mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-31 05:31:01 +00:00 
			
		
		
		
	 8247667a3e
			
		
	
	
		8247667a3e
		
			
		
	
	
	
	
		
			
			We've been using standard C library functions `memcpy`/`memset` for these since
2016 with 67f65f6639.
There was still the possibility for third-party platform ports to override the
definitions with a custom header, but this doesn't seem useful anymore.
		
	
			
		
			
				
	
	
		
			595 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			595 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*************************************************************************/
 | |
| /*  pool_allocator.cpp                                                   */
 | |
| /*************************************************************************/
 | |
| /*                       This file is part of:                           */
 | |
| /*                           GODOT ENGINE                                */
 | |
| /*                      https://godotengine.org                          */
 | |
| /*************************************************************************/
 | |
| /* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur.                 */
 | |
| /* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md).   */
 | |
| /*                                                                       */
 | |
| /* Permission is hereby granted, free of charge, to any person obtaining */
 | |
| /* a copy of this software and associated documentation files (the       */
 | |
| /* "Software"), to deal in the Software without restriction, including   */
 | |
| /* without limitation the rights to use, copy, modify, merge, publish,   */
 | |
| /* distribute, sublicense, and/or sell copies of the Software, and to    */
 | |
| /* permit persons to whom the Software is furnished to do so, subject to */
 | |
| /* the following conditions:                                             */
 | |
| /*                                                                       */
 | |
| /* The above copyright notice and this permission notice shall be        */
 | |
| /* included in all copies or substantial portions of the Software.       */
 | |
| /*                                                                       */
 | |
| /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */
 | |
| /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */
 | |
| /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
 | |
| /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */
 | |
| /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */
 | |
| /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */
 | |
| /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */
 | |
| /*************************************************************************/
 | |
| 
 | |
| #include "pool_allocator.h"
 | |
| 
 | |
| #include "core/error/error_macros.h"
 | |
| #include "core/os/memory.h"
 | |
| #include "core/os/os.h"
 | |
| #include "core/string/print_string.h"
 | |
| 
 | |
| #include <assert.h>
 | |
| 
 | |
| #define COMPACT_CHUNK(m_entry, m_to_pos)                      \
 | |
| 	do {                                                      \
 | |
