mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-30 21:21:10 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1550 lines
		
	
	
	
		
			41 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1550 lines
		
	
	
	
		
			41 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //Copyright (C) 2011 by Ivan Fratric
 | ||
| //
 | ||
| //Permission is hereby granted, free of charge, to any person obtaining a copy
 | ||
| //of this software and associated documentation files (the "Software"), to deal
 | ||
| //in the Software without restriction, including without limitation the rights
 | ||
| //to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | ||
| //copies of the Software, and to permit persons to whom the Software is
 | ||
| //furnished to do so, subject to the following conditions:
 | ||
| //
 | ||
| //The above copyright notice and this permission notice shall be included in
 | ||
| //all copies or substantial portions of the Software.
 | ||
| //
 | ||
| //THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | ||
| //IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | ||
| //FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 | ||
| //AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | ||
| //LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | ||
| //OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 | ||
| //THE SOFTWARE.
 | ||
| 
 | ||
| 
 | ||
| #include <stdio.h>
 | ||
| #include <string.h>
 | ||
| #include <math.h>
 | ||
| 
 | ||
| #include "triangulator.h"
 | ||
| 
 | ||
| 
 | ||
| #define TRIANGULATOR_VERTEXTYPE_REGULAR 0
 | ||
| #define TRIANGULATOR_VERTEXTYPE_START 1
 | ||
| #define TRIANGULATOR_VERTEXTYPE_END 2
 | ||
| #define TRIANGULATOR_VERTEXTYPE_SPLIT 3
 | ||
| #define TRIANGULATOR_VERTEXTYPE_MERGE 4
 | ||
| 
 | ||
| TriangulatorPoly::TriangulatorPoly() {
 | ||
| 	hole = false;
 | ||
| 	numpoints = 0;
 | ||
| 	points = NULL;
 | ||
| }
 | ||
| 
 | ||
| TriangulatorPoly::~TriangulatorPoly() {
 | ||
| 	if(points) delete [] points;
 | ||
| }
 | ||
| 
 | ||
| void TriangulatorPoly::Clear() {
 | ||
| 	if(points) delete [] points;
 | ||
| 	hole = false;
 | ||
| 	numpoints = 0;
 | ||
| 	points = NULL;
 | ||
| }
 | ||
| 
 | ||
| void TriangulatorPoly::Init(long numpoints) {
 | ||
| 	Clear();
 | ||
| 	this->numpoints = numpoints;
 | ||
| 	points = new Vector2[numpoints];
 | ||
| }
 | ||
| 
 | ||
| void TriangulatorPoly::Triangle(Vector2 &p1, Vector2 &p2, Vector2 &p3) {
 | ||
| 	Init(3);
 | ||
| 	points[0] = p1;
 | ||
| 	points[1] = p2;
 | ||
| 	points[2] = p3;
 | ||
| }
 | ||
| 
 | ||
| TriangulatorPoly::TriangulatorPoly(const TriangulatorPoly &src) {
 | ||
| 	hole = src.hole;
 | ||
| 	numpoints = src.numpoints;
 | ||
| 	points = new Vector2[numpoints];
 | ||
| 	memcpy(points, src.points, numpoints*sizeof(Vector2));
 | ||
| }
 | ||
| 
 | ||
| TriangulatorPoly& TriangulatorPoly::operator=(const TriangulatorPoly &src) {
 | ||
| 	Clear();
 | ||
| 	hole = src.hole;
 | ||
| 	numpoints = src.numpoints;
 | ||
| 	points = new Vector2[numpoints];
 | ||
| 	memcpy(points, src.points, numpoints*sizeof(Vector2));
 | ||
| 	return *this;
 | ||
| }
 | ||
| 
 | ||
| int TriangulatorPoly::GetOrientation() {
 | ||
| 	long i1,i2;
 | ||
| 	real_t area = 0;
 | ||
| 	for(i1=0; i1<numpoints; i1++) {
 | ||
| 		i2 = i1+1;
 | ||
| 		if(i2 == numpoints) i2 = 0;
 | ||
| 		area += points[i1].x * points[i2].y - points[i1].y * points[i2].x;
 | ||
| 	}
 | ||
| 	if(area>0) return TRIANGULATOR_CCW;
 | ||
| 	if(area<0) return TRIANGULATOR_CW;
 | ||
| 	return 0;
 | ||
| }
 | ||
| 
 | ||
| void TriangulatorPoly::SetOrientation(int orientation) {
 | ||
| 	int polyorientation = GetOrientation();
 | ||
| 	if(polyorientation&&(polyorientation!=orientation)) {
 | ||
| 		Invert();
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| void TriangulatorPoly::Invert() {
 | ||
| 	long i;
 | ||
| 	Vector2 *invpoints;
 | ||
| 
 | ||
| 	invpoints = new Vector2[numpoints];
 | ||
| 	for(i=0;i<numpoints;i++) {
 | ||
| 		invpoints[i] = points[numpoints-i-1];
 | ||
| 	}
 | ||
| 
 | ||
| 	delete [] points;
 | ||
| 	points = invpoints;
 | ||
| }
 | ||
| 
 | ||
| Vector2 TriangulatorPartition::Normalize(const Vector2 &p) {
 | ||
| 	Vector2 r;
 | ||
| 	real_t n = sqrt(p.x*p.x + p.y*p.y);
 | ||
| 	if(n!=0) {
 | ||
| 		r = p/n;
 | ||
| 	} else {
 | ||
| 		r.x = 0;
 | ||
| 		r.y = 0;
 | ||
| 	}
 | ||
| 	return r;
 | ||
| }
 | ||
| 
 | ||
| real_t TriangulatorPartition::Distance(const Vector2 &p1, const Vector2 &p2) {
 | ||
| 	real_t dx,dy;
 | ||
| 	dx = p2.x - p1.x;
 | ||
| 	dy = p2.y - p1.y;
 | ||
| 	return(sqrt(dx*dx + dy*dy));
 | ||
| }
 | ||
| 
 | ||
| //checks if two lines intersect
 | ||
| int TriangulatorPartition::Intersects(Vector2 &p11, Vector2 &p12, Vector2 &p21, Vector2 &p22) {
 | ||
| 	if((p11.x == p21.x)&&(p11.y == p21.y)) return 0;
 | ||
| 	if((p11.x == p22.x)&&(p11.y == p22.y)) return 0;
 | ||
| 	if((p12.x == p21.x)&&(p12.y == p21.y)) return 0;
 | ||
| 	if((p12.x == p22.x)&&(p12.y == p22.y)) return 0;
 | ||
| 
 | ||
| 	Vector2 v1ort,v2ort,v;
 | ||
| 	real_t dot11,dot12,dot21,dot22;
 | ||
| 
 | ||
| 	v1ort.x = p12.y-p11.y;
 | ||
| 	v1ort.y = p11.x-p12.x;
 | ||
| 
 | ||
| 	v2ort.x = p22.y-p21.y;
 | ||
| 	v2ort.y = p21.x-p22.x;
 | ||
| 
 | ||
| 	v = p21-p11;
 | ||
| 	dot21 = v.x*v1ort.x + v.y*v1ort.y;
 | ||
| 	v = p22-p11;
 | ||
| 	dot22 = v.x*v1ort.x + v.y*v1ort.y;
 | ||
| 
 | ||
| 	v = p11-p21;
 | ||
| 	dot11 = v.x*v2ort.x + v.y*v2ort.y;
 | ||
| 	v = p12-p21;
 | ||
| 	dot12 = v.x*v2ort.x + v.y*v2ort.y;
 | ||
| 
 | ||
| 	if(dot11*dot12>0) return 0;
 | ||
| 	if(dot21*dot22>0) return 0;
 | ||
| 
 | ||
| 	return 1;
 | ||
| }
 | ||
| 
 | ||
| //removes holes from inpolys by merging them with non-holes
 | ||
| int TriangulatorPartition::RemoveHoles(List<TriangulatorPoly> *inpolys, List<TriangulatorPoly> *outpolys) {
 | ||
| 	List<TriangulatorPoly> polys;
 | ||
| 	List<TriangulatorPoly>::Element *holeiter,*polyiter,*iter,*iter2;
 | ||
| 	long i,i2,holepointindex,polypointindex;
 | ||
| 	Vector2 holepoint,polypoint,bestpolypoint;
 | ||
| 	Vector2 linep1,linep2;
 | ||
| 	Vector2 v1,v2;
 | ||
| 	TriangulatorPoly newpoly;
 | ||
| 	bool hasholes;
 | ||
| 	bool pointvisible;
 | ||
| 	bool pointfound;
 | ||
| 
 | ||
| 	//check for trivial case (no holes)
 | ||
| 	hasholes = false;
 | ||
| 	for(iter = inpolys->front(); iter; iter=iter->next()) {
 | ||
| 		if(iter->get().IsHole()) {
 | ||
| 			hasholes = true;
 | ||
| 			break;
 | ||
| 		}
 | ||
| 	}
 | ||
| 	if(!hasholes) {
 | ||
| 		for(iter = inpolys->front(); iter; iter=iter->next()) {
 | ||
| 			outpolys->push_back(iter->get());
 | ||
| 		}
 | ||
| 		return 1;
 | ||
| 	}
 | ||
| 
 | ||
| 	polys = *inpolys;
 | ||
| 
 | ||
| 	while(1) {
 | ||
| 		//find the hole point with the largest x
 | ||
| 		hasholes = false;
 | ||
