOURCES
 | |
| 				FREE_COMPUTE_RESOURCES
 | |
| 				if (probe_positions.size() > 0) {
 | |
| 					rd->free(light_probe_buffer);
 | |
| 				}
 | |
| 				memdelete(rd);
 | |
| 				if (rcd != nullptr) {
 | |
| 					memdelete(rcd);
 | |
| 				}
 | |
| 				return BAKE_ERROR_USER_ABORTED;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		{
 | |
| 			BakeError error;
 | |
| 			if (denoiser == 1) {
 | |
| 				// OIDN (external).
 | |
| 				error = _denoise_oidn(rd, light_accum_tex, normal_tex, light_accum_tex, atlas_size, atlas_slices, p_bake_sh, false, oidn_path);
 | |
| 			} else {
 | |
| 				// JNLM (built-in).
 | |
| 				SWAP(light_accum_tex, light_accum_tex2);
 | |
| 				error = _denoise(rd, compute_shader, compute_base_uniform_set, push_constant, light_accum_tex2, normal_tex, light_accum_tex, unocclude_tex, p_denoiser_strength, p_denoiser_range, atlas_size, atlas_slices, p_bake_sh, p_step_function, p_bake_userdata);
 | |
| 			}
 | |
| 			if (unlikely(error != BAKE_OK)) {
 | |
| 				return error;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (p_bake_shadowmask) {
 | |
| 			BakeError error;
 | |
| 			if (denoiser == 1) {
 | |
| 				// OIDN (external).
 | |
| 				error = _denoise_oidn(rd, shadowmask_tex, normal_tex, shadowmask_tex, atlas_size, atlas_slices, false, true, oidn_path);
 | |
| 			} else {
 | |
| 				// JNLM (built-in).
 | |
| 				SWAP(shadowmask_tex, shadowmask_tex2);
 | |
| 				error = _denoise(rd, compute_shader, compute_base_uniform_set, push_constant, shadowmask_tex2, normal_tex, shadowmask_tex, unocclude_tex, p_denoiser_strength, p_denoiser_range, atlas_size, atlas_slices, false, p_step_function, p_bake_userdata);
 | |
| 			}
 | |
| 			if (unlikely(error != BAKE_OK)) {
 | |
| 				return error;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* DILATE */
 | |
| 
 | |
| 	{
 | |
| 		SWAP(light_accum_tex, light_accum_tex2);
 | |
| 		BakeError error = _dilate(rd, compute_shader, compute_base_uniform_set, push_constant, light_accum_tex2, light_accum_tex, atlas_size, atlas_slices * (p_bake_sh ? 4 : 1));
 | |
| 		if (unlikely(error != BAKE_OK)) {
 | |
| 			return error;
 | |
| 		}
 | |
| 
 | |
| 		if (p_bake_shadowmask) {
 | |
| 			SWAP(shadowmask_tex, shadowmask_tex2);
 | |
| 			error = _dilate(rd, compute_shader, compute_base_uniform_set, push_constant, shadowmask_tex2, shadowmask_tex, atlas_size, atlas_slices);
 | |
| 			if (unlikely(error != BAKE_OK)) {
 | |
| 				return error;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| #ifdef DEBUG_TEXTURES
 | |
| 
 | |
| 	for (int i = 0; i < atlas_slices * (p_bake_sh ? 4 : 1); i++) {
 | |
| 		Vector<uint8_t> s = rd->texture_get_data(light_accum_tex, i);
 | |
| 		Ref<Image> img = Image::create_from_data(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBAH, s);
 | |
| 		img->save_exr("res://4_light_secondary_" + itos(i) + ".exr", false);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/* BLEND SEAMS */
 | |
| 	//shaders
 | |
| 	Ref<RDShaderFile> blendseams_shader;
 | |
| 	blendseams_shader.instantiate();
 | |
| 	err = blendseams_shader->parse_versions_from_text(lm_blendseams_shader_glsl);
 | |
| 	if (err != OK) {
 | |
| 		FREE_TEXTURES
 | |
| 		FREE_BUFFERS
 | |
| 		FREE_RASTER_RESOURCES
 | |
| 		FREE_COMPUTE_RESOURCES
 | |
| 		memdelete(rd);
 | |
| 
 | |
| 		if (rcd != nullptr) {
 | |
| 			memdelete(rcd);
 | |
| 		}
 | |
| 
 | |
| 		blendseams_shader->print_errors("blendseams_shader");
 | |
| 	}
 | |
| 	ERR_FAIL_COND_V(err != OK, BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES);
