mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-31 13:41:03 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			13798 lines
		
	
	
	
		
			475 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			13798 lines
		
	
	
	
		
			475 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #ifndef TINYEXR_H_
 | |
| #define TINYEXR_H_
 | |
| /*
 | |
| Copyright (c) 2014 - 2020, Syoyo Fujita and many contributors.
 | |
| All rights reserved.
 | |
| 
 | |
| Redistribution and use in source and binary forms, with or without
 | |
| modification, are permitted provided that the following conditions are met:
 | |
|     * Redistributions of source code must retain the above copyright
 | |
|       notice, this list of conditions and the following disclaimer.
 | |
|     * Redistributions in binary form must reproduce the above copyright
 | |
|       notice, this list of conditions and the following disclaimer in the
 | |
|       documentation and/or other materials provided with the distribution.
 | |
|     * Neither the name of the Syoyo Fujita nor the
 | |
|       names of its contributors may be used to endorse or promote products
 | |
|       derived from this software without specific prior written permission.
 | |
| 
 | |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 | |
| ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 | |
| WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 | |
| DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
 | |
| DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 | |
| (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 | |
| LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 | |
| ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | |
| (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 | |
| SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
| */
 | |
| 
 | |
| // TinyEXR contains some OpenEXR code, which is licensed under ------------
 | |
| 
 | |
| ///////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
 | |
| // Digital Ltd. LLC
 | |
| //
 | |
| // All rights reserved.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without
 | |
| // modification, are permitted provided that the following conditions are
 | |
| // met:
 | |
| // *       Redistributions of source code must retain the above copyright
 | |
| // notice, this list of conditions and the following disclaimer.
 | |
| // *       Redistributions in binary form must reproduce the above
 | |
| // copyright notice, this list of conditions and the following disclaimer
 | |
| // in the documentation and/or other materials provided with the
 | |
| // distribution.
 | |
| // *       Neither the name of Industrial Light & Magic nor the names of
 | |
| // its contributors may be used to endorse or promote products derived
 | |
| // from this software without specific prior written permission.
 | |
| //
 | |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
| //
 | |
| ///////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| // End of OpenEXR license -------------------------------------------------
 | |
| 
 | |
| //
 | |
| //
 | |
| //   Do this:
 | |
| //    #define TINYEXR_IMPLEMENTATION
 | |
| //   before you include this file in *one* C or C++ file to create the
 | |
| //   implementation.
 | |
| //
 | |
| //   // i.e. it should look like this:
 | |
| //   #include ...
 | |
| //   #include ...
 | |
| //   #include ...
 | |
| //   #define TINYEXR_IMPLEMENTATION
 | |
| //   #include "tinyexr.h"
 | |
| //
 | |
| //
 | |
| 
 | |
| #include <stddef.h>  // for size_t
 | |
| #include <stdint.h>  // guess stdint.h is available(C99)
 | |
| 
 | |
| #ifdef __cplusplus
 | |
| extern "C" {
 | |
| #endif
 | |
| 
 | |
| // Use embedded miniz or not to decode ZIP format pixel. Linking with zlib
 | |
| // required if this flas is 0.
 | |
| #ifndef TINYEXR_USE_MINIZ
 | |
| #define TINYEXR_USE_MINIZ (1)
 | |
| #endif
 | |
| 
 | |
| // Disable PIZ comporession when applying cpplint.
 | |
| #ifndef TINYEXR_USE_PIZ
 | |
| #define TINYEXR_USE_PIZ (1)
 | |
| #endif
 | |
| 
 | |
| #ifndef TINYEXR_USE_ZFP
 | |
| #define TINYEXR_USE_ZFP (0)  // TinyEXR extension.
 | |
| // http://computation.llnl.gov/projects/floating-point-compression
 | |
| #endif
 | |
| 
 | |
| #ifndef TINYEXR_USE_THREAD
 | |
| #define TINYEXR_USE_THREAD (0)  // No threaded loading.
 | |
| // http://computation.llnl.gov/projects/floating-point-compression
 | |
| #endif
 | |
| 
 | |
| #ifndef TINYEXR_USE_OPENMP
 | |
| #ifdef _OPENMP
 | |
| #define TINYEXR_USE_OPENMP (1)
 | |
| #else
 | |
| #define TINYEXR_USE_OPENMP (0)
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #define TINYEXR_SUCCESS (0)
 | |
| #define TINYEXR_ERROR_INVALID_MAGIC_NUMBER (-1)
 | |
| #define TINYEXR_ERROR_INVALID_EXR_VERSION (-2)
 | |
| #define TINYEXR_ERROR_INVALID_ARGUMENT (-3)
 | |
| #define TINYEXR_ERROR_INVALID_DATA (-4)
 | |
| #define TINYEXR_ERROR_INVALID_FILE (-5)
 | |
| #define TINYEXR_ERROR_INVALID_PARAMETER (-6)
 | |
| #define TINYEXR_ERROR_CANT_OPEN_FILE (-7)
 | |
| #define TINYEXR_ERROR_UNSUPPORTED_FORMAT (-8)
 | |
| #define TINYEXR_ERROR_INVALID_HEADER (-9)
 | |
| #define TINYEXR_ERROR_UNSUPPORTED_FEATURE (-10)
 | |
| #define TINYEXR_ERROR_CANT_WRITE_FILE (-11)
 | |
| #define TINYEXR_ERROR_SERIALZATION_FAILED (-12)
 | |
| #define TINYEXR_ERROR_LAYER_NOT_FOUND (-13)
 | |
| 
 | |
| // @note { OpenEXR file format: http://www.openexr.com/openexrfilelayout.pdf }
 | |
| 
 | |
| // pixel type: possible values are: UINT = 0 HALF = 1 FLOAT = 2
 | |
| #define TINYEXR_PIXELTYPE_UINT (0)
 | |
| #define TINYEXR_PIXELTYPE_HALF (1)
 | |
| #define TINYEXR_PIXELTYPE_FLOAT (2)
 | |
| 
 | |
| #define TINYEXR_MAX_HEADER_ATTRIBUTES (1024)
 | |
| #define TINYEXR_MAX_CUSTOM_ATTRIBUTES (128)
 | |
| 
 | |
| #define TINYEXR_COMPRESSIONTYPE_NONE (0)
 | |
| #define TINYEXR_COMPRESSIONTYPE_RLE (1)
 | |
| #define TINYEXR_COMPRESSIONTYPE_ZIPS (2)
 | |
| #define TINYEXR_COMPRESSIONTYPE_ZIP (3)
 | |
| #define TINYEXR_COMPRESSIONTYPE_PIZ (4)
 | |
| #define TINYEXR_COMPRESSIONTYPE_ZFP (128)  // TinyEXR extension
 | |
| 
 | |
| #define TINYEXR_ZFP_COMPRESSIONTYPE_RATE (0)
 | |
| #define TINYEXR_ZFP_COMPRESSIONTYPE_PRECISION (1)
 | |
| #define TINYEXR_ZFP_COMPRESSIONTYPE_ACCURACY (2)
 | |
| 
 | |
| #define TINYEXR_TILE_ONE_LEVEL (0)
 | |
| #define TINYEXR_TILE_MIPMAP_LEVELS (1)
 | |
| #define TINYEXR_TILE_RIPMAP_LEVELS (2)
 | |
| 
 | |
| #define TINYEXR_TILE_ROUND_DOWN (0)
 | |
| #define TINYEXR_TILE_ROUND_UP (1)
 | |
| 
 | |
| typedef struct _EXRVersion {
 | |
|   int version;    // this must be 2
 | |
|   int tiled;      // tile format image
 | |
|   int long_name;  // long name attribute
 | |
|   int non_image;  // deep image(EXR 2.0)
 | |
|   int multipart;  // multi-part(EXR 2.0)
 | |
| } EXRVersion;
 | |
| 
 | |
| typedef struct _EXRAttribute {
 | |
|   char name[256];  // name and type are up to 255 chars long.
 | |
|   char type[256];
 | |
|   unsigned char *value;  // uint8_t*
 | |
|   int size;
 | |
|   int pad0;
 | |
| } EXRAttribute;
 | |
| 
 | |
| typedef struct _EXRChannelInfo {
 | |
|   char name[256];  // less than 255 bytes long
 | |
|   int pixel_type;
 | |
|   int x_sampling;
 | |
|   int y_sampling;
 | |
|   unsigned char p_linear;
 | |
|   unsigned char pad[3];
 | |
| } EXRChannelInfo;
 | |
| 
 | |
| typedef struct _EXRTile {
 | |
|   int offset_x;
 | |
|   int offset_y;
 | |
|   int level_x;
 | |
|   int level_y;
 | |
| 
 | |
|   int width;   // actual width in a tile.
 | |
|   int height;  // actual height int a tile.
 | |
| 
 | |
|   unsigned char **images;  // image[channels][pixels]
 | |
| } EXRTile;
 | |
| 
 | |
| typedef struct _EXRBox2i {
 | |
|   int min_x;
 | |
|   int min_y;
 | |
|   int max_x;
 | |
|   int max_y;
 | |
| } EXRBox2i;
 | |
| 
 | |
| typedef struct _EXRHeader {
 | |
|   float pixel_aspect_ratio;
 | |
|   int line_order;
 | |
|   EXRBox2i data_window;
 | |
|   EXRBox2i display_window;
 | |
|   float screen_window_center[2];
 | |
|   float screen_window_width;
 | |
| 
 | |
|   int chunk_count;
 | |
| 
 | |
|   // Properties for tiled format(`tiledesc`).
 | |
|   int tiled;
 | |
|   int tile_size_x;
 | |
|   int tile_size_y;
 | |
|   int tile_level_mode;
 | |
|   int tile_rounding_mode;
 | |
| 
 | |
|   int long_name;
 | |
|   int non_image;
 | |
|   int multipart;
 | |
|   unsigned int header_len;
 | |
| 
 | |
|   // Custom attributes(exludes required attributes(e.g. `channels`,
 | |
|   // `compression`, etc)
 | |
|   int num_custom_attributes;
 | |
|   EXRAttribute *custom_attributes;  // array of EXRAttribute. size =
 | |
|                                     // `num_custom_attributes`.
 | |
| 
 | |
|   EXRChannelInfo *channels;  // [num_channels]
 | |
| 
 | |
|   int *pixel_types;  // Loaded pixel type(TINYEXR_PIXELTYPE_*) of `images` for
 | |
|   // each channel. This is overwritten with `requested_pixel_types` when
 | |
|   // loading.
 | |
|   int num_channels;
 | |
| 
 | |
|   int compression_type;        // compression type(TINYEXR_COMPRESSIONTYPE_*)
 | |
|   int *requested_pixel_types;  // Filled initially by
 | |
|                                // ParseEXRHeaderFrom(Meomory|File), then users
 | |
|                                // can edit it(only valid for HALF pixel type
 | |
|                                // channel)
 | |
| 
 | |
| } EXRHeader;
 | |
| 
 | |
| typedef struct _EXRMultiPartHeader {
 | |
|   int num_headers;
 | |
|   EXRHeader *headers;
 | |
| 
 | |
| } EXRMultiPartHeader;
 | |
| 
 | |
| typedef struct _EXRImage {
 | |
|   EXRTile *tiles;  // Tiled pixel data. The application must reconstruct image
 | |
|                    // from tiles manually. NULL if scanline format.
 | |
|   unsigned char **images;  // image[channels][pixels]. NULL if tiled format.
 | |
| 
 | |
|   int width;
 | |
|   int height;
 | |
|   int num_channels;
 | |
| 
 | |
|   // Properties for tile format.
 | |
|   int num_tiles;
 | |
| 
 | |
| } EXRImage;
 | |
| 
 | |
| typedef struct _EXRMultiPartImage {
 | |
|   int num_images;
 | |
|   EXRImage *images;
 | |
| 
 | |
| } EXRMultiPartImage;
 | |
| 
 | |
| typedef struct _DeepImage {
 | |
|   const char **channel_names;
 | |
|   float ***image;      // image[channels][scanlines][samples]
 | |
|   int **offset_table;  // offset_table[scanline][offsets]
 | |
|   int num_channels;
 | |
|   int width;
 | |
|   int height;
 | |
|   int pad0;
 | |
| } DeepImage;
 | |
| 
 | |
| // @deprecated { For backward compatibility. Not recommended to use. }
 | |
| // Loads single-frame OpenEXR image. Assume EXR image contains A(single channel
 | |
| // alpha) or RGB(A) channels.
 | |
| // Application must free image data as returned by `out_rgba`
 | |
| // Result image format is: float x RGBA x width x hight
 | |
| // Returns negative value and may set error string in `err` when there's an
 | |
| // error
 | |
| extern int LoadEXR(float **out_rgba, int *width, int *height,
 | |
|                    const char *filename, const char **err);
 | |
| 
 | |
| // Loads single-frame OpenEXR image by specifying layer name. Assume EXR image
 | |
| // contains A(single channel alpha) or RGB(A) channels. Application must free
 | |
| // image data as returned by `out_rgba` Result image format is: float x RGBA x
 | |
| // width x hight Returns negative value and may set error string in `err` when
 | |
| // there's an error When the specified layer name is not found in the EXR file,
 | |
| // the function will return `TINYEXR_ERROR_LAYER_NOT_FOUND`.
 | |
| extern int LoadEXRWithLayer(float **out_rgba, int *width, int *height,
 | |
|                             const char *filename, const char *layer_name,
 | |
|                             const char **err);
 | |
| 
 | |
| //
 | |
| // Get layer infos from EXR file.
 | |
| //
 | |
| // @param[out] layer_names List of layer names. Application must free memory
 | |
| // after using this.
 | |
| // @param[out] num_layers The number of layers
 | |
| // @param[out] err Error string(will be filled when the function returns error
 | |
| // code). Free it using FreeEXRErrorMessage after using this value.
 | |
| //
 | |
| // @return TINYEXR_SUCCEES upon success.
 | |
| //
 | |
| extern int EXRLayers(const char *filename, const char **layer_names[],
 | |
|                      int *num_layers, const char **err);
 | |
| 
 | |
| // @deprecated { to be removed. }
 | |
| // Simple wrapper API for ParseEXRHeaderFromFile.
 | |
| // checking given file is a EXR file(by just look up header)
 | |
| // @return TINYEXR_SUCCEES for EXR image, TINYEXR_ERROR_INVALID_HEADER for
 | |
| // others
 | |
| extern int IsEXR(const char *filename);
 | |
| 
 | |
| // @deprecated { to be removed. }
 | |
| // Saves single-frame OpenEXR image. Assume EXR image contains RGB(A) channels.
 | |
| // components must be 1(Grayscale), 3(RGB) or 4(RGBA).
 | |
| // Input image format is: `float x width x height`, or `float x RGB(A) x width x
 | |
| // hight`
 | |
| // Save image as fp16(HALF) format when `save_as_fp16` is positive non-zero
 | |
| // value.
 | |
| // Save image as fp32(FLOAT) format when `save_as_fp16` is 0.
 | |
| // Use ZIP compression by default.
 | |
| // Returns negative value and may set error string in `err` when there's an
 | |
| // error
 | |
| extern int SaveEXR(const float *data, const int width, const int height,
 | |
|                    const int components, const int save_as_fp16,
 | |
|                    const char *filename, const char **err);
 | |
| 
 | |
| // Initialize EXRHeader struct
 | |
| extern void InitEXRHeader(EXRHeader *exr_header);
 | |
| 
 | |
| // Initialize EXRImage struct
 | |
| extern void InitEXRImage(EXRImage *exr_image);
 | |
| 
 | |
| // Frees internal data of EXRHeader struct
 | |
| extern int FreeEXRHeader(EXRHeader *exr_header);
 | |
| 
 | |
| // Frees internal data of EXRImage struct
 | |
| extern int FreeEXRImage(EXRImage *exr_image);
 | |
| 
 | |
| // Frees error message
 | |
| extern void FreeEXRErrorMessage(const char *msg);
 | |
| 
 | |
| // Parse EXR version header of a file.
 | |
| extern int ParseEXRVersionFromFile(EXRVersion *version, const char *filename);
 | |
| 
 | |
| // Parse EXR version header from memory-mapped EXR data.
 | |
| extern int ParseEXRVersionFromMemory(EXRVersion *version,
 | |
|                                      const unsigned char *memory, size_t size);
 | |
| 
 | |
| // Parse single-part OpenEXR header from a file and initialize `EXRHeader`.
 | |
| // When there was an error message, Application must free `err` with
 | |
| // FreeEXRErrorMessage()
 | |
| extern int ParseEXRHeaderFromFile(EXRHeader *header, const EXRVersion *version,
 | |
|                                   const char *filename, const char **err);
 | |
| 
 | |
| // Parse single-part OpenEXR header from a memory and initialize `EXRHeader`.
 | |
| // When there was an error message, Application must free `err` with
 | |
| // FreeEXRErrorMessage()
 | |
| extern int ParseEXRHeaderFromMemory(EXRHeader *header,
 | |
|                                     const EXRVersion *version,
 | |
|                                     const unsigned char *memory, size_t size,
 | |
|                                     const char **err);
 | |
| 
 | |
| // Parse multi-part OpenEXR headers from a file and initialize `EXRHeader*`
 | |
| // array.