| 		for(iter = polys.front(); iter; iter=iter->next()) {
 | ||
| 			if(!iter->get().IsHole()) continue;
 | ||
| 
 | ||
| 			if(!hasholes) {
 | ||
| 				hasholes = true;
 | ||
| 				holeiter = iter;
 | ||
| 				holepointindex = 0;
 | ||
| 			}
 | ||
| 
 | ||
| 			for(i=0; i < iter->get().GetNumPoints(); i++) {
 | ||
| 				if(iter->get().GetPoint(i).x > holeiter->get().GetPoint(holepointindex).x) {
 | ||
| 					holeiter = iter;
 | ||
| 					holepointindex = i;
 | ||
| 				}
 | ||
| 			}
 | ||
| 		}
 | ||
| 		if(!hasholes) break;
 | ||
| 		holepoint = holeiter->get().GetPoint(holepointindex);
 | ||
| 
 | ||
| 		pointfound = false;
 | ||
| 		for(iter = polys.front(); iter; iter=iter->next()) {
 | ||
| 			if(iter->get().IsHole()) continue;
 | ||
| 			for(i=0; i < iter->get().GetNumPoints(); i++) {
 | ||
| 				if(iter->get().GetPoint(i).x <= holepoint.x) continue;
 | ||
| 				if(!InCone(iter->get().GetPoint((i+iter->get().GetNumPoints()-1)%(iter->get().GetNumPoints())),
 | ||
| 					   iter->get().GetPoint(i),
 | ||
| 					   iter->get().GetPoint((i+1)%(iter->get().GetNumPoints())),
 | ||
| 					   holepoint))
 | ||
| 					continue;
 | ||
| 				polypoint = iter->get().GetPoint(i);
 | ||
| 				if(pointfound) {
 | ||
| 					v1 = Normalize(polypoint-holepoint);
 | ||
| 					v2 = Normalize(bestpolypoint-holepoint);
 | ||
| 					if(v2.x > v1.x) continue;
 | ||
| 				}
 | ||
| 				pointvisible = true;
 | ||
| 				for(iter2 = polys.front(); iter2; iter2=iter2->next()) {
 | ||
| 					if(iter2->get().IsHole()) continue;
 | ||
| 					for(i2=0; i2 < iter2->get().GetNumPoints(); i2++) {
 | ||
| 						linep1 = iter2->get().GetPoint(i2);
 | ||
| 						linep2 = iter2->get().GetPoint((i2+1)%(iter2->get().GetNumPoints()));
 | ||
| 						if(Intersects(holepoint,polypoint,linep1,linep2)) {
 | ||
| 							pointvisible = false;
 | ||
| 							break;
 | ||
| 						}
 | ||
| 					}
 | ||
| 					if(!pointvisible) break;
 | ||
| 				}
 | ||
| 				if(pointvisible) {
 | ||
| 					pointfound = true;
 | ||
| 					bestpolypoint = polypoint;
 | ||
| 					polyiter = iter;
 | ||
| 					polypointindex = i;
 | ||
| 				}
 | ||
| 			}
 | ||
| 		}
 | ||
| 
 | ||
| 		if(!pointfound) return 0;
 | ||
| 
 | ||
| 		newpoly.Init(holeiter->get().GetNumPoints() + polyiter->get().GetNumPoints() + 2);
 | ||
| 		i2 = 0;
 | ||
| 		for(i=0;i<=polypointindex;i++) {
 | ||
| 			newpoly[i2] = polyiter->get().GetPoint(i);
 | ||
| 			i2++;
 | ||
| 		}
 | ||
| 		for(i=0;i<=holeiter->get().GetNumPoints();i++) {
 | ||
| 			newpoly[i2] = holeiter->get().GetPoint((i+holepointindex)%holeiter->get().GetNumPoints());
 | ||
| 			i2++;
 | ||
| 		}
 | ||
| 		for(i=polypointindex;i<polyiter->get().GetNumPoints();i++) {
 | ||
| 			newpoly[i2] = polyiter->get().GetPoint(i);
 | ||
| 			i2++;
 | ||
| 		}
 | ||
| 
 | ||
| 		polys.erase(holeiter);
 | ||
| 		polys.erase(polyiter);
 | ||
| 		polys.push_back(newpoly);
 | ||
| 	}
 | ||
| 
 | ||
| 	for(iter = polys.front(); iter; iter=iter->next()) {
 | ||
| 		outpolys->push_back(iter->get());
 | ||
| 	}
 | ||
| 
 | ||
| 	return 1;
 | ||
| }
 | ||
| 
 | ||
| bool TriangulatorPartition::IsConvex(Vector2& p1, Vector2& p2, Vector2& p3) {
 | ||
| 	real_t tmp;
 | ||
| 	tmp = (p3.y-p1.y)*(p2.x-p1.x)-(p3.x-p1.x)*(p2.y-p1.y);
 | ||
| 	if(tmp>0) return 1;
 | ||
| 	else return 0;
 | ||
| }
 | ||
| 
 | ||
| bool TriangulatorPartition::IsReflex(Vector2& p1, Vector2& p2, Vector2& p3) {
 | ||
| 	real_t tmp;
 | ||
| 	tmp = (p3.y-p1.y)*(p2.x-p1.x)-(p3.x-p1.x)*(p2.y-p1.y);
 | ||
| 	if(tmp<0) return 1;
 | ||
| 	else return 0;
 | ||
| }
 | ||
| 
 | ||
| bool TriangulatorPartition::IsInside(Vector2& p1, Vector2& p2, Vector2& p3, Vector2 &p) {
 | ||
| 	if(IsConvex(p1,p,p2)) return false;
 | ||
| 	if(IsConvex(p2,p,p3)) return false;
 | ||
| 	if(IsConvex(p3,p,p1)) return false;
 | ||
| 	return true;
 | ||
| }
 | ||
| 
 | ||
| bool TriangulatorPartition::InCone(Vector2 &p1, Vector2 &p2, Vector2 &p3, Vector2 &p) {
 | ||
| 	bool convex;
 | ||
| 
 | ||
| 	convex = IsConvex(p1,p2,p3);
 | ||
| 
 | ||
| 	if(convex) {
 | ||
| 		if(!IsConvex(p1,p2,p)) return false;
 | ||
| 		if(!IsConvex(p2,p3,p)) return false;
 | ||
| 		return true;
 | ||
| 	} else {
 | ||
| 		if(IsConvex(p1,p2,p)) return true;
 | ||
| 		if(IsConvex(p2,p3,p)) return true;
 | ||
| 		return false;
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| bool TriangulatorPartition::InCone(PartitionVertex *v, Vector2 &p) {
 | ||
| 	Vector2 p1,p2,p3;
 | ||
| 
 | ||
| 	p1 = v->previous->p;
 | ||
| 	p2 = v->p;
 | ||
| 	p3 = v->next->p;
 | ||
| 
 | ||
| 	return InCone(p1,p2,p3,p);
 | ||
| }
 | ||
| 
 | ||
| void TriangulatorPartition::UpdateVertexReflexity(PartitionVertex *v) {
 | ||
| 	PartitionVertex *v1,*v3;
 | ||
| 	v1 = v->previous;
 | ||
| 	v3 = v->next;
 | ||
| 	v->isConvex = !IsReflex(v1->p,v->p,v3->p);
 | ||
| }
 | ||
| 
 | ||
| void TriangulatorPartition::UpdateVertex(PartitionVertex *v, PartitionVertex *vertices, long numvertices) {
 | ||
| 	long i;
 | ||
| 	PartitionVertex *v1,*v3;
 | ||
| 	Vector2 vec1,vec3;
 | ||
| 
 | ||
| 	v1 = v->previous;
 | ||
| 	v3 = v->next;
 | ||
| 
 | ||
| 	v->isConvex = IsConvex(v1->p,v->p,v3->p);
 | ||
| 
 | ||
| 	vec1 = Normalize(v1->p - v->p);
 | ||
| 	vec3 = Normalize(v3->p - v->p);
 | ||
| 	v->angle = vec1.x*vec3.x + vec1.y*vec3.y;
 | ||
| 
 | ||
| 	if(v->isConvex) {
 | ||
| 		v->isEar = true;
 | ||
| 		for(i=0;i<numvertices;i++) {
 | ||
| 			if((vertices[i].p.x==v->p.x)&&(vertices[i].p.y==v->p.y)) continue;
 | ||
| 			if((vertices[i].p.x==v1->p.x)&&(vertices[i].p.y==v1->p.y)) continue;
 | ||
| 			if((vertices[i].p.x==v3->p.x)&&(vertices[i].p.y==v3->p.y)) continue;
 | ||
| 			if(IsInside(v1->p,v->p,v3->p,vertices[i].p)) {
 | ||
| 				v->isEar = false;
 | ||
| 				break;
 | ||
| 			}
 | ||
| 		}
 | ||
| 	} else {
 | ||
| 		v->isEar = false;
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| //triangulation by ear removal
 | ||
| int TriangulatorPartition::Triangulate_EC(TriangulatorPoly *poly, List<TriangulatorPoly> *triangles) {
 | ||
| 	long numvertices;
 | ||
| 	PartitionVertex *vertices;
 | ||
| 	PartitionVertex *ear;
 | ||
| 	TriangulatorPoly triangle;
 | ||
| 	long i,j;
 | ||
| 	bool earfound;
 | ||
| 
 | ||
| 	if(poly->GetNumPoints() < 3) return 0;
 | ||
| 	if(poly->GetNumPoints() == 3) {
 | ||
| 		triangles->push_back(*poly);
 | ||
| 		return 1;
 | ||
| 	}
 | ||
| 
 | ||
| 	numvertices = poly->GetNumPoints();
 | ||
| 
 | ||
| 	vertices = new PartitionVertex[numvertices];
 | ||
| 	for(i=0;i<numvertices;i++) {
 | ||
| 		vertices[i].isActive = true;
 | ||
| 		vertices[i].p = poly->GetPoint(i);
 | ||
| 		if(i==(numvertices-1)) vertices[i].next=&(vertices[0]);
 | ||
| 		else vertices[i].next=&(vertices[i+1]);
 | ||
| 		if(i==0) vertices[i].previous = &(vertices[numvertices-1]);
 | ||
| 		else vertices[i].previous = &(vertices[i-1]);
 | ||
| 	}
