mirror of
				https://github.com/godotengine/godot.git
				synced 2025-11-04 07:31:16 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			479 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			479 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*************************************************************************/
 | 
						|
/*  matrix3.cpp                                                          */
 | 
						|
/*************************************************************************/
 | 
						|
/*                       This file is part of:                           */
 | 
						|
/*                           GODOT ENGINE                                */
 | 
						|
/*                    http://www.godotengine.org                         */
 | 
						|
/*************************************************************************/
 | 
						|
/* Copyright (c) 2007-2015 Juan Linietsky, Ariel Manzur.                 */
 | 
						|
/*                                                                       */
 | 
						|
/* Permission is hereby granted, free of charge, to any person obtaining */
 | 
						|
/* a copy of this software and associated documentation files (the       */
 | 
						|
/* "Software"), to deal in the Software without restriction, including   */
 | 
						|
/* without limitation the rights to use, copy, modify, merge, publish,   */
 | 
						|
/* distribute, sublicense, and/or sell copies of the Software, and to    */
 | 
						|
/* permit persons to whom the Software is furnished to do so, subject to */
 | 
						|
/* the following conditions:                                             */
 | 
						|
/*                                                                       */
 | 
						|
/* The above copyright notice and this permission notice shall be        */
 | 
						|
/* included in all copies or substantial portions of the Software.       */
 | 
						|
/*                                                                       */
 | 
						|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */
 | 
						|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */
 | 
						|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
 | 
						|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */
 | 
						|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */
 | 
						|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */
 | 
						|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */
 | 
						|
/*************************************************************************/
 | 
						|
#include "matrix3.h"
 | 
						|
#include "math_funcs.h"
 | 
						|
#include "os/copymem.h"
 | 
						|
 | 
						|
#define cofac(row1,col1, row2, col2)\
 | 
						|
	(elements[row1][col1] * elements[row2][col2] - elements[row1][col2] * elements[row2][col1])
 | 
						|
 | 
						|
void Matrix3::from_z(const Vector3& p_z) {
 | 
						|
 | 
						|
	if (Math::abs(p_z.z) > Math_SQRT12 ) {
 | 
						|
 | 
						|
		// choose p in y-z plane
 | 
						|
		real_t a = p_z[1]*p_z[1] + p_z[2]*p_z[2];
 | 
						|
		real_t k = 1.0/Math::sqrt(a);
 | 
						|
		elements[0]=Vector3(0,-p_z[2]*k,p_z[1]*k);
 | 
						|
		elements[1]=Vector3(a*k,-p_z[0]*elements[0][2],p_z[0]*elements[0][1]);
 | 
						|
	} else {
 | 
						|
 | 
						|
		// choose p in x-y plane
 | 
						|
		real_t a = p_z.x*p_z.x + p_z.y*p_z.y;
 | 
						|
		real_t k = 1.0/Math::sqrt(a);
 | 
						|
		elements[0]=Vector3(-p_z.y*k,p_z.x*k,0);
 | 
						|
		elements[1]=Vector3(-p_z.z*elements[0].y,p_z.z*elements[0].x,a*k);
 | 
						|
	}
 | 
						|
	elements[2]=p_z;
 | 
						|
}
 | 
						|
 | 
						|
void Matrix3::invert() {
 | 
						|
 | 
						|
 | 
						|
	real_t co[3]={
 | 
						|
		cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1)
 | 
						|
	};
 | 
						|
	real_t det =	elements[0][0] * co[0]+
 | 
						|
			elements[0][1] * co[1]+
 | 
						|
			elements[0][2] * co[2];
 | 
						|
	
 | 
						|
	ERR_FAIL_COND( det == 0 );
 | 
						|
	real_t s = 1.0/det;
 | 
						|
	