| 		void *_dst = &((unsigned char *)pool)[m_to_pos];      \
 | |
| 		void *_src = &((unsigned char *)pool)[(m_entry).pos]; \
 | |
| 		memmove(_dst, _src, aligned((m_entry).len));          \
 | |
| 		(m_entry).pos = m_to_pos;                             \
 | |
| 	} while (0);
 | |
| 
 | |
| void PoolAllocator::mt_lock() const {
 | |
| }
 | |
| 
 | |
| void PoolAllocator::mt_unlock() const {
 | |
| }
 | |
| 
 | |
| bool PoolAllocator::get_free_entry(EntryArrayPos *p_pos) {
 | |
| 	if (entry_count == entry_max) {
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	for (int i = 0; i < entry_max; i++) {
 | |
| 		if (entry_array[i].len == 0) {
 | |
| 			*p_pos = i;
 | |
| 			return true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ERR_PRINT("Out of memory Chunks!");
 | |
| 
 | |
| 	return false; //
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Find a hole
 | |
|  * @param p_pos The hole is behind the block pointed by this variable upon return. if pos==entry_count, then allocate at end
 | |
|  * @param p_for_size hole size
 | |
|  * @return false if hole found, true if no hole found
 | |
|  */
 | |
| bool PoolAllocator::find_hole(EntryArrayPos *p_pos, int p_for_size) {
 | |
| 	/* position where previous entry ends. Defaults to zero (begin of pool) */
 | |
| 
 | |
| 	int prev_entry_end_pos = 0;
 | |
| 
 | |
| 	for (int i = 0; i < entry_count; i++) {
 | |
| 		Entry &entry = entry_array[entry_indices[i]];
 | |
| 
 | |
| 		/* determine hole size to previous entry */
 | |
| 
 | |
| 		int hole_size = entry.pos - prev_entry_end_pos;
 | |
| 
 | |
| 		/* determine if what we want fits in that hole */
 | |
| 		if (hole_size >= p_for_size) {
 | |
| 			*p_pos = i;
 | |
| 			return true;
 | |
| 		}
 | |
| 
 | |
| 		/* prepare for next one */
 | |
| 		prev_entry_end_pos = entry_end(entry);
 | |
| 	}
 | |
| 
 | |
| 	/* No holes between entries, check at the end..*/
 | |
| 
 | |
| 	if ((pool_size - prev_entry_end_pos) >= p_for_size) {
 | |
| 		*p_pos = entry_count;
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| void PoolAllocator::compact(int p_up_to) {
 | |
| 	uint32_t prev_entry_end_pos = 0;
 | |
| 
 | |
| 	if (p_up_to < 0) {
 | |
| 		p_up_to = entry_count;
 | |
| 	}
 | |
| 	for (int i = 0; i < p_up_to; i++) {
 | |
| 		Entry &entry = entry_array[entry_indices[i]];
 | |
| 
 | |
| 		/* determine hole size to previous entry */
 | |
| 
 | |
| 		int hole_size = entry.pos - prev_entry_end_pos;
 | |
| 
 | |
| 		/* if we can compact, do it */
 | |
| 		if (hole_size > 0 && !entry.lock) {
 | |
| 			COMPACT_CHUNK(entry, prev_entry_end_pos);
 | |
| 		}
 | |
| 
 | |
| 		/* prepare for next one */
 | |
| 		prev_entry_end_pos = entry_end(entry);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void PoolAllocator::compact_up(int p_from) {
 | |
| 	uint32_t next_entry_end_pos = pool_size; // - static_area_size;
 | |
| 
 | |
| 	for (int i = entry_count - 1; i >= p_from; i--) {
 | |
| 		Entry &entry = entry_array[entry_indices[i]];
 | |
| 
 | |
| 		/* determine hole size for next entry */
 | |
| 
 | |
| 		int hole_size = next_entry_end_pos - (entry.pos + aligned(entry.len));
 | |
| 
 | |
| 		/* if we can compact, do it */
 | |
| 		if (hole_size > 0 && !entry.lock) {
 | |
