mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-30 21:21:10 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			403 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			403 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*************************************************************************/
 | |
| /*  collision_solver_sw.cpp                                              */
 | |
| /*************************************************************************/
 | |
| /*                       This file is part of:                           */
 | |
| /*                           GODOT ENGINE                                */
 | |
| /*                    http://www.godotengine.org                         */
 | |
| /*************************************************************************/
 | |
| /* Copyright (c) 2007-2016 Juan Linietsky, Ariel Manzur.                 */
 | |
| /*                                                                       */
 | |
| /* Permission is hereby granted, free of charge, to any person obtaining */
 | |
| /* a copy of this software and associated documentation files (the       */
 | |
| /* "Software"), to deal in the Software without restriction, including   */
 | |
| /* without limitation the rights to use, copy, modify, merge, publish,   */
 | |
| /* distribute, sublicense, and/or sell copies of the Software, and to    */
 | |
| /* permit persons to whom the Software is furnished to do so, subject to */
 | |
| /* the following conditions:                                             */
 | |
| /*                                                                       */
 | |
| /* The above copyright notice and this permission notice shall be        */
 | |
| /* included in all copies or substantial portions of the Software.       */
 | |
| /*                                                                       */
 | |
| /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */
 | |
| /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */
 | |
| /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
 | |
| /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */
 | |
| /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */
 | |
| /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */
 | |
| /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */
 | |
| /*************************************************************************/
 | |
| #include "collision_solver_sw.h"
 | |
| #include "collision_solver_sat.h"
 | |
| 
 | |
| #include "gjk_epa.h"
 | |
| #include "collision_solver_sat.h"
 | |
| 
 | |
| 
 | |
| #define collision_solver sat_calculate_penetration
 | |
| //#define collision_solver gjk_epa_calculate_penetration
 | |
| 
 | |
| 
 | |
| bool CollisionSolverSW::solve_static_plane(const ShapeSW *p_shape_A,const Transform& p_transform_A,const ShapeSW *p_shape_B,const Transform& p_transform_B,CallbackResult p_result_callback,void *p_userdata,bool p_swap_result) {
 | |
| 
 | |
| 	const PlaneShapeSW *plane = static_cast<const PlaneShapeSW*>(p_shape_A);
 | |
| 	if (p_shape_B->get_type()==PhysicsServer::SHAPE_PLANE)
 | |
| 		return false;
 | |
| 	Plane p = p_transform_A.xform(plane->get_plane());
 | |
| 
 | |
| 	static const int max_supports = 16;
 | |
| 	Vector3 supports[max_supports];
 | |
| 	int support_count;
 | |
| 
 | |
| 	p_shape_B->get_supports(p_transform_B.basis.xform_inv(-p.normal).normalized(),max_supports,supports,support_count);
 | |
| 
 | |
| 	bool found=false;
 | |
| 
 | |
| 	for(int i=0;i<support_count;i++) {
 | |
| 
 | |
| 		supports[i] = p_transform_B.xform( supports[i] );
 | |
| 		if (p.distance_to(supports[i])>=0)
 | |
| 			continue;
 | |
| 		found=true;
 | |
| 
 | |
| 		Vector3 support_A = p.project(supports[i]);