 | ||
| 	for(i=0;i<numvertices;i++) {
 | ||
| 		UpdateVertex(&vertices[i],vertices,numvertices);
 | ||
| 	}
 | ||
| 
 | ||
| 	for(i=0;i<numvertices-3;i++) {
 | ||
| 		earfound = false;
 | ||
| 		//find the most extruded ear
 | ||
| 		for(j=0;j<numvertices;j++) {
 | ||
| 			if(!vertices[j].isActive) continue;
 | ||
| 			if(!vertices[j].isEar) continue;
 | ||
| 			if(!earfound) {
 | ||
| 				earfound = true;
 | ||
| 				ear = &(vertices[j]);
 | ||
| 			} else {
 | ||
| 				if(vertices[j].angle > ear->angle) {
 | ||
| 					ear = &(vertices[j]);
 | ||
| 				}
 | ||
| 			}
 | ||
| 		}
 | ||
| 		if(!earfound) {
 | ||
| 			delete [] vertices;
 | ||
| 			return 0;
 | ||
| 		}
 | ||
| 
 | ||
| 		triangle.Triangle(ear->previous->p,ear->p,ear->next->p);
 | ||
| 		triangles->push_back(triangle);
 | ||
| 
 | ||
| 		ear->isActive = false;
 | ||
| 		ear->previous->next = ear->next;
 | ||
| 		ear->next->previous = ear->previous;
 | ||
| 
 | ||
| 		if(i==numvertices-4) break;
 | ||
| 
 | ||
| 		UpdateVertex(ear->previous,vertices,numvertices);
 | ||
| 		UpdateVertex(ear->next,vertices,numvertices);
 | ||
| 	}
 | ||
| 	for(i=0;i<numvertices;i++) {
 | ||
| 		if(vertices[i].isActive) {
 | ||
| 			triangle.Triangle(vertices[i].previous->p,vertices[i].p,vertices[i].next->p);
 | ||
| 			triangles->push_back(triangle);
 | ||
| 			break;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	delete [] vertices;
 | ||
| 
 | ||
| 	return 1;
 | ||
| }
 | ||
| 
 | ||
| int TriangulatorPartition::Triangulate_EC(List<TriangulatorPoly> *inpolys, List<TriangulatorPoly> *triangles) {
 | ||
| 	List<TriangulatorPoly> outpolys;
 | ||
| 	List<TriangulatorPoly>::Element*iter;
 | ||
| 
 | ||
| 	if(!RemoveHoles(inpolys,&outpolys)) return 0;
 | ||
| 	for(iter=outpolys.front();iter;iter=iter->next()) {
 | ||
| 		if(!Triangulate_EC(&(iter->get()),triangles)) return 0;
 | ||
| 	}
 | ||
| 	return 1;
 | ||
| }
 | ||
| 
 | ||
| int TriangulatorPartition::ConvexPartition_HM(TriangulatorPoly *poly, List<TriangulatorPoly> *parts) {
 | ||
| 	List<TriangulatorPoly> triangles;
 | ||
| 	List<TriangulatorPoly>::Element *iter1,*iter2;
 | ||
| 	TriangulatorPoly *poly1,*poly2;
 | ||
| 	TriangulatorPoly newpoly;
 | ||
| 	Vector2 d1,d2,p1,p2,p3;
 | ||
| 	long i11,i12,i21,i22,i13,i23,j,k;
 | ||
| 	bool isdiagonal;
 | ||
| 	long numreflex;
 | ||
| 
 | ||
| 	//check if the poly is already convex
 | ||
| 	numreflex = 0;
 | ||
| 	for(i11=0;i11<poly->GetNumPoints();i11++) {
 | ||
| 		if(i11==0) i12 = poly->GetNumPoints()-1;
 | ||
| 		else i12=i11-1;
 | ||
| 		if(i11==(poly->GetNumPoints()-1)) i13=0;
 | ||
| 		else i13=i11+1;
 | ||
| 		if(IsReflex(poly->GetPoint(i12),poly->GetPoint(i11),poly->GetPoint(i13))) {
 | ||
| 			numreflex = 1;
 | ||
| 			break;
 | ||
| 		}
 | ||
| 	}
 | ||
| 	if(numreflex == 0) {
 | ||
| 		parts->push_back(*poly);
 | ||
| 		return 1;
 | ||
| 	}
 | ||
| 
 | ||
| 	if(!Triangulate_EC(poly,&triangles)) return 0;
 | ||
| 
 | ||
| 	for(iter1 = triangles.front(); iter1 ; iter1=iter1->next()) {
 | ||
| 		poly1 = &(iter1->get());
 | ||
| 		for(i11=0;i11<poly1->GetNumPoints();i11++) {
 | ||
| 			d1 = poly1->GetPoint(i11);
 | ||
| 			i12 = (i11+1)%(poly1->GetNumPoints());
 | ||
| 			d2 = poly1->GetPoint(i12);
 | ||
| 
 | ||
| 			isdiagonal = false;
 | ||
| 			for(iter2 = iter1; iter2 ; iter2=iter2->next()) {
 | ||
| 				if(iter1 == iter2) continue;
 | ||
| 				poly2 = &(iter2->get());
 | ||
| 
 | ||
| 				for(i21=0;i21<poly2->GetNumPoints();i21++) {
 | ||
| 					if((d2.x != poly2->GetPoint(i21).x)||(d2.y != poly2->GetPoint(i21).y)) continue;
 | ||
| 					i22 = (i21+1)%(poly2->GetNumPoints());
 | ||
| 					if((d1.x != poly2->GetPoint(i22).x)||(d1.y != poly2->GetPoint(i22).y)) continue;
 | ||
| 					isdiagonal = true;
 | ||
| 					break;
 | ||
| 				}
 | ||
| 				if(isdiagonal) break;
 | ||
| 			}
 | ||
| 
 | ||
| 			if(!isdiagonal) continue;
 | ||
| 
 | ||
| 			p2 = poly1->GetPoint(i11);
 | ||
| 			if(i11 == 0) i13 = poly1->GetNumPoints()-1;
 | ||
| 			else i13 = i11-1;
 | ||
| 			p1 = poly1->GetPoint(i13);
 | ||
| 			if(i22 == (poly2->GetNumPoints()-1)) i23 = 0;
 | ||
| 			else i23 = i22+1;
 | ||
| 			p3 = poly2->GetPoint(i23);
 | ||
| 
 | ||
| 			if(!IsConvex(p1,p2,p3)) continue;
 | ||
| 
 | ||
| 			p2 = poly1->GetPoint(i12);
 | ||
| 			if(i12 == (poly1->GetNumPoints()-1)) i13 = 0;
 | ||
| 			else i13 = i12+1;
 | ||
| 			p3 = poly1->GetPoint(i13);
 | ||
| 			if(i21 == 0) i23 = poly2->GetNumPoints()-1;
 | ||
| 			else i23 = i21-1;
 | ||
| 			p1 = poly2->GetPoint(i23);
 | ||
| 
 | ||
| 			if(!IsConvex(p1,p2,p3)) continue;
 | ||
| 
 | ||
| 			newpoly.Init(poly1->GetNumPoints()+poly2->GetNumPoints()-2);
 | ||
| 			k = 0;
 | ||
| 			for(j=i12;j!=i11;j=(j+1)%(poly1->GetNumPoints())) {
 | ||
| 				newpoly[k] = poly1->GetPoint(j);
 | ||
| 				k++;
 | ||
| 			}
 | ||
| 			for(j=i22;j!=i21;j=(j+1)%(poly2->GetNumPoints())) {
 | ||
| 				newpoly[k] = poly2->GetPoint(j);
 | ||
| 				k++;
 | ||
| 			}
 | ||
| 
 | ||
| 			triangles.erase(iter2);
 | ||
| 			iter1->get() = newpoly;
 | ||
| 			poly1 = &(iter1->get());
 | ||
| 			i11 = -1;
 | ||
| 
 | ||
| 			continue;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	for(iter1 = triangles.front(); iter1 ; iter1=iter1->next()) {
 | ||
| 		parts->push_back(iter1->get());
 | ||
| 	}
 | ||
| 
 | ||
| 	return 1;
 | ||
| }
 | ||
| 
 | ||
| int TriangulatorPartition::ConvexPartition_HM(List<TriangulatorPoly> *inpolys, List<TriangulatorPoly> *parts) {
 | ||
| 	List<TriangulatorPoly> outpolys;
 | ||
| 	List<TriangulatorPoly>::Element* iter;
 | ||
| 
 | ||
| 	if(!RemoveHoles(inpolys,&outpolys)) return 0;
 | ||
| 	for(iter=outpolys.front();iter;iter=iter->next()) {
 | ||
| 		if(!ConvexPartition_HM(&(iter->get()),parts)) return 0;
 | ||
| 	}
 | ||
| 	return 1;
 | ||
| }
 | ||
| 
 | ||
| //minimum-weight polygon triangulation by dynamic programming
 | ||
| //O(n^3) time complexity
 | ||
| //O(n^2) space complexity
 | ||
| int TriangulatorPartition::Triangulate_OPT(TriangulatorPoly *poly, List<TriangulatorPoly> *triangles) {
 | ||
| 	long i,j,k,gap,n;
 | ||
| 	DPState **dpstates;
 | ||
| 	Vector2 p1,p2,p3,p4;
 | ||
| 	long bestvertex;
 | ||
| 	real_t weight,minweight,d1,d2;
 | ||
| 	Diagonal diagonal,newdiagonal;
 | ||
| 	List<Diagonal> diagonals;
 | ||
| 	TriangulatorPoly triangle;
 | ||
| 	int ret = 1;
 | ||
| 
 | ||
| 	n = poly->GetNumPoints();
 | ||
| 	dpstates = new DPState *[n];
 | ||
| 	for(i=1;i<n;i++) {
 | ||
| 		dpstates[i] = new DPState[i];
 | ||
| 	}
 | ||
| 
 | ||
| 	//init states and visibility
 | ||
| 	for(i=0;i<(n-1);i++) {
 | ||
| 		p1 = poly->GetPoint(i);
 | ||
| 		for(j=i+1;j<n;j++) {
 | ||
| 			dpstates[j][i].visible = true;
 | ||
| 			dpstates[j][i].weight = 0;
 | ||
| 			dpstates[j][i].bestvertex = -1;
 | ||
| 			if(j!=(i+1)) {
 | ||
| 				p2 = poly->GetPoint(j);
 | ||
| 
 | ||
