mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-25 02:43:29 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			364 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			364 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // Copyright 2011 Google Inc. All Rights Reserved.
 | |
| //
 | |
| // This code is licensed under the same terms as WebM:
 | |
| //  Software License Agreement:  http://www.webmproject.org/license/software/
 | |
| //  Additional IP Rights Grant:  http://www.webmproject.org/license/additional/
 | |
| // -----------------------------------------------------------------------------
 | |
| //
 | |
| // Macroblock analysis
 | |
| //
 | |
| // Author: Skal (pascal.massimino@gmail.com)
 | |
| 
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <assert.h>
 | |
| 
 | |
| #include "./vp8enci.h"
 | |
| #include "./cost.h"
 | |
| #include "../utils/utils.h"
 | |
| 
 | |
| #if defined(__cplusplus) || defined(c_plusplus)
 | |
| extern "C" {
 | |
| #endif
 | |
| 
 | |
| #define MAX_ITERS_K_MEANS  6
 | |
| 
 | |
| static int ClipAlpha(int alpha) {
 | |
|   return alpha < 0 ? 0 : alpha > 255 ? 255 : alpha;
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| // Smooth the segment map by replacing isolated block by the majority of its
 | |
| // neighbours.
 | |
| 
 | |
| static void SmoothSegmentMap(VP8Encoder* const enc) {
 | |
|   int n, x, y;
 | |
|   const int w = enc->mb_w_;
 | |
|   const int h = enc->mb_h_;
 | |
|   const int majority_cnt_3_x_3_grid = 5;
 | |
|   uint8_t* const tmp = (uint8_t*)WebPSafeMalloc((uint64_t)w * h, sizeof(*tmp));
 | |
|   assert((uint64_t)(w * h) == (uint64_t)w * h);   // no overflow, as per spec
 | |
| 
 | |
|   if (tmp == NULL) return;
 | |
|   for (y = 1; y < h - 1; ++y) {
 | |
|     for (x = 1; x < w - 1; ++x) {
 | |
|       int cnt[NUM_MB_SEGMENTS] = { 0 };
 | |
|       const VP8MBInfo* const mb = &enc->mb_info_[x + w * y];
 | |
|       int majority_seg = mb->segment_;
 | |
|       // Check the 8 neighbouring segment values.
 | |
|       cnt[mb[-w - 1].segment_]++;  // top-left
 | |
|       cnt[mb[-w + 0].segment_]++;  // top
 | |
|       cnt[mb[-w + 1].segment_]++;  // top-right
 | |
|       cnt[mb[   - 1].segment_]++;  // left
 | |
|       cnt[mb[   + 1].segment_]++;  // right
 | |
|       cnt[mb[ w - 1].segment_]++;  // bottom-left
 | |
|       cnt[mb[ w + 0].segment_]++;  // bottom
 | |
|       cnt[mb[ w + 1].segment_]++;  // bottom-right
 | |
|       for (n = 0; n < NUM_MB_SEGMENTS; ++n) {
 | |
|         if (cnt[n] >= majority_cnt_3_x_3_grid) {
 | |
|           majority_seg = n;
 | |
|         }
 | |
|       }
 | |
|       tmp[x + y * w] = majority_seg;
 | |
|     }
 | |
|   }
 | |
|   for (y = 1; y < h - 1; ++y) {
 | |
|     for (x = 1; x < w - 1; ++x) {
 | |
|       VP8MBInfo* const mb = &enc->mb_info_[x + w * y];
 | |
|       mb->segment_ = tmp[x + y * w];
 | |
|     }
 | |
|   }
 | |
|   free(tmp);
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| // Finalize Segment probability based on the coding tree
 | |
| 
 | |
| static int GetProba(int a, int b) {
 | |
|   int proba;
 | |
|   const int total = a + b;
 | |
|   if (total == 0) return 255;  // that's the default probability.