| 			COMPACT_CHUNK(entry, (next_entry_end_pos - aligned(entry.len)));
 | |
| 		}
 | |
| 
 | |
| 		/* prepare for next one */
 | |
| 		next_entry_end_pos = entry.pos;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| bool PoolAllocator::find_entry_index(EntryIndicesPos *p_map_pos, Entry *p_entry) {
 | |
| 	EntryArrayPos entry_pos = entry_max;
 | |
| 
 | |
| 	for (int i = 0; i < entry_count; i++) {
 | |
| 		if (&entry_array[entry_indices[i]] == p_entry) {
 | |
| 			entry_pos = i;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (entry_pos == entry_max) {
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	*p_map_pos = entry_pos;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| PoolAllocator::ID PoolAllocator::alloc(int p_size) {
 | |
| 	ERR_FAIL_COND_V(p_size < 1, POOL_ALLOCATOR_INVALID_ID);
 | |
| #ifdef DEBUG_ENABLED
 | |
| 	if (p_size > free_mem) {
 | |
| 		OS::get_singleton()->debug_break();
 | |
| 	}
 | |
| #endif
 | |
| 	ERR_FAIL_COND_V(p_size > free_mem, POOL_ALLOCATOR_INVALID_ID);
 | |
| 
 | |
| 	mt_lock();
 | |
| 
 | |
| 	if (entry_count == entry_max) {
 | |
| 		mt_unlock();
 | |
| 		ERR_PRINT("entry_count==entry_max");
 | |
| 		return POOL_ALLOCATOR_INVALID_ID;
 | |
| 	}
 | |
| 
 | |
| 	int size_to_alloc = aligned(p_size);
 | |
| 
 | |
| 	EntryIndicesPos new_entry_indices_pos;
 | |
| 
 | |
| 	if (!find_hole(&new_entry_indices_pos, size_to_alloc)) {
 | |
| 		/* No hole could be found, try compacting mem */
 | |
| 		compact();
 | |
| 		/* Then search again */
 | |
| 
 | |
| 		if (!find_hole(&new_entry_indices_pos, size_to_alloc)) {
 | |
| 			mt_unlock();
 | |
| 			ERR_FAIL_V_MSG(POOL_ALLOCATOR_INVALID_ID, "Memory can't be compacted further.");
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	EntryArrayPos new_entry_array_pos;
 | |
| 
 | |
| 	bool found_free_entry = get_free_entry(&new_entry_array_pos);
 | |
| 
 | |
| 	if (!found_free_entry) {
 | |
| 		mt_unlock();
 | |
| 		ERR_FAIL_V_MSG(POOL_ALLOCATOR_INVALID_ID, "No free entry found in PoolAllocator.");
 | |
| 	}
 | |
| 
 | |
| 	/* move all entry indices up, make room for this one */
 | |
| 	for (int i = entry_count; i > new_entry_indices_pos; i--) {
 | |
| 		entry_indices[i] = entry_indices[i - 1];
 | |
| 	}
 | |
| 
 | |
| 	entry_indices[new_entry_indices_pos] = new_entry_array_pos;
 | |
| 
 | |
| 	entry_count++;
 | |
| 
 | |
| 	Entry &entry = entry_array[entry_indices[new_entry_indices_pos]];
 | |
| 
 | |
| 	entry.len = p_size;
 | |
| 	entry.pos = (new_entry_indices_pos == 0) ? 0 : entry_end(entry_array[entry_indices[new_entry_indices_pos - 1]]); //alloc either at beginning or end of previous
 | |
| 	entry.lock = 0;
 | |
| 	entry.check = (check_count++) & CHECK_MASK;
 | |
| 	free_mem -= size_to_alloc;
 | |
| 	if (free_mem < free_mem_peak) {
 | |
| 		free_mem_peak = free_mem;
 | |
| 	}
 | |
| 
 | |
| 	ID retval = (entry_indices[new_entry_indices_pos] << CHECK_BITS) | entry.check;
 | |
| 	mt_unlock();
 | |
| 
 | |
| 	//ERR_FAIL_COND_V( (uintptr_t)get(retval)%align != 0, retval );
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| PoolAllocator::Entry *PoolAllocator::get_entry(ID p_mem) {
 | |
| 	unsigned int check = p_mem & CHECK_MASK;
 | |
| 	int entry = p_mem >> CHECK_BITS;
 | |