| 				//visibility check
 | ||
| 				if(i==0) p3 = poly->GetPoint(n-1);
 | ||
| 				else p3 = poly->GetPoint(i-1);
 | ||
| 				if(i==(n-1)) p4 = poly->GetPoint(0);
 | ||
| 				else p4 = poly->GetPoint(i+1);
 | ||
| 				if(!InCone(p3,p1,p4,p2)) {
 | ||
| 					dpstates[j][i].visible = false;
 | ||
| 					continue;
 | ||
| 				}
 | ||
| 
 | ||
| 				if(j==0) p3 = poly->GetPoint(n-1);
 | ||
| 				else p3 = poly->GetPoint(j-1);
 | ||
| 				if(j==(n-1)) p4 = poly->GetPoint(0);
 | ||
| 				else p4 = poly->GetPoint(j+1);
 | ||
| 				if(!InCone(p3,p2,p4,p1)) {
 | ||
| 					dpstates[j][i].visible = false;
 | ||
| 					continue;
 | ||
| 				}
 | ||
| 
 | ||
| 				for(k=0;k<n;k++) {
 | ||
| 					p3 = poly->GetPoint(k);
 | ||
| 					if(k==(n-1)) p4 = poly->GetPoint(0);
 | ||
| 					else p4 = poly->GetPoint(k+1);
 | ||
| 					if(Intersects(p1,p2,p3,p4)) {
 | ||
| 						dpstates[j][i].visible = false;
 | ||
| 						break;
 | ||
| 					}
 | ||
| 				}
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}
 | ||
| 	dpstates[n-1][0].visible = true;
 | ||
| 	dpstates[n-1][0].weight = 0;
 | ||
| 	dpstates[n-1][0].bestvertex = -1;
 | ||
| 
 | ||
| 	for(gap = 2; gap<n; gap++) {
 | ||
| 		for(i=0; i<(n-gap); i++) {
 | ||
| 			j = i+gap;
 | ||
| 			if(!dpstates[j][i].visible) continue;
 | ||
| 			bestvertex = -1;
 | ||
| 			for(k=(i+1);k<j;k++) {
 | ||
| 				if(!dpstates[k][i].visible) continue;
 | ||
| 				if(!dpstates[j][k].visible) continue;
 | ||
| 
 | ||
| 				if(k<=(i+1)) d1=0;
 | ||
| 				else d1 = Distance(poly->GetPoint(i),poly->GetPoint(k));
 | ||
| 				if(j<=(k+1)) d2=0;
 | ||
| 				else d2 = Distance(poly->GetPoint(k),poly->GetPoint(j));
 | ||
| 
 | ||
| 				weight = dpstates[k][i].weight + dpstates[j][k].weight + d1 + d2;
 | ||
| 
 | ||
| 				if((bestvertex == -1)||(weight<minweight)) {
 | ||
| 					bestvertex = k;
 | ||
| 					minweight = weight;
 | ||
| 				}
 | ||
| 			}
 | ||
| 			if(bestvertex == -1) {
 | ||
| 				for(i=1;i<n;i++) {
 | ||
| 					delete [] dpstates[i];
 | ||
| 				}
 | ||
| 				delete [] dpstates;
 | ||
| 
 | ||
| 				return 0;
 | ||
| 			}
 | ||
| 
 | ||
| 			dpstates[j][i].bestvertex = bestvertex;
 | ||
| 			dpstates[j][i].weight = minweight;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	newdiagonal.index1 = 0;
 | ||
| 	newdiagonal.index2 = n-1;
 | ||
| 	diagonals.push_back(newdiagonal);
 | ||
| 	while(!diagonals.empty()) {
 | ||
| 		diagonal = (diagonals.front()->get());
 | ||
| 		diagonals.pop_front();
 | ||
| 		bestvertex = dpstates[diagonal.index2][diagonal.index1].bestvertex;
 | ||
| 		if(bestvertex == -1) {
 | ||
| 			ret = 0;
 | ||
| 			break;
 | ||
| 		}
 | ||
| 		triangle.Triangle(poly->GetPoint(diagonal.index1),poly->GetPoint(bestvertex),poly->GetPoint(diagonal.index2));
 | ||
| 		triangles->push_back(triangle);
 | ||
| 		if(bestvertex > (diagonal.index1+1)) {
 | ||
| 			newdiagonal.index1 = diagonal.index1;
 | ||
| 			newdiagonal.index2 = bestvertex;
 | ||
| 			diagonals.push_back(newdiagonal);
 | ||
| 		}
 | ||
| 		if(diagonal.index2 > (bestvertex+1)) {
 | ||
| 			newdiagonal.index1 = bestvertex;
 | ||
| 			newdiagonal.index2 = diagonal.index2;
 | ||
| 			diagonals.push_back(newdiagonal);
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	for(i=1;i<n;i++) {
 | ||
| 		delete [] dpstates[i];
 | ||
| 	}
 | ||
| 	delete [] dpstates;
 | ||
| 
 | ||
| 	return ret;
 | ||
| }
 | ||
| 
 | ||
| void TriangulatorPartition::UpdateState(long a, long b, long w, long i, long j, DPState2 **dpstates) {
 | ||
| 	Diagonal newdiagonal;
 | ||
| 	List<Diagonal> *pairs;
 | ||
| 	long w2;
 | ||
| 
 | ||
| 	w2 = dpstates[a][b].weight;
 | ||
| 	if(w>w2) return;
 | ||
| 
 | ||
| 	pairs = &(dpstates[a][b].pairs);
 | ||
| 	newdiagonal.index1 = i;
 | ||
| 	newdiagonal.index2 = j;
 | ||
| 
 | ||
| 	if(w<w2) {
 | ||
| 		pairs->clear();
 | ||
| 		pairs->push_front(newdiagonal);
 | ||
| 		dpstates[a][b].weight = w;
 | ||
| 	} else {
 | ||
| 		if((!pairs->empty())&&(i <= pairs->front()->get().index1)) return;
 | ||
| 		while((!pairs->empty())&&(pairs->front()->get().index2 >= j)) pairs->pop_front();
 | ||
| 		pairs->push_front(newdiagonal);
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| void TriangulatorPartition::TypeA(long i, long j, long k, PartitionVertex *vertices, DPState2 **dpstates) {
 | ||
| 	List<Diagonal> *pairs;
 | ||
| 	List<Diagonal>::Element *iter,*lastiter;
 | ||
| 	long top;
 | ||
| 	long w;
 | ||
| 
 | ||
| 	if(!dpstates[i][j].visible) return;
 | ||
| 	top = j;
 | ||
| 	w = dpstates[i][j].weight;
 | ||
| 	if(k-j > 1) {
 | ||
| 		if (!dpstates[j][k].visible) return;
 | ||
| 		w += dpstates[j][k].weight + 1;
 | ||
| 	}
 | ||
| 	if(j-i > 1) {
 | ||
| 		pairs = &(dpstates[i][j].pairs);
 | ||
| 		iter = NULL;
 | ||
| 		lastiter = NULL;
 | ||
| 		while(iter!=pairs->front()) {
 | ||
| 			if (!iter)
 | ||
| 				iter=pairs->back();
 | ||
| 			else
 | ||
| 				iter=iter->prev();
 | ||
| 
 | ||
| 			if(!IsReflex(vertices[iter->get().index2].p,vertices[j].p,vertices[k].p)) lastiter = iter;
 | ||
| 			else break;
 | ||
| 		}
 | ||
| 		if(lastiter == NULL) w++;
 | ||
| 		else {
 | ||
| 			if(IsReflex(vertices[k].p,vertices[i].p,vertices[lastiter->get().index1].p)) w++;
 | ||
| 			else top = lastiter->get().index1;
 | ||
| 		}
 | ||
| 	}
 | ||
| 	UpdateState(i,k,w,top,j,dpstates);
 | ||
| }
 | ||
| 
 | ||
| void TriangulatorPartition::TypeB(long i, long j, long k, PartitionVertex *vertices, DPState2 **dpstates) {
 | ||
| 	List<Diagonal> *pairs;
 | ||
| 	List<Diagonal>::Element* iter,*lastiter;
 | ||
| 	long top;
 | ||
| 	long w;
 | ||
| 
 | ||
| 	if(!dpstates[j][k].visible) return;
 | ||
| 	top = j;
 | ||
| 	w = dpstates[j][k].weight;
 | ||
| 
 | ||
| 	if (j-i > 1) {
 | ||
| 		if (!dpstates[i][j].visible) return;
 | ||
| 		w += dpstates[i][j].weight + 1;
 | ||
| 	}
 | ||
| 	if (k-j > 1) {
 | ||
| 		pairs = &(dpstates[j][k].pairs);
 | ||
| 
 | ||
| 		iter = pairs->front();
 | ||
| 		if((!pairs->empty())&&(!IsReflex(vertices[i].p,vertices[j].p,vertices[iter->get().index1].p))) {
 | ||
| 			lastiter = iter;
 | ||
| 			while(iter!=NULL) {
 | ||
| 				if(!IsReflex(vertices[i].p,vertices[j].p,vertices[iter->get().index1].p)) {
 | ||
| 					lastiter = iter;
 | ||
| 					iter=iter->next();
 | ||
| 				}
 | ||
| 				else break;
 | ||
| 			}
 | ||
| 			if(IsReflex(vertices[lastiter->get().index2].p,vertices[k].p,vertices[i].p)) w++;
 | ||
| 			else top = lastiter->get().index2;
 | ||
| 		} else w++;
 | ||
| 	}
 | ||
| 	UpdateState(i,k,w,j,top,dpstates);
 | ||
| }
 | ||
| 
 | ||
| int TriangulatorPartition::ConvexPartition_OPT(TriangulatorPoly *poly, List<TriangulatorPoly> *parts) {
 | ||
| 	Vector2 p1,p2,p3,p4;
 | ||
| 	PartitionVertex *vertices;
 | ||
| 	DPState2 **dpstates;
 | ||
| 	long i,j,k,n,gap;
 | ||
| 	List<Diagonal> diagonals,diagonals2;
 | ||
| 	Diagonal diagonal,newdiagonal;