 | 
						|
	set(  co[0]*s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s, 
 | 
						|
	      co[1]*s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s,
 | 
						|
	      co[2]*s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
void Matrix3::orthonormalize() {
 | 
						|
 | 
						|
	// Gram-Schmidt Process
 | 
						|
 | 
						|
	Vector3 x=get_axis(0);
 | 
						|
	Vector3 y=get_axis(1);
 | 
						|
	Vector3 z=get_axis(2);
 | 
						|
 | 
						|
	x.normalize();
 | 
						|
	y = (y-x*(x.dot(y)));
 | 
						|
	y.normalize();
 | 
						|
	z = (z-x*(x.dot(z))-y*(y.dot(z)));
 | 
						|
	z.normalize();
 | 
						|
 | 
						|
	set_axis(0,x);
 | 
						|
	set_axis(1,y);
 | 
						|
	set_axis(2,z);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
Matrix3 Matrix3::orthonormalized() const {
 | 
						|
 | 
						|
	Matrix3 c = *this;
 | 
						|
	c.orthonormalize();
 | 
						|
	return c;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
Matrix3 Matrix3::inverse() const {
 | 
						|
 | 
						|
	Matrix3 inv=*this;
 | 
						|
	inv.invert();
 | 
						|
	return inv;
 | 
						|
}
 | 
						|
 | 
						|
void Matrix3::transpose() {
 | 
						|
 | 
						|
	SWAP(elements[0][1],elements[1][0]);
 | 
						|
	SWAP(elements[0][2],elements[2][0]);
 | 
						|
	SWAP(elements[1][2],elements[2][1]);
 | 
						|
}
 | 
						|
 | 
						|
Matrix3 Matrix3::transposed() const {
 | 
						|
 | 
						|
	Matrix3 tr=*this;
 | 
						|
	tr.transpose();
 | 
						|
	return tr;
 | 
						|
}
 | 
						|
 | 
						|
void Matrix3::scale(const Vector3& p_scale) {
 | 
						|
 | 
						|
	elements[0][0]*=p_scale.x;
 | 
						|
	elements[1][0]*=p_scale.x;
 | 
						|
	elements[2][0]*=p_scale.x;
 | 
						|
	elements[0][1]*=p_scale.y;
 | 
						|
	elements[1][1]*=p_scale.y;
 | 
						|
	elements[2][1]*=p_scale.y;
 | 
						|
	elements[0][2]*=p_scale.z;
 | 
						|
	elements[1][2]*=p_scale.z;
 | 
						|
	elements[2][2]*=p_scale.z;
 | 
						|
}
 | 
						|
 | 
						|
Matrix3 Matrix3::scaled( const Vector3& p_scale ) const {
 | 
						|
 | 
						|
	Matrix3 m = *this;
 | 
						|
	m.scale(p_scale);
 | 
						|
	return m;
 | 
						|
}
 | 
						|
 | 
						|
Vector3 Matrix3::get_scale() const {
 | 
						|
 | 
						|
	return Vector3(
 | 
						|
		Vector3(elements[0][0],elements[1][0],elements[2][0]).length(),
 | 
						|
		Vector3(elements[0][1],elements[1][1],elements[2][1]).length(),
 | 
						|
		Vector3(elements[0][2],elements[1][2],elements[2][2]).length()
 | 
						|
	);
 | 
						|
		