 | |
| 
 | |
| 		if (p_result_callback) {
 | |
| 			if (p_swap_result)
 | |
| 				p_result_callback(supports[i],support_A,p_userdata);
 | |
| 			else
 | |
| 				p_result_callback(support_A,supports[i],p_userdata);
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	return found;
 | |
| }
 | |
| 
 | |
| bool CollisionSolverSW::solve_ray(const ShapeSW *p_shape_A,const Transform& p_transform_A,const ShapeSW *p_shape_B,const Transform& p_transform_B,CallbackResult p_result_callback,void *p_userdata,bool p_swap_result) {
 | |
| 
 | |
| 
 | |
| 	const RayShapeSW *ray = static_cast<const RayShapeSW*>(p_shape_A);
 | |
| 
 | |
| 	Vector3 from = p_transform_A.origin;
 | |
| 	Vector3 to = from+p_transform_A.basis.get_axis(2)*ray->get_length();
 | |
| 	Vector3 support_A=to;
 | |
| 
 | |
| 	Transform ai = p_transform_B.affine_inverse();
 | |
| 
 | |
| 	from = ai.xform(from);
 | |
| 	to = ai.xform(to);
 | |
| 
 | |
| 	Vector3 p,n;
 | |
| 	if (!p_shape_B->intersect_segment(from,to,p,n))
 | |
| 		return false;
 | |
| 
 | |
| 	Vector3 support_B=p_transform_B.xform(p);
 | |
| 
 | |
| 	if (p_result_callback) {
 | |
| 		if (p_swap_result)
 | |
| 			p_result_callback(support_B,support_A,p_userdata);
 | |
| 		else
 | |
| 			p_result_callback(support_A,support_B,p_userdata);
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| struct _ConcaveCollisionInfo {
 | |
| 
 | |
| 	const Transform *transform_A;
 | |
| 	const ShapeSW *shape_A;
 | |
| 	const Transform *transform_B;
 | |
| 	CollisionSolverSW::CallbackResult result_callback;
 | |
| 	void *userdata;
 | |
| 	bool swap_result;
 | |
| 	bool collided;
 | |
| 	int aabb_tests;
 | |
| 	int collisions;
 | |
| 	bool tested;
 | |
| 	float margin_A;
 | |
| 	float margin_B;
 | |
| 	Vector3 close_A,close_B;
 | |
| 
 | |
| };
 | |
| 
 | |
| void CollisionSolverSW::concave_callback(void *p_userdata, ShapeSW *p_convex) {
 | |
| 
 | |
| 
 | |
| 	_ConcaveCollisionInfo &cinfo = *(_ConcaveCollisionInfo*)(p_userdata);
 | |
| 	cinfo.aabb_tests++;
 | |
| 
 | |
| 	bool collided = collision_solver(cinfo.shape_A, *cinfo.transform_A, p_convex,*cinfo.transform_B, cinfo.result_callback, cinfo.userdata, cinfo.swap_result,NULL,cinfo.margin_A,cinfo.margin_B);
 | |
| 	if (!collided)
 | |
| 		return;
 | |
| 
 | |
| 	cinfo.collided=true;
 | |
| 	cinfo.collisions++;
 | |
| 
 | |
| }
 | |
| 
 | |
| bool CollisionSolverSW::solve_concave(const ShapeSW *p_shape_A,const Transform& p_transform_A,const ShapeSW *p_shape_B,const Transform& p_transform_B,CallbackResult p_result_callback,void *p_userdata,bool p_swap_result,float p_margin_A,float p_margin_B) {
 | |
| 
 | |
| 
 | |
| 	const ConcaveShapeSW *concave_B=static_cast<const ConcaveShapeSW*>(p_shape_B);
 | |
| 
 | |
| 	_ConcaveCollisionInfo cinfo;
 | |
| 	cinfo.transform_A=&p_transform_A;
 | |
| 	cinfo.shape_A=p_shape_A;
 | |
| 	cinfo.transform_B=&p_transform_B;
 | |
| 	cinfo.result_callback=p_result_callback;
 | |
| 	cinfo.userdata=p_userdata;
 | |
| 	cinfo.swap_result=p_swap_result;
 | |
| 	cinfo.collided=false;
 | |
| 	cinfo.collisions=0;
 | |
| 	cinfo.margin_A=p_margin_A;
 | |
| 	cinfo.margin_B=p_margin_B;
 | |
| 
 | |
| 	cinfo.aabb_tests=0;
 | |
| 
 | |
| 	Transform rel_transform = p_transform_A;
 | |
| 	rel_transform.origin-=p_transform_B.origin;
 | |
| 
 | |
| 	//quickly compute a local AABB
 | |
| 
 | |
| 	AABB local_aabb;
 | |
| 	for(int i=0;i<3;i++) {
 | |
| 
 | |
| 	     Vector3 axis( p_transform_B.basis.get_axis(i) );
 | |
| 	     float axis_scale = 1.0/axis.length();
 | |
| 	     axis*=axis_scale;
 | |
| 
 | |
| 	     float smin,smax;
 | |
| 	     p_shape_A->project_range(axis,rel_transform,smin,smax);
 | |
| 	     smin-=p_margin_A;
 | |
| 	     smax+=p_margin_A;
 | |
| 	     smin*=axis_scale;
 | |
| 	     smax*=axis_scale;