 | |
| // When there was an error message, Application must free `err` with
 | |
| // FreeEXRErrorMessage()
 | |
| extern int ParseEXRMultipartHeaderFromFile(EXRHeader ***headers,
 | |
|                                            int *num_headers,
 | |
|                                            const EXRVersion *version,
 | |
|                                            const char *filename,
 | |
|                                            const char **err);
 | |
| 
 | |
| // Parse multi-part OpenEXR headers from a memory and initialize `EXRHeader*`
 | |
| // array
 | |
| // When there was an error message, Application must free `err` with
 | |
| // FreeEXRErrorMessage()
 | |
| extern int ParseEXRMultipartHeaderFromMemory(EXRHeader ***headers,
 | |
|                                              int *num_headers,
 | |
|                                              const EXRVersion *version,
 | |
|                                              const unsigned char *memory,
 | |
|                                              size_t size, const char **err);
 | |
| 
 | |
| // Loads single-part OpenEXR image from a file.
 | |
| // Application must setup `ParseEXRHeaderFromFile` before calling this function.
 | |
| // Application can free EXRImage using `FreeEXRImage`
 | |
| // Returns negative value and may set error string in `err` when there's an
 | |
| // error
 | |
| // When there was an error message, Application must free `err` with
 | |
| // FreeEXRErrorMessage()
 | |
| extern int LoadEXRImageFromFile(EXRImage *image, const EXRHeader *header,
 | |
|                                 const char *filename, const char **err);
 | |
| 
 | |
| // Loads single-part OpenEXR image from a memory.
 | |
| // Application must setup `EXRHeader` with
 | |
| // `ParseEXRHeaderFromMemory` before calling this function.
 | |
| // Application can free EXRImage using `FreeEXRImage`
 | |
| // Returns negative value and may set error string in `err` when there's an
 | |
| // error
 | |
| // When there was an error message, Application must free `err` with
 | |
| // FreeEXRErrorMessage()
 | |
| extern int LoadEXRImageFromMemory(EXRImage *image, const EXRHeader *header,
 | |
|                                   const unsigned char *memory,
 | |
|                                   const size_t size, const char **err);
 | |
| 
 | |
| // Loads multi-part OpenEXR image from a file.
 | |
| // Application must setup `ParseEXRMultipartHeaderFromFile` before calling this
 | |
| // function.
 | |
| // Application can free EXRImage using `FreeEXRImage`
 | |
| // Returns negative value and may set error string in `err` when there's an
 | |
| // error
 | |
| // When there was an error message, Application must free `err` with
 | |
| // FreeEXRErrorMessage()
 | |
| extern int LoadEXRMultipartImageFromFile(EXRImage *images,
 | |
|                                          const EXRHeader **headers,
 | |
|                                          unsigned int num_parts,
 | |
|                                          const char *filename,
 | |
|                                          const char **err);
 | |
| 
 | |
| // Loads multi-part OpenEXR image from a memory.
 | |
| // Application must setup `EXRHeader*` array with
 | |
| // `ParseEXRMultipartHeaderFromMemory` before calling this function.
 | |
| // Application can free EXRImage using `FreeEXRImage`
 | |
| // Returns negative value and may set error string in `err` when there's an
 | |
| // error
 | |
| // When there was an error message, Application must free `err` with
 | |
| // FreeEXRErrorMessage()
 | |
| extern int LoadEXRMultipartImageFromMemory(EXRImage *images,
 | |
|                                            const EXRHeader **headers,
 | |
|                                            unsigned int num_parts,
 | |
|                                            const unsigned char *memory,
 | |
|                                            const size_t size, const char **err);
 | |
| 
 | |
| // Saves multi-channel, single-frame OpenEXR image to a file.
 | |
| // Returns negative value and may set error string in `err` when there's an
 | |
| // error
 | |
| // When there was an error message, Application must free `err` with
 | |
| // FreeEXRErrorMessage()
 | |
| extern int SaveEXRImageToFile(const EXRImage *image,
 | |
|                               const EXRHeader *exr_header, const char *filename,
 | |
|                               const char **err);
 | |
| 
 | |
| // Saves multi-channel, single-frame OpenEXR image to a memory.
 | |
| // Image is compressed using EXRImage.compression value.
 | |
| // Return the number of bytes if success.
 | |
| // Return zero and will set error string in `err` when there's an
 | |
| // error.
 | |
| // When there was an error message, Application must free `err` with
 | |
| // FreeEXRErrorMessage()
 | |
| extern size_t SaveEXRImageToMemory(const EXRImage *image,
 | |
|                                    const EXRHeader *exr_header,
 | |
|                                    unsigned char **memory, const char **err);
 | |
| 
 | |
| // Loads single-frame OpenEXR deep image.
 | |
| // Application must free memory of variables in DeepImage(image, offset_table)
 | |
| // Returns negative value and may set error string in `err` when there's an
 | |
| // error
 | |
| // When there was an error message, Application must free `err` with
 | |
| // FreeEXRErrorMessage()
 | |
| extern int LoadDeepEXR(DeepImage *out_image, const char *filename,
 | |
|                        const char **err);
 | |
| 
 | |
| // NOT YET IMPLEMENTED:
 | |
| // Saves single-frame OpenEXR deep image.
 | |
| // Returns negative value and may set error string in `err` when there's an
 | |
| // error
 | |
| // extern int SaveDeepEXR(const DeepImage *in_image, const char *filename,
 | |
| //                       const char **err);
 | |
| 
 | |
| // NOT YET IMPLEMENTED:
 | |
| // Loads multi-part OpenEXR deep image.
 | |
| // Application must free memory of variables in DeepImage(image, offset_table)
 | |
| // extern int LoadMultiPartDeepEXR(DeepImage **out_image, int num_parts, const
 | |
| // char *filename,
 | |
| //                       const char **err);
 | |
| 
 | |
| // For emscripten.
 | |
| // Loads single-frame OpenEXR image from memory. Assume EXR image contains
 | |
| // RGB(A) channels.
 | |
| // Returns negative value and may set error string in `err` when there's an
 | |
| // error
 | |
| // When there was an error message, Application must free `err` with
 | |
| // FreeEXRErrorMessage()
 | |
| extern int LoadEXRFromMemory(float **out_rgba, int *width, int *height,
 | |
|                              const unsigned char *memory, size_t size,
 | |
|                              const char **err);
 | |
| 
 | |
| #ifdef __cplusplus
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #endif  // TINYEXR_H_
 | |
| 
 | |
| #ifdef TINYEXR_IMPLEMENTATION
 | |
| #ifndef TINYEXR_IMPLEMENTATION_DEFINED
 | |
| #define TINYEXR_IMPLEMENTATION_DEFINED
 | |
| 
 | |
| #ifdef _WIN32
 | |
| 
 | |
| #ifndef WIN32_LEAN_AND_MEAN
 | |
| #define WIN32_LEAN_AND_MEAN
 | |
| #endif
 | |
| #include <windows.h>  // for UTF-8
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstdio>
 | |
| #include <cstdlib>
 | |
| #include <cstring>
 | |
| #include <sstream>
 | |
| 
 | |
| // #include <iostream> // debug
 | |
| 
 | |
| #include <limits>
 | |
| #include <string>
 | |
| #include <vector>
 | |
| 
 | |
| #if __cplusplus > 199711L
 | |
| // C++11
 | |
| #include <cstdint>
 | |
| 
 | |
| #if TINYEXR_USE_THREAD
 | |
| #include <atomic>
 | |
| #include <thread>
 | |
| #endif
 | |
| 
 | |
| #endif  // __cplusplus > 199711L
 | |
| 
 | |
| #if TINYEXR_USE_OPENMP
 | |
| #include <omp.h>
 | |
| #endif
 | |
| 
 | |
| #if TINYEXR_USE_MINIZ
 | |
| #else
 | |
| //  Issue #46. Please include your own zlib-compatible API header before
 | |
| //  including `tinyexr.h`
 | |
| //#include "zlib.h"
 | |
| #endif
 | |
| 
 | |
| #if TINYEXR_USE_ZFP
 | |
| 
 | |
| #ifdef __clang__
 | |
| #pragma clang diagnostic push
 | |
| #pragma clang diagnostic ignored "-Weverything"
 | |
| #endif
 | |
| 
 | |
| #include "zfp.h"
 | |
| 
 | |
| #ifdef __clang__
 | |
| #pragma clang diagnostic pop
 | |
| #endif
 | |
| 
 | |
| #endif
 | |
| 
 | |
| namespace tinyexr {
 | |
| 
 | |
| #if __cplusplus > 199711L
 | |
| // C++11
 | |
| typedef uint64_t tinyexr_uint64;
 | |
| typedef int64_t tinyexr_int64;
 | |
| #else
 | |
| // Although `long long` is not a standard type pre C++11, assume it is defined
 | |
| // as a compiler's extension.
 | |
| #ifdef __clang__
 | |
| #pragma clang diagnostic push
 | |
| #pragma clang diagnostic ignored "-Wc++11-long-long"
 | |
| #endif
 | |
| typedef unsigned long long tinyexr_uint64;
 | |
| typedef long long tinyexr_int64;
 | |
| #ifdef __clang__
 | |
| #pragma clang diagnostic pop
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #if TINYEXR_USE_MINIZ
 | |
| 
 | |
| namespace miniz {
 | |
| 
 | |
| #ifdef __clang__
 | |
| #pragma clang diagnostic push
 | |
| #pragma clang diagnostic ignored "-Wc++11-long-long"
 | |
| #pragma clang diagnostic ignored "-Wold-style-cast"
 | |
| #pragma clang diagnostic ignored "-Wpadded"
 | |
| #pragma clang diagnostic ignored "-Wsign-conversion"
 | |
| #pragma clang diagnostic ignored "-Wc++11-extensions"
 | |
| #pragma clang diagnostic ignored "-Wconversion"
 | |
| #pragma clang diagnostic ignored "-Wunused-function"
 | |
| #pragma clang diagnostic ignored "-Wc++98-compat-pedantic"
 | |
| #pragma clang diagnostic ignored "-Wundef"
 | |
| 
 | |
| #if __has_warning("-Wcomma")
 | |
| #pragma clang diagnostic ignored "-Wcomma"
 | |
| #endif
 | |
| 
 | |
| #if __has_warning("-Wmacro-redefined")
 | |
| #pragma clang diagnostic ignored "-Wmacro-redefined"
 | |
| #endif
 | |
| 
 | |
| #if __has_warning("-Wcast-qual")
 | |
| #pragma clang diagnostic ignored "-Wcast-qual"
 | |
| #endif
 | |
| 
 | |
| #if __has_warning("-Wzero-as-null-pointer-constant")
 | |
| #pragma clang diagnostic ignored "-Wzero-as-null-pointer-constant"
 | |
| #endif
 | |
| 
 | |
| #if __has_warning("-Wtautological-constant-compare")
 | |
| #pragma clang diagnostic ignored "-Wtautological-constant-compare"
 | |
| #endif
 | |
| 
 | |
| #if __has_warning("-Wextra-semi-stmt")
 | |
| #pragma clang diagnostic ignored "-Wextra-semi-stmt"
 | |
| #endif
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* miniz.c v1.15 - public domain deflate/inflate, zlib-subset, ZIP
 | |
|    reading/writing/appending, PNG writing
 | |
|    See "unlicense" statement at the end of this file.
 | |
|    Rich Geldreich <richgel99@gmail.com>, last updated Oct. 13, 2013
 | |
|    Implements RFC 1950: http://www.ietf.org/rfc/rfc1950.txt and RFC 1951:
 | |
|    http://www.ietf.org/rfc/rfc1951.txt
 | |
| 
 | |
|    Most API's defined in miniz.c are optional. For example, to disable the
 | |
|    archive related functions just define
 | |
|    MINIZ_NO_ARCHIVE_APIS, or to get rid of all stdio usage define MINIZ_NO_STDIO
 | |
|    (see the list below for more macros).
 | |
| 
 | |
|    * Change History
 | |
|      10/13/13 v1.15 r4 - Interim bugfix release while I work on the next major
 | |
|    release with Zip64 support (almost there!):
 | |
|        - Critical fix for the MZ_ZIP_FLAG_DO_NOT_SORT_CENTRAL_DIRECTORY bug
 | |
|    (thanks kahmyong.moon@hp.com) which could cause locate files to not find
 | |
|    files. This bug
 | |
|         would only have occurred in earlier versions if you explicitly used this
 | |
|    flag, OR if you used mz_zip_extract_archive_file_to_heap() or
 | |
|    mz_zip_add_mem_to_archive_file_in_place()
 | |
|         (which used this flag). If you can't switch to v1.15 but want to fix
 | |
|    this bug, just remove the uses of this flag from both helper funcs (and of
 | |
|    course don't use the flag).
 | |
|        - Bugfix in mz_zip_reader_extract_to_mem_no_alloc() from kymoon when
 | |
|    pUser_read_buf is not NULL and compressed size is > uncompressed size
 | |
|        - Fixing mz_zip_reader_extract_*() funcs so they don't try to extract
 | |
|    compressed data from directory entries, to account for weird zipfiles which
 | |
|    contain zero-size compressed data on dir entries.
 | |
|          Hopefully this fix won't cause any issues on weird zip archives,
 | |
|    because it assumes the low 16-bits of zip external attributes are DOS
 | |
|    attributes (which I believe they always are in practice).
 | |
|        - Fixing mz_zip_reader_is_file_a_directory() so it doesn't check the
 | |
|    internal attributes, just the filename and external attributes
 | |
|        - mz_zip_reader_init_file() - missing MZ_FCLOSE() call if the seek failed
 | |
|        - Added cmake support for Linux builds which builds all the examples,
 | |
|    tested with clang v3.3 and gcc v4.6.
 | |
|        - Clang fix for tdefl_write_image_to_png_file_in_memory() from toffaletti
 | |
|        - Merged MZ_FORCEINLINE fix from hdeanclark
 | |
|        - Fix <time.h> include before config #ifdef, thanks emil.brink
 | |
|        - Added tdefl_write_image_to_png_file_in_memory_ex(): supports Y flipping
 | |
|    (super useful for OpenGL apps), and explicit control over the compression
 | |
|    level (so you can
 | |
|         set it to 1 for real-time compression).
 | |
|        - Merged in some compiler fixes from paulharris's github repro.
 | |
|        - Retested this build under Windows (VS 2010, including static analysis),
 | |
|    tcc  0.9.26, gcc v4.6 and clang v3.3.
 | |
|        - Added example6.c, which dumps an image of the mandelbrot set to a PNG
 | |
|    file.
 | |
|        - Modified example2 to help test the
 | |
|    MZ_ZIP_FLAG_DO_NOT_SORT_CENTRAL_DIRECTORY flag more.
 | |
|        - In r3: Bugfix to mz_zip_writer_add_file() found during merge: Fix
 | |
|    possible src file fclose() leak if alignment bytes+local header file write
 | |
|    faiiled
 | |
|                  - In r4: Minor bugfix to mz_zip_writer_add_from_zip_reader():
 | |
|    Was pushing the wrong central dir header offset, appears harmless in this
 | |
|    release, but it became a problem in the zip64 branch
 | |
|      5/20/12 v1.14 - MinGW32/64 GCC 4.6.1 compiler fixes: added MZ_FORCEINLINE,
 | |
|    #include <time.h> (thanks fermtect).
 | |
|      5/19/12 v1.13 - From jason@cornsyrup.org and kelwert@mtu.edu - Fix
 | |
|    mz_crc32() so it doesn't compute the wrong CRC-32's when mz_ulong is 64-bit.
 | |
|        - Temporarily/locally slammed in "typedef unsigned long mz_ulong" and
 | |
|    re-ran a randomized regression test on ~500k files.
 | |
|        - Eliminated a bunch of warnings when compiling with GCC 32-bit/64.
 | |
|        - Ran all examples, miniz.c, and tinfl.c through MSVC 2008's /analyze
 | |
|    (static analysis) option and fixed all warnings (except for the silly
 | |
|         "Use of the comma-operator in a tested expression.." analysis warning,
 | |
|    which I purposely use to work around a MSVC compiler warning).
 | |
|        - Created 32-bit and 64-bit Codeblocks projects/workspace. Built and
 | |
|    tested Linux executables. The codeblocks workspace is compatible with
 | |
|    Linux+Win32/x64.
 | |
|        - Added miniz_tester solution/project, which is a useful little app
 | |
|    derived from LZHAM's tester app that I use as part of the regression test.
 | |
|        - Ran miniz.c and tinfl.c through another series of regression testing on
 | |
|    ~500,000 files and archives.
 | |
|        - Modified example5.c so it purposely disables a bunch of high-level
 | |
|    functionality (MINIZ_NO_STDIO, etc.). (Thanks to corysama for the
 | |
|    MINIZ_NO_STDIO bug report.)
 | |
|        - Fix ftell() usage in examples so they exit with an error on files which
 | |
|    are too large (a limitation of the examples, not miniz itself).