 | 
						|
}
 | 
						|
void Matrix3::rotate(const Vector3& p_axis, real_t p_phi) {
 | 
						|
 | 
						|
	*this = *this * Matrix3(p_axis, p_phi);
 | 
						|
}
 | 
						|
 | 
						|
Matrix3 Matrix3::rotated(const Vector3& p_axis, real_t p_phi) const {
 | 
						|
 | 
						|
	return *this * Matrix3(p_axis, p_phi);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
Vector3 Matrix3::get_euler() const {
 | 
						|
 | 
						|
	// rot =  cy*cz          -cy*sz           sy
 | 
						|
	    //        cz*sx*sy+cx*sz  cx*cz-sx*sy*sz -cy*sx
 | 
						|
	    //       -cx*cz*sy+sx*sz  cz*sx+cx*sy*sz  cx*cy
 | 
						|
 | 
						|
	Matrix3 m = *this;
 | 
						|
	m.orthonormalize();
 | 
						|
 | 
						|
	Vector3 euler;
 | 
						|
 | 
						|
	euler.y = Math::asin(m[0][2]);
 | 
						|
	if ( euler.y < Math_PI*0.5) {
 | 
						|
		if ( euler.y > -Math_PI*0.5) {
 | 
						|
			euler.x = Math::atan2(-m[1][2],m[2][2]);
 | 
						|
			euler.z = Math::atan2(-m[0][1],m[0][0]);
 | 
						|
 | 
						|
		} else {
 | 
						|
			real_t r = Math::atan2(m[1][0],m[1][1]);
 | 
						|
			euler.z = 0.0;
 | 
						|
			euler.x = euler.z - r;
 | 
						|
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		real_t r = Math::atan2(m[0][1],m[1][1]);
 | 
						|
		euler.z = 0;
 | 
						|
		euler.x = r - euler.z;
 | 
						|
	}
 | 
						|
 | 
						|
	return euler;
 | 
						|
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
void Matrix3::set_euler(const Vector3& p_euler) {
 | 
						|
 | 
						|
	real_t c, s;
 | 
						|
 | 
						|
	c = Math::cos(p_euler.x);
 | 
						|
	s = Math::sin(p_euler.x);
 | 
						|
	Matrix3 xmat(1.0,0.0,0.0,0.0,c,-s,0.0,s,c);
 | 
						|
 | 
						|
	c = Math::cos(p_euler.y);
 | 
						|
	s = Math::sin(p_euler.y);
 | 
						|
	Matrix3 ymat(c,0.0,s,0.0,1.0,0.0,-s,0.0,c);
 | 
						|
 | 
						|
	c = Math::cos(p_euler.z);
 | 
						|
	s = Math::sin(p_euler.z);
 | 
						|
	Matrix3 zmat(c,-s,0.0,s,c,0.0,0.0,0.0,1.0);
 | 
						|
 | 
						|
	//optimizer will optimize away all this anyway
 | 
						|
	*this = xmat*(ymat*zmat);
 | 
						|
}
 | 
						|
 | 
						|
bool Matrix3::operator==(const Matrix3& p_matrix) const {
 | 
						|
 | 
						|
	for (int i=0;i<3;i++) {
 | 
						|
		for (int j=0;j<3;j++) {
 | 
						|
			if (elements[i][j]!=p_matrix.elements[i][j])
 | 
						|
				return false;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	
 | 
						|
	return true;
 | 
						|
}
 | 
						|
bool Matrix3::operator!=(const Matrix3& p_matrix) const {
 | 
						|
 | 
						|
	return (!(*this==p_matrix));
 | 
						|
}
 | 
						|
 | 
						|
Matrix3::operator String() const {
 | 
						|
 | 
						|
	String mtx;
 | 
						|
	for (int i=0;i<3;i++) {
 | 
						|
	
 | 
						|
		for (int j=0;j<3;j++) {
 | 
						|
	
 | 
						|
			if (i!=0 || j!=0)
 | 
						|
				mtx+=", ";
 | 
						|
				
 | 
						|
			mtx+=rtos( elements[i][j] );
 | 
						|
		}
 | 
						|
	}
 | 
						|
	
 | 
						|
	return mtx;
 | 
						|
}
 | 
						|
 | 
						|
Matrix3::operator Quat() const {
 | 
						|
 | 
						|
	Matrix3 m=*this;
 | 
						|
	m.orthonormalize();
 | 
						|
 | 
						|
	real_t trace = m.elements[0][0] + m.elements[1][1] + m.elements[2][2];
 | 
						|
	real_t temp[4];
 | 
						|
	
 | 
						|
	if (trace > 0.0) 
 | 
						|
	{
 | 
						|
		real_t s = Math::sqrt(trace + 1.0);
 | 
						|
		temp[3]=(s * 0.5);
 | 
						|
		s = 0.5 / s;
 | 
						|
		
 | 
						|
		temp[0]=((m.elements[2][1] - m.elements[1][2]) * s);
 | 
						|
		temp[1]=((m.elements[0][2] - m.elements[2][0]) * s);
 | 
						|
		temp[2]=((m.elements[1][0] - m.elements[0][1]) * s);
 | 
						|
	} 
 | 
						|
	else 
 | 
						|
	{
 | 
						|
		int i = m.elements[0][0] < m.elements[1][1] ?
 | 
						|
			(m.elements[1][1] < m.elements[2][2] ? 2 : 1) :
 | 
						|
			(m.elements[0][0] < m.elements[2][2] ? 2 : 0);
 | 
						|
		int j = (i + 1) % 3;  
 | 
						|
		int k = (i + 2) % 3;
 | 
						|
		