 | ||
| 	List<Diagonal> *pairs,*pairs2;
 | ||
| 	List<Diagonal>::Element* iter,*iter2;
 | ||
| 	int ret;
 | ||
| 	TriangulatorPoly newpoly;
 | ||
| 	List<long> indices;
 | ||
| 	List<long>::Element* iiter;
 | ||
| 	bool ijreal,jkreal;
 | ||
| 
 | ||
| 	n = poly->GetNumPoints();
 | ||
| 	vertices = new PartitionVertex[n];
 | ||
| 
 | ||
| 	dpstates = new DPState2 *[n];
 | ||
| 	for(i=0;i<n;i++) {
 | ||
| 		dpstates[i] = new DPState2[n];
 | ||
| 	}
 | ||
| 
 | ||
| 	//init vertex information
 | ||
| 	for(i=0;i<n;i++) {
 | ||
| 		vertices[i].p = poly->GetPoint(i);
 | ||
| 		vertices[i].isActive = true;
 | ||
| 		if(i==0) vertices[i].previous = &(vertices[n-1]);
 | ||
| 		else vertices[i].previous = &(vertices[i-1]);
 | ||
| 		if(i==(poly->GetNumPoints()-1)) vertices[i].next = &(vertices[0]);
 | ||
| 		else vertices[i].next = &(vertices[i+1]);
 | ||
| 	}
 | ||
| 	for(i=1;i<n;i++) {
 | ||
| 		UpdateVertexReflexity(&(vertices[i]));
 | ||
| 	}
 | ||
| 
 | ||
| 	//init states and visibility
 | ||
| 	for(i=0;i<(n-1);i++) {
 | ||
| 		p1 = poly->GetPoint(i);
 | ||
| 		for(j=i+1;j<n;j++) {
 | ||
| 			dpstates[i][j].visible = true;
 | ||
| 			if(j==i+1) {
 | ||
| 				dpstates[i][j].weight = 0;
 | ||
| 			} else {
 | ||
| 				dpstates[i][j].weight = 2147483647;
 | ||
| 			}
 | ||
| 			if(j!=(i+1)) {
 | ||
| 				p2 = poly->GetPoint(j);
 | ||
| 
 | ||
| 				//visibility check
 | ||
| 				if(!InCone(&vertices[i],p2)) {
 | ||
| 					dpstates[i][j].visible = false;
 | ||
| 					continue;
 | ||
| 				}
 | ||
| 				if(!InCone(&vertices[j],p1)) {
 | ||
| 					dpstates[i][j].visible = false;
 | ||
| 					continue;
 | ||
| 				}
 | ||
| 
 | ||
| 				for(k=0;k<n;k++) {
 | ||
| 					p3 = poly->GetPoint(k);
 | ||
| 					if(k==(n-1)) p4 = poly->GetPoint(0);
 | ||
| 					else p4 = poly->GetPoint(k+1);
 | ||
| 					if(Intersects(p1,p2,p3,p4)) {
 | ||
| 						dpstates[i][j].visible = false;
 | ||
| 						break;
 | ||
| 					}
 | ||
| 				}
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}
 | ||
| 	for(i=0;i<(n-2);i++) {
 | ||
| 		j = i+2;
 | ||
| 		if(dpstates[i][j].visible) {
 | ||
| 			dpstates[i][j].weight = 0;
 | ||
| 			newdiagonal.index1 = i+1;
 | ||
| 			newdiagonal.index2 = i+1;
 | ||
| 			dpstates[i][j].pairs.push_back(newdiagonal);
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	dpstates[0][n-1].visible = true;
 | ||
| 	vertices[0].isConvex = false; //by convention
 | ||
| 
 | ||
| 	for(gap=3; gap<n; gap++) {
 | ||
| 		for(i=0;i<n-gap;i++) {
 | ||
| 			if(vertices[i].isConvex) continue;
 | ||
| 			k = i+gap;
 | ||
| 			if(dpstates[i][k].visible) {
 | ||
| 				if(!vertices[k].isConvex) {
 | ||
| 					for(j=i+1;j<k;j++) TypeA(i,j,k,vertices,dpstates);
 | ||
| 				} else {
 | ||
| 					for(j=i+1;j<(k-1);j++) {
 | ||
| 						if(vertices[j].isConvex) continue;
 | ||
| 						TypeA(i,j,k,vertices,dpstates);
 | ||
| 					}
 | ||
| 					TypeA(i,k-1,k,vertices,dpstates);
 | ||
| 				}
 | ||
| 			}
 | ||
| 		}
 | ||
| 		for(k=gap;k<n;k++) {
 | ||
| 			if(vertices[k].isConvex) continue;
 | ||
| 			i = k-gap;
 | ||
| 			if((vertices[i].isConvex)&&(dpstates[i][k].visible)) {
 | ||
| 				TypeB(i,i+1,k,vertices,dpstates);
 | ||
| 				for(j=i+2;j<k;j++) {
 | ||
| 					if(vertices[j].isConvex) continue;
 | ||
| 					TypeB(i,j,k,vertices,dpstates);
 | ||
| 				}
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 
 | ||
| 	//recover solution
 | ||
| 	ret = 1;
 | ||
| 	newdiagonal.index1 = 0;
 | ||
| 	newdiagonal.index2 = n-1;
 | ||
| 	diagonals.push_front(newdiagonal);
 | ||
| 	while(!diagonals.empty()) {
 | ||
| 		diagonal = (diagonals.front()->get());
 | ||
| 		diagonals.pop_front();
 | ||
| 		if((diagonal.index2 - diagonal.index1) <=1) continue;
 | ||
| 		pairs = &(dpstates[diagonal.index1][diagonal.index2].pairs);
 | ||
| 		if(pairs->empty()) {
 | ||
| 			ret = 0;
 | ||
| 			break;
 | ||
| 		}
 | ||
| 		if(!vertices[diagonal.index1].isConvex) {
 | ||
| 			iter = pairs->back();
 | ||
| 
 | ||
| 			j = iter->get().index2;
 | ||
| 			newdiagonal.index1 = j;
 | ||
| 			newdiagonal.index2 = diagonal.index2;
 | ||
| 			diagonals.push_front(newdiagonal);
 | ||
| 			if((j - diagonal.index1)>1) {
 | ||
| 				if(iter->get().index1 != iter->get().index2) {
 | ||
| 					pairs2 = &(dpstates[diagonal.index1][j].pairs);
 | ||
| 					while(1) {
 | ||
| 						if(pairs2->empty()) {
 | ||
| 							ret = 0;
 | ||
| 							break;
 | ||
| 						}
 | ||
| 						iter2 = pairs2->back();
 | ||
| 
 | ||
| 						if(iter->get().index1 != iter2->get().index1) pairs2->pop_back();
 | ||
| 						else break;
 | ||
| 					}
 | ||
| 					if(ret == 0) break;
 | ||
| 				}
 | ||
| 				newdiagonal.index1 = diagonal.index1;
 | ||
| 				newdiagonal.index2 = j;
 | ||
| 				diagonals.push_front(newdiagonal);
 | ||
| 			}
 | ||
| 		} else {
 | ||
| 			iter = pairs->front();
 | ||
| 			j = iter->get().index1;
 | ||
| 			newdiagonal.index1 = diagonal.index1;
 | ||
| 			newdiagonal.index2 = j;
 | ||
| 			diagonals.push_front(newdiagonal);
 | ||
| 			if((diagonal.index2 - j) > 1) {
 | ||
| 				if(iter->get().index1 != iter->get().index2) {
 | ||
| 					pairs2 = &(dpstates[j][diagonal.index2].pairs);
 | ||
| 					while(1) {
 | ||
| 						if(pairs2->empty()) {
 | ||
| 							ret = 0;
 | ||
| 							break;
 | ||
| 						}
 | ||
| 						iter2 = pairs2->front();
 | ||
| 						if(iter->get().index2 != iter2->get().index2) pairs2->pop_front();
 | ||
| 						else break;
 | ||
| 					}
 | ||
| 					if(ret == 0) break;
 | ||
| 				}
 | ||
| 				newdiagonal.index1 = j;
 | ||
| 				newdiagonal.index2 = diagonal.index2;
 | ||
| 				diagonals.push_front(newdiagonal);
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	if(ret == 0) {
 | ||
| 		for(i=0;i<n;i++) {
 | ||
| 			delete [] dpstates[i];
 | ||
| 		}
 | ||
| 		delete [] dpstates;
 | ||
| 		delete [] vertices;
 | ||
| 
 | ||
| 		return ret;
 | ||
| 	}
 | ||
| 
 | ||
| 	newdiagonal.index1 = 0;
 | ||
| 	newdiagonal.index2 = n-1;
 | ||
| 	diagonals.push_front(newdiagonal);
 | ||
| 	while(!diagonals.empty()) {
 | ||
| 		diagonal = (diagonals.front())->get();
 | ||
| 		diagonals.pop_front();
 | ||
| 		if((diagonal.index2 - diagonal.index1) <= 1) continue;
 | ||
| 
 | ||
| 		indices.clear();
 | ||
| 		diagonals2.clear();
 | ||
| 		indices.push_back(diagonal.index1);
 | ||
| 		indices.push_back(diagonal.index2);
 | ||
| 		diagonals2.push_front(diagonal);
 | ||
| 
 | ||
| 		while(!diagonals2.empty()) {
 | ||
| 			diagonal = (diagonals2.front()->get());
 | ||
| 			diagonals2.pop_front();
 | ||
| 			if((diagonal.index2 - diagonal.index1) <= 1) continue;
 | ||
| 			ijreal = true;
 | ||
| 			jkreal = true;
 | ||
| 			pairs = &(dpstates[diagonal.index1][diagonal.index2].pairs);
 | ||
| 			if(!vertices[diagonal.index1].isConvex) {
 | ||
| 				iter = pairs->back();
 | ||
| 				j = iter->get().index2;