| 	ERR_FAIL_INDEX_V(entry, entry_max, nullptr);
 | |
| 	ERR_FAIL_COND_V(entry_array[entry].check != check, nullptr);
 | |
| 	ERR_FAIL_COND_V(entry_array[entry].len == 0, nullptr);
 | |
| 
 | |
| 	return &entry_array[entry];
 | |
| }
 | |
| 
 | |
| const PoolAllocator::Entry *PoolAllocator::get_entry(ID p_mem) const {
 | |
| 	unsigned int check = p_mem & CHECK_MASK;
 | |
| 	int entry = p_mem >> CHECK_BITS;
 | |
| 	ERR_FAIL_INDEX_V(entry, entry_max, nullptr);
 | |
| 	ERR_FAIL_COND_V(entry_array[entry].check != check, nullptr);
 | |
| 	ERR_FAIL_COND_V(entry_array[entry].len == 0, nullptr);
 | |
| 
 | |
| 	return &entry_array[entry];
 | |
| }
 | |
| 
 | |
| void PoolAllocator::free(ID p_mem) {
 | |
| 	mt_lock();
 | |
| 	Entry *e = get_entry(p_mem);
 | |
| 	if (!e) {
 | |
| 		mt_unlock();
 | |
| 		ERR_PRINT("!e");
 | |
| 		return;
 | |
| 	}
 | |
| 	if (e->lock) {
 | |
| 		mt_unlock();
 | |
| 		ERR_PRINT("e->lock");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	EntryIndicesPos entry_indices_pos;
 | |
| 
 | |
| 	bool index_found = find_entry_index(&entry_indices_pos, e);
 | |
| 	if (!index_found) {
 | |
| 		mt_unlock();
 | |
| 		ERR_FAIL_COND(!index_found);
 | |
| 	}
 | |
| 
 | |
| 	for (int i = entry_indices_pos; i < (entry_count - 1); i++) {
 | |
| 		entry_indices[i] = entry_indices[i + 1];
 | |
| 	}
 | |
| 
 | |
| 	entry_count--;
 | |
| 	free_mem += aligned(e->len);
 | |
| 	e->clear();
 | |
| 	mt_unlock();
 | |
| }
 | |
| 
 | |
| int PoolAllocator::get_size(ID p_mem) const {
 | |
| 	int size;
 | |
| 	mt_lock();
 | |
| 
 | |
| 	const Entry *e = get_entry(p_mem);
 | |
| 	if (!e) {
 | |
| 		mt_unlock();
 | |
| 		ERR_PRINT("!e");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	size = e->len;
 | |
| 
 | |
| 	mt_unlock();
 | |
| 
 | |
| 	return size;
 | |
| }
 | |
| 
 | |
| Error PoolAllocator::resize(ID p_mem, int p_new_size) {
 | |
| 	mt_lock();
 | |
| 	Entry *e = get_entry(p_mem);
 | |
| 
 | |
| 	if (!e) {
 | |
| 		mt_unlock();
 | |
| 		ERR_FAIL_COND_V(!e, ERR_INVALID_PARAMETER);
 | |
| 	}
 | |
| 
 | |
| 	if (needs_locking && e->lock) {
 | |
| 		mt_unlock();
 | |
| 		ERR_FAIL_COND_V(e->lock, ERR_ALREADY_IN_USE);
 | |
| 	}
 | |
| 
 | |
| 	uint32_t alloc_size = aligned(p_new_size);
 | |
| 
 | |
| 	if ((uint32_t)aligned(e->len) == alloc_size) {
 | |
| 		e->len = p_new_size;
 | |
| 		mt_unlock();
 | |
| 		return OK;
 | |
| 	} else if (e->len > (uint32_t)p_new_size) {
 | |
| 		free_mem += aligned(e->len);
 | |
| 		free_mem -= alloc_size;
 | |
| 		e->len = p_new_size;
 | |
| 		mt_unlock();
 | |
| 		return OK;
 | |
| 	}
 | |
| 
 | |
| 	//p_new_size = align(p_new_size)
 | |
| 	int _free = free_mem; // - static_area_size;
 | |
| 
 | |
| 	if (uint32_t(_free + aligned(e->len)) < alloc_size) {
 | |
| 		mt_unlock();
 | |
| 		ERR_FAIL_V(ERR_OUT_OF_MEMORY);
 | |
| 	}
 | |
| 
 | |
| 	EntryIndicesPos entry_indices_pos;
 | |
| 
 | |
| 	bool index_found = find_entry_index(&entry_indices_pos, e);
 | |
| 
 | |
| 	if (!index_found) {
 | |
| 		mt_unlock();
 | |
| 		ERR_FAIL_COND_V(!index_found, ERR_BUG);
 | |
| 	}
 | |
| 
 | |
| 	//no need to move stuff around, it fits before the next block
 | |
| 	uint32_t next_pos;
 | |
| 	if (entry_indices_pos + 1 == entry_count) {
 | |