 | |
|      4/12/12 v1.12 - More comments, added low-level example5.c, fixed a couple
 | |
|    minor level_and_flags issues in the archive API's.
 | |
|       level_and_flags can now be set to MZ_DEFAULT_COMPRESSION. Thanks to Bruce
 | |
|    Dawson <bruced@valvesoftware.com> for the feedback/bug report.
 | |
|      5/28/11 v1.11 - Added statement from unlicense.org
 | |
|      5/27/11 v1.10 - Substantial compressor optimizations:
 | |
|       - Level 1 is now ~4x faster than before. The L1 compressor's throughput
 | |
|    now varies between 70-110MB/sec. on a
 | |
|       - Core i7 (actual throughput varies depending on the type of data, and x64
 | |
|    vs. x86).
 | |
|       - Improved baseline L2-L9 compression perf. Also, greatly improved
 | |
|    compression perf. issues on some file types.
 | |
|       - Refactored the compression code for better readability and
 | |
|    maintainability.
 | |
|       - Added level 10 compression level (L10 has slightly better ratio than
 | |
|    level 9, but could have a potentially large
 | |
|        drop in throughput on some files).
 | |
|      5/15/11 v1.09 - Initial stable release.
 | |
| 
 | |
|    * Low-level Deflate/Inflate implementation notes:
 | |
| 
 | |
|      Compression: Use the "tdefl" API's. The compressor supports raw, static,
 | |
|    and dynamic blocks, lazy or
 | |
|      greedy parsing, match length filtering, RLE-only, and Huffman-only streams.
 | |
|    It performs and compresses
 | |
|      approximately as well as zlib.
 | |
| 
 | |
|      Decompression: Use the "tinfl" API's. The entire decompressor is
 | |
|    implemented as a single function
 | |
|      coroutine: see tinfl_decompress(). It supports decompression into a 32KB
 | |
|    (or larger power of 2) wrapping buffer, or into a memory
 | |
|      block large enough to hold the entire file.
 | |
| 
 | |
|      The low-level tdefl/tinfl API's do not make any use of dynamic memory
 | |
|    allocation.
 | |
| 
 | |
|    * zlib-style API notes:
 | |
| 
 | |
|      miniz.c implements a fairly large subset of zlib. There's enough
 | |
|    functionality present for it to be a drop-in
 | |
|      zlib replacement in many apps:
 | |
|         The z_stream struct, optional memory allocation callbacks
 | |
|         deflateInit/deflateInit2/deflate/deflateReset/deflateEnd/deflateBound
 | |
|         inflateInit/inflateInit2/inflate/inflateEnd
 | |
|         compress, compress2, compressBound, uncompress
 | |
|         CRC-32, Adler-32 - Using modern, minimal code size, CPU cache friendly
 | |
|    routines.
 | |
|         Supports raw deflate streams or standard zlib streams with adler-32
 | |
|    checking.
 | |
| 
 | |
|      Limitations:
 | |
|       The callback API's are not implemented yet. No support for gzip headers or
 | |
|    zlib static dictionaries.
 | |
|       I've tried to closely emulate zlib's various flavors of stream flushing
 | |
|    and return status codes, but
 | |
|       there are no guarantees that miniz.c pulls this off perfectly.
 | |
| 
 | |
|    * PNG writing: See the tdefl_write_image_to_png_file_in_memory() function,
 | |
|    originally written by
 | |
|      Alex Evans. Supports 1-4 bytes/pixel images.
 | |
| 
 | |
|    * ZIP archive API notes:
 | |
| 
 | |
|      The ZIP archive API's where designed with simplicity and efficiency in
 | |
|    mind, with just enough abstraction to
 | |
|      get the job done with minimal fuss. There are simple API's to retrieve file
 | |
|    information, read files from
 | |
|      existing archives, create new archives, append new files to existing
 | |
|    archives, or clone archive data from
 | |
|      one archive to another. It supports archives located in memory or the heap,
 | |
|    on disk (using stdio.h),
 | |
|      or you can specify custom file read/write callbacks.
 | |
| 
 | |
|      - Archive reading: Just call this function to read a single file from a
 | |
|    disk archive:
 | |
| 
 | |
|       void *mz_zip_extract_archive_file_to_heap(const char *pZip_filename, const
 | |
|    char *pArchive_name,
 | |
|         size_t *pSize, mz_uint zip_flags);
 | |
| 
 | |
|      For more complex cases, use the "mz_zip_reader" functions. Upon opening an
 | |
|    archive, the entire central
 | |
|      directory is located and read as-is into memory, and subsequent file access
 | |
|    only occurs when reading individual files.
 | |
| 
 | |
|      - Archives file scanning: The simple way is to use this function to scan a
 | |
|    loaded archive for a specific file:
 | |
| 
 | |
|      int mz_zip_reader_locate_file(mz_zip_archive *pZip, const char *pName,
 | |
|    const char *pComment, mz_uint flags);
 | |
| 
 | |
|      The locate operation can optionally check file comments too, which (as one
 | |
|    example) can be used to identify
 | |
|      multiple versions of the same file in an archive. This function uses a
 | |
|    simple linear search through the central
 | |
|      directory, so it's not very fast.
 | |
| 
 | |
|      Alternately, you can iterate through all the files in an archive (using
 | |
|    mz_zip_reader_get_num_files()) and
 | |
|      retrieve detailed info on each file by calling mz_zip_reader_file_stat().
 | |
| 
 | |
|      - Archive creation: Use the "mz_zip_writer" functions. The ZIP writer
 | |
|    immediately writes compressed file data
 | |
|      to disk and builds an exact image of the central directory in memory. The
 | |
|    central directory image is written
 | |
|      all at once at the end of the archive file when the archive is finalized.
 | |
| 
 | |
|      The archive writer can optionally align each file's local header and file
 | |
|    data to any power of 2 alignment,
 | |
|      which can be useful when the archive will be read from optical media. Also,
 | |
|    the writer supports placing
 | |
|      arbitrary data blobs at the very beginning of ZIP archives. Archives
 | |
|    written using either feature are still
 | |
|      readable by any ZIP tool.
 | |
| 
 | |
|      - Archive appending: The simple way to add a single file to an archive is
 | |
|    to call this function:
 | |
| 
 | |
|       mz_bool mz_zip_add_mem_to_archive_file_in_place(const char *pZip_filename,
 | |
|    const char *pArchive_name,
 | |
|         const void *pBuf, size_t buf_size, const void *pComment, mz_uint16
 | |
|    comment_size, mz_uint level_and_flags);
 | |
| 
 | |
|      The archive will be created if it doesn't already exist, otherwise it'll be
 | |
|    appended to.
 | |
|      Note the appending is done in-place and is not an atomic operation, so if
 | |
|    something goes wrong
 | |
|      during the operation it's possible the archive could be left without a
 | |
|    central directory (although the local
 | |
|      file headers and file data will be fine, so the archive will be
 | |
|    recoverable).
 | |
| 
 | |
|      For more complex archive modification scenarios:
 | |
|      1. The safest way is to use a mz_zip_reader to read the existing archive,
 | |
|    cloning only those bits you want to
 | |
|      preserve into a new archive using using the
 | |
|    mz_zip_writer_add_from_zip_reader() function (which compiles the
 | |
|      compressed file data as-is). When you're done, delete the old archive and
 | |
|    rename the newly written archive, and
 | |
|      you're done. This is safe but requires a bunch of temporary disk space or
 | |
|    heap memory.
 | |
| 
 | |
|      2. Or, you can convert an mz_zip_reader in-place to an mz_zip_writer using
 | |
|    mz_zip_writer_init_from_reader(),
 | |
|      append new files as needed, then finalize the archive which will write an
 | |
|    updated central directory to the
 | |
|      original archive. (This is basically what
 | |
|    mz_zip_add_mem_to_archive_file_in_place() does.) There's a
 | |
|      possibility that the archive's central directory could be lost with this
 | |
|    method if anything goes wrong, though.
 | |
| 
 | |
|      - ZIP archive support limitations:
 | |
|      No zip64 or spanning support. Extraction functions can only handle
 | |
|    unencrypted, stored or deflated files.
 | |
|      Requires streams capable of seeking.
 | |
| 
 | |
|    * This is a header file library, like stb_image.c. To get only a header file,
 | |
|    either cut and paste the
 | |
|      below header, or create miniz.h, #define MINIZ_HEADER_FILE_ONLY, and then
 | |
|    include miniz.c from it.
 | |
| 
 | |
|    * Important: For best perf. be sure to customize the below macros for your
 | |
|    target platform:
 | |
|      #define MINIZ_USE_UNALIGNED_LOADS_AND_STORES 1
 | |
|      #define MINIZ_LITTLE_ENDIAN 1
 | |
|      #define MINIZ_HAS_64BIT_REGISTERS 1
 | |
| 
 | |
|    * On platforms using glibc, Be sure to "#define _LARGEFILE64_SOURCE 1" before
 | |
|    including miniz.c to ensure miniz
 | |
|      uses the 64-bit variants: fopen64(), stat64(), etc. Otherwise you won't be
 | |
|    able to process large files
 | |
|      (i.e. 32-bit stat() fails for me on files > 0x7FFFFFFF bytes).
 | |
| */
 | |
| 
 | |
| #ifndef MINIZ_HEADER_INCLUDED
 | |
| #define MINIZ_HEADER_INCLUDED
 | |
| 
 | |
| //#include <stdlib.h>
 | |
| 
 | |
| // Defines to completely disable specific portions of miniz.c:
 | |
| // If all macros here are defined the only functionality remaining will be
 | |
| // CRC-32, adler-32, tinfl, and tdefl.
 | |
| 
 | |
| // Define MINIZ_NO_STDIO to disable all usage and any functions which rely on
 | |
| // stdio for file I/O.
 | |
| //#define MINIZ_NO_STDIO
 | |
| 
 | |
| // If MINIZ_NO_TIME is specified then the ZIP archive functions will not be able
 | |
| // to get the current time, or
 | |
| // get/set file times, and the C run-time funcs that get/set times won't be
 | |
| // called.
 | |
| // The current downside is the times written to your archives will be from 1979.
 | |
| #define MINIZ_NO_TIME
 | |
| 
 | |
| // Define MINIZ_NO_ARCHIVE_APIS to disable all ZIP archive API's.
 | |
| #define MINIZ_NO_ARCHIVE_APIS
 | |
| 
 | |
| // Define MINIZ_NO_ARCHIVE_APIS to disable all writing related ZIP archive
 | |
| // API's.
 | |
| //#define MINIZ_NO_ARCHIVE_WRITING_APIS
 | |
| 
 | |
| // Define MINIZ_NO_ZLIB_APIS to remove all ZLIB-style compression/decompression
 | |
| // API's.
 | |
| //#define MINIZ_NO_ZLIB_APIS
 | |
| 
 | |
| // Define MINIZ_NO_ZLIB_COMPATIBLE_NAME to disable zlib names, to prevent
 | |
| // conflicts against stock zlib.
 | |
| //#define MINIZ_NO_ZLIB_COMPATIBLE_NAMES
 | |
| 
 | |
| // Define MINIZ_NO_MALLOC to disable all calls to malloc, free, and realloc.
 | |
| // Note if MINIZ_NO_MALLOC is defined then the user must always provide custom
 | |
| // user alloc/free/realloc
 | |
| // callbacks to the zlib and archive API's, and a few stand-alone helper API's
 | |
| // which don't provide custom user
 | |
| // functions (such as tdefl_compress_mem_to_heap() and
 | |
| // tinfl_decompress_mem_to_heap()) won't work.
 | |
| //#define MINIZ_NO_MALLOC
 | |
| 
 | |
| #if defined(__TINYC__) && (defined(__linux) || defined(__linux__))
 | |
| // TODO: Work around "error: include file 'sys\utime.h' when compiling with tcc
 | |
| // on Linux
 | |
| #define MINIZ_NO_TIME
 | |
| #endif
 | |
| 
 | |
| #if !defined(MINIZ_NO_TIME) && !defined(MINIZ_NO_ARCHIVE_APIS)
 | |
| //#include <time.h>
 | |
| #endif
 | |
| 
 | |
| #if defined(_M_IX86) || defined(_M_X64) || defined(__i386__) || \
 | |
|     defined(__i386) || defined(__i486__) || defined(__i486) ||  \
 | |
|     defined(i386) || defined(__ia64__) || defined(__x86_64__)
 | |
| // MINIZ_X86_OR_X64_CPU is only used to help set the below macros.
 | |
| #define MINIZ_X86_OR_X64_CPU 1
 | |
| #endif
 | |
| 
 | |
| #if defined(__sparcv9)
 | |
| // Big endian
 | |
| #else
 | |
| #if (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) || MINIZ_X86_OR_X64_CPU
 | |
| // Set MINIZ_LITTLE_ENDIAN to 1 if the processor is little endian.
 | |
| #define MINIZ_LITTLE_ENDIAN 1
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #if MINIZ_X86_OR_X64_CPU
 | |
| // Set MINIZ_USE_UNALIGNED_LOADS_AND_STORES to 1 on CPU's that permit efficient
 | |
| // integer loads and stores from unaligned addresses.
 | |
| //#define MINIZ_USE_UNALIGNED_LOADS_AND_STORES 1
 | |
| #define MINIZ_USE_UNALIGNED_LOADS_AND_STORES \
 | |
|   0  // disable to suppress compiler warnings
 | |
| #endif
 | |
| 
 | |
| #if defined(_M_X64) || defined(_WIN64) || defined(__MINGW64__) || \
 | |
|     defined(_LP64) || defined(__LP64__) || defined(__ia64__) ||   \
 | |
|     defined(__x86_64__)
 | |
| // Set MINIZ_HAS_64BIT_REGISTERS to 1 if operations on 64-bit integers are
 | |
| // reasonably fast (and don't involve compiler generated calls to helper
 | |
| // functions).
 | |
| #define MINIZ_HAS_64BIT_REGISTERS 1
 | |
| #endif
 | |
| 
 | |
| #ifdef __cplusplus
 | |
| extern "C" {
 | |
| #endif
 | |
| 
 | |
| // ------------------- zlib-style API Definitions.
 | |
| 
 | |
| // For more compatibility with zlib, miniz.c uses unsigned long for some
 | |
| // parameters/struct members. Beware: mz_ulong can be either 32 or 64-bits!
 | |
| typedef unsigned long mz_ulong;
 | |
| 
 | |
| // mz_free() internally uses the MZ_FREE() macro (which by default calls free()
 | |
| // unless you've modified the MZ_MALLOC macro) to release a block allocated from
 | |
| // the heap.
 | |
| void mz_free(void *p);
 | |
| 
 | |
| #define MZ_ADLER32_INIT (1)
 | |
| // mz_adler32() returns the initial adler-32 value to use when called with
 | |
| // ptr==NULL.
 | |
| mz_ulong mz_adler32(mz_ulong adler, const unsigned char *ptr, size_t buf_len);
 | |
| 
 | |
| #define MZ_CRC32_INIT (0)
 | |
| // mz_crc32() returns the initial CRC-32 value to use when called with
 | |
| // ptr==NULL.
 | |
| mz_ulong mz_crc32(mz_ulong crc, const unsigned char *ptr, size_t buf_len);
 | |
| 
 | |
| // Compression strategies.
 | |
| enum {
 | |
|   MZ_DEFAULT_STRATEGY = 0,
 | |
|   MZ_FILTERED = 1,
 | |
|   MZ_HUFFMAN_ONLY = 2,
 | |
|   MZ_RLE = 3,
 | |
|   MZ_FIXED = 4
 | |
| };
 | |
| 
 | |
| // Method
 | |
| #define MZ_DEFLATED 8
 | |
| 
 | |
| #ifndef MINIZ_NO_ZLIB_APIS
 | |
| 
 | |
| // Heap allocation callbacks.
 | |
| // Note that mz_alloc_func parameter types purpsosely differ from zlib's:
 | |
| // items/size is size_t, not unsigned long.
 | |
| typedef void *(*mz_alloc_func)(void *opaque, size_t items, size_t size);
 | |
| typedef void (*mz_free_func)(void *opaque, void *address);
 | |
| typedef void *(*mz_realloc_func)(void *opaque, void *address, size_t items,
 | |
|                                  size_t size);
 | |
| 
 | |
| #define MZ_VERSION "9.1.15"
 | |
| #define MZ_VERNUM 0x91F0
 | |
| #define MZ_VER_MAJOR 9
 | |
| #define MZ_VER_MINOR 1
 | |
| #define MZ_VER_REVISION 15
 | |
| #define MZ_VER_SUBREVISION 0
 | |
| 
 | |
| // Flush values. For typical usage you only need MZ_NO_FLUSH and MZ_FINISH. The
 | |
| // other values are for advanced use (refer to the zlib docs).
 | |
| enum {
 | |
|   MZ_NO_FLUSH = 0,
 | |
|   MZ_PARTIAL_FLUSH = 1,
 | |
|   MZ_SYNC_FLUSH = 2,
 | |
|   MZ_FULL_FLUSH = 3,
 | |
|   MZ_FINISH = 4,
 | |
|   MZ_BLOCK = 5
 | |
| };
 | |
| 
 | |
| // Return status codes. MZ_PARAM_ERROR is non-standard.