 | |
|   proba = (255 * a + total / 2) / total;
 | |
|   return proba;
 | |
| }
 | |
| 
 | |
| static void SetSegmentProbas(VP8Encoder* const enc) {
 | |
|   int p[NUM_MB_SEGMENTS] = { 0 };
 | |
|   int n;
 | |
| 
 | |
|   for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
 | |
|     const VP8MBInfo* const mb = &enc->mb_info_[n];
 | |
|     p[mb->segment_]++;
 | |
|   }
 | |
|   if (enc->pic_->stats) {
 | |
|     for (n = 0; n < NUM_MB_SEGMENTS; ++n) {
 | |
|       enc->pic_->stats->segment_size[n] = p[n];
 | |
|     }
 | |
|   }
 | |
|   if (enc->segment_hdr_.num_segments_ > 1) {
 | |
|     uint8_t* const probas = enc->proba_.segments_;
 | |
|     probas[0] = GetProba(p[0] + p[1], p[2] + p[3]);
 | |
|     probas[1] = GetProba(p[0], p[1]);
 | |
|     probas[2] = GetProba(p[2], p[3]);
 | |
| 
 | |
|     enc->segment_hdr_.update_map_ =
 | |
|         (probas[0] != 255) || (probas[1] != 255) || (probas[2] != 255);
 | |
|     enc->segment_hdr_.size_ =
 | |
|       p[0] * (VP8BitCost(0, probas[0]) + VP8BitCost(0, probas[1])) +
 | |
|       p[1] * (VP8BitCost(0, probas[0]) + VP8BitCost(1, probas[1])) +
 | |
|       p[2] * (VP8BitCost(1, probas[0]) + VP8BitCost(0, probas[2])) +
 | |
|       p[3] * (VP8BitCost(1, probas[0]) + VP8BitCost(1, probas[2]));
 | |
|   } else {
 | |
|     enc->segment_hdr_.update_map_ = 0;
 | |
|     enc->segment_hdr_.size_ = 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static WEBP_INLINE int clip(int v, int m, int M) {
 | |
|   return v < m ? m : v > M ? M : v;
 | |
| }
 | |
| 
 | |
| static void SetSegmentAlphas(VP8Encoder* const enc,
 | |
|                              const int centers[NUM_MB_SEGMENTS],
 | |
|                              int mid) {
 | |
|   const int nb = enc->segment_hdr_.num_segments_;
 | |
|   int min = centers[0], max = centers[0];
 | |
|   int n;
 | |
| 
 | |
|   if (nb > 1) {
 | |
|     for (n = 0; n < nb; ++n) {
 | |
|       if (min > centers[n]) min = centers[n];
 | |
|       if (max < centers[n]) max = centers[n];
 | |
|     }
 | |
|   }
 | |
|   if (max == min) max = min + 1;
 | |
|   assert(mid <= max && mid >= min);
 | |
|   for (n = 0; n < nb; ++n) {
 | |
|     const int alpha = 255 * (centers[n] - mid) / (max - min);
 | |
|     const int beta = 255 * (centers[n] - min) / (max - min);
 | |
|     enc->dqm_[n].alpha_ = clip(alpha, -127, 127);
 | |
|     enc->dqm_[n].beta_ = clip(beta, 0, 255);
 | |
|   }
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| // Simplified k-Means, to assign Nb segments based on alpha-histogram
 | |
| 
 | |
| static void AssignSegments(VP8Encoder* const enc, const int alphas[256]) {
 | |
|   const int nb = enc->segment_hdr_.num_segments_;
 | |
|   int centers[NUM_MB_SEGMENTS];
 | |
|   int weighted_average = 0;
 | |
|   int map[256];
 | |
|   int a, n, k;
 | |
|   int min_a = 0, max_a = 255, range_a;
 | |
|   // 'int' type is ok for histo, and won't overflow
 | |
|   int accum[NUM_MB_SEGMENTS], dist_accum[NUM_MB_SEGMENTS];
 | |
| 
 | |
|   // bracket the input
 | |
|   for (n = 0; n < 256 && alphas[n] == 0; ++n) {}
 | |
|   min_a = n;
 | |
|   for (n = 255; n > min_a && alphas[n] == 0; --n) {}
 | |
|   max_a = n;
 | |
|   range_a = max_a - min_a;
 | |
| 
 | |
|   // Spread initial centers evenly
 | |
|   for (n = 1, k = 0; n < 2 * nb; n += 2) {
 | |
|     centers[k++] = min_a + (n * range_a) / (2 * nb);
 | |
|   }
 | |
| 
 | |
|   for (k = 0; k < MAX_ITERS_K_MEANS; ++k) {     // few iters are enough
 | |
|     int total_weight;
 | |
|     int displaced;
 | |
|     // Reset stats
 | |
|     for (n = 0; n < nb; ++n) {
 | |
|       accum[n] = 0;
 | |
|       dist_accum[n] = 0;
 | |
|     }
 | |
|     // Assign nearest center for each 'a'
 | |
|     n = 0;    // track the nearest center for current 'a'
 | |
|     for (a = min_a; a <= max_a; ++a) {
 | |
|       if (alphas[a]) {
 | |
|         while (n < nb - 1 && abs(a - centers[n + 1]) < abs(a - centers[n])) {
 | |
|           n++;
 | |
|         }
 | |
|         map[a] = n;
 | |
|         // accumulate contribution into best centroid
 | |
|         dist_accum[n] += a * alphas[a];
 | |
|         accum[n] += alphas[a];
 | |
|       }
 | |
|     }
 | |
|     // All point are classified. Move the centroids to the
 | |
|     // center of their respective cloud.