| 		next_pos = pool_size; // - static_area_size;
 | |
| 	} else {
 | |
| 		next_pos = entry_array[entry_indices[entry_indices_pos + 1]].pos;
 | |
| 	}
 | |
| 
 | |
| 	if ((next_pos - e->pos) > alloc_size) {
 | |
| 		free_mem += aligned(e->len);
 | |
| 		e->len = p_new_size;
 | |
| 		free_mem -= alloc_size;
 | |
| 		mt_unlock();
 | |
| 		return OK;
 | |
| 	}
 | |
| 	//it doesn't fit, compact around BEFORE current index (make room behind)
 | |
| 
 | |
| 	compact(entry_indices_pos + 1);
 | |
| 
 | |
| 	if ((next_pos - e->pos) > alloc_size) {
 | |
| 		//now fits! hooray!
 | |
| 		free_mem += aligned(e->len);
 | |
| 		e->len = p_new_size;
 | |
| 		free_mem -= alloc_size;
 | |
| 		mt_unlock();
 | |
| 		if (free_mem < free_mem_peak) {
 | |
| 			free_mem_peak = free_mem;
 | |
| 		}
 | |
| 		return OK;
 | |
| 	}
 | |
| 
 | |
| 	//STILL doesn't fit, compact around AFTER current index (make room after)
 | |
| 
 | |
| 	compact_up(entry_indices_pos + 1);
 | |
| 
 | |
| 	if ((entry_array[entry_indices[entry_indices_pos + 1]].pos - e->pos) > alloc_size) {
 | |
| 		//now fits! hooray!
 | |
| 		free_mem += aligned(e->len);
 | |
| 		e->len = p_new_size;
 | |
| 		free_mem -= alloc_size;
 | |
| 		mt_unlock();
 | |
| 		if (free_mem < free_mem_peak) {
 | |
| 			free_mem_peak = free_mem;
 | |
| 		}
 | |
| 		return OK;
 | |
| 	}
 | |
| 
 | |
| 	mt_unlock();
 | |
| 	ERR_FAIL_V(ERR_OUT_OF_MEMORY);
 | |
| }
 | |
| 
 | |
| Error PoolAllocator::lock(ID p_mem) {
 | |
| 	if (!needs_locking) {
 | |
| 		return OK;
 | |
| 	}
 | |
| 	mt_lock();
 | |
| 	Entry *e = get_entry(p_mem);
 | |
| 	if (!e) {
 | |
| 		mt_unlock();
 | |
| 		ERR_PRINT("!e");
 | |
| 		return ERR_INVALID_PARAMETER;
 | |
| 	}
 | |
| 	e->lock++;
 | |
| 	mt_unlock();
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| bool PoolAllocator::is_locked(ID p_mem) const {
 | |
| 	if (!needs_locking) {
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	mt_lock();
 | |
| 	const Entry *e = ((PoolAllocator *)(this))->get_entry(p_mem);
 | |
| 	if (!e) {
 | |
| 		mt_unlock();
 | |
| 		ERR_PRINT("!e");
 | |
| 		return false;
 | |
| 	}
 | |
| 	bool locked = e->lock;
 | |
| 	mt_unlock();
 | |
| 	return locked;
 | |
| }
 | |
| 
 | |
| const void *PoolAllocator::get(ID p_mem) const {
 | |
| 	if (!needs_locking) {
 | |
| 		const Entry *e = get_entry(p_mem);
 | |
| 		ERR_FAIL_COND_V(!e, nullptr);
 | |
| 		return &pool[e->pos];
 | |
| 	}
 | |
| 
 | |
| 	mt_lock();
 | |
| 	const Entry *e = get_entry(p_mem);
 | |
| 
 | |
| 	if (!e) {
 | |
| 		mt_unlock();
 | |
| 		ERR_FAIL_COND_V(!e, nullptr);
 | |
| 	}
 | |
| 	if (e->lock == 0) {
 | |
| 		mt_unlock();
 | |
| 		ERR_PRINT("e->lock == 0");
 | |
| 		return nullptr;
 | |
| 	}
 | |
| 
 | |
| 	if ((int)e->pos >= pool_size) {
 | |
| 		mt_unlock();
 | |
| 		ERR_PRINT("e->pos<0 || e->pos>=pool_size");
 | |
| 		return nullptr;
 | |
| 	}
 | |
| 	const void *ptr = &pool[e->pos];
 | |
| 
 | |
| 	mt_unlock();
 | |
| 
 | |
| 	return ptr;
 | |
| }
 | |
| 
 | |
| void *PoolAllocator::get(ID p_mem) {
 | |
| 	if (!needs_locking) {
 | |
| 		Entry *e = get_entry(p_mem);
 | |
| 		ERR_FAIL_COND_V(!e, nullptr);
 | |
| 		return &pool[e->pos];
 | |
| 	}
 | |
| 
 | |
| 	mt_lock();
 | |
| 	Entry *e = get_entry(p_mem);
 | |
| 
 | |