 | |
| 
 | |
| 	RID blendseams_line_raster_shader = rd->shader_create_from_spirv(blendseams_shader->get_spirv_stages("lines"));
 | |
| 
 | |
| 	ERR_FAIL_COND_V(blendseams_line_raster_shader.is_null(), BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES);
 | |
| 
 | |
| 	RID blendseams_triangle_raster_shader = rd->shader_create_from_spirv(blendseams_shader->get_spirv_stages("triangles"));
 | |
| 
 | |
| 	ERR_FAIL_COND_V(blendseams_triangle_raster_shader.is_null(), BAKE_ERROR_LIGHTMAP_CANT_PRE_BAKE_MESHES);
 | |
| 
 | |
| #define FREE_BLENDSEAMS_RESOURCES            \
 | |
| 	rd->free(blendseams_line_raster_shader); \
 | |
| 	rd->free(blendseams_triangle_raster_shader);
 | |
| 
 | |
| 	{
 | |
| 		//pre copy
 | |
| 		for (int i = 0; i < atlas_slices * (p_bake_sh ? 4 : 1); i++) {
 | |
| 			rd->texture_copy(light_accum_tex, light_accum_tex2, Vector3(), Vector3(), Vector3(atlas_size.width, atlas_size.height, 1), 0, 0, i, i);
 | |
| 		}
 | |
| 
 | |
| 		Vector<RID> framebuffers;
 | |
| 		for (int i = 0; i < atlas_slices * (p_bake_sh ? 4 : 1); i++) {
 | |
| 			RID slice_tex = rd->texture_create_shared_from_slice(RD::TextureView(), light_accum_tex, i, 0);
 | |
| 			Vector<RID> fb;
 | |
| 			fb.push_back(slice_tex);
 | |
| 			fb.push_back(raster_depth_buffer);
 | |
| 			framebuffers.push_back(rd->framebuffer_create(fb));
 | |
| 		}
 | |
| 
 | |
| 		Vector<RD::Uniform> uniforms;
 | |
| 		{
 | |
| 			{
 | |
| 				RD::Uniform u;
 | |
| 				u.uniform_type = RD::UNIFORM_TYPE_TEXTURE;
 | |
| 				u.binding = 0;
 | |
| 				u.append_id(light_accum_tex2);
 | |
| 				uniforms.push_back(u);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		RID blendseams_raster_uniform = rd->uniform_set_create(uniforms, blendseams_line_raster_shader, 1);
 | |
| 
 | |
| 		bool debug = false;
 | |
| 		RD::PipelineColorBlendState bs = RD::PipelineColorBlendState::create_blend(1);
 | |
| 		bs.attachments.write[0].src_alpha_blend_factor = RD::BLEND_FACTOR_ZERO;
 | |
| 		bs.attachments.write[0].dst_alpha_blend_factor = RD::BLEND_FACTOR_ONE;
 | |
| 
 | |
| 		RD::PipelineDepthStencilState ds;
 | |
| 		ds.enable_depth_test = true;
 | |
| 		ds.enable_depth_write = true;
 | |
| 		ds.depth_compare_operator = RD::COMPARE_OP_LESS; //so it does not render same pixel twice, this avoids wrong blending
 | |
| 
 | |
| 		RID blendseams_line_raster_pipeline = rd->render_pipeline_create(blendseams_line_raster_shader, rd->framebuffer_get_format(framebuffers[0]), RD::INVALID_FORMAT_ID, RD::RENDER_PRIMITIVE_LINES, RD::PipelineRasterizationState(), RD::PipelineMultisampleState(), ds, bs, 0);
 | |
| 		RID blendseams_triangle_raster_pipeline = rd->render_pipeline_create(blendseams_triangle_raster_shader, rd->framebuffer_get_format(framebuffers[0]), RD::INVALID_FORMAT_ID, RD::RENDER_PRIMITIVE_TRIANGLES, RD::PipelineRasterizationState(), RD::PipelineMultisampleState(), ds, bs, 0);
 | |
| 
 | |
| 		uint32_t seam_offset = 0;
 | |
| 		uint32_t triangle_offset = 0;
 | |
| 
 | |
| 		for (int i = 0; i < atlas_slices; i++) {
 | |
| 			int subslices = (p_bake_sh ? 4 : 1);
 | |
| 
 | |
| 			if (slice_seam_count[i] == 0) {
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			for (int k = 0; k < subslices; k++) {
 | |
| 				RasterSeamsPushConstant seams_push_constant;
 | |
| 				seams_push_constant.slice = uint32_t(i * subslices + k);
 | |
| 				seams_push_constant.debug = debug;
 | |
| 
 | |
| 				// Store the current subslice in the breadcrumb.