 | 
						|
		real_t s = Math::sqrt(m.elements[i][i] - m.elements[j][j] - m.elements[k][k] + 1.0);
 | 
						|
		temp[i] = s * 0.5;
 | 
						|
		s = 0.5 / s;
 | 
						|
		
 | 
						|
		temp[3] = (m.elements[k][j] - m.elements[j][k]) * s;
 | 
						|
		temp[j] = (m.elements[j][i] + m.elements[i][j]) * s;
 | 
						|
		temp[k] = (m.elements[k][i] + m.elements[i][k]) * s;
 | 
						|
	}
 | 
						|
	
 | 
						|
	return Quat(temp[0],temp[1],temp[2],temp[3]);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
static const Matrix3 _ortho_bases[24]={
 | 
						|
	Matrix3(1, 0, 0, 0, 1, 0, 0, 0, 1),
 | 
						|
	Matrix3(0, -1, 0, 1, 0, 0, 0, 0, 1),
 | 
						|
	Matrix3(-1, 0, 0, 0, -1, 0, 0, 0, 1),
 | 
						|
	Matrix3(0, 1, 0, -1, 0, 0, 0, 0, 1),
 | 
						|
	Matrix3(1, 0, 0, 0, 0, -1, 0, 1, 0),
 | 
						|
	Matrix3(0, 0, 1, 1, 0, 0, 0, 1, 0),
 | 
						|
	Matrix3(-1, 0, 0, 0, 0, 1, 0, 1, 0),
 | 
						|
	Matrix3(0, 0, -1, -1, 0, 0, 0, 1, 0),
 | 
						|
	Matrix3(1, 0, 0, 0, -1, 0, 0, 0, -1),
 | 
						|
	Matrix3(0, 1, 0, 1, 0, 0, 0, 0, -1),
 | 
						|
	Matrix3(-1, 0, 0, 0, 1, 0, 0, 0, -1),
 | 
						|
	Matrix3(0, -1, 0, -1, 0, 0, 0, 0, -1),
 | 
						|
	Matrix3(1, 0, 0, 0, 0, 1, 0, -1, 0),
 | 
						|
	Matrix3(0, 0, -1, 1, 0, 0, 0, -1, 0),
 | 
						|
	Matrix3(-1, 0, 0, 0, 0, -1, 0, -1, 0),
 | 
						|
	Matrix3(0, 0, 1, -1, 0, 0, 0, -1, 0),
 | 
						|
	Matrix3(0, 0, 1, 0, 1, 0, -1, 0, 0),
 | 
						|
	Matrix3(0, -1, 0, 0, 0, 1, -1, 0, 0),
 | 
						|
	Matrix3(0, 0, -1, 0, -1, 0, -1, 0, 0),
 | 
						|
	Matrix3(0, 1, 0, 0, 0, -1, -1, 0, 0),
 | 
						|
	Matrix3(0, 0, 1, 0, -1, 0, 1, 0, 0),
 | 
						|
	Matrix3(0, 1, 0, 0, 0, 1, 1, 0, 0),
 | 
						|
	Matrix3(0, 0, -1, 0, 1, 0, 1, 0, 0),
 | 
						|
	Matrix3(0, -1, 0, 0, 0, -1, 1, 0, 0)
 | 
						|
};
 | 
						|
 | 
						|
int Matrix3::get_orthogonal_index() const {
 | 
						|
 | 
						|
	//could be sped up if i come up with a way
 | 
						|
	Matrix3 orth=*this;
 | 
						|
	for(int i=0;i<3;i++) {
 | 
						|
		for(int j=0;j<3;j++) {
 | 
						|
 | 
						|
			float v = orth[i][j];
 | 
						|
			if (v>0.5)
 | 
						|
				v=1.0;
 | 
						|
			else if (v<-0.5)
 | 
						|
				v=-1.0;
 | 
						|
			else
 | 
						|
				v=0;
 | 
						|
 | 
						|
			orth[i][j]=v;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	for(int i=0;i<24;i++) {
 | 
						|
 | 
						|
		if (_ortho_bases[i]==orth)
 | 
						|
			return i;
 | 
						|
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
void Matrix3::set_orthogonal_index(int p_index){
 | 
						|
 | 
						|
	//there only exist 24 orthogonal bases in r3
 | 
						|
	ERR_FAIL_INDEX(p_index,24);
 | 
						|
 | 
						|
 | 
						|
	*this=_ortho_bases[p_index];
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void Matrix3::get_axis_and_angle(Vector3 &r_axis,real_t& r_angle) const {
 | 
						|
 | 
						|
 | 
						|
	double angle,x,y,z; // variables for result
 | 
						|
		double epsilon = 0.01; // margin to allow for rounding errors
 | 
						|
		double epsilon2 = 0.1; // margin to distinguish between 0 and 180 degrees
 | 
						|
 | 
						|
	if (	(Math::abs(elements[1][0]-elements[0][1])< epsilon)
 | 
						|
		&& (Math::abs(elements[2][0]-elements[0][2])< epsilon)
 | 
						|
		&& (Math::abs(elements[2][1]-elements[1][2])< epsilon)) {