 | |
| enum {
 | |
|   MZ_OK = 0,
 | |
|   MZ_STREAM_END = 1,
 | |
|   MZ_NEED_DICT = 2,
 | |
|   MZ_ERRNO = -1,
 | |
|   MZ_STREAM_ERROR = -2,
 | |
|   MZ_DATA_ERROR = -3,
 | |
|   MZ_MEM_ERROR = -4,
 | |
|   MZ_BUF_ERROR = -5,
 | |
|   MZ_VERSION_ERROR = -6,
 | |
|   MZ_PARAM_ERROR = -10000
 | |
| };
 | |
| 
 | |
| // Compression levels: 0-9 are the standard zlib-style levels, 10 is best
 | |
| // possible compression (not zlib compatible, and may be very slow),
 | |
| // MZ_DEFAULT_COMPRESSION=MZ_DEFAULT_LEVEL.
 | |
| enum {
 | |
|   MZ_NO_COMPRESSION = 0,
 | |
|   MZ_BEST_SPEED = 1,
 | |
|   MZ_BEST_COMPRESSION = 9,
 | |
|   MZ_UBER_COMPRESSION = 10,
 | |
|   MZ_DEFAULT_LEVEL = 6,
 | |
|   MZ_DEFAULT_COMPRESSION = -1
 | |
| };
 | |
| 
 | |
| // Window bits
 | |
| #define MZ_DEFAULT_WINDOW_BITS 15
 | |
| 
 | |
| struct mz_internal_state;
 | |
| 
 | |
| // Compression/decompression stream struct.
 | |
| typedef struct mz_stream_s {
 | |
|   const unsigned char *next_in;  // pointer to next byte to read
 | |
|   unsigned int avail_in;         // number of bytes available at next_in
 | |
|   mz_ulong total_in;             // total number of bytes consumed so far
 | |
| 
 | |
|   unsigned char *next_out;  // pointer to next byte to write
 | |
|   unsigned int avail_out;   // number of bytes that can be written to next_out
 | |
|   mz_ulong total_out;       // total number of bytes produced so far
 | |
| 
 | |
|   char *msg;                        // error msg (unused)
 | |
|   struct mz_internal_state *state;  // internal state, allocated by zalloc/zfree
 | |
| 
 | |
|   mz_alloc_func
 | |
|       zalloc;          // optional heap allocation function (defaults to malloc)
 | |
|   mz_free_func zfree;  // optional heap free function (defaults to free)
 | |
|   void *opaque;        // heap alloc function user pointer
 | |
| 
 | |
|   int data_type;      // data_type (unused)
 | |
|   mz_ulong adler;     // adler32 of the source or uncompressed data
 | |
|   mz_ulong reserved;  // not used
 | |
| } mz_stream;
 | |
| 
 | |
| typedef mz_stream *mz_streamp;
 | |
| 
 | |
| // Returns the version string of miniz.c.
 | |
| const char *mz_version(void);
 | |
| 
 | |
| // mz_deflateInit() initializes a compressor with default options:
 | |
| // Parameters:
 | |
| //  pStream must point to an initialized mz_stream struct.
 | |
| //  level must be between [MZ_NO_COMPRESSION, MZ_BEST_COMPRESSION].
 | |
| //  level 1 enables a specially optimized compression function that's been
 | |
| //  optimized purely for performance, not ratio.
 | |
| //  (This special func. is currently only enabled when
 | |
| //  MINIZ_USE_UNALIGNED_LOADS_AND_STORES and MINIZ_LITTLE_ENDIAN are defined.)
 | |
| // Return values:
 | |
| //  MZ_OK on success.
 | |
| //  MZ_STREAM_ERROR if the stream is bogus.
 | |
| //  MZ_PARAM_ERROR if the input parameters are bogus.
 | |
| //  MZ_MEM_ERROR on out of memory.
 | |
| int mz_deflateInit(mz_streamp pStream, int level);
 | |
| 
 | |
| // mz_deflateInit2() is like mz_deflate(), except with more control:
 | |
| // Additional parameters:
 | |
| //   method must be MZ_DEFLATED
 | |
| //   window_bits must be MZ_DEFAULT_WINDOW_BITS (to wrap the deflate stream with
 | |
| //   zlib header/adler-32 footer) or -MZ_DEFAULT_WINDOW_BITS (raw deflate/no
 | |
| //   header or footer)
 | |
| //   mem_level must be between [1, 9] (it's checked but ignored by miniz.c)
 | |
| int mz_deflateInit2(mz_streamp pStream, int level, int method, int window_bits,
 | |
|                     int mem_level, int strategy);
 | |
| 
 | |
| // Quickly resets a compressor without having to reallocate anything. Same as
 | |
| // calling mz_deflateEnd() followed by mz_deflateInit()/mz_deflateInit2().
 | |
| int mz_deflateReset(mz_streamp pStream);
 | |
| 
 | |
| // mz_deflate() compresses the input to output, consuming as much of the input
 | |
| // and producing as much output as possible.
 | |
| // Parameters:
 | |
| //   pStream is the stream to read from and write to. You must initialize/update
 | |
| //   the next_in, avail_in, next_out, and avail_out members.
 | |
| //   flush may be MZ_NO_FLUSH, MZ_PARTIAL_FLUSH/MZ_SYNC_FLUSH, MZ_FULL_FLUSH, or
 | |
| //   MZ_FINISH.
 | |
| // Return values:
 | |
| //   MZ_OK on success (when flushing, or if more input is needed but not
 | |
| //   available, and/or there's more output to be written but the output buffer
 | |
| //   is full).
 | |
| //   MZ_STREAM_END if all input has been consumed and all output bytes have been
 | |
| //   written. Don't call mz_deflate() on the stream anymore.
 | |
| //   MZ_STREAM_ERROR if the stream is bogus.
 | |
| //   MZ_PARAM_ERROR if one of the parameters is invalid.
 | |
| //   MZ_BUF_ERROR if no forward progress is possible because the input and/or
 | |
| //   output buffers are empty. (Fill up the input buffer or free up some output
 | |
| //   space and try again.)
 | |
| int mz_deflate(mz_streamp pStream, int flush);
 | |
| 
 | |
| // mz_deflateEnd() deinitializes a compressor:
 | |
| // Return values:
 | |
| //  MZ_OK on success.
 | |
| //  MZ_STREAM_ERROR if the stream is bogus.
 | |
| int mz_deflateEnd(mz_streamp pStream);
 | |
| 
 | |
| // mz_deflateBound() returns a (very) conservative upper bound on the amount of
 | |
| // data that could be generated by deflate(), assuming flush is set to only
 | |
| // MZ_NO_FLUSH or MZ_FINISH.
 | |
| mz_ulong mz_deflateBound(mz_streamp pStream, mz_ulong source_len);
 | |
| 
 | |
| // Single-call compression functions mz_compress() and mz_compress2():
 | |
| // Returns MZ_OK on success, or one of the error codes from mz_deflate() on
 | |
| // failure.
 | |
| int mz_compress(unsigned char *pDest, mz_ulong *pDest_len,
 | |
|                 const unsigned char *pSource, mz_ulong source_len);
 | |
| int mz_compress2(unsigned char *pDest, mz_ulong *pDest_len,
 | |
|                  const unsigned char *pSource, mz_ulong source_len, int level);
 | |
| 
 | |
| // mz_compressBound() returns a (very) conservative upper bound on the amount of
 | |
| // data that could be generated by calling mz_compress().
 | |
| mz_ulong mz_compressBound(mz_ulong source_len);
 | |
| 
 | |
| // Initializes a decompressor.
 | |
| int mz_inflateInit(mz_streamp pStream);
 | |
| 
 | |
| // mz_inflateInit2() is like mz_inflateInit() with an additional option that
 | |
| // controls the window size and whether or not the stream has been wrapped with
 | |
| // a zlib header/footer:
 | |
| // window_bits must be MZ_DEFAULT_WINDOW_BITS (to parse zlib header/footer) or
 | |
| // -MZ_DEFAULT_WINDOW_BITS (raw deflate).
 | |
| int mz_inflateInit2(mz_streamp pStream, int window_bits);
 | |
| 
 | |
| // Decompresses the input stream to the output, consuming only as much of the
 | |
| // input as needed, and writing as much to the output as possible.
 | |
| // Parameters:
 | |
| //   pStream is the stream to read from and write to. You must initialize/update
 | |
| //   the next_in, avail_in, next_out, and avail_out members.
 | |
| //   flush may be MZ_NO_FLUSH, MZ_SYNC_FLUSH, or MZ_FINISH.
 | |
| //   On the first call, if flush is MZ_FINISH it's assumed the input and output
 | |
| //   buffers are both sized large enough to decompress the entire stream in a
 | |
| //   single call (this is slightly faster).
 | |
| //   MZ_FINISH implies that there are no more source bytes available beside
 | |
| //   what's already in the input buffer, and that the output buffer is large
 | |
| //   enough to hold the rest of the decompressed data.
 | |
| // Return values:
 | |
| //   MZ_OK on success. Either more input is needed but not available, and/or
 | |
| //   there's more output to be written but the output buffer is full.
 | |
| //   MZ_STREAM_END if all needed input has been consumed and all output bytes
 | |
| //   have been written. For zlib streams, the adler-32 of the decompressed data
 | |
| //   has also been verified.
 | |
| //   MZ_STREAM_ERROR if the stream is bogus.
 | |
| //   MZ_DATA_ERROR if the deflate stream is invalid.
 | |
| //   MZ_PARAM_ERROR if one of the parameters is invalid.
 | |
| //   MZ_BUF_ERROR if no forward progress is possible because the input buffer is
 | |
| //   empty but the inflater needs more input to continue, or if the output
 | |
| //   buffer is not large enough. Call mz_inflate() again
 | |
| //   with more input data, or with more room in the output buffer (except when
 | |
| //   using single call decompression, described above).
 | |
| int mz_inflate(mz_streamp pStream, int flush);
 | |
| 
 | |
| // Deinitializes a decompressor.
 | |
| int mz_inflateEnd(mz_streamp pStream);
 | |
| 
 | |
| // Single-call decompression.
 | |
| // Returns MZ_OK on success, or one of the error codes from mz_inflate() on
 | |
| // failure.
 | |
| int mz_uncompress(unsigned char *pDest, mz_ulong *pDest_len,
 | |
|                   const unsigned char *pSource, mz_ulong source_len);
 | |
| 
 | |
| // Returns a string description of the specified error code, or NULL if the
 | |
| // error code is invalid.
 | |
| const char *mz_error(int err);
 | |
| 
 | |
| // Redefine zlib-compatible names to miniz equivalents, so miniz.c can be used
 | |
| // as a drop-in replacement for the subset of zlib that miniz.c supports.
 | |
| // Define MINIZ_NO_ZLIB_COMPATIBLE_NAMES to disable zlib-compatibility if you
 | |
| // use zlib in the same project.
 | |
| #ifndef MINIZ_NO_ZLIB_COMPATIBLE_NAMES
 | |
| typedef unsigned char Byte;
 | |
| typedef unsigned int uInt;
 | |
| typedef mz_ulong uLong;
 | |
| typedef Byte Bytef;
 | |
| typedef uInt uIntf;
 | |
| typedef char charf;
 | |
| typedef int intf;
 | |
| typedef void *voidpf;
 | |
| typedef uLong uLongf;
 | |
| typedef void *voidp;
 | |
| typedef void *const voidpc;
 | |
| #define Z_NULL 0
 | |
| #define Z_NO_FLUSH MZ_NO_FLUSH
 | |
| #define Z_PARTIAL_FLUSH MZ_PARTIAL_FLUSH
 | |
| #define Z_SYNC_FLUSH MZ_SYNC_FLUSH
 | |
| #define Z_FULL_FLUSH MZ_FULL_FLUSH
 | |
| #define Z_FINISH MZ_FINISH
 | |
| #define Z_BLOCK MZ_BLOCK
 | |
| #define Z_OK MZ_OK
 | |
| #define Z_STREAM_END MZ_STREAM_END
 | |
| #define Z_NEED_DICT MZ_NEED_DICT
 | |
| #define Z_ERRNO MZ_ERRNO
 | |
| #define Z_STREAM_ERROR MZ_STREAM_ERROR
 | |
| #define Z_DATA_ERROR MZ_DATA_ERROR
 | |
| #define Z_MEM_ERROR MZ_MEM_ERROR
 | |
| #define Z_BUF_ERROR MZ_BUF_ERROR
 | |
| #define Z_VERSION_ERROR MZ_VERSION_ERROR
 | |
| #define Z_PARAM_ERROR MZ_PARAM_ERROR
 | |
| #define Z_NO_COMPRESSION MZ_NO_COMPRESSION
 | |
| #define Z_BEST_SPEED MZ_BEST_SPEED
 | |
| #define Z_BEST_COMPRESSION MZ_BEST_COMPRESSION
 | |
| #define Z_DEFAULT_COMPRESSION MZ_DEFAULT_COMPRESSION
 | |
| #define Z_DEFAULT_STRATEGY MZ_DEFAULT_STRATEGY
 | |
| #define Z_FILTERED MZ_FILTERED
 | |
| #define Z_HUFFMAN_ONLY MZ_HUFFMAN_ONLY
 | |
| #define Z_RLE MZ_RLE
 | |
| #define Z_FIXED MZ_FIXED
 | |
| #define Z_DEFLATED MZ_DEFLATED
 | |
| #define Z_DEFAULT_WINDOW_BITS MZ_DEFAULT_WINDOW_BITS
 | |
| #define alloc_func mz_alloc_func
 | |
| #define free_func mz_free_func
 | |
| #define internal_state mz_internal_state
 | |
| #define z_stream mz_stream
 | |
| #define deflateInit mz_deflateInit
 | |
| #define deflateInit2 mz_deflateInit2
 | |
| #define deflateReset mz_deflateReset
 | |
| #define deflate mz_deflate
 | |
| #define deflateEnd mz_deflateEnd
 | |
| #define deflateBound mz_deflateBound
 | |
| #define compress mz_compress
 | |
| #define compress2 mz_compress2
 | |
| #define compressBound mz_compressBound
 | |
| #define inflateInit mz_inflateInit
 | |
| #define inflateInit2 mz_inflateInit2
 | |
| #define inflate mz_inflate
 | |
| #define inflateEnd mz_inflateEnd
 | |
| #define uncompress mz_uncompress
 | |
| #define crc32 mz_crc32
 | |
| #define adler32 mz_adler32
 | |
| #define MAX_WBITS 15
 | |
| #define MAX_MEM_LEVEL 9
 | |
| #define zError mz_error
 | |
| #define ZLIB_VERSION MZ_VERSION
 | |
| #define ZLIB_VERNUM MZ_VERNUM
 | |
| #define ZLIB_VER_MAJOR MZ_VER_MAJOR
 | |
| #define ZLIB_VER_MINOR MZ_VER_MINOR
 | |
| #define ZLIB_VER_REVISION MZ_VER_REVISION
 | |
| #define ZLIB_VER_SUBREVISION MZ_VER_SUBREVISION
 | |
| #define zlibVersion mz_version
 | |
| #define zlib_version mz_version()
 | |
| #endif  // #ifndef MINIZ_NO_ZLIB_COMPATIBLE_NAMES
 | |
| 
 | |
| #endif  // MINIZ_NO_ZLIB_APIS
 | |
| 
 | |
| // ------------------- Types and macros
 | |
| 
 | |
| typedef unsigned char mz_uint8;
 | |
| typedef signed short mz_int16;
 | |
| typedef unsigned short mz_uint16;
 | |
| typedef unsigned int mz_uint32;
 | |
| typedef unsigned int mz_uint;
 | |
| typedef long long mz_int64;
 | |
| typedef unsigned long long mz_uint64;
 | |
| typedef int mz_bool;
 | |
| 
 | |
| #define MZ_FALSE (0)
 | |
| #define MZ_TRUE (1)
 | |
| 
 | |
| // An attempt to work around MSVC's spammy "warning C4127: conditional
 | |
| // expression is constant" message.