 | |
| 				RD::DrawListID draw_list = rd->draw_list_begin(framebuffers[i * subslices + k], RD::DRAW_CLEAR_DEPTH, Vector<Color>(), 1.0f, 0, Rect2(), RDD::BreadcrumbMarker::LIGHTMAPPER_PASS | seams_push_constant.slice);
 | |
| 
 | |
| 				rd->draw_list_bind_uniform_set(draw_list, raster_base_uniform, 0);
 | |
| 				rd->draw_list_bind_uniform_set(draw_list, blendseams_raster_uniform, 1);
 | |
| 
 | |
| 				const int uv_offset_count = 9;
 | |
| 				static const Vector3 uv_offsets[uv_offset_count] = {
 | |
| 					Vector3(0, 0, 0.5), //using zbuffer, so go inwards-outwards
 | |
| 					Vector3(0, 1, 0.2),
 | |
| 					Vector3(0, -1, 0.2),
 | |
| 					Vector3(1, 0, 0.2),
 | |
| 					Vector3(-1, 0, 0.2),
 | |
| 					Vector3(-1, -1, 0.1),
 | |
| 					Vector3(1, -1, 0.1),
 | |
| 					Vector3(1, 1, 0.1),
 | |
| 					Vector3(-1, 1, 0.1),
 | |
| 				};
 | |
| 
 | |
| 				/* step 1 use lines to blend the edges */
 | |
| 				{
 | |
| 					seams_push_constant.base_index = seam_offset;
 | |
| 					rd->draw_list_bind_render_pipeline(draw_list, blendseams_line_raster_pipeline);
 | |
| 					seams_push_constant.uv_offset[0] = (uv_offsets[0].x - 0.5f) / float(atlas_size.width);
 | |
| 					seams_push_constant.uv_offset[1] = (uv_offsets[0].y - 0.5f) / float(atlas_size.height);
 | |
| 					seams_push_constant.blend = uv_offsets[0].z;
 | |
| 
 | |
| 					rd->draw_list_set_push_constant(draw_list, &seams_push_constant, sizeof(RasterSeamsPushConstant));
 | |
| 					rd->draw_list_draw(draw_list, false, 1, slice_seam_count[i] * 4);
 | |
| 				}
 | |
| 
 | |
| 				/* step 2 use triangles to mask the interior */
 | |
| 
 | |
| 				{
 | |
| 					seams_push_constant.base_index = triangle_offset;
 | |
| 					rd->draw_list_bind_render_pipeline(draw_list, blendseams_triangle_raster_pipeline);
 | |
| 					seams_push_constant.blend = 0; //do not draw them, just fill the z-buffer so its used as a mask
 | |
| 
 | |
| 					rd->draw_list_set_push_constant(draw_list, &seams_push_constant, sizeof(RasterSeamsPushConstant));
 | |
| 					rd->draw_list_draw(draw_list, false, 1, slice_triangle_count[i] * 3);
 | |
| 				}
 | |
| 				/* step 3 blend around the triangle */
 | |
| 
 | |
| 				rd->draw_list_bind_render_pipeline(draw_list, blendseams_line_raster_pipeline);
 | |
| 
 | |
| 				for (int j = 1; j < uv_offset_count; j++) {
 | |
| 					seams_push_constant.base_index = seam_offset;
 | |
| 					seams_push_constant.uv_offset[0] = (uv_offsets[j].x - 0.5f) / float(atlas_size.width);
 | |
| 					seams_push_constant.uv_offset[1] = (uv_offsets[j].y - 0.5f) / float(atlas_size.height);
 | |
| 					seams_push_constant.blend = uv_offsets[0].z;
 | |
| 
 | |