 | 
						|
			// singularity found
 | 
						|
			// first check for identity matrix which must have +1 for all terms
 | 
						|
			//  in leading diagonaland zero in other terms
 | 
						|
		if ((Math::abs(elements[1][0]+elements[0][1]) < epsilon2)
 | 
						|
		  && (Math::abs(elements[2][0]+elements[0][2]) < epsilon2)
 | 
						|
		  && (Math::abs(elements[2][1]+elements[1][2]) < epsilon2)
 | 
						|
		  && (Math::abs(elements[0][0]+elements[1][1]+elements[2][2]-3) < epsilon2)) {
 | 
						|
			// this singularity is identity matrix so angle = 0
 | 
						|
			r_axis=Vector3(0,1,0);
 | 
						|
			r_angle=0;
 | 
						|
			return;
 | 
						|
		}
 | 
						|
		// otherwise this singularity is angle = 180
 | 
						|
		angle = Math_PI;
 | 
						|
		double xx = (elements[0][0]+1)/2;
 | 
						|
		double yy = (elements[1][1]+1)/2;
 | 
						|
		double zz = (elements[2][2]+1)/2;
 | 
						|
		double xy = (elements[1][0]+elements[0][1])/4;
 | 
						|
		double xz = (elements[2][0]+elements[0][2])/4;
 | 
						|
		double yz = (elements[2][1]+elements[1][2])/4;
 | 
						|
		if ((xx > yy) && (xx > zz)) { // elements[0][0] is the largest diagonal term
 | 
						|
			if (xx< epsilon) {
 | 
						|
				x = 0;
 | 
						|
				y = 0.7071;
 | 
						|
				z = 0.7071;
 | 
						|
			} else {
 | 
						|
				x = Math::sqrt(xx);
 | 
						|
				y = xy/x;
 | 
						|
				z = xz/x;
 | 
						|
			}
 | 
						|
		} else if (yy > zz) { // elements[1][1] is the largest diagonal term
 | 
						|
			if (yy< epsilon) {
 | 
						|
				x = 0.7071;
 | 
						|
				y = 0;
 | 
						|
				z = 0.7071;
 | 
						|
			} else {
 | 
						|
				y = Math::sqrt(yy);
 | 
						|
				x = xy/y;
 | 
						|
				z = yz/y;
 | 
						|
			}
 | 
						|
		} else { // elements[2][2] is the largest diagonal term so base result on this
 | 
						|
			if (zz< epsilon) {
 | 
						|
				x = 0.7071;
 | 
						|
				y = 0.7071;
 | 
						|
				z = 0;
 | 
						|
			} else {
 | 
						|
				z = Math::sqrt(zz);
 | 
						|
				x = xz/z;
 | 
						|
				y = yz/z;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		r_axis=Vector3(x,y,z);
 | 
						|
		r_angle=angle;
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	// as we have reached here there are no singularities so we can handle normally
 | 
						|
	double s = Math::sqrt((elements[1][2] - elements[2][1])*(elements[1][2] - elements[2][1])
 | 
						|
		+(elements[2][0] - elements[0][2])*(elements[2][0] - elements[0][2])
 | 
						|
		+(elements[0][1] - elements[1][0])*(elements[0][1] - elements[1][0])); // used to normalise
 | 
						|
	if (Math::abs(s) < 0.001) s=1;
 | 
						|
		// prevent divide by zero, should not happen if matrix is orthogonal and should be
 | 
						|
		// caught by singularity test above, but I've left it in just in case
 | 
						|
	angle = Math::acos(( elements[0][0] + elements[1][1] + elements[2][2] - 1)/2);
 | 
						|
	x = (elements[1][2] - elements[2][1])/s;
 | 
						|
	y = (elements[2][0] - elements[0][2])/s;
 | 
						|
	z = (elements[0][1] - elements[1][0])/s;
 | 
						|
 | 
						|
	r_axis=Vector3(x,y,z);
 | 
						|
	r_angle=angle;
 | 
						|
}
 | 
						|
 | 
						|
Matrix3::Matrix3(const Vector3& p_euler) {
 | 
						|
 | 
						|
	set_euler( p_euler );
 | 
						|
		