 | |
| #ifdef _MSC_VER
 | |
| #define MZ_MACRO_END while (0, 0)
 | |
| #else
 | |
| #define MZ_MACRO_END while (0)
 | |
| #endif
 | |
| 
 | |
| // ------------------- ZIP archive reading/writing
 | |
| 
 | |
| #ifndef MINIZ_NO_ARCHIVE_APIS
 | |
| 
 | |
| enum {
 | |
|   MZ_ZIP_MAX_IO_BUF_SIZE = 64 * 1024,
 | |
|   MZ_ZIP_MAX_ARCHIVE_FILENAME_SIZE = 260,
 | |
|   MZ_ZIP_MAX_ARCHIVE_FILE_COMMENT_SIZE = 256
 | |
| };
 | |
| 
 | |
| typedef struct {
 | |
|   mz_uint32 m_file_index;
 | |
|   mz_uint32 m_central_dir_ofs;
 | |
|   mz_uint16 m_version_made_by;
 | |
|   mz_uint16 m_version_needed;
 | |
|   mz_uint16 m_bit_flag;
 | |
|   mz_uint16 m_method;
 | |
| #ifndef MINIZ_NO_TIME
 | |
|   time_t m_time;
 | |
| #endif
 | |
|   mz_uint32 m_crc32;
 | |
|   mz_uint64 m_comp_size;
 | |
|   mz_uint64 m_uncomp_size;
 | |
|   mz_uint16 m_internal_attr;
 | |
|   mz_uint32 m_external_attr;
 | |
|   mz_uint64 m_local_header_ofs;
 | |
|   mz_uint32 m_comment_size;
 | |
|   char m_filename[MZ_ZIP_MAX_ARCHIVE_FILENAME_SIZE];
 | |
|   char m_comment[MZ_ZIP_MAX_ARCHIVE_FILE_COMMENT_SIZE];
 | |
| } mz_zip_archive_file_stat;
 | |
| 
 | |
| typedef size_t (*mz_file_read_func)(void *pOpaque, mz_uint64 file_ofs,
 | |
|                                     void *pBuf, size_t n);
 | |
| typedef size_t (*mz_file_write_func)(void *pOpaque, mz_uint64 file_ofs,
 | |
|                                      const void *pBuf, size_t n);
 | |
| 
 | |
| struct mz_zip_internal_state_tag;
 | |
| typedef struct mz_zip_internal_state_tag mz_zip_internal_state;
 | |
| 
 | |
| typedef enum {
 | |
|   MZ_ZIP_MODE_INVALID = 0,
 | |
|   MZ_ZIP_MODE_READING = 1,
 | |
|   MZ_ZIP_MODE_WRITING = 2,
 | |
|   MZ_ZIP_MODE_WRITING_HAS_BEEN_FINALIZED = 3
 | |
| } mz_zip_mode;
 | |
| 
 | |
| typedef struct mz_zip_archive_tag {
 | |
|   mz_uint64 m_archive_size;
 | |
|   mz_uint64 m_central_directory_file_ofs;
 | |
|   mz_uint m_total_files;
 | |
|   mz_zip_mode m_zip_mode;
 | |
| 
 | |
|   mz_uint m_file_offset_alignment;
 | |
| 
 | |
|   mz_alloc_func m_pAlloc;
 | |
|   mz_free_func m_pFree;
 | |
|   mz_realloc_func m_pRealloc;
 | |
|   void *m_pAlloc_opaque;
 | |
| 
 | |
|   mz_file_read_func m_pRead;
 | |
|   mz_file_write_func m_pWrite;
 | |
|   void *m_pIO_opaque;
 | |
| 
 | |
|   mz_zip_internal_state *m_pState;
 | |
| 
 | |
| } mz_zip_archive;
 | |
| 
 | |
| typedef enum {
 | |
|   MZ_ZIP_FLAG_CASE_SENSITIVE = 0x0100,
 | |
|   MZ_ZIP_FLAG_IGNORE_PATH = 0x0200,
 | |
|   MZ_ZIP_FLAG_COMPRESSED_DATA = 0x0400,
 | |
|   MZ_ZIP_FLAG_DO_NOT_SORT_CENTRAL_DIRECTORY = 0x0800
 | |
| } mz_zip_flags;
 | |
| 
 | |
| // ZIP archive reading
 | |
| 
 | |
| // Inits a ZIP archive reader.
 | |
| // These functions read and validate the archive's central directory.
 | |
| mz_bool mz_zip_reader_init(mz_zip_archive *pZip, mz_uint64 size,
 | |
|                            mz_uint32 flags);
 | |
| mz_bool mz_zip_reader_init_mem(mz_zip_archive *pZip, const void *pMem,
 | |
|                                size_t size, mz_uint32 flags);
 | |
| 
 | |
| #ifndef MINIZ_NO_STDIO
 | |
| mz_bool mz_zip_reader_init_file(mz_zip_archive *pZip, const char *pFilename,
 | |
|                                 mz_uint32 flags);
 | |
| #endif
 | |
| 
 | |
| // Returns the total number of files in the archive.
 | |
| mz_uint mz_zip_reader_get_num_files(mz_zip_archive *pZip);
 | |
| 
 | |
| // Returns detailed information about an archive file entry.
 | |
| mz_bool mz_zip_reader_file_stat(mz_zip_archive *pZip, mz_uint file_index,
 | |
|                                 mz_zip_archive_file_stat *pStat);
 | |
| 
 | |
| // Determines if an archive file entry is a directory entry.
 | |
| mz_bool mz_zip_reader_is_file_a_directory(mz_zip_archive *pZip,
 | |
|                                           mz_uint file_index);
 | |
| mz_bool mz_zip_reader_is_file_encrypted(mz_zip_archive *pZip,
 | |
|                                         mz_uint file_index);
 | |
| 
 | |
| // Retrieves the filename of an archive file entry.
 | |
| // Returns the number of bytes written to pFilename, or if filename_buf_size is
 | |
| // 0 this function returns the number of bytes needed to fully store the
 | |
| // filename.
 | |
| mz_uint mz_zip_reader_get_filename(mz_zip_archive *pZip, mz_uint file_index,
 | |
|                                    char *pFilename, mz_uint filename_buf_size);
 | |
| 
 | |
| // Attempts to locates a file in the archive's central directory.
 | |
| // Valid flags: MZ_ZIP_FLAG_CASE_SENSITIVE, MZ_ZIP_FLAG_IGNORE_PATH
 | |
| // Returns -1 if the file cannot be found.
 | |
| int mz_zip_reader_locate_file(mz_zip_archive *pZip, const char *pName,
 | |
|                               const char *pComment, mz_uint flags);
 | |
| 
 | |
| // Extracts a archive file to a memory buffer using no memory allocation.
 | |
| mz_bool mz_zip_reader_extract_to_mem_no_alloc(mz_zip_archive *pZip,
 | |
|                                               mz_uint file_index, void *pBuf,
 | |
|                                               size_t buf_size, mz_uint flags,
 | |
|                                               void *pUser_read_buf,
 | |
|                                               size_t user_read_buf_size);
 | |
| mz_bool mz_zip_reader_extract_file_to_mem_no_alloc(
 | |
|     mz_zip_archive *pZip, const char *pFilename, void *pBuf, size_t buf_size,
 | |
|     mz_uint flags, void *pUser_read_buf, size_t user_read_buf_size);
 | |
| 
 | |
| // Extracts a archive file to a memory buffer.
 | |
| mz_bool mz_zip_reader_extract_to_mem(mz_zip_archive *pZip, mz_uint file_index,
 | |
|                                      void *pBuf, size_t buf_size,
 | |
|                                      mz_uint flags);
 | |
| mz_bool mz_zip_reader_extract_file_to_mem(mz_zip_archive *pZip,
 | |
|                                           const char *pFilename, void *pBuf,
 | |
|                                           size_t buf_size, mz_uint flags);
 | |
| 
 | |
| // Extracts a archive file to a dynamically allocated heap buffer.
 | |
| void *mz_zip_reader_extract_to_heap(mz_zip_archive *pZip, mz_uint file_index,
 | |
|                                     size_t *pSize, mz_uint flags);
 | |
| void *mz_zip_reader_extract_file_to_heap(mz_zip_archive *pZip,
 | |
|                                          const char *pFilename, size_t *pSize,
 | |
|                                          mz_uint flags);
 | |
| 
 | |
| // Extracts a archive file using a callback function to output the file's data.
 | |
| mz_bool mz_zip_reader_extract_to_callback(mz_zip_archive *pZip,
 | |
|                                           mz_uint file_index,
 | |
|                                           mz_file_write_func pCallback,
 | |
|                                           void *pOpaque, mz_uint flags);
 | |
| mz_bool mz_zip_reader_extract_file_to_callback(mz_zip_archive *pZip,
 | |
|                                                const char *pFilename,
 | |
|                                                mz_file_write_func pCallback,
 | |
|                                                void *pOpaque, mz_uint flags);
 | |
| 
 | |
| #ifndef MINIZ_NO_STDIO
 | |
| // Extracts a archive file to a disk file and sets its last accessed and
 | |
| // modified times.
 | |
| // This function only extracts files, not archive directory records.
 | |
| mz_bool mz_zip_reader_extract_to_file(mz_zip_archive *pZip, mz_uint file_index,
 | |
|                                       const char *pDst_filename, mz_uint flags);
 | |
| mz_bool mz_zip_reader_extract_file_to_file(mz_zip_archive *pZip,
 | |
|                                            const char *pArchive_filename,
 | |
|                                            const char *pDst_filename,
 | |
|                                            mz_uint flags);
 | |
| #endif
 | |
| 
 | |
| // Ends archive reading, freeing all allocations, and closing the input archive
 | |
| // file if mz_zip_reader_init_file() was used.
 | |
| mz_bool mz_zip_reader_end(mz_zip_archive *pZip);
 | |
| 
 | |
| // ZIP archive writing
 | |
| 
 | |
| #ifndef MINIZ_NO_ARCHIVE_WRITING_APIS
 | |
| 
 | |
| // Inits a ZIP archive writer.
 | |
| mz_bool mz_zip_writer_init(mz_zip_archive *pZip, mz_uint64 existing_size);
 | |
| mz_bool mz_zip_writer_init_heap(mz_zip_archive *pZip,
 | |
|                                 size_t size_to_reserve_at_beginning,
 | |
|                                 size_t initial_allocation_size);
 | |
| 
 | |
| #ifndef MINIZ_NO_STDIO
 | |
| mz_bool mz_zip_writer_init_file(mz_zip_archive *pZip, const char *pFilename,
 | |
|                                 mz_uint64 size_to_reserve_at_beginning);
 | |
| #endif
 | |
| 
 | |
| // Converts a ZIP archive reader object into a writer object, to allow efficient
 | |
| // in-place file appends to occur on an existing archive.
 | |
| // For archives opened using mz_zip_reader_init_file, pFilename must be the
 | |
| // archive's filename so it can be reopened for writing. If the file can't be
 | |
| // reopened, mz_zip_reader_end() will be called.
 | |
| // For archives opened using mz_zip_reader_init_mem, the memory block must be
 | |
| // growable using the realloc callback (which defaults to realloc unless you've
 | |
| // overridden it).
 | |
| // Finally, for archives opened using mz_zip_reader_init, the mz_zip_archive's
 | |
| // user provided m_pWrite function cannot be NULL.
 | |
| // Note: In-place archive modification is not recommended unless you know what
 | |
| // you're doing, because if execution stops or something goes wrong before
 | |
| // the archive is finalized the file's central directory will be hosed.
 | |
| mz_bool mz_zip_writer_init_from_reader(mz_zip_archive *pZip,
 | |
|                                        const char *pFilename);
 | |
| 
 | |
| // Adds the contents of a memory buffer to an archive. These functions record
 | |
| // the current local time into the archive.
 | |
| // To add a directory entry, call this method with an archive name ending in a
 | |
| // forwardslash with empty buffer.
 | |
| // level_and_flags - compression level (0-10, see MZ_BEST_SPEED,
 | |
| // MZ_BEST_COMPRESSION, etc.) logically OR'd with zero or more mz_zip_flags, or
 | |
| // just set to MZ_DEFAULT_COMPRESSION.
 | |
| mz_bool mz_zip_writer_add_mem(mz_zip_archive *pZip, const char *pArchive_name,
 | |
|                               const void *pBuf, size_t buf_size,
 | |
|                               mz_uint level_and_flags);
 | |
| mz_bool mz_zip_writer_add_mem_ex(mz_zip_archive *pZip,
 | |
|                                  const char *pArchive_name, const void *pBuf,
 | |
|                                  size_t buf_size, const void *pComment,
 | |
|                                  mz_uint16 comment_size,
 | |
|                                  mz_uint level_and_flags, mz_uint64 uncomp_size,
 | |
|                                  mz_uint32 uncomp_crc32);
 | |
| 
 | |
| #ifndef MINIZ_NO_STDIO
 | |
| // Adds the contents of a disk file to an archive. This function also records
 | |
| // the disk file's modified time into the archive.
 | |
| // level_and_flags - compression level (0-10, see MZ_BEST_SPEED,
 | |
| // MZ_BEST_COMPRESSION, etc.) logically OR'd with zero or more mz_zip_flags, or
 | |
| // just set to MZ_DEFAULT_COMPRESSION.
 | |
| mz_bool mz_zip_writer_add_file(mz_zip_archive *pZip, const char *pArchive_name,
 | |
|                                const char *pSrc_filename, const void *pComment,
 | |
|                                mz_uint16 comment_size, mz_uint level_and_flags);
 | |
| #endif
 | |
| 
 | |
| // Adds a file to an archive by fully cloning the data from another archive.
 | |
| // This function fully clones the source file's compressed data (no
 | |
| // recompression), along with its full filename, extra data, and comment fields.
 | |
| mz_bool mz_zip_writer_add_from_zip_reader(mz_zip_archive *pZip,
 | |
|                                           mz_zip_archive *pSource_zip,
 | |
|                                           mz_uint file_index);
 | |
| 
 | |
| // Finalizes the archive by writing the central directory records followed by
 | |
| // the end of central directory record.
 | |
| // After an archive is finalized, the only valid call on the mz_zip_archive
 | |
| // struct is mz_zip_writer_end().
 | |
| // An archive must be manually finalized by calling this function for it to be
 | |
| // valid.
 | |
| mz_bool mz_zip_writer_finalize_archive(mz_zip_archive *pZip);
 | |
| mz_bool mz_zip_writer_finalize_heap_archive(mz_zip_archive *pZip, void **pBuf,
 | |
|                                             size_t *pSize);
 | |
| 
 | |
| // Ends archive writing, freeing all allocations, and closing the output file if
 | |
| // mz_zip_writer_init_file() was used.
 | |
| // Note for the archive to be valid, it must have been finalized before ending.
 | |
| mz_bool mz_zip_writer_end(mz_zip_archive *pZip);
 | |
| 
 | |
| // Misc. high-level helper functions:
 | |
| 
 | |
| // mz_zip_add_mem_to_archive_file_in_place() efficiently (but not atomically)
 | |
| // appends a memory blob to a ZIP archive.
 | |
| // level_and_flags - compression level (0-10, see MZ_BEST_SPEED,
 | |
| // MZ_BEST_COMPRESSION, etc.) logically OR'd with zero or more mz_zip_flags, or
 | |
| // just set to MZ_DEFAULT_COMPRESSION.
 | |
| mz_bool mz_zip_add_mem_to_archive_file_in_place(
 | |
|     const char *pZip_filename, const char *pArchive_name, const void *pBuf,
 | |
|     size_t buf_size, const void *pComment, mz_uint16 comment_size,
 | |
|     mz_uint level_and_flags);
 | |
| 
 | |
| // Reads a single file from an archive into a heap block.
 | |
| // Returns NULL on failure.
 | |
| void *mz_zip_extract_archive_file_to_heap(const char *pZip_filename,
 | |
|                                           const char *pArchive_name,
 | |
|                                           size_t *pSize, mz_uint zip_flags);
 | |
| 
 | |
| #endif  // #ifndef MINIZ_NO_ARCHIVE_WRITING_APIS
 | |
| 
 | |
| #endif  // #ifndef MINIZ_NO_ARCHIVE_APIS
 | |
| 
 | |
| // ------------------- Low-level Decompression API Definitions
 | |
| 
 | |
| // Decompression flags used by tinfl_decompress().
 | |
| // TINFL_FLAG_PARSE_ZLIB_HEADER: If set, the input has a valid zlib header and
 | |
| // ends with an adler32 checksum (it's a valid zlib stream). Otherwise, the
 | |
| // input is a raw deflate stream.
 | |
| // TINFL_FLAG_HAS_MORE_INPUT: If set, there are more input bytes available
 | |
| // beyond the end of the supplied input buffer. If clear, the input buffer
 | |
| // contains all remaining input.
 | |
| // TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF: If set, the output buffer is large
 | |
| // enough to hold the entire decompressed stream. If clear, the output buffer is
 | |
| // at least the size of the dictionary (typically 32KB).
 | |
| // TINFL_FLAG_COMPUTE_ADLER32: Force adler-32 checksum computation of the
 | |
| // decompressed bytes.
 | |
| enum {
 | |
|   TINFL_FLAG_PARSE_ZLIB_HEADER = 1,
 | |
|   TINFL_FLAG_HAS_MORE_INPUT = 2,
 | |
|   TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF = 4,
 | |
|   TINFL_FLAG_COMPUTE_ADLER32 = 8
 | |
| };
 | |
| 
 | |
| // High level decompression functions:
 | |
| // tinfl_decompress_mem_to_heap() decompresses a block in memory to a heap block
 | |
| // allocated via malloc().
 | |
| // On entry:
 | |
| //  pSrc_buf, src_buf_len: Pointer and size of the Deflate or zlib source data
 | |
| //  to decompress.
 | |
| // On return:
 | |
| //  Function returns a pointer to the decompressed data, or NULL on failure.
 | |
| //  *pOut_len will be set to the decompressed data's size, which could be larger
 | |
| //  than src_buf_len on uncompressible data.
 | |
| //  The caller must call mz_free() on the returned block when it's no longer
 | |
| //  needed.