 | |
| 
 | |
| 
 | |
| 	     local_aabb.pos[i]=smin;
 | |
| 	     local_aabb.size[i]=smax-smin;
 | |
| 	}
 | |
| 
 | |
| 	concave_B->cull(local_aabb,concave_callback,&cinfo);
 | |
| 	//print_line("COL AABB TESTS: "+itos(cinfo.aabb_tests));
 | |
| 
 | |
| 	return cinfo.collided;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool CollisionSolverSW::solve_static(const ShapeSW *p_shape_A,const Transform& p_transform_A,const ShapeSW *p_shape_B,const Transform& p_transform_B,CallbackResult p_result_callback,void *p_userdata,Vector3 *r_sep_axis,float p_margin_A,float p_margin_B) {
 | |
| 
 | |
| 
 | |
| 	PhysicsServer::ShapeType type_A=p_shape_A->get_type();
 | |
| 	PhysicsServer::ShapeType type_B=p_shape_B->get_type();
 | |
| 	bool concave_A=p_shape_A->is_concave();
 | |
| 	bool concave_B=p_shape_B->is_concave();
 | |
| 
 | |
| 	bool swap = false;
 | |
| 
 | |
| 	if (type_A>type_B) {
 | |
| 		SWAP(type_A,type_B);
 | |
| 		SWAP(concave_A,concave_B);
 | |
| 		swap=true;
 | |
| 	}
 | |
| 
 | |
| 	if (type_A==PhysicsServer::SHAPE_PLANE) {
 | |
| 
 | |
| 		if (type_B==PhysicsServer::SHAPE_PLANE)
 | |
| 			return false;
 | |
| 		if (type_B==PhysicsServer::SHAPE_RAY) {
 | |
| 			return false;
 | |
| 		}
 | |
| 
 | |
| 		if (swap) {
 | |
| 			return solve_static_plane(p_shape_B,p_transform_B,p_shape_A,p_transform_A,p_result_callback,p_userdata,true);
 | |
| 		} else {
 | |
| 			return solve_static_plane(p_shape_A,p_transform_A,p_shape_B,p_transform_B,p_result_callback,p_userdata,false);
 | |
| 		}
 | |
| 
 | |
| 	} else if (type_A==PhysicsServer::SHAPE_RAY) {
 | |
| 
 | |
| 		if (type_B==PhysicsServer::SHAPE_RAY)
 | |
| 			return false;
 | |
| 
 | |
| 		if (swap) {
 | |
| 			return solve_ray(p_shape_B,p_transform_B,p_shape_A,p_transform_A,p_result_callback,p_userdata,true);
 | |
| 		} else {
 | |
| 			return solve_ray(p_shape_A,p_transform_A,p_shape_B,p_transform_B,p_result_callback,p_userdata,false);
 | |
| 		}
 | |
| 
 | |
| 	} else if (concave_B) {
 | |
| 
 | |
| 
 | |
| 		if (concave_A)
 | |
| 			return false;
 | |
| 
 | |
| 		if (!swap)
 | |
| 			return solve_concave(p_shape_A,p_transform_A,p_shape_B,p_transform_B,p_result_callback,p_userdata,false,p_margin_A,p_margin_B);
 | |
| 		else
 | |
| 			return solve_concave(p_shape_B,p_transform_B,p_shape_A,p_transform_A,p_result_callback,p_userdata,true,p_margin_A,p_margin_B);
 | |
| 
 | |
| 
 | |
| 
 | |
| 	} else {
 | |
| 
 | |
| 		return collision_solver(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback,p_userdata,false,r_sep_axis,p_margin_A,p_margin_B);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| void CollisionSolverSW::concave_distance_callback(void *p_userdata, ShapeSW *p_convex) {
 | |
| 
 | |
| 
 | |
| 	_ConcaveCollisionInfo &cinfo = *(_ConcaveCollisionInfo*)(p_userdata);
 | |
| 	cinfo.aabb_tests++;
 | |
| 	if (cinfo.collided)
 | |
| 		return;
 | |
| 
 | |
| 	Vector3 close_A,close_B;
 | |
| 	cinfo.collided = !gjk_epa_calculate_distance(cinfo.shape_A,*cinfo.transform_A,p_convex,*cinfo.transform_B,close_A,close_B);
 | |
| 
 | |
| 	if (cinfo.collided)
 | |
| 		return;
 | |
| 	if (!cinfo.tested || close_A.distance_squared_to(close_B) < cinfo.close_A.distance_squared_to(cinfo.close_B)) {
 | |
| 
 | |
| 		cinfo.close_A=close_A;
 | |
| 		cinfo.close_B=close_B;
 | |
| 		cinfo.tested=true;
 | |
| 	}
 | |
| 
 | |
| 	cinfo.collisions++;
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| bool CollisionSolverSW::solve_distance_plane(const ShapeSW *p_shape_A,const Transform& p_transform_A,const ShapeSW *p_shape_B,const Transform& p_transform_B,Vector3& r_point_A,Vector3& r_point_B) {
 | |
| 
 | |
| 	const PlaneShapeSW *plane = static_cast<const PlaneShapeSW*>(p_shape_A);
 | |
| 	if (p_shape_B->get_type()==PhysicsServer::SHAPE_PLANE)