 | ||
| 				if(iter->get().index1 != iter->get().index2) ijreal = false;
 | ||
| 			} else {
 | ||
| 				iter = pairs->front();
 | ||
| 				j = iter->get().index1;
 | ||
| 				if(iter->get().index1 != iter->get().index2) jkreal = false;
 | ||
| 			}
 | ||
| 
 | ||
| 			newdiagonal.index1 = diagonal.index1;
 | ||
| 			newdiagonal.index2 = j;
 | ||
| 			if(ijreal) {
 | ||
| 				diagonals.push_back(newdiagonal);
 | ||
| 			} else {
 | ||
| 				diagonals2.push_back(newdiagonal);
 | ||
| 			}
 | ||
| 
 | ||
| 			newdiagonal.index1 = j;
 | ||
| 			newdiagonal.index2 = diagonal.index2;
 | ||
| 			if(jkreal) {
 | ||
| 				diagonals.push_back(newdiagonal);
 | ||
| 			} else {
 | ||
| 				diagonals2.push_back(newdiagonal);
 | ||
| 			}
 | ||
| 
 | ||
| 			indices.push_back(j);
 | ||
| 		}
 | ||
| 
 | ||
| 		indices.sort();
 | ||
| 		newpoly.Init((long)indices.size());
 | ||
| 		k=0;
 | ||
| 		for(iiter = indices.front();iiter;iiter=iiter->next()) {
 | ||
| 			newpoly[k] = vertices[iiter->get()].p;
 | ||
| 			k++;
 | ||
| 		}
 | ||
| 		parts->push_back(newpoly);
 | ||
| 	}
 | ||
| 
 | ||
| 	for(i=0;i<n;i++) {
 | ||
| 		delete [] dpstates[i];
 | ||
| 	}
 | ||
| 	delete [] dpstates;
 | ||
| 	delete [] vertices;
 | ||
| 
 | ||
| 	return ret;
 | ||
| }
 | ||
| 
 | ||
| //triangulates a set of polygons by first partitioning them into monotone polygons
 | ||
| //O(n*log(n)) time complexity, O(n) space complexity
 | ||
| //the algorithm used here is outlined in the book
 | ||
| //"Computational Geometry: Algorithms and Applications"
 | ||
| //by Mark de Berg, Otfried Cheong, Marc van Kreveld and Mark Overmars
 | ||
| int TriangulatorPartition::MonotonePartition(List<TriangulatorPoly> *inpolys, List<TriangulatorPoly> *monotonePolys) {
 | ||
| 	List<TriangulatorPoly>::Element *iter;
 | ||
| 	MonotoneVertex *vertices;
 | ||
| 	long i,numvertices,vindex,vindex2,newnumvertices,maxnumvertices;
 | ||
| 	long polystartindex, polyendindex;
 | ||
| 	TriangulatorPoly *poly;
 | ||
| 	MonotoneVertex *v,*v2,*vprev,*vnext;
 | ||
| 	ScanLineEdge newedge;
 | ||
| 	bool error = false;
 | ||
| 
 | ||
| 	numvertices = 0;
 | ||
| 	for(iter = inpolys->front(); iter ; iter=iter->next()) {
 | ||
| 		numvertices += iter->get().GetNumPoints();
 | ||
| 	}
 | ||
| 
 | ||
| 	maxnumvertices = numvertices*3;
 | ||
| 	vertices = new MonotoneVertex[maxnumvertices];
 | ||
| 	newnumvertices = numvertices;
 | ||
| 
 | ||
| 	polystartindex = 0;
 | ||
| 	for(iter = inpolys->front(); iter ; iter=iter->next()) {
 | ||
| 		poly = &(iter->get());
 | ||
| 		polyendindex = polystartindex + poly->GetNumPoints()-1;
 | ||
| 		for(i=0;i<poly->GetNumPoints();i++) {
 | ||
| 			vertices[i+polystartindex].p = poly->GetPoint(i);
 | ||
| 			if(i==0) vertices[i+polystartindex].previous = polyendindex;
 | ||
| 			else vertices[i+polystartindex].previous = i+polystartindex-1;
 | ||
| 			if(i==(poly->GetNumPoints()-1)) vertices[i+polystartindex].next = polystartindex;
 | ||
| 			else vertices[i+polystartindex].next = i+polystartindex+1;
 | ||
| 		}
 | ||
| 		polystartindex = polyendindex+1;
 | ||
| 	}
 | ||
| 
 | ||
| 	//construct the priority queue
 | ||
| 	long *priority = new long [numvertices];
 | ||
| 	for(i=0;i<numvertices;i++) priority[i] = i;
 | ||
| 	SortArray<long,VertexSorter> sorter;
 | ||
| 	sorter.compare.vertices=vertices;
 | ||
| 	sorter.sort(priority,numvertices);
 | ||
| 
 | ||
| 	//determine vertex types
 | ||
| 	char *vertextypes = new char[maxnumvertices];
 | ||
| 	for(i=0;i<numvertices;i++) {
 | ||
| 		v = &(vertices[i]);
 | ||
| 		vprev = &(vertices[v->previous]);
 | ||
| 		vnext = &(vertices[v->next]);
 | ||
| 
 | ||
| 		if(Below(vprev->p,v->p)&&Below(vnext->p,v->p)) {
 | ||
| 			if(IsConvex(vnext->p,vprev->p,v->p)) {
 | ||
| 				vertextypes[i] = TRIANGULATOR_VERTEXTYPE_START;
 | ||
| 			} else {
 | ||
| 				vertextypes[i] = TRIANGULATOR_VERTEXTYPE_SPLIT;
 | ||
| 			}
 | ||
| 		} else if(Below(v->p,vprev->p)&&Below(v->p,vnext->p)) {
 | ||
| 			if(IsConvex(vnext->p,vprev->p,v->p))
 | ||
| 			{
 | ||
| 				vertextypes[i] = TRIANGULATOR_VERTEXTYPE_END;
 | ||
| 			} else {
 | ||
| 				vertextypes[i] = TRIANGULATOR_VERTEXTYPE_MERGE;
 | ||
| 			}
 | ||
| 		} else {
 | ||
| 			vertextypes[i] = TRIANGULATOR_VERTEXTYPE_REGULAR;
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	//helpers
 | ||
| 	long *helpers = new long[maxnumvertices];
 | ||
| 
 | ||
| 	//binary search tree that holds edges intersecting the scanline
 | ||
| 	//note that while set doesn't actually have to be implemented as a tree
 | ||
| 	//complexity requirements for operations are the same as for the balanced binary search tree
 | ||
| 	Set<ScanLineEdge> edgeTree;
 | ||
| 	//store iterators to the edge tree elements
 | ||
| 	//this makes deleting existing edges much faster
 | ||
| 	Set<ScanLineEdge>::Element **edgeTreeIterators,*edgeIter;
 | ||
| 	edgeTreeIterators = new Set<ScanLineEdge>::Element*[maxnumvertices];
 | ||
| //	Pair<Set<ScanLineEdge>::Element*,bool> edgeTreeRet;
 | ||
| 	for(i = 0; i<numvertices; i++) edgeTreeIterators[i] = NULL;
 | ||
| 
 | ||
| 	//for each vertex
 | ||
| 	for(i=0;i<numvertices;i++) {
 | ||
| 		vindex = priority[i];
 | ||
| 		v = &(vertices[vindex]);
 | ||
| 		vindex2 = vindex;
 | ||
| 		v2 = v;
 | ||
| 
 | ||
| 		//depending on the vertex type, do the appropriate action
 | ||
| 		//comments in the following sections are copied from "Computational Geometry: Algorithms and Applications"
 | ||
| 		switch(vertextypes[vindex]) {
 | ||
| 			case TRIANGULATOR_VERTEXTYPE_START:
 | ||
| 				//Insert ei in T and set helper(ei) to vi.
 | ||
| 				newedge.p1 = v->p;
 | ||
| 				newedge.p2 = vertices[v->next].p;
 | ||
| 				newedge.index = vindex;
 | ||
| 				edgeTreeIterators[vindex] = edgeTree.insert(newedge);
 | ||
| 				helpers[vindex] = vindex;
 | ||
| 				break;
 | ||
| 
 | ||
| 			case TRIANGULATOR_VERTEXTYPE_END:
 | ||
| 				//if helper(ei-1) is a merge vertex
 | ||
| 				if(vertextypes[helpers[v->previous]]==TRIANGULATOR_VERTEXTYPE_MERGE) {
 | ||
| 					//Insert the diagonal connecting vi to helper(ei-1) in D.
 | ||
| 					AddDiagonal(vertices,&newnumvertices,vindex,helpers[v->previous],
 | ||
| 							vertextypes, edgeTreeIterators, &edgeTree, helpers);
 | ||
| 				}
 | ||
| 				//Delete ei-1 from T
 | ||
| 				edgeTree.erase(edgeTreeIterators[v->previous]);
 | ||
| 				break;
 | ||
| 
 | ||
| 			case TRIANGULATOR_VERTEXTYPE_SPLIT:
 | ||
| 				//Search in T to find the edge e j directly left of vi.
 | ||
| 				newedge.p1 = v->p;
 | ||
| 				newedge.p2 = v->p;
 | ||
| 				edgeIter = edgeTree.lower_bound(newedge);
 | ||
| 				if(edgeIter == edgeTree.front()) {
 | ||
| 					error = true;
 | ||
| 					break;
 | ||
| 				}
 | ||
| 				edgeIter=edgeIter->prev();
 | ||
| 				//Insert the diagonal connecting vi to helper(ej) in D.