 | |
|     displaced = 0;
 | |
|     weighted_average = 0;
 | |
|     total_weight = 0;
 | |
|     for (n = 0; n < nb; ++n) {
 | |
|       if (accum[n]) {
 | |
|         const int new_center = (dist_accum[n] + accum[n] / 2) / accum[n];
 | |
|         displaced += abs(centers[n] - new_center);
 | |
|         centers[n] = new_center;
 | |
|         weighted_average += new_center * accum[n];
 | |
|         total_weight += accum[n];
 | |
|       }
 | |
|     }
 | |
|     weighted_average = (weighted_average + total_weight / 2) / total_weight;
 | |
|     if (displaced < 5) break;   // no need to keep on looping...
 | |
|   }
 | |
| 
 | |
|   // Map each original value to the closest centroid
 | |
|   for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
 | |
|     VP8MBInfo* const mb = &enc->mb_info_[n];
 | |
|     const int alpha = mb->alpha_;
 | |
|     mb->segment_ = map[alpha];
 | |
|     mb->alpha_ = centers[map[alpha]];     // just for the record.
 | |
|   }
 | |
| 
 | |
|   if (nb > 1) {
 | |
|     const int smooth = (enc->config_->preprocessing & 1);
 | |
|     if (smooth) SmoothSegmentMap(enc);
 | |
|   }
 | |
| 
 | |
|   SetSegmentProbas(enc);                             // Assign final proba
 | |
|   SetSegmentAlphas(enc, centers, weighted_average);  // pick some alphas.
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| // Macroblock analysis: collect histogram for each mode, deduce the maximal
 | |
| // susceptibility and set best modes for this macroblock.
 | |
| // Segment assignment is done later.
 | |
| 
 | |
| // Number of modes to inspect for alpha_ evaluation. For high-quality settings,
 | |
| // we don't need to test all the possible modes during the analysis phase.
 | |
| #define MAX_INTRA16_MODE 2
 | |
| #define MAX_INTRA4_MODE  2
 | |
| #define MAX_UV_MODE      2
 | |
| 
 | |
| static int MBAnalyzeBestIntra16Mode(VP8EncIterator* const it) {
 | |
|   const int max_mode = (it->enc_->method_ >= 3) ? MAX_INTRA16_MODE : 4;
 | |
|   int mode;
 | |
|   int best_alpha = -1;
 | |
|   int best_mode = 0;
 | |
| 
 | |
|   VP8MakeLuma16Preds(it);
 | |
|   for (mode = 0; mode < max_mode; ++mode) {
 | |
|     const int alpha = VP8CollectHistogram(it->yuv_in_ + Y_OFF,
 | |
|                                           it->yuv_p_ + VP8I16ModeOffsets[mode],
 | |
|                                           0, 16);
 | |
|     if (alpha > best_alpha) {
 | |
|       best_alpha = alpha;
 | |
|       best_mode = mode;
 | |
|     }
 | |
|   }
 | |
|   VP8SetIntra16Mode(it, best_mode);
 | |
|   return best_alpha;
 | |
| }
 | |
| 
 | |
| static int MBAnalyzeBestIntra4Mode(VP8EncIterator* const it,
 | |
|                                    int best_alpha) {
 | |
|   uint8_t modes[16];
 | |
|   const int max_mode = (it->enc_->method_ >= 3) ? MAX_INTRA4_MODE : NUM_BMODES;
 | |
|   int i4_alpha = 0;
 | |
|   VP8IteratorStartI4(it);
 | |
|   do {
 | |
|     int mode;
 | |
|     int best_mode_alpha = -1;
 | |
|     const uint8_t* const src = it->yuv_in_ + Y_OFF + VP8Scan[it->i4_];
 | |
| 
 | |
|     VP8MakeIntra4Preds(it);
 | |
|     for (mode = 0; mode < max_mode; ++mode) {
 | |
|       const int alpha = VP8CollectHistogram(src,
 | |
|                                             it->yuv_p_ + VP8I4ModeOffsets[mode],
 | |
|                                             0, 1);
 | |
|       if (alpha > best_mode_alpha) {
 | |
|         best_mode_alpha = alpha;
 | |
|         modes[it->i4_] = mode;
 | |
|       }