| 	if (!e) {
 | |
| 		mt_unlock();
 | |
| 		ERR_FAIL_COND_V(!e, nullptr);
 | |
| 	}
 | |
| 	if (e->lock == 0) {
 | |
| 		//assert(0);
 | |
| 		mt_unlock();
 | |
| 		ERR_PRINT("e->lock == 0");
 | |
| 		return nullptr;
 | |
| 	}
 | |
| 
 | |
| 	if ((int)e->pos >= pool_size) {
 | |
| 		mt_unlock();
 | |
| 		ERR_PRINT("e->pos<0 || e->pos>=pool_size");
 | |
| 		return nullptr;
 | |
| 	}
 | |
| 	void *ptr = &pool[e->pos];
 | |
| 
 | |
| 	mt_unlock();
 | |
| 
 | |
| 	return ptr;
 | |
| }
 | |
| 
 | |
| void PoolAllocator::unlock(ID p_mem) {
 | |
| 	if (!needs_locking) {
 | |
| 		return;
 | |
| 	}
 | |
| 	mt_lock();
 | |
| 	Entry *e = get_entry(p_mem);
 | |
| 	if (!e) {
 | |
| 		mt_unlock();
 | |
| 		ERR_FAIL_COND(!e);
 | |
| 	}
 | |
| 	if (e->lock == 0) {
 | |
| 		mt_unlock();
 | |
| 		ERR_PRINT("e->lock == 0");
 | |
| 		return;
 | |
| 	}
 | |
| 	e->lock--;
 | |
| 	mt_unlock();
 | |
| }
 | |
| 
 | |
| int PoolAllocator::get_used_mem() const {
 | |
| 	return pool_size - free_mem;
 | |
| }
 | |
| 
 | |
| int PoolAllocator::get_free_peak() {
 | |
| 	return free_mem_peak;
 | |
| }
 | |
| 
 | |
| int PoolAllocator::get_free_mem() {
 | |
| 	return free_mem;
 | |
| }
 | |
| 
 | |
| void PoolAllocator::create_pool(void *p_mem, int p_size, int p_max_entries) {
 | |
| 	pool = (uint8_t *)p_mem;
 | |
| 	pool_size = p_size;
 | |
| 
 | |
| 	entry_array = memnew_arr(Entry, p_max_entries);
 | |
| 	entry_indices = memnew_arr(int, p_max_entries);
 | |
| 	entry_max = p_max_entries;
 | |
| 	entry_count = 0;
 | |
| 
 | |
| 	free_mem = p_size;
 | |
| 	free_mem_peak = p_size;
 | |
| 
 | |
| 	check_count = 0;
 | |
| }
 | |
| 
 | |
| PoolAllocator::PoolAllocator(int p_size, bool p_needs_locking, int p_max_entries) {
 | |
| 	mem_ptr = memalloc(p_size);
 | |
| 	ERR_FAIL_COND(!mem_ptr);
 | |
| 	align = 1;
 | |
| 	create_pool(mem_ptr, p_size, p_max_entries);
 | |
| 	needs_locking = p_needs_locking;
 | |
| }
 | |
| 
 | |
| PoolAllocator::PoolAllocator(void *p_mem, int p_size, int p_align, bool p_needs_locking, int p_max_entries) {
 | |
| 	if (p_align > 1) {
 | |
| 		uint8_t *mem8 = (uint8_t *)p_mem;
 | |
| 		uint64_t ofs = (uint64_t)mem8;
 | |
| 		if (ofs % p_align) {
 | |
| 			int dif = p_align - (ofs % p_align);
 | |
| 			mem8 += p_align - (ofs % p_align);
 | |
| 			p_size -= dif;
 | |
| 			p_mem = (void *)mem8;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	create_pool(p_mem, p_size, p_max_entries);
 | |
| 	needs_locking = p_needs_locking;
 | |
| 	align = p_align;
 | |
| 	mem_ptr = nullptr;
 | |
| }
 | |
| 
 | |
| PoolAllocator::PoolAllocator(int p_align, int p_size, bool p_needs_locking, int p_max_entries) {
 | |
| 	ERR_FAIL_COND(p_align < 1);
 | |
| 	mem_ptr = Memory::alloc_static(p_size + p_align, true);
 | |
| 	uint8_t *mem8 = (uint8_t *)mem_ptr;
 | |
| 	uint64_t ofs = (uint64_t)mem8;
 | |
| 	if (ofs % p_align) {
 | |
| 		mem8 += p_align - (ofs % p_align);
 | |
| 	}
 | |
| 	create_pool(mem8, p_size, p_max_entries);
 | |
| 	needs_locking = p_needs_locking;
 | |
| 	align = p_align;
 | |
| }
 | |
| 
 | |
| PoolAllocator::~PoolAllocator() {
 | |
| 	if (mem_ptr) {
 | |
| 		memfree(mem_ptr);
 | |
| 	}
 | |
| 
 | |
| 	memdelete_arr(entry_array);
 | |
| 	memdelete_arr(entry_indices);
 | |
| }
 |