 | |
| void *tinfl_decompress_mem_to_heap(const void *pSrc_buf, size_t src_buf_len,
 | |
|                                    size_t *pOut_len, int flags);
 | |
| 
 | |
| // tinfl_decompress_mem_to_mem() decompresses a block in memory to another block
 | |
| // in memory.
 | |
| // Returns TINFL_DECOMPRESS_MEM_TO_MEM_FAILED on failure, or the number of bytes
 | |
| // written on success.
 | |
| #define TINFL_DECOMPRESS_MEM_TO_MEM_FAILED ((size_t)(-1))
 | |
| size_t tinfl_decompress_mem_to_mem(void *pOut_buf, size_t out_buf_len,
 | |
|                                    const void *pSrc_buf, size_t src_buf_len,
 | |
|                                    int flags);
 | |
| 
 | |
| // tinfl_decompress_mem_to_callback() decompresses a block in memory to an
 | |
| // internal 32KB buffer, and a user provided callback function will be called to
 | |
| // flush the buffer.
 | |
| // Returns 1 on success or 0 on failure.
 | |
| typedef int (*tinfl_put_buf_func_ptr)(const void *pBuf, int len, void *pUser);
 | |
| int tinfl_decompress_mem_to_callback(const void *pIn_buf, size_t *pIn_buf_size,
 | |
|                                      tinfl_put_buf_func_ptr pPut_buf_func,
 | |
|                                      void *pPut_buf_user, int flags);
 | |
| 
 | |
| struct tinfl_decompressor_tag;
 | |
| typedef struct tinfl_decompressor_tag tinfl_decompressor;
 | |
| 
 | |
| // Max size of LZ dictionary.
 | |
| #define TINFL_LZ_DICT_SIZE 32768
 | |
| 
 | |
| // Return status.
 | |
| typedef enum {
 | |
|   TINFL_STATUS_BAD_PARAM = -3,
 | |
|   TINFL_STATUS_ADLER32_MISMATCH = -2,
 | |
|   TINFL_STATUS_FAILED = -1,
 | |
|   TINFL_STATUS_DONE = 0,
 | |
|   TINFL_STATUS_NEEDS_MORE_INPUT = 1,
 | |
|   TINFL_STATUS_HAS_MORE_OUTPUT = 2
 | |
| } tinfl_status;
 | |
| 
 | |
| // Initializes the decompressor to its initial state.
 | |
| #define tinfl_init(r) \
 | |
|   do {                \
 | |
|     (r)->m_state = 0; \
 | |
|   }                   \
 | |
|   MZ_MACRO_END
 | |
| #define tinfl_get_adler32(r) (r)->m_check_adler32
 | |
| 
 | |
| // Main low-level decompressor coroutine function. This is the only function
 | |
| // actually needed for decompression. All the other functions are just
 | |
| // high-level helpers for improved usability.
 | |
| // This is a universal API, i.e. it can be used as a building block to build any
 | |
| // desired higher level decompression API. In the limit case, it can be called
 | |
| // once per every byte input or output.
 | |
| tinfl_status tinfl_decompress(tinfl_decompressor *r,
 | |
|                               const mz_uint8 *pIn_buf_next,
 | |
|                               size_t *pIn_buf_size, mz_uint8 *pOut_buf_start,
 | |
|                               mz_uint8 *pOut_buf_next, size_t *pOut_buf_size,
 | |
|                               const mz_uint32 decomp_flags);
 | |
| 
 | |
| // Internal/private bits follow.
 | |
| enum {
 | |
|   TINFL_MAX_HUFF_TABLES = 3,
 | |
|   TINFL_MAX_HUFF_SYMBOLS_0 = 288,
 | |
|   TINFL_MAX_HUFF_SYMBOLS_1 = 32,
 | |
|   TINFL_MAX_HUFF_SYMBOLS_2 = 19,
 | |
|   TINFL_FAST_LOOKUP_BITS = 10,
 | |
|   TINFL_FAST_LOOKUP_SIZE = 1 << TINFL_FAST_LOOKUP_BITS
 | |
| };
 | |
| 
 | |
| typedef struct {
 | |
|   mz_uint8 m_code_size[TINFL_MAX_HUFF_SYMBOLS_0];
 | |
|   mz_int16 m_look_up[TINFL_FAST_LOOKUP_SIZE],
 | |
|       m_tree[TINFL_MAX_HUFF_SYMBOLS_0 * 2];
 | |
| } tinfl_huff_table;
 | |
| 
 | |
| #if MINIZ_HAS_64BIT_REGISTERS
 | |
| #define TINFL_USE_64BIT_BITBUF 1
 | |
| #endif
 | |
| 
 | |
| #if TINFL_USE_64BIT_BITBUF
 | |
| typedef mz_uint64 tinfl_bit_buf_t;
 | |
| #define TINFL_BITBUF_SIZE (64)
 | |
| #else
 | |
| typedef mz_uint32 tinfl_bit_buf_t;
 | |
| #define TINFL_BITBUF_SIZE (32)
 | |
| #endif
 | |
| 
 | |
| struct tinfl_decompressor_tag {
 | |
|   mz_uint32 m_state, m_num_bits, m_zhdr0, m_zhdr1, m_z_adler32, m_final, m_type,
 | |
|       m_check_adler32, m_dist, m_counter, m_num_extra,
 | |
|       m_table_sizes[TINFL_MAX_HUFF_TABLES];
 | |
|   tinfl_bit_buf_t m_bit_buf;
 | |
|   size_t m_dist_from_out_buf_start;
 | |
|   tinfl_huff_table m_tables[TINFL_MAX_HUFF_TABLES];
 | |
|   mz_uint8 m_raw_header[4],
 | |
|       m_len_codes[TINFL_MAX_HUFF_SYMBOLS_0 + TINFL_MAX_HUFF_SYMBOLS_1 + 137];
 | |
| };
 | |
| 
 | |
| // ------------------- Low-level Compression API Definitions
 | |
| 
 | |
| // Set TDEFL_LESS_MEMORY to 1 to use less memory (compression will be slightly
 | |
| // slower, and raw/dynamic blocks will be output more frequently).
 | |
| #define TDEFL_LESS_MEMORY 0
 | |
| 
 | |
| // tdefl_init() compression flags logically OR'd together (low 12 bits contain
 | |
| // the max. number of probes per dictionary search):
 | |
| // TDEFL_DEFAULT_MAX_PROBES: The compressor defaults to 128 dictionary probes
 | |
| // per dictionary search. 0=Huffman only, 1=Huffman+LZ (fastest/crap
 | |
| // compression), 4095=Huffman+LZ (slowest/best compression).
 | |
| enum {
 | |
|   TDEFL_HUFFMAN_ONLY = 0,
 | |
|   TDEFL_DEFAULT_MAX_PROBES = 128,
 | |
|   TDEFL_MAX_PROBES_MASK = 0xFFF
 | |
| };
 | |
| 
 | |
| // TDEFL_WRITE_ZLIB_HEADER: If set, the compressor outputs a zlib header before
 | |
| // the deflate data, and the Adler-32 of the source data at the end. Otherwise,
 | |
| // you'll get raw deflate data.
 | |
| // TDEFL_COMPUTE_ADLER32: Always compute the adler-32 of the input data (even
 | |
| // when not writing zlib headers).
 | |
| // TDEFL_GREEDY_PARSING_FLAG: Set to use faster greedy parsing, instead of more
 | |
| // efficient lazy parsing.
 | |
| // TDEFL_NONDETERMINISTIC_PARSING_FLAG: Enable to decrease the compressor's
 | |
| // initialization time to the minimum, but the output may vary from run to run
 | |
| // given the same input (depending on the contents of memory).
 | |
| // TDEFL_RLE_MATCHES: Only look for RLE matches (matches with a distance of 1)
 | |
| // TDEFL_FILTER_MATCHES: Discards matches <= 5 chars if enabled.
 | |
| // TDEFL_FORCE_ALL_STATIC_BLOCKS: Disable usage of optimized Huffman tables.
 | |
| // TDEFL_FORCE_ALL_RAW_BLOCKS: Only use raw (uncompressed) deflate blocks.
 | |
| // The low 12 bits are reserved to control the max # of hash probes per
 | |
| // dictionary lookup (see TDEFL_MAX_PROBES_MASK).
 | |
| enum {
 | |
|   TDEFL_WRITE_ZLIB_HEADER = 0x01000,
 | |
|   TDEFL_COMPUTE_ADLER32 = 0x02000,
 | |
|   TDEFL_GREEDY_PARSING_FLAG = 0x04000,
 | |
|   TDEFL_NONDETERMINISTIC_PARSING_FLAG = 0x08000,
 | |
|   TDEFL_RLE_MATCHES = 0x10000,
 | |
|   TDEFL_FILTER_MATCHES = 0x20000,
 | |
|   TDEFL_FORCE_ALL_STATIC_BLOCKS = 0x40000,
 | |
|   TDEFL_FORCE_ALL_RAW_BLOCKS = 0x80000
 | |
| };
 | |
| 
 | |
| // High level compression functions:
 | |
| // tdefl_compress_mem_to_heap() compresses a block in memory to a heap block
 | |
| // allocated via malloc().
 | |
| // On entry:
 | |
| //  pSrc_buf, src_buf_len: Pointer and size of source block to compress.
 | |
| //  flags: The max match finder probes (default is 128) logically OR'd against
 | |
| //  the above flags. Higher probes are slower but improve compression.
 | |
| // On return:
 | |
| //  Function returns a pointer to the compressed data, or NULL on failure.
 | |
| //  *pOut_len will be set to the compressed data's size, which could be larger
 | |
| //  than src_buf_len on uncompressible data.
 | |
| //  The caller must free() the returned block when it's no longer needed.
 | |
| void *tdefl_compress_mem_to_heap(const void *pSrc_buf, size_t src_buf_len,
 | |
|                                  size_t *pOut_len, int flags);
 | |
| 
 | |
| // tdefl_compress_mem_to_mem() compresses a block in memory to another block in
 | |
| // memory.
 | |
| // Returns 0 on failure.
 | |
| size_t tdefl_compress_mem_to_mem(void *pOut_buf, size_t out_buf_len,
 | |
|                                  const void *pSrc_buf, size_t src_buf_len,
 | |
|                                  int flags);
 | |
| 
 | |
| // Compresses an image to a compressed PNG file in memory.
 | |
| // On entry:
 | |
| //  pImage, w, h, and num_chans describe the image to compress. num_chans may be
 | |
| //  1, 2, 3, or 4.
 | |
| //  The image pitch in bytes per scanline will be w*num_chans. The leftmost
 | |
| //  pixel on the top scanline is stored first in memory.
 | |
| //  level may range from [0,10], use MZ_NO_COMPRESSION, MZ_BEST_SPEED,
 | |
| //  MZ_BEST_COMPRESSION, etc. or a decent default is MZ_DEFAULT_LEVEL
 | |
| //  If flip is true, the image will be flipped on the Y axis (useful for OpenGL
 | |
| //  apps).
 | |
| // On return:
 | |
| //  Function returns a pointer to the compressed data, or NULL on failure.
 | |
| //  *pLen_out will be set to the size of the PNG image file.
 | |
| //  The caller must mz_free() the returned heap block (which will typically be
 | |
| //  larger than *pLen_out) when it's no longer needed.
 | |
| void *tdefl_write_image_to_png_file_in_memory_ex(const void *pImage, int w,
 | |
|                                                  int h, int num_chans,
 | |
|                                                  size_t *pLen_out,
 | |
|                                                  mz_uint level, mz_bool flip);
 | |
| void *tdefl_write_image_to_png_file_in_memory(const void *pImage, int w, int h,
 | |
|                                               int num_chans, size_t *pLen_out);
 | |
| 
 | |
| // Output stream interface. The compressor uses this interface to write
 | |
| // compressed data. It'll typically be called TDEFL_OUT_BUF_SIZE at a time.
 | |
| typedef mz_bool (*tdefl_put_buf_func_ptr)(const void *pBuf, int len,
 | |
|                                           void *pUser);
 | |
| 
 | |
| // tdefl_compress_mem_to_output() compresses a block to an output stream. The
 | |
| // above helpers use this function internally.
 | |
| mz_bool tdefl_compress_mem_to_output(const void *pBuf, size_t buf_len,
 | |
|                                      tdefl_put_buf_func_ptr pPut_buf_func,
 | |
|                                      void *pPut_buf_user, int flags);
 | |
| 
 | |
| enum {
 | |
|   TDEFL_MAX_HUFF_TABLES = 3,
 | |
|   TDEFL_MAX_HUFF_SYMBOLS_0 = 288,
 | |
|   TDEFL_MAX_HUFF_SYMBOLS_1 = 32,
 | |
|   TDEFL_MAX_HUFF_SYMBOLS_2 = 19,
 | |
|   TDEFL_LZ_DICT_SIZE = 32768,
 | |
|   TDEFL_LZ_DICT_SIZE_MASK = TDEFL_LZ_DICT_SIZE - 1,
 | |
|   TDEFL_MIN_MATCH_LEN = 3,
 | |
|   TDEFL_MAX_MATCH_LEN = 258
 | |
| };
 | |
| 
 | |
| // TDEFL_OUT_BUF_SIZE MUST be large enough to hold a single entire compressed
 | |
| // output block (using static/fixed Huffman codes).
 | |
| #if TDEFL_LESS_MEMORY
 | |
| enum {
 | |
|   TDEFL_LZ_CODE_BUF_SIZE = 24 * 1024,
 | |
|   TDEFL_OUT_BUF_SIZE = (TDEFL_LZ_CODE_BUF_SIZE * 13) / 10,
 | |
|   TDEFL_MAX_HUFF_SYMBOLS = 288,
 | |
|   TDEFL_LZ_HASH_BITS = 12,
 | |
|   TDEFL_LEVEL1_HASH_SIZE_MASK = 4095,
 | |
|   TDEFL_LZ_HASH_SHIFT = (TDEFL_LZ_HASH_BITS + 2) / 3,
 | |
|   TDEFL_LZ_HASH_SIZE = 1 << TDEFL_LZ_HASH_BITS
 | |
| };
 | |
| #else
 | |
| enum {
 | |
|   TDEFL_LZ_CODE_BUF_SIZE = 64 * 1024,
 | |
|   TDEFL_OUT_BUF_SIZE = (TDEFL_LZ_CODE_BUF_SIZE * 13) / 10,
 | |
|   TDEFL_MAX_HUFF_SYMBOLS = 288,
 | |
|   TDEFL_LZ_HASH_BITS = 15,
 | |
|   TDEFL_LEVEL1_HASH_SIZE_MASK = 4095,
 | |
|   TDEFL_LZ_HASH_SHIFT = (TDEFL_LZ_HASH_BITS + 2) / 3,
 | |
|   TDEFL_LZ_HASH_SIZE = 1 << TDEFL_LZ_HASH_BITS
 | |
| };
 | |
| #endif
 | |
| 
 | |
| // The low-level tdefl functions below may be used directly if the above helper
 | |
| // functions aren't flexible enough. The low-level functions don't make any heap
 | |
| // allocations, unlike the above helper functions.
 | |
| typedef enum {
 | |
|   TDEFL_STATUS_BAD_PARAM = -2,
 | |
|   TDEFL_STATUS_PUT_BUF_FAILED = -1,
 | |
|   TDEFL_STATUS_OKAY = 0,
 | |
|   TDEFL_STATUS_DONE = 1
 | |
| } tdefl_status;
 | |
| 
 | |
| // Must map to MZ_NO_FLUSH, MZ_SYNC_FLUSH, etc. enums
 | |
| typedef enum {
 | |
|   TDEFL_NO_FLUSH = 0,
 | |
|   TDEFL_SYNC_FLUSH = 2,
 | |
|   TDEFL_FULL_FLUSH = 3,
 | |
|   TDEFL_FINISH = 4
 | |
| } tdefl_flush;
 | |
| 
 | |
| // tdefl's compression state structure.
 | |
| typedef struct {
 | |
|   tdefl_put_buf_func_ptr m_pPut_buf_func;
 | |
|   void *m_pPut_buf_user;
 | |
|   mz_uint m_flags, m_max_probes[2];
 | |
|   int m_greedy_parsing;
 | |
|   mz_uint m_adler32, m_lookahead_pos, m_lookahead_size, m_dict_size;
 | |
|   mz_uint8 *m_pLZ_code_buf, *m_pLZ_flags, *m_pOutput_buf, *m_pOutput_buf_end;
 | |
|   mz_uint m_num_flags_left, m_total_lz_bytes, m_lz_code_buf_dict_pos, m_bits_in,
 | |
|       m_bit_buffer;
 | |
|   mz_uint m_saved_match_dist, m_saved_match_len, m_saved_lit,
 | |
|       m_output_flush_ofs, m_output_flush_remaining, m_finished, m_block_index,
 | |
|       m_wants_to_finish;
 | |
|   tdefl_status m_prev_return_status;
 | |
|   const void *m_pIn_buf;
 | |
|   void *m_pOut_buf;
 | |
|   size_t *m_pIn_buf_size, *m_pOut_buf_size;
 | |
|   tdefl_flush m_flush;
 | |
|   const mz_uint8 *m_pSrc;
 | |
|   size_t m_src_buf_left, m_out_buf_ofs;
 | |
|   mz_uint8 m_dict[TDEFL_LZ_DICT_SIZE + TDEFL_MAX_MATCH_LEN - 1];
 | |
|   mz_uint16 m_huff_count[TDEFL_MAX_HUFF_TABLES][TDEFL_MAX_HUFF_SYMBOLS];
 | |
|   mz_uint16 m_huff_codes[TDEFL_MAX_HUFF_TABLES][TDEFL_MAX_HUFF_SYMBOLS];
 | |
|   mz_uint8 m_huff_code_sizes[TDEFL_MAX_HUFF_TABLES][TDEFL_MAX_HUFF_SYMBOLS];
 | |
|   mz_uint8 m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE];
 | |
|   mz_uint16 m_next[TDEFL_LZ_DICT_SIZE];
 | |
|   mz_uint16 m_hash[TDEFL_LZ_HASH_SIZE];
 | |
|   mz_uint8 m_output_buf[TDEFL_OUT_BUF_SIZE];
 | |
| } tdefl_compressor;
 | |
| 
 | |
| // Initializes the compressor.