 | ||
| 				AddDiagonal(vertices,&newnumvertices,vindex,helpers[edgeIter->get().index],
 | ||
| 						vertextypes, edgeTreeIterators, &edgeTree, helpers);
 | ||
| 				vindex2 = newnumvertices-2;
 | ||
| 				v2 = &(vertices[vindex2]);
 | ||
| 				//helper(e j)<29>vi
 | ||
| 				helpers[edgeIter->get().index] = vindex;
 | ||
| 				//Insert ei in T and set helper(ei) to vi.
 | ||
| 				newedge.p1 = v2->p;
 | ||
| 				newedge.p2 = vertices[v2->next].p;
 | ||
| 				newedge.index = vindex2;
 | ||
| 
 | ||
| 				edgeTreeIterators[vindex2] = edgeTree.insert(newedge);
 | ||
| 				helpers[vindex2] = vindex2;
 | ||
| 				break;
 | ||
| 
 | ||
| 			case TRIANGULATOR_VERTEXTYPE_MERGE:
 | ||
| 				//if helper(ei-1) is a merge vertex
 | ||
| 				if(vertextypes[helpers[v->previous]]==TRIANGULATOR_VERTEXTYPE_MERGE) {
 | ||
| 					//Insert the diagonal connecting vi to helper(ei-1) in D.
 | ||
| 					AddDiagonal(vertices,&newnumvertices,vindex,helpers[v->previous],
 | ||
| 							vertextypes, edgeTreeIterators, &edgeTree, helpers);
 | ||
| 					vindex2 = newnumvertices-2;
 | ||
| 					v2 = &(vertices[vindex2]);
 | ||
| 				}
 | ||
| 				//Delete ei-1 from T.
 | ||
| 				edgeTree.erase(edgeTreeIterators[v->previous]);
 | ||
| 				//Search in T to find the edge e j directly left of vi.
 | ||
| 				newedge.p1 = v->p;
 | ||
| 				newedge.p2 = v->p;
 | ||
| 				edgeIter = edgeTree.lower_bound(newedge);
 | ||
| 				if(edgeIter == edgeTree.front()) {
 | ||
| 					error = true;
 | ||
| 					break;
 | ||
| 				}
 | ||
| 				edgeIter=edgeIter->prev();
 | ||
| 				//if helper(ej) is a merge vertex
 | ||
| 				if(vertextypes[helpers[edgeIter->get().index]]==TRIANGULATOR_VERTEXTYPE_MERGE) {
 | ||
| 					//Insert the diagonal connecting vi to helper(e j) in D.
 | ||
| 					AddDiagonal(vertices,&newnumvertices,vindex2,helpers[edgeIter->get().index],
 | ||
| 							vertextypes, edgeTreeIterators, &edgeTree, helpers);
 | ||
| 				}
 | ||
| 				//helper(e j)<29>vi
 | ||
| 				helpers[edgeIter->get().index] = vindex2;
 | ||
| 				break;
 | ||
| 
 | ||
| 			case TRIANGULATOR_VERTEXTYPE_REGULAR:
 | ||
| 				//if the interior of P lies to the right of vi
 | ||
| 				if(Below(v->p,vertices[v->previous].p)) {
 | ||
| 					//if helper(ei-1) is a merge vertex
 | ||
| 					if(vertextypes[helpers[v->previous]]==TRIANGULATOR_VERTEXTYPE_MERGE) {
 | ||
| 						//Insert the diagonal connecting vi to helper(ei-1) in D.
 | ||
| 						AddDiagonal(vertices,&newnumvertices,vindex,helpers[v->previous],
 | ||
| 								vertextypes, edgeTreeIterators, &edgeTree, helpers);
 | ||
| 						vindex2 = newnumvertices-2;
 | ||
| 						v2 = &(vertices[vindex2]);
 | ||
| 					}
 | ||
| 					//Delete ei-1 from T.
 | ||
| 					edgeTree.erase(edgeTreeIterators[v->previous]);
 | ||
| 					//Insert ei in T and set helper(ei) to vi.
 | ||
| 					newedge.p1 = v2->p;
 | ||
| 					newedge.p2 = vertices[v2->next].p;
 | ||
| 					newedge.index = vindex2;
 | ||
| 					edgeTreeIterators[vindex2] = edgeTree.insert(newedge);
 | ||
| 					helpers[vindex2] = vindex;
 | ||
| 				} else {
 | ||
| 					//Search in T to find the edge ej directly left of vi.
 | ||
| 					newedge.p1 = v->p;
 | ||
| 					newedge.p2 = v->p;
 | ||
| 					edgeIter = edgeTree.lower_bound(newedge);
 | ||
| 					if(edgeIter == edgeTree.front()) {
 | ||
| 						error = true;
 | ||
| 						break;
 | ||
| 					}
 | ||
| 					edgeIter=edgeIter->prev();
 | ||
| 					//if helper(ej) is a merge vertex
 | ||
| 					if(vertextypes[helpers[edgeIter->get().index]]==TRIANGULATOR_VERTEXTYPE_MERGE) {
 | ||
| 						//Insert the diagonal connecting vi to helper(e j) in D.
 | ||
| 						AddDiagonal(vertices,&newnumvertices,vindex,helpers[edgeIter->get().index],
 | ||
| 								vertextypes, edgeTreeIterators, &edgeTree, helpers);
 | ||
| 					}
 | ||
| 					//helper(e j)<29>vi
 | ||
| 					helpers[edgeIter->get().index] = vindex;
 | ||
| 				}
 | ||
| 				break;
 | ||
| 		}
 | ||
| 
 | ||
| 		if(error) break;
 | ||
| 	}
 | ||
| 
 | ||
| 	char *used = new char[newnumvertices];
 | ||
| 	memset(used,0,newnumvertices*sizeof(char));
 | ||
| 
 | ||
| 	if(!error) {
 | ||
| 		//return result
 | ||
| 		long size;
 | ||
| 		TriangulatorPoly mpoly;
 | ||
| 		for(i=0;i<newnumvertices;i++) {
 | ||
| 			if(used[i]) continue;
 | ||
| 			v = &(vertices[i]);
 | ||
| 			vnext = &(vertices[v->next]);
 | ||
| 			size = 1;
 | ||
| 			while(vnext!=v) {
 | ||
| 				vnext = &(vertices[vnext->next]);
 | ||
| 				size++;
 | ||
| 			}
 | ||
| 			mpoly.Init(size);
 | ||
| 			v = &(vertices[i]);
 | ||
| 			mpoly[0] = v->p;
 | ||
| 			vnext = &(vertices[v->next]);
 | ||
| 			size = 1;
 | ||
| 			used[i] = 1;
 | ||
| 			used[v->next] = 1;
 | ||
| 			while(vnext!=v) {
 | ||
| 				mpoly[size] = vnext->p;
 | ||
| 				used[vnext->next] = 1;
 | ||
| 				vnext = &(vertices[vnext->next]);
 | ||
| 				size++;
 | ||
| 			}
 | ||
| 			monotonePolys->push_back(mpoly);
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	//cleanup
 | ||
| 	delete [] vertices;
 | ||
| 	delete [] priority;
 | ||
| 	delete [] vertextypes;
 | ||
| 	delete [] edgeTreeIterators;
 | ||
| 	delete [] helpers;
 | ||
| 	delete [] used;
 | ||
| 
 | ||
| 	if(error) {
 | ||
| 		return 0;
 | ||
| 	} else {
 | ||
| 		return 1;
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| //adds a diagonal to the doubly-connected list of vertices
 | ||
| void TriangulatorPartition::AddDiagonal(MonotoneVertex *vertices, long *numvertices, long index1, long index2,
 | ||
| 					char *vertextypes, Set<ScanLineEdge>::Element **edgeTreeIterators,
 | ||
| 					Set<ScanLineEdge> *edgeTree, long *helpers)
 | ||
| {
 | ||
| 	long newindex1,newindex2;
 | ||
| 
 | ||
| 	newindex1 = *numvertices;
 | ||
| 	(*numvertices)++;
 | ||
| 	newindex2 = *numvertices;
 | ||
| 	(*numvertices)++;
 | ||
| 
 | ||
| 	vertices[newindex1].p = vertices[index1].p;
 | ||
| 	vertices[newindex2].p = vertices[index2].p;
 | ||
| 
 | ||
| 	vertices[newindex2].next = vertices[index2].next;
 | ||
| 	vertices[newindex1].next = vertices[index1].next;
 | ||
| 
 | ||
| 	vertices[vertices[index2].next].previous = newindex2;
 | ||
| 	vertices[vertices[index1].next].previous = newindex1;
 | ||
| 
 | ||
| 	vertices[index1].next = newindex2;
 | ||
| 	vertices[newindex2].previous = index1;
 | ||
| 
 | ||
| 	vertices[index2].next = newindex1;
 | ||
| 	vertices[newindex1].previous = index2;
 | ||
| 
 | ||
| 	//update all relevant structures
 | ||
| 	vertextypes[newindex1] = vertextypes[index1];
 | ||
| 	edgeTreeIterators[newindex1] = edgeTreeIterators[index1];
 | ||
| 	helpers[newindex1] = helpers[index1];
 | ||
| 	if(edgeTreeIterators[newindex1] != NULL)
 | ||
| 		edgeTreeIterators[newindex1]->get().index = newindex1;
 | ||
| 	vertextypes[newindex2] = vertextypes[index2];
 | ||
| 	edgeTreeIterators[newindex2] = edgeTreeIterators[index2];
 | ||
| 	helpers[newindex2] = helpers[index2];
 | ||
| 	if(edgeTreeIterators[newindex2] != NULL)
 | ||
| 		edgeTreeIterators[newindex2]->get().index = newindex2;
 | ||
| }
 | ||
| 
 | ||
| bool TriangulatorPartition::Below(Vector2 &p1, Vector2 &p2) {
 | ||
| 	if(p1.y < p2.y) return true;
 | ||
| 	else if(p1.y == p2.y) {
 | ||