| 					rd->draw_list_set_push_constant(draw_list, &seams_push_constant, sizeof(RasterSeamsPushConstant));
 | |
| 					rd->draw_list_draw(draw_list, false, 1, slice_seam_count[i] * 4);
 | |
| 				}
 | |
| 				rd->draw_list_end();
 | |
| 			}
 | |
| 			seam_offset += slice_seam_count[i];
 | |
| 			triangle_offset += slice_triangle_count[i];
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (p_bake_sh) {
 | |
| 		SWAP(light_accum_tex, light_accum_tex2);
 | |
| 		BakeError error = _pack_l1(rd, compute_shader, compute_base_uniform_set, push_constant, light_accum_tex2, light_accum_tex, atlas_size, atlas_slices);
 | |
| 		if (unlikely(error != BAKE_OK)) {
 | |
| 			return error;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| #ifdef DEBUG_TEXTURES
 | |
| 
 | |
| 	for (int i = 0; i < atlas_slices * (p_bake_sh ? 4 : 1); i++) {
 | |
| 		Vector<uint8_t> s = rd->texture_get_data(light_accum_tex, i);
 | |
| 		Ref<Image> img = Image::create_from_data(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBAH, s);
 | |
| 		img->save_exr("res://5_blendseams" + itos(i) + ".exr", false);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	if (p_step_function) {
 | |
| 		p_step_function(0.9, RTR("Retrieving textures"), p_bake_userdata, true);
 | |
| 	}
 | |
| 
 | |
| 	for (int i = 0; i < atlas_slices * (p_bake_sh ? 4 : 1); i++) {
 | |
| 		Vector<uint8_t> s = rd->texture_get_data(light_accum_tex, i);
 | |
| 		Ref<Image> img = Image::create_from_data(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBAH, s);
 | |
| 		img->convert(Image::FORMAT_RGBH); //remove alpha
 | |
| 		lightmap_textures.push_back(img);
 | |
| 	}
 | |
| 
 | |
| 	if (p_bake_shadowmask) {
 | |
| 		for (int i = 0; i < atlas_slices; i++) {
 | |
| 			Vector<uint8_t> s = rd->texture_get_data(shadowmask_tex, i);
 | |
| 			Ref<Image> img = Image::create_from_data(atlas_size.width, atlas_size.height, false, Image::FORMAT_RGBA8, s);
 | |
| 			img->convert(Image::FORMAT_R8);
 | |
| 			shadowmask_textures.push_back(img);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (probe_positions.size() > 0) {
 | |
| 		probe_values.resize(probe_positions.size() * 9);
 | |
| 		Vector<uint8_t> probe_data = rd->buffer_get_data(light_probe_buffer);
 | |
| 		memcpy(probe_values.ptrw(), probe_data.ptr(), probe_data.size());
 | |
| 		rd->free(light_probe_buffer);
 | |
| 
 | |
| #ifdef DEBUG_TEXTURES
 | |
| 		{
 | |
| 			Ref<Image> img2 = Image::create_from_data(probe_values.size(), 1, false, Image::FORMAT_RGBAF, probe_data);
 | |
| 			img2->save_exr("res://6_lightprobes.exr", false);
 | |
| 		}
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	FREE_TEXTURES
 | |
| 	FREE_BUFFERS
 | |
| 	FREE_RASTER_RESOURCES
 | |
| 	FREE_COMPUTE_RESOURCES
 | |