 | |
| // There is no corresponding deinit() function because the tdefl API's do not
 | |
| // dynamically allocate memory.
 | |
| // pBut_buf_func: If NULL, output data will be supplied to the specified
 | |
| // callback. In this case, the user should call the tdefl_compress_buffer() API
 | |
| // for compression.
 | |
| // If pBut_buf_func is NULL the user should always call the tdefl_compress()
 | |
| // API.
 | |
| // flags: See the above enums (TDEFL_HUFFMAN_ONLY, TDEFL_WRITE_ZLIB_HEADER,
 | |
| // etc.)
 | |
| tdefl_status tdefl_init(tdefl_compressor *d,
 | |
|                         tdefl_put_buf_func_ptr pPut_buf_func,
 | |
|                         void *pPut_buf_user, int flags);
 | |
| 
 | |
| // Compresses a block of data, consuming as much of the specified input buffer
 | |
| // as possible, and writing as much compressed data to the specified output
 | |
| // buffer as possible.
 | |
| tdefl_status tdefl_compress(tdefl_compressor *d, const void *pIn_buf,
 | |
|                             size_t *pIn_buf_size, void *pOut_buf,
 | |
|                             size_t *pOut_buf_size, tdefl_flush flush);
 | |
| 
 | |
| // tdefl_compress_buffer() is only usable when the tdefl_init() is called with a
 | |
| // non-NULL tdefl_put_buf_func_ptr.
 | |
| // tdefl_compress_buffer() always consumes the entire input buffer.
 | |
| tdefl_status tdefl_compress_buffer(tdefl_compressor *d, const void *pIn_buf,
 | |
|                                    size_t in_buf_size, tdefl_flush flush);
 | |
| 
 | |
| tdefl_status tdefl_get_prev_return_status(tdefl_compressor *d);
 | |
| mz_uint32 tdefl_get_adler32(tdefl_compressor *d);
 | |
| 
 | |
| // Can't use tdefl_create_comp_flags_from_zip_params if MINIZ_NO_ZLIB_APIS isn't
 | |
| // defined, because it uses some of its macros.
 | |
| #ifndef MINIZ_NO_ZLIB_APIS
 | |
| // Create tdefl_compress() flags given zlib-style compression parameters.
 | |
| // level may range from [0,10] (where 10 is absolute max compression, but may be
 | |
| // much slower on some files)
 | |
| // window_bits may be -15 (raw deflate) or 15 (zlib)
 | |
| // strategy may be either MZ_DEFAULT_STRATEGY, MZ_FILTERED, MZ_HUFFMAN_ONLY,
 | |
| // MZ_RLE, or MZ_FIXED
 | |
| mz_uint tdefl_create_comp_flags_from_zip_params(int level, int window_bits,
 | |
|                                                 int strategy);
 | |
| #endif  // #ifndef MINIZ_NO_ZLIB_APIS
 | |
| 
 | |
| #ifdef __cplusplus
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #endif  // MINIZ_HEADER_INCLUDED
 | |
| 
 | |
| // ------------------- End of Header: Implementation follows. (If you only want
 | |
| // the header, define MINIZ_HEADER_FILE_ONLY.)
 | |
| 
 | |
| #ifndef MINIZ_HEADER_FILE_ONLY
 | |
| 
 | |
| typedef unsigned char mz_validate_uint16[sizeof(mz_uint16) == 2 ? 1 : -1];
 | |
| typedef unsigned char mz_validate_uint32[sizeof(mz_uint32) == 4 ? 1 : -1];
 | |
| typedef unsigned char mz_validate_uint64[sizeof(mz_uint64) == 8 ? 1 : -1];
 | |
| 
 | |
| //#include <assert.h>
 | |
| //#include <string.h>
 | |
| 
 | |
| #define MZ_ASSERT(x) assert(x)
 | |
| 
 | |
| #ifdef MINIZ_NO_MALLOC
 | |
| #define MZ_MALLOC(x) NULL
 | |
| #define MZ_FREE(x) (void)x, ((void)0)
 | |
| #define MZ_REALLOC(p, x) NULL
 | |
| #else
 | |
| #define MZ_MALLOC(x) malloc(x)
 | |
| #define MZ_FREE(x) free(x)
 | |
| #define MZ_REALLOC(p, x) realloc(p, x)
 | |
| #endif
 | |
| 
 | |
| #define MZ_MAX(a, b) (((a) > (b)) ? (a) : (b))
 | |
| #define MZ_MIN(a, b) (((a) < (b)) ? (a) : (b))
 | |
| #define MZ_CLEAR_OBJ(obj) memset(&(obj), 0, sizeof(obj))
 | |
| 
 | |
| #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN
 | |
| #define MZ_READ_LE16(p) *((const mz_uint16 *)(p))
 | |
| #define MZ_READ_LE32(p) *((const mz_uint32 *)(p))
 | |
| #else
 | |
| #define MZ_READ_LE16(p)                      \
 | |
|   ((mz_uint32)(((const mz_uint8 *)(p))[0]) | \
 | |
|    ((mz_uint32)(((const mz_uint8 *)(p))[1]) << 8U))
 | |
| #define MZ_READ_LE32(p)                               \
 | |
|   ((mz_uint32)(((const mz_uint8 *)(p))[0]) |          \
 | |
|    ((mz_uint32)(((const mz_uint8 *)(p))[1]) << 8U) |  \
 | |
|    ((mz_uint32)(((const mz_uint8 *)(p))[2]) << 16U) | \
 | |
|    ((mz_uint32)(((const mz_uint8 *)(p))[3]) << 24U))
 | |
| #endif
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| #define MZ_FORCEINLINE __forceinline
 | |
| #elif defined(__GNUC__)
 | |
| #define MZ_FORCEINLINE inline __attribute__((__always_inline__))
 | |
| #else
 | |
| #define MZ_FORCEINLINE inline
 | |
| #endif
 | |
| 
 | |
| #ifdef __cplusplus
 | |
| extern "C" {
 | |
| #endif
 | |
| 
 | |
| // ------------------- zlib-style API's
 | |
| 
 | |
| mz_ulong mz_adler32(mz_ulong adler, const unsigned char *ptr, size_t buf_len) {
 | |
|   mz_uint32 i, s1 = (mz_uint32)(adler & 0xffff), s2 = (mz_uint32)(adler >> 16);
 | |
|   size_t block_len = buf_len % 5552;
 | |
|   if (!ptr) return MZ_ADLER32_INIT;
 | |
|   while (buf_len) {
 | |
|     for (i = 0; i + 7 < block_len; i += 8, ptr += 8) {
 | |
|       s1 += ptr[0], s2 += s1;
 | |
|       s1 += ptr[1], s2 += s1;
 | |
|       s1 += ptr[2], s2 += s1;
 | |
|       s1 += ptr[3], s2 += s1;
 | |
|       s1 += ptr[4], s2 += s1;
 | |
|       s1 += ptr[5], s2 += s1;
 | |
|       s1 += ptr[6], s2 += s1;
 | |
|       s1 += ptr[7], s2 += s1;
 | |
|     }
 | |
|     for (; i < block_len; ++i) s1 += *ptr++, s2 += s1;
 | |
|     s1 %= 65521U, s2 %= 65521U;
 | |
|     buf_len -= block_len;
 | |
|     block_len = 5552;
 | |
|   }
 | |
|   return (s2 << 16) + s1;
 | |
| }
 | |
| 
 | |
| // Karl Malbrain's compact CRC-32. See "A compact CCITT crc16 and crc32 C
 | |
| // implementation that balances processor cache usage against speed":
 | |
| // http://www.geocities.com/malbrain/
 | |
| mz_ulong mz_crc32(mz_ulong crc, const mz_uint8 *ptr, size_t buf_len) {
 | |
|   static const mz_uint32 s_crc32[16] = {
 | |
|       0,          0x1db71064, 0x3b6e20c8, 0x26d930ac, 0x76dc4190, 0x6b6b51f4,
 | |
|       0x4db26158, 0x5005713c, 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
 | |
|       0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c};
 | |
|   mz_uint32 crcu32 = (mz_uint32)crc;
 | |
|   if (!ptr) return MZ_CRC32_INIT;
 | |
|   crcu32 = ~crcu32;
 | |
|   while (buf_len--) {
 | |
|     mz_uint8 b = *ptr++;
 | |
|     crcu32 = (crcu32 >> 4) ^ s_crc32[(crcu32 & 0xF) ^ (b & 0xF)];
 | |
|     crcu32 = (crcu32 >> 4) ^ s_crc32[(crcu32 & 0xF) ^ (b >> 4)];
 | |
|   }
 | |
|   return ~crcu32;
 | |
| }
 | |
| 
 | |
| void mz_free(void *p) { MZ_FREE(p); }
 | |
| 
 | |
| #ifndef MINIZ_NO_ZLIB_APIS
 | |
| 
 | |
| static void *def_alloc_func(void *opaque, size_t items, size_t size) {
 | |
|   (void)opaque, (void)items, (void)size;
 | |
|   return MZ_MALLOC(items * size);
 | |
| }
 | |
| static void def_free_func(void *opaque, void *address) {
 | |
|   (void)opaque, (void)address;
 | |
|   MZ_FREE(address);
 | |
| }
 | |
| // static void *def_realloc_func(void *opaque, void *address, size_t items,
 | |
| //                              size_t size) {
 | |
| //  (void)opaque, (void)address, (void)items, (void)size;
 | |
| //  return MZ_REALLOC(address, items * size);
 | |
| //}
 | |
| 
 | |
| const char *mz_version(void) { return MZ_VERSION; }
 | |
| 
 | |
| int mz_deflateInit(mz_streamp pStream, int level) {
 | |
|   return mz_deflateInit2(pStream, level, MZ_DEFLATED, MZ_DEFAULT_WINDOW_BITS, 9,
 | |
|                          MZ_DEFAULT_STRATEGY);
 | |
| }
 | |
| 
 | |
| int mz_deflateInit2(mz_streamp pStream, int level, int method, int window_bits,
 | |
|                     int mem_level, int strategy) {
 | |
|   tdefl_compressor *pComp;
 | |
|   mz_uint comp_flags =
 | |
|       TDEFL_COMPUTE_ADLER32 |
 | |
|       tdefl_create_comp_flags_from_zip_params(level, window_bits, strategy);
 | |
| 
 | |
|   if (!pStream) return MZ_STREAM_ERROR;
 | |
|   if ((method != MZ_DEFLATED) || ((mem_level < 1) || (mem_level > 9)) ||
 | |
|       ((window_bits != MZ_DEFAULT_WINDOW_BITS) &&
 | |
|        (-window_bits != MZ_DEFAULT_WINDOW_BITS)))
 | |
|     return MZ_PARAM_ERROR;
 | |
| 
 | |
|   pStream->data_type = 0;
 | |
|   pStream->adler = MZ_ADLER32_INIT;
 | |
|   pStream->msg = NULL;
 | |
|   pStream->reserved = 0;
 | |
|   pStream->total_in = 0;
 | |
|   pStream->total_out = 0;
 | |
|   if (!pStream->zalloc) pStream->zalloc = def_alloc_func;
 | |
|   if (!pStream->zfree) pStream->zfree = def_free_func;
 | |
| 
 | |
|   pComp = (tdefl_compressor *)pStream->zalloc(pStream->opaque, 1,
 | |
|                                               sizeof(tdefl_compressor));
 | |
|   if (!pComp) return MZ_MEM_ERROR;
 | |
| 
 | |
|   pStream->state = (struct mz_internal_state *)pComp;
 | |
| 
 | |
|   if (tdefl_init(pComp, NULL, NULL, comp_flags) != TDEFL_STATUS_OKAY) {
 | |
|     mz_deflateEnd(pStream);
 | |
|     return MZ_PARAM_ERROR;
 | |
|   }
 | |
| 
 | |
|   return MZ_OK;
 | |
| }
 | |
| 
 | |
| int mz_deflateReset(mz_streamp pStream) {
 | |
|   if ((!pStream) || (!pStream->state) || (!pStream->zalloc) ||
 | |
|       (!pStream->zfree))
 | |
|     return MZ_STREAM_ERROR;
 | |
|   pStream->total_in = pStream->total_out = 0;
 | |
|   tdefl_init((tdefl_compressor *)pStream->state, NULL, NULL,
 | |
|              ((tdefl_compressor *)pStream->state)->m_flags);
 | |
|   return MZ_OK;
 | |
| }
 | |
| 
 | |
| int mz_deflate(mz_streamp pStream, int flush) {
 | |
|   size_t in_bytes, out_bytes;
 | |
|   mz_ulong orig_total_in, orig_total_out;
 | |
|   int mz_status = MZ_OK;
 | |
| 
 | |
|   if ((!pStream) || (!pStream->state) || (flush < 0) || (flush > MZ_FINISH) ||
 | |
|       (!pStream->next_out))
 | |
|     return MZ_STREAM_ERROR;
 | |
|   if (!pStream->avail_out) return MZ_BUF_ERROR;
 | |
| 
 | |
|   if (flush == MZ_PARTIAL_FLUSH) flush = MZ_SYNC_FLUSH;
 | |
| 
 | |
|   if (((tdefl_compressor *)pStream->state)->m_prev_return_status ==
 | |
|       TDEFL_STATUS_DONE)
 | |
|     return (flush == MZ_FINISH) ? MZ_STREAM_END : MZ_BUF_ERROR;
 | |
| 
 | |
|   orig_total_in = pStream->total_in;
 | |
|   orig_total_out = pStream->total_out;
 | |
|   for (;;) {
 | |
|     tdefl_status defl_status;
 | |
|     in_bytes = pStream->avail_in;
 | |
|     out_bytes = pStream->avail_out;
 | |
| 
 | |
|     defl_status = tdefl_compress((tdefl_compressor *)pStream->state,
 | |
|                                  pStream->next_in, &in_bytes, pStream->next_out,
 | |
|                                  &out_bytes, (tdefl_flush)flush);
 | |
|     pStream->next_in += (mz_uint)in_bytes;
 | |
|     pStream->avail_in -= (mz_uint)in_bytes;
 | |
|     pStream->total_in += (mz_uint)in_bytes;
 | |
|     pStream->adler = tdefl_get_adler32((tdefl_compressor *)pStream->state);
 | |
| 
 | |
|     pStream->next_out += (mz_uint)out_bytes;
 | |
|     pStream->avail_out -= (mz_uint)out_bytes;
 | |
|     pStream->total_out += (mz_uint)out_bytes;
 | |
| 
 | |
|     if (defl_status < 0) {
 | |
|       mz_status = MZ_STREAM_ERROR;
 | |
|       break;
 | |
|     } else if (defl_status == TDEFL_STATUS_DONE) {
 | |
|       mz_status = MZ_STREAM_END;
 | |
|       break;
 | |
|     } else if (!pStream->avail_out)
 | |
|       break;
 | |
|     else if ((!pStream->avail_in) && (flush != MZ_FINISH)) {
 | |
|       if ((flush) || (pStream->total_in != orig_total_in) ||
 | |
|           (pStream->total_out != orig_total_out))
 | |
|         break;
 | |
|       return MZ_BUF_ERROR;  // Can't make forward progress without some input.
 | |
|     }
 | |
|   }
 | |
|   return mz_status;
 | |
| }
 | |
| 
 | |
| int mz_deflateEnd(mz_streamp pStream) {
 | |
|   if (!pStream) return MZ_STREAM_ERROR;
 | |
|   if (pStream->state) {
 | |
|     pStream->zfree(pStream->opaque, pStream->state);
 | |
|     pStream->state = NULL;
 | |
|   }
 | |
|   return MZ_OK;
 | |
| }
 | |
| 
 | |
| mz_ulong mz_deflateBound(mz_streamp pStream, mz_ulong source_len) {
 | |
|   (void)pStream;
 | |
|   // This is really over conservative. (And lame, but it's actually pretty
 | |
|   // tricky to compute a true upper bound given the way tdefl's blocking works.)