| 		if(p1.x < p2.x) return true;
 | ||
| 	}
 | ||
| 	return false;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| 
 | ||
| //sorts in the falling order of y values, if y is equal, x is used instead
 | ||
| bool TriangulatorPartition::VertexSorter::operator() (long index1, long index2) const {
 | ||
| 	if(vertices[index1].p.y > vertices[index2].p.y) return true;
 | ||
| 	else if(vertices[index1].p.y == vertices[index2].p.y) {
 | ||
| 		if(vertices[index1].p.x > vertices[index2].p.x) return true;
 | ||
| 	}
 | ||
| 	return false;
 | ||
| }
 | ||
| 
 | ||
| bool TriangulatorPartition::ScanLineEdge::IsConvex(const Vector2& p1, const Vector2& p2, const Vector2& p3) const {
 | ||
| 	real_t tmp;
 | ||
| 	tmp = (p3.y-p1.y)*(p2.x-p1.x)-(p3.x-p1.x)*(p2.y-p1.y);
 | ||
| 	if(tmp>0) return 1;
 | ||
| 	else return 0;
 | ||
| }
 | ||
| 
 | ||
| bool TriangulatorPartition::ScanLineEdge::operator < (const ScanLineEdge & other) const {
 | ||
| 	if(other.p1.y == other.p2.y) {
 | ||
| 		if(p1.y == p2.y) {
 | ||
| 			if(p1.y < other.p1.y) return true;
 | ||
| 			else return false;
 | ||
| 		}
 | ||
| 		if(IsConvex(p1,p2,other.p1)) return true;
 | ||
| 		else return false;
 | ||
| 	} else if(p1.y == p2.y) {
 | ||
| 		if(IsConvex(other.p1,other.p2,p1)) return false;
 | ||
| 		else return true;
 | ||
| 	} else if(p1.y < other.p1.y) {
 | ||
| 		if(IsConvex(other.p1,other.p2,p1)) return false;
 | ||
| 		else return true;
 | ||
| 	} else {
 | ||
| 		if(IsConvex(p1,p2,other.p1)) return true;
 | ||
| 		else return false;
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| //triangulates monotone polygon
 | ||
| //O(n) time, O(n) space complexity
 | ||
| int TriangulatorPartition::TriangulateMonotone(TriangulatorPoly *inPoly, List<TriangulatorPoly> *triangles) {
 | ||
| 	long i,i2,j,topindex,bottomindex,leftindex,rightindex,vindex;
 | ||
| 	Vector2 *points;
 | ||
| 	long numpoints;
 | ||
| 	TriangulatorPoly triangle;
 | ||
| 
 | ||
| 	numpoints = inPoly->GetNumPoints();
 | ||
| 	points = inPoly->GetPoints();
 | ||
| 
 | ||
| 	//trivial calses
 | ||
| 	if(numpoints < 3) return 0;
 | ||
| 	if(numpoints == 3) {
 | ||
| 		triangles->push_back(*inPoly);
 | ||
| 	}
 | ||
| 
 | ||
| 	topindex = 0; bottomindex=0;
 | ||
| 	for(i=1;i<numpoints;i++) {
 | ||
| 		if(Below(points[i],points[bottomindex])) bottomindex = i;
 | ||
| 		if(Below(points[topindex],points[i])) topindex = i;
 | ||
| 	}
 | ||
| 
 | ||
| 	//check if the poly is really monotone
 | ||
| 	i = topindex;
 | ||
| 	while(i!=bottomindex) {
 | ||
| 		i2 = i+1; if(i2>=numpoints) i2 = 0;
 | ||
| 		if(!Below(points[i2],points[i])) return 0;
 | ||
| 		i = i2;
 | ||
| 	}
 | ||
| 	i = bottomindex;
 | ||
| 	while(i!=topindex) {
 | ||
| 		i2 = i+1; if(i2>=numpoints) i2 = 0;
 | ||
| 		if(!Below(points[i],points[i2])) return 0;
 | ||
| 		i = i2;
 | ||
| 	}
 | ||
| 
 | ||
| 	char *vertextypes = new char[numpoints];
 | ||
| 	long *priority = new long[numpoints];
 | ||
| 
 | ||
| 	//merge left and right vertex chains
 | ||
| 	priority[0] = topindex;
 | ||
| 	vertextypes[topindex] = 0;
 | ||
| 	leftindex = topindex+1; if(leftindex>=numpoints) leftindex = 0;
 | ||
| 	rightindex = topindex-1; if(rightindex<0) rightindex = numpoints-1;
 | ||
| 	for(i=1;i<(numpoints-1);i++) {
 | ||
| 		if(leftindex==bottomindex) {
 | ||
| 			priority[i] = rightindex;
 | ||
| 			rightindex--; if(rightindex<0) rightindex = numpoints-1;
 | ||
| 			vertextypes[priority[i]] = -1;
 | ||
| 		} else if(rightindex==bottomindex) {
 | ||
| 			priority[i] = leftindex;
 | ||
| 			leftindex++;  if(leftindex>=numpoints) leftindex = 0;
 | ||
| 			vertextypes[priority[i]] = 1;
 | ||
| 		} else {
 | ||
| 			if(Below(points[leftindex],points[rightindex])) {
 | ||
| 				priority[i] = rightindex;
 | ||
| 				rightindex--; if(rightindex<0) rightindex = numpoints-1;
 | ||
| 				vertextypes[priority[i]] = -1;
 | ||
| 			} else {
 | ||
| 				priority[i] = leftindex;
 | ||
| 				leftindex++;  if(leftindex>=numpoints) leftindex = 0;
 | ||
| 				vertextypes[priority[i]] = 1;
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}
 | ||
| 	priority[i] = bottomindex;
 | ||
| 	vertextypes[bottomindex] = 0;
 | ||
| 
 | ||
| 	long *stack = new long[numpoints];
 | ||
| 	long stackptr = 0;
 | ||
| 
 | ||
| 	stack[0] = priority[0];
 | ||
| 	stack[1] = priority[1];
 | ||
| 	stackptr = 2;
 | ||
| 
 | ||
| 	//for each vertex from top to bottom trim as many triangles as possible
 | ||
| 	for(i=2;i<(numpoints-1);i++) {
 | ||
| 		vindex = priority[i];
 | ||
| 		if(vertextypes[vindex]!=vertextypes[stack[stackptr-1]]) {
 | ||
| 			for(j=0;j<(stackptr-1);j++) {
 | ||
| 				if(vertextypes[vindex]==1) {
 | ||
| 					triangle.Triangle(points[stack[j+1]],points[stack[j]],points[vindex]);
 | ||
| 				} else {
 | ||
| 					triangle.Triangle(points[stack[j]],points[stack[j+1]],points[vindex]);
 | ||
| 				}
 | ||
| 				triangles->push_back(triangle);
 | ||
| 			}
 | ||
| 			stack[0] = priority[i-1];
 | ||
| 			stack[1] = priority[i];
 | ||
| 			stackptr = 2;
 | ||
| 		} else {
 | ||
| 			stackptr--;
 | ||
| 			while(stackptr>0) {
 | ||
| 				if(vertextypes[vindex]==1) {
 | ||
| 					if(IsConvex(points[vindex],points[stack[stackptr-1]],points[stack[stackptr]])) {
 | ||
| 						triangle.Triangle(points[vindex],points[stack[stackptr-1]],points[stack[stackptr]]);
 | ||
| 						triangles->push_back(triangle);
 | ||
| 						stackptr--;
 | ||
| 					} else {
 | ||
| 						break;
 | ||
| 					}
 | ||
| 				} else {
 | ||
| 					if(IsConvex(points[vindex],points[stack[stackptr]],points[stack[stackptr-1]])) {
 | ||
| 						triangle.Triangle(points[vindex],points[stack[stackptr]],points[stack[stackptr-1]]);
 | ||
| 						triangles->push_back(triangle);
 | ||
| 						stackptr--;
 | ||
| 					} else {
 | ||
| 						break;
 | ||
| 					}
 | ||
| 				}
 | ||
| 			}
 | ||
| 			stackptr++;
 | ||
| 			stack[stackptr] = vindex;
 | ||
| 			stackptr++;
 | ||
| 		}
 | ||
| 	}
 | ||
| 	vindex = priority[i];
 | ||
| 	for(j=0;j<(stackptr-1);j++) {
 | ||
| 		if(vertextypes[stack[j+1]]==1) {
 | ||
| 			triangle.Triangle(points[stack[j]],points[stack[j+1]],points[vindex]);
 | ||
| 		} else {
 | ||
| 			triangle.Triangle(points[stack[j+1]],points[stack[j]],points[vindex]);
 | ||
| 		}
 | ||
| 		triangles->push_back(triangle);
 | ||
| 	}
 | ||
| 
 | ||
| 	delete [] priority;
 | ||
| 	delete [] vertextypes;
 | ||
| 	delete [] stack;
 | ||
| 
 | ||
| 	return 1;
 | ||
| }
 | ||
| 
 | ||
| int TriangulatorPartition::Triangulate_MONO(List<TriangulatorPoly> *inpolys, List<TriangulatorPoly> *triangles) {
 | ||
| 	List<TriangulatorPoly> monotone;
 | ||
| 	List<TriangulatorPoly>::Element* iter;
 | ||
| 
 | ||
| 	if(!MonotonePartition(inpolys,&monotone)) return 0;
 | ||
| 	for(iter = monotone.front(); iter;iter=iter->next()) {
 | ||
| 		if(!TriangulateMonotone(&(iter->get()),triangles)) return 0;
 | ||
| 	}
 | ||
| 	return 1;
 | ||
| }
 | ||
| 
 | ||
| int TriangulatorPartition::Triangulate_MONO(TriangulatorPoly *poly, List<TriangulatorPoly> *triangles) {
 | ||
| 	List<TriangulatorPoly> polys;
 | ||
| 	polys.push_back(*poly);
 | ||
| 
 | ||
| 	return Triangulate_MONO(&polys, triangles);
 | ||
| }
 | 