 | |
|     }
 | |
|     i4_alpha += best_mode_alpha;
 | |
|     // Note: we reuse the original samples for predictors
 | |
|   } while (VP8IteratorRotateI4(it, it->yuv_in_ + Y_OFF));
 | |
| 
 | |
|   if (i4_alpha > best_alpha) {
 | |
|     VP8SetIntra4Mode(it, modes);
 | |
|     best_alpha = ClipAlpha(i4_alpha);
 | |
|   }
 | |
|   return best_alpha;
 | |
| }
 | |
| 
 | |
| static int MBAnalyzeBestUVMode(VP8EncIterator* const it) {
 | |
|   int best_alpha = -1;
 | |
|   int best_mode = 0;
 | |
|   const int max_mode = (it->enc_->method_ >= 3) ? MAX_UV_MODE : 4;
 | |
|   int mode;
 | |
|   VP8MakeChroma8Preds(it);
 | |
|   for (mode = 0; mode < max_mode; ++mode) {
 | |
|     const int alpha = VP8CollectHistogram(it->yuv_in_ + U_OFF,
 | |
|                                           it->yuv_p_ + VP8UVModeOffsets[mode],
 | |
|                                           16, 16 + 4 + 4);
 | |
|     if (alpha > best_alpha) {
 | |
|       best_alpha = alpha;
 | |
|       best_mode = mode;
 | |
|     }
 | |
|   }
 | |
|   VP8SetIntraUVMode(it, best_mode);
 | |
|   return best_alpha;
 | |
| }
 | |
| 
 | |
| static void MBAnalyze(VP8EncIterator* const it,
 | |
|                       int alphas[256], int* const uv_alpha) {
 | |
|   const VP8Encoder* const enc = it->enc_;
 | |
|   int best_alpha, best_uv_alpha;
 | |
| 
 | |
|   VP8SetIntra16Mode(it, 0);  // default: Intra16, DC_PRED
 | |
|   VP8SetSkip(it, 0);         // not skipped
 | |
|   VP8SetSegment(it, 0);      // default segment, spec-wise.
 | |
| 
 | |
|   best_alpha = MBAnalyzeBestIntra16Mode(it);
 | |
|   if (enc->method_ != 3) {
 | |
|     // We go and make a fast decision for intra4/intra16.
 | |
|     // It's usually not a good and definitive pick, but helps seeding the stats
 | |
|     // about level bit-cost.
 | |
|     // TODO(skal): improve criterion.
 | |
|     best_alpha = MBAnalyzeBestIntra4Mode(it, best_alpha);
 | |
|   }
 | |
|   best_uv_alpha = MBAnalyzeBestUVMode(it);
 | |
| 
 | |
|   // Final susceptibility mix
 | |
|   best_alpha = (best_alpha + best_uv_alpha + 1) / 2;
 | |
|   alphas[best_alpha]++;
 | |
|   *uv_alpha += best_uv_alpha;
 | |
|   it->mb_->alpha_ = best_alpha;   // Informative only.
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| // Main analysis loop:
 | |
| // Collect all susceptibilities for each macroblock and record their
 | |
| // distribution in alphas[]. Segments is assigned a-posteriori, based on
 | |
| // this histogram.
 | |
| // We also pick an intra16 prediction mode, which shouldn't be considered
 | |
| // final except for fast-encode settings. We can also pick some intra4 modes
 | |
| // and decide intra4/intra16, but that's usually almost always a bad choice at
 | |
| // this stage.
 | |
| 
 | |
| int VP8EncAnalyze(VP8Encoder* const enc) {
 | |
|   int ok = 1;
 | |
|   int alphas[256] = { 0 };
 | |
|   VP8EncIterator it;
 | |
| 
 | |
|   VP8IteratorInit(enc, &it);
 | |
|   enc->uv_alpha_ = 0;
 | |
|   do {
 | |
|     VP8IteratorImport(&it);
 | |
|     MBAnalyze(&it, alphas, &enc->uv_alpha_);
 | |
|     ok = VP8IteratorProgress(&it, 20);
 | |
|     // Let's pretend we have perfect lossless reconstruction.
 | |
|   } while (ok && VP8IteratorNext(&it, it.yuv_in_));
 | |
|   enc->uv_alpha_ /= enc->mb_w_ * enc->mb_h_;
 | |
|   if (ok) AssignSegments(enc, alphas);
 | |
| 
 | |
|   return ok;
 | |
| }
 | |
| 
 | |
| #if defined(__cplusplus) || defined(c_plusplus)
 | |
| }    // extern "C"
 | |
| #endif
 | 