 | |
| 		return false;
 | |
| 	Plane p = p_transform_A.xform(plane->get_plane());
 | |
| 
 | |
| 	static const int max_supports = 16;
 | |
| 	Vector3 supports[max_supports];
 | |
| 	int support_count;
 | |
| 
 | |
| 	p_shape_B->get_supports(p_transform_B.basis.xform_inv(-p.normal).normalized(),max_supports,supports,support_count);
 | |
| 
 | |
| 	bool collided=false;
 | |
| 	Vector3 closest;
 | |
| 	float closest_d;
 | |
| 
 | |
| 
 | |
| 	for(int i=0;i<support_count;i++) {
 | |
| 
 | |
| 		supports[i] = p_transform_B.xform( supports[i] );
 | |
| 		real_t d = p.distance_to(supports[i]);
 | |
| 		if (i==0 || d<closest_d) {
 | |
| 			closest=supports[i];
 | |
| 			closest_d=d;
 | |
| 			if (d<=0)
 | |
| 				collided=true;
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	r_point_A=p.project(closest);
 | |
| 	r_point_B=closest;
 | |
| 
 | |
| 	return collided;
 | |
| }
 | |
| 
 | |
| bool CollisionSolverSW::solve_distance(const ShapeSW *p_shape_A,const Transform& p_transform_A,const ShapeSW *p_shape_B,const Transform& p_transform_B,Vector3& r_point_A,Vector3& r_point_B,const AABB& p_concave_hint,Vector3 *r_sep_axis) {
 | |
| 
 | |
| 	if (p_shape_A->is_concave())
 | |
| 		return false;
 | |
| 
 | |
| 	if (p_shape_B->get_type()==PhysicsServer::SHAPE_PLANE) {
 | |
| 
 | |
| 		Vector3 a,b;
 | |
| 		bool col = solve_distance_plane(p_shape_B,p_transform_B,p_shape_A,p_transform_A,a,b);
 | |
| 		r_point_A=b;
 | |
| 		r_point_B=a;
 | |
| 		return !col;
 | |
| 
 | |
| 	} else if (p_shape_B->is_concave()) {
 | |
| 
 | |
| 		if (p_shape_A->is_concave())
 | |
| 			return false;
 | |
| 
 | |
| 
 | |
| 		const ConcaveShapeSW *concave_B=static_cast<const ConcaveShapeSW*>(p_shape_B);
 | |
| 
 | |
| 		_ConcaveCollisionInfo cinfo;
 | |
| 		cinfo.transform_A=&p_transform_A;
 | |
| 		cinfo.shape_A=p_shape_A;
 | |
| 		cinfo.transform_B=&p_transform_B;
 | |
| 		cinfo.result_callback=NULL;
 | |
| 		cinfo.userdata=NULL;
 | |
| 		cinfo.swap_result=false;
 | |
| 		cinfo.collided=false;
 | |
| 		cinfo.collisions=0;
 | |
| 		cinfo.aabb_tests=0;
 | |
| 		cinfo.tested=false;
 | |
| 
 | |
| 		Transform rel_transform = p_transform_A;
 | |
| 		rel_transform.origin-=p_transform_B.origin;
 | |
| 
 | |
| 		//quickly compute a local AABB
 | |
| 
 | |
| 		bool use_cc_hint=p_concave_hint!=AABB();
 | |
| 		AABB cc_hint_aabb;
 | |
| 		if (use_cc_hint) {
 | |
| 			cc_hint_aabb=p_concave_hint;
 | |
| 			cc_hint_aabb.pos-=p_transform_B.origin;
 | |
| 		}
 | |
| 
 | |
| 		AABB local_aabb;
 | |
| 		for(int i=0;i<3;i++) {
 | |
| 
 | |
| 		     Vector3 axis( p_transform_B.basis.get_axis(i) );
 | |
| 		     float axis_scale = 1.0/axis.length();
 | |
| 		     axis*=axis_scale;
 | |
| 
 | |
| 		     float smin,smax;
 | |
| 
 | |
| 		     if (use_cc_hint) {
 | |
| 			     cc_hint_aabb.project_range_in_plane(Plane(axis,0),smin,smax);
 | |
| 		     } else {
 | |
| 			     p_shape_A->project_range(axis,rel_transform,smin,smax);
 | |
| 		      }
 | |
| 
 | |
| 		     smin*=axis_scale;
 | |
| 		     smax*=axis_scale;
 | |
| 
 | |
| 		     local_aabb.pos[i]=smin;
 | |
| 		     local_aabb.size[i]=smax-smin;
 | |
| 		}
 | |
| 
 | |
| 
 | |
| 		concave_B->cull(local_aabb,concave_distance_callback,&cinfo);
 | |
| 		if (!cinfo.collided) {
 | |
| //			print_line(itos(cinfo.tested));
 | |
| 			r_point_A=cinfo.close_A;
 | |
| 			r_point_B=cinfo.close_B;
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		//print_line("DIST AABB TESTS: "+itos(cinfo.aabb_tests));
 | |
| 
 | |
| 		return !cinfo.collided;
 | |
| 	} else {
 | |
| 
 | |
| 		return gjk_epa_calculate_distance(p_shape_A,p_transform_A,p_shape_B,p_transform_B,r_point_A,r_point_B); //should pass sepaxis..
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | 