| 	FREE_BLENDSEAMS_RESOURCES
 | |
| 
 | |
| 	memdelete(rd);
 | |
| 
 | |
| 	if (rcd != nullptr) {
 | |
| 		memdelete(rcd);
 | |
| 	}
 | |
| 
 | |
| 	return BAKE_OK;
 | |
| }
 | |
| 
 | |
| int LightmapperRD::get_bake_texture_count() const {
 | |
| 	return lightmap_textures.size();
 | |
| }
 | |
| 
 | |
| Ref<Image> LightmapperRD::get_bake_texture(int p_index) const {
 | |
| 	ERR_FAIL_INDEX_V(p_index, lightmap_textures.size(), Ref<Image>());
 | |
| 	return lightmap_textures[p_index];
 | |
| }
 | |
| 
 | |
| int LightmapperRD::get_shadowmask_texture_count() const {
 | |
| 	return shadowmask_textures.size();
 | |
| }
 | |
| 
 | |
| Ref<Image> LightmapperRD::get_shadowmask_texture(int p_index) const {
 | |
| 	ERR_FAIL_INDEX_V(p_index, shadowmask_textures.size(), Ref<Image>());
 | |
| 	return shadowmask_textures[p_index];
 | |
| }
 | |
| 
 | |
| int LightmapperRD::get_bake_mesh_count() const {
 | |
| 	return mesh_instances.size();
 | |
| }
 | |
| 
 | |
| Variant LightmapperRD::get_bake_mesh_userdata(int p_index) const {
 | |
| 	ERR_FAIL_INDEX_V(p_index, mesh_instances.size(), Variant());
 | |
| 	return mesh_instances[p_index].data.userdata;
 | |
| }
 | |
| 
 | |
| Rect2 LightmapperRD::get_bake_mesh_uv_scale(int p_index) const {
 | |
| 	ERR_FAIL_COND_V(lightmap_textures.is_empty(), Rect2());
 | |
| 	Rect2 uv_ofs;
 | |
| 	Vector2 atlas_size = Vector2(lightmap_textures[0]->get_width(), lightmap_textures[0]->get_height());
 | |
| 	uv_ofs.position = Vector2(mesh_instances[p_index].offset) / atlas_size;
 | |
| 	uv_ofs.size = Vector2(mesh_instances[p_index].data.albedo_on_uv2->get_width(), mesh_instances[p_index].data.albedo_on_uv2->get_height()) / atlas_size;
 | |
| 	return uv_ofs;
 | |
| }
 | |
| 
 | |
| int LightmapperRD::get_bake_mesh_texture_slice(int p_index) const {
 | |
| 	ERR_FAIL_INDEX_V(p_index, mesh_instances.size(), Variant());
 | |
| 	return mesh_instances[p_index].slice;
 | |
| }
 | |
| 
 | |
| int LightmapperRD::get_bake_probe_count() const {
 | |
| 	return probe_positions.size();
 | |
| }
 | |
| 
 | |
| Vector3 LightmapperRD::get_bake_probe_point(int p_probe) const {
 | |
| 	ERR_FAIL_INDEX_V(p_probe, probe_positions.size(), Variant());
 | |
| 	return Vector3(probe_positions[p_probe].position[0], probe_positions[p_probe].position[1], probe_positions[p_probe].position[2]);
 | |
| }
 | |
| 
 | |
| Vector<Color> LightmapperRD::get_bake_probe_sh(int p_probe) const {
 | |
| 	ERR_FAIL_INDEX_V(p_probe, probe_positions.size(), Vector<Color>());
 | |
| 	Vector<Color> ret;
 | |
| 	ret.resize(9);
 | |
| 	memcpy(ret.ptrw(), &probe_values[p_probe * 9], sizeof(Color) * 9);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| LightmapperRD::LightmapperRD() {
 | |
| }
 | 