 | 
						|
}
 | 
						|
 | 
						|
Matrix3::Matrix3(const Quat& p_quat) {
 | 
						|
 | 
						|
	real_t d = p_quat.length_squared();
 | 
						|
	real_t s = 2.0 / d;
 | 
						|
	real_t xs = p_quat.x * s,   ys = p_quat.y * s,   zs = p_quat.z * s;
 | 
						|
	real_t wx = p_quat.w * xs,  wy = p_quat.w * ys,  wz = p_quat.w * zs;
 | 
						|
	real_t xx = p_quat.x * xs,  xy = p_quat.x * ys,  xz = p_quat.x * zs;
 | 
						|
	real_t yy = p_quat.y * ys,  yz = p_quat.y * zs,  zz = p_quat.z * zs;
 | 
						|
	set(	1.0 - (yy + zz), xy - wz, xz + wy, 	
 | 
						|
		xy + wz, 1.0 - (xx + zz), yz - wx, 
 | 
						|
		xz - wy, yz + wx, 1.0 - (xx + yy))	;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
Matrix3::Matrix3(const Vector3& p_axis, real_t p_phi) {
 | 
						|
 | 
						|
	Vector3 axis_sq(p_axis.x*p_axis.x,p_axis.y*p_axis.y,p_axis.z*p_axis.z);
 | 
						|
 | 
						|
	real_t cosine= Math::cos(p_phi);
 | 
						|
	real_t sine= Math::sin(p_phi);
 | 
						|
 | 
						|
	elements[0][0] = axis_sq.x + cosine * ( 1.0 - axis_sq.x );
 | 
						|
	elements[0][1] = p_axis.x * p_axis.y *  ( 1.0 - cosine ) + p_axis.z * sine;
 | 
						|
	elements[0][2] = p_axis.z * p_axis.x * ( 1.0 - cosine ) - p_axis.y * sine;
 | 
						|
 | 
						|
	elements[1][0] = p_axis.x * p_axis.y * ( 1.0 - cosine ) - p_axis.z * sine;
 | 
						|
	elements[1][1] = axis_sq.y + cosine  * ( 1.0 - axis_sq.y );
 | 
						|
	elements[1][2] = p_axis.y * p_axis.z * ( 1.0 - cosine ) + p_axis.x * sine;
 | 
						|
 | 
						|
	elements[2][0] = p_axis.z * p_axis.x * ( 1.0 - cosine ) + p_axis.y * sine;
 | 
						|
	elements[2][1] = p_axis.y * p_axis.z * ( 1.0 - cosine ) - p_axis.x * sine;
 | 
						|
	elements[2][2] = axis_sq.z + cosine  * ( 1.0 - axis_sq.z );
 | 
						|
 | 
						|
}
 | 
						|
 |