 | |
|   return MZ_MAX(128 + (source_len * 110) / 100,
 | |
|                 128 + source_len + ((source_len / (31 * 1024)) + 1) * 5);
 | |
| }
 | |
| 
 | |
| int mz_compress2(unsigned char *pDest, mz_ulong *pDest_len,
 | |
|                  const unsigned char *pSource, mz_ulong source_len, int level) {
 | |
|   int status;
 | |
|   mz_stream stream;
 | |
|   memset(&stream, 0, sizeof(stream));
 | |
| 
 | |
|   // In case mz_ulong is 64-bits (argh I hate longs).
 | |
|   if ((source_len | *pDest_len) > 0xFFFFFFFFU) return MZ_PARAM_ERROR;
 | |
| 
 | |
|   stream.next_in = pSource;
 | |
|   stream.avail_in = (mz_uint32)source_len;
 | |
|   stream.next_out = pDest;
 | |
|   stream.avail_out = (mz_uint32)*pDest_len;
 | |
| 
 | |
|   status = mz_deflateInit(&stream, level);
 | |
|   if (status != MZ_OK) return status;
 | |
| 
 | |
|   status = mz_deflate(&stream, MZ_FINISH);
 | |
|   if (status != MZ_STREAM_END) {
 | |
|     mz_deflateEnd(&stream);
 | |
|     return (status == MZ_OK) ? MZ_BUF_ERROR : status;
 | |
|   }
 | |
| 
 | |
|   *pDest_len = stream.total_out;
 | |
|   return mz_deflateEnd(&stream);
 | |
| }
 | |
| 
 | |
| int mz_compress(unsigned char *pDest, mz_ulong *pDest_len,
 | |
|                 const unsigned char *pSource, mz_ulong source_len) {
 | |
|   return mz_compress2(pDest, pDest_len, pSource, source_len,
 | |
|                       MZ_DEFAULT_COMPRESSION);
 | |
| }
 | |
| 
 | |
| mz_ulong mz_compressBound(mz_ulong source_len) {
 | |
|   return mz_deflateBound(NULL, source_len);
 | |
| }
 | |
| 
 | |
| typedef struct {
 | |
|   tinfl_decompressor m_decomp;
 | |
|   mz_uint m_dict_ofs, m_dict_avail, m_first_call, m_has_flushed;
 | |
|   int m_window_bits;
 | |
|   mz_uint8 m_dict[TINFL_LZ_DICT_SIZE];
 | |
|   tinfl_status m_last_status;
 | |
| } inflate_state;
 | |
| 
 | |
| int mz_inflateInit2(mz_streamp pStream, int window_bits) {
 | |
|   inflate_state *pDecomp;
 | |
|   if (!pStream) return MZ_STREAM_ERROR;
 | |
|   if ((window_bits != MZ_DEFAULT_WINDOW_BITS) &&
 | |
|       (-window_bits != MZ_DEFAULT_WINDOW_BITS))
 | |
|     return MZ_PARAM_ERROR;
 | |
| 
 | |
|   pStream->data_type = 0;
 | |
|   pStream->adler = 0;
 | |
|   pStream->msg = NULL;
 | |
|   pStream->total_in = 0;
 | |
|   pStream->total_out = 0;
 | |
|   pStream->reserved = 0;
 | |
|   if (!pStream->zalloc) pStream->zalloc = def_alloc_func;
 | |
|   if (!pStream->zfree) pStream->zfree = def_free_func;
 | |
| 
 | |
|   pDecomp = (inflate_state *)pStream->zalloc(pStream->opaque, 1,
 | |
|                                              sizeof(inflate_state));
 | |
|   if (!pDecomp) return MZ_MEM_ERROR;
 | |
| 
 | |
|   pStream->state = (struct mz_internal_state *)pDecomp;
 | |
| 
 | |
|   tinfl_init(&pDecomp->m_decomp);
 | |
|   pDecomp->m_dict_ofs = 0;
 | |
|   pDecomp->m_dict_avail = 0;
 | |
|   pDecomp->m_last_status = TINFL_STATUS_NEEDS_MORE_INPUT;
 | |
|   pDecomp->m_first_call = 1;
 | |
|   pDecomp->m_has_flushed = 0;
 | |
|   pDecomp->m_window_bits = window_bits;
 | |
| 
 | |
|   return MZ_OK;
 | |
| }
 | |
| 
 | |
| int mz_inflateInit(mz_streamp pStream) {
 | |
|   return mz_inflateInit2(pStream, MZ_DEFAULT_WINDOW_BITS);
 | |
| }
 | |
| 
 | |
| int mz_inflate(mz_streamp pStream, int flush) {
 | |
|   inflate_state *pState;
 | |
|   mz_uint n, first_call, decomp_flags = TINFL_FLAG_COMPUTE_ADLER32;
 | |
|   size_t in_bytes, out_bytes, orig_avail_in;
 | |
|   tinfl_status status;
 | |
| 
 | |
|   if ((!pStream) || (!pStream->state)) return MZ_STREAM_ERROR;
 | |
|   if (flush == MZ_PARTIAL_FLUSH) flush = MZ_SYNC_FLUSH;
 | |
|   if ((flush) && (flush != MZ_SYNC_FLUSH) && (flush != MZ_FINISH))
 | |
|     return MZ_STREAM_ERROR;
 | |
| 
 | |
|   pState = (inflate_state *)pStream->state;
 | |
|   if (pState->m_window_bits > 0) decomp_flags |= TINFL_FLAG_PARSE_ZLIB_HEADER;
 | |
|   orig_avail_in = pStream->avail_in;
 | |
| 
 | |
|   first_call = pState->m_first_call;
 | |
|   pState->m_first_call = 0;
 | |
|   if (pState->m_last_status < 0) return MZ_DATA_ERROR;
 | |
| 
 | |
|   if (pState->m_has_flushed && (flush != MZ_FINISH)) return MZ_STREAM_ERROR;
 | |
|   pState->m_has_flushed |= (flush == MZ_FINISH);
 | |
| 
 | |
|   if ((flush == MZ_FINISH) && (first_call)) {
 | |
|     // MZ_FINISH on the first call implies that the input and output buffers are
 | |
|     // large enough to hold the entire compressed/decompressed file.
 | |
|     decomp_flags |= TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF;
 | |
|     in_bytes = pStream->avail_in;
 | |
|     out_bytes = pStream->avail_out;
 | |
|     status = tinfl_decompress(&pState->m_decomp, pStream->next_in, &in_bytes,
 | |
|                               pStream->next_out, pStream->next_out, &out_bytes,
 | |
|                               decomp_flags);
 | |
|     pState->m_last_status = status;
 | |
|     pStream->next_in += (mz_uint)in_bytes;
 | |
|     pStream->avail_in -= (mz_uint)in_bytes;
 | |
|     pStream->total_in += (mz_uint)in_bytes;
 | |
|     pStream->adler = tinfl_get_adler32(&pState->m_decomp);
 | |
|     pStream->next_out += (mz_uint)out_bytes;
 | |
|     pStream->avail_out -= (mz_uint)out_bytes;
 | |
|     pStream->total_out += (mz_uint)out_bytes;
 | |
| 
 | |
|     if (status < 0)
 | |
|       return MZ_DATA_ERROR;
 | |
|     else if (status != TINFL_STATUS_DONE) {
 | |
|       pState->m_last_status = TINFL_STATUS_FAILED;
 | |
|       return MZ_BUF_ERROR;
 | |
|     }
 | |
|     return MZ_STREAM_END;
 | |
|   }
 | |
|   // flush != MZ_FINISH then we must assume there's more input.
 | |
|   if (flush != MZ_FINISH) decomp_flags |= TINFL_FLAG_HAS_MORE_INPUT;
 | |
| 
 | |
|   if (pState->m_dict_avail) {
 | |
|     n = MZ_MIN(pState->m_dict_avail, pStream->avail_out);
 | |
|     memcpy(pStream->next_out, pState->m_dict + pState->m_dict_ofs, n);
 | |
|     pStream->next_out += n;
 | |
|     pStream->avail_out -= n;
 | |
|     pStream->total_out += n;
 | |
|     pState->m_dict_avail -= n;
 | |
|     pState->m_dict_ofs = (pState->m_dict_ofs + n) & (TINFL_LZ_DICT_SIZE - 1);
 | |
|     return ((pState->m_last_status == TINFL_STATUS_DONE) &&
 | |
|             (!pState->m_dict_avail))
 | |
|                ? MZ_STREAM_END
 | |
|                : MZ_OK;
 | |
|   }
 | |
| 
 | |
|   for (;;) {
 | |
|     in_bytes = pStream->avail_in;
 | |
|     out_bytes = TINFL_LZ_DICT_SIZE - pState->m_dict_ofs;
 | |
| 
 | |
|     status = tinfl_decompress(
 | |
|         &pState->m_decomp, pStream->next_in, &in_bytes, pState->m_dict,
 | |
|         pState->m_dict + pState->m_dict_ofs, &out_bytes, decomp_flags);
 | |
|     pState->m_last_status = status;
 | |
| 
 | |
|     pStream->next_in += (mz_uint)in_bytes;
 | |
|     pStream->avail_in -= (mz_uint)in_bytes;
 | |
|     pStream->total_in += (mz_uint)in_bytes;
 | |
|     pStream->adler = tinfl_get_adler32(&pState->m_decomp);
 | |
| 
 | |
|     pState->m_dict_avail = (mz_uint)out_bytes;
 | |
| 
 | |
|     n = MZ_MIN(pState->m_dict_avail, pStream->avail_out);
 | |
|     memcpy(pStream->next_out, pState->m_dict + pState->m_dict_ofs, n);
 | |
|     pStream->next_out += n;
 | |
|     pStream->avail_out -= n;
 | |
|     pStream->total_out += n;
 | |
|     pState->m_dict_avail -= n;
 | |
|     pState->m_dict_ofs = (pState->m_dict_ofs + n) & (TINFL_LZ_DICT_SIZE - 1);
 | |
| 
 | |
|     if (status < 0)
 | |
|       return MZ_DATA_ERROR;  // Stream is corrupted (there could be some
 | |
|     // uncompressed data left in the output dictionary -
 | |
|     // oh well).
 | |
|     else if ((status == TINFL_STATUS_NEEDS_MORE_INPUT) && (!orig_avail_in))
 | |
|       return MZ_BUF_ERROR;  // Signal caller that we can't make forward progress
 | |
|                             // without supplying more input or by setting flush
 | |
|                             // to MZ_FINISH.
 | |
|     else if (flush == MZ_FINISH) {
 | |
|       // The output buffer MUST be large to hold the remaining uncompressed data
 | |
|       // when flush==MZ_FINISH.
 | |
|       if (status == TINFL_STATUS_DONE)
 | |
|         return pState->m_dict_avail ? MZ_BUF_ERROR : MZ_STREAM_END;
 | |
|       // status here must be TINFL_STATUS_HAS_MORE_OUTPUT, which means there's
 | |
|       // at least 1 more byte on the way. If there's no more room left in the
 | |
|       // output buffer then something is wrong.
 | |
|       else if (!pStream->avail_out)
 | |
|         return MZ_BUF_ERROR;
 | |
|     } else if ((status == TINFL_STATUS_DONE) || (!pStream->avail_in) ||
 | |
|                (!pStream->avail_out) || (pState->m_dict_avail))
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   return ((status == TINFL_STATUS_DONE) && (!pState->m_dict_avail))
 | |
|              ? MZ_STREAM_END
 | |
|              : MZ_OK;
 | |
| }
 | |
| 
 | |
| int mz_inflateEnd(mz_streamp pStream) {
 | |
|   if (!pStream) return MZ_STREAM_ERROR;
 | |
|   if (pStream->state) {
 | |
|     pStream->zfree(pStream->opaque, pStream->state);
 | |
|     pStream->state = NULL;
 | |
|   }
 | |
|   return MZ_OK;
 | |
| }
 | |
| 
 | |
| int mz_uncompress(unsigned char *pDest, mz_ulong *pDest_len,
 | |
|                   const unsigned char *pSource, mz_ulong source_len) {
 | |
|   mz_stream stream;
 | |
|   int status;
 | |
|   memset(&stream, 0, sizeof(stream));
 | |
| 
 | |
|   // In case mz_ulong is 64-bits (argh I hate longs).
 | |
|   if ((source_len | *pDest_len) > 0xFFFFFFFFU) return MZ_PARAM_ERROR;
 | |
| 
 | |
|   stream.next_in = pSource;
 | |
|   stream.avail_in = (mz_uint32)source_len;
 | |
|   stream.next_out = pDest;
 | |
|   stream.avail_out = (mz_uint32)*pDest_len;
 | |
| 
 | |
|   status = mz_inflateInit(&stream);
 | |
|   if (status != MZ_OK) return status;
 | |
| 
 | |
|   status = mz_inflate(&stream, MZ_FINISH);
 | |
|   if (status != MZ_STREAM_END) {
 | |
|     mz_inflateEnd(&stream);
 | |
|     return ((status == MZ_BUF_ERROR) && (!stream.avail_in)) ? MZ_DATA_ERROR
 | |
|                                                             : status;
 | |
|   }
 | |
|   *pDest_len = stream.total_out;
 | |
| 
 | |
|   return mz_inflateEnd(&stream);
 | |
| }
 | |
| 
 | |
| const char *mz_error(int err) {
 | |
|   static struct {
 | |
|     int m_err;
 | |
|     const char *m_pDesc;
 | |
|   } s_error_descs[] = {{MZ_OK, ""},
 | |
|                        {MZ_STREAM_END, "stream end"},
 | |
|                        {MZ_NEED_DICT, "need dictionary"},
 | |
|                        {MZ_ERRNO, "file error"},
 | |
|                        {MZ_STREAM_ERROR, "stream error"},
 | |
|                        {MZ_DATA_ERROR, "data error"},
 | |
|                        {MZ_MEM_ERROR, "out of memory"},
 | |
|                        {MZ_BUF_ERROR, "buf error"},
 | |
|                        {MZ_VERSION_ERROR, "version error"},
 | |
|                        {MZ_PARAM_ERROR, "parameter error"}};
 | |
|   mz_uint i;
 | |
|   for (i = 0; i < sizeof(s_error_descs) / sizeof(s_error_descs[0]); ++i)
 | |
|     if (s_error_descs[i].m_err == err) return s_error_descs[i].m_pDesc;
 | |
|   return NULL;
 | |
| }
 | |
| 
 | |
| #endif  // MINIZ_NO_ZLIB_APIS
 | |
| 
 | |
| // ------------------- Low-level Decompression (completely independent from all
 | |
| // compression API's)
 | |
| 
 | |
| #define TINFL_MEMCPY(d, s, l) memcpy(d, s, l)
 | |
| #define TINFL_MEMSET(p, c, l) memset(p, c, l)
 | |
| 
 | |
| #define TINFL_CR_BEGIN  \
 | |
|   switch (r->m_state) { \
 | |
|     case 0:
 | |
| #define TINFL_CR_RETURN(state_index, result) \
 | |
|   do {                                       \
 | |
|     status = result;                         \
 | |
|     r->m_state = state_index;                \
 | |
|     goto common_exit;                        \
 | |
|     case state_index:;                       \
 | |
|   }                                          \
 | |
|   MZ_MACRO_END
 | |
| #define TINFL_CR_RETURN_FOREVER(state_index, result) \
 | |
|   do {                                               \
 | |
|     for (;;) {                                       \
 | |
|       TINFL_CR_RETURN(state_index, result);          \
 | |
|     }                                                \
 | |
|   }                                                  \
 | |
|   MZ_MACRO_END
 | |
| #define TINFL_CR_FINISH }
 | |
| 
 | |
| // TODO: If the caller has indicated that there's no more input, and we attempt
 | |
| // to read beyond the input buf, then something is wrong with the input because
 | |
| // the inflator never
 | |
| // reads ahead more than it needs to. Currently TINFL_GET_BYTE() pads the end of
 | |
| // the stream with 0's in this scenario.
 | |
| #define TINFL_GET_BYTE(state_index, c)                                 \
 | |
|   do {                                                                 \
 | |
|     if (pIn_buf_cur >= pIn_buf_end) {                                  \
 | |
|       for (;;) {                                                       \
 | |
|         if (decomp_flags & TINFL_FLAG_HAS_MORE_INPUT) {                \
 | |
|           TINFL_CR_RETURN(state_index, TINFL_STATUS_NEEDS_MORE_INPUT); \
 | |
|           if (pIn_buf_cur < pIn_buf_end) {                             \
 | |
|             c = *pIn_buf_cur++;                                        \
 | |
|             break;                                                     \
 | |
|           }                                                            \
 | |
|         } else {                                                       \
 | |
|           c = 0;                                                       \
 | |
|           break;                                                       \
 | |
|         }                                                              \
 | |
|       }                                                                \
 | |
|     } else                                                             \
 | |
|       c = *pIn_buf_cur++;                                              \
 | |
|   }                                                                    \
 | |
|   MZ_MACRO_END
 | |
| 
 | |
| #define TINFL_NEED_BITS(state_index, n)            \
 | |
|   do {                                             \
 | |
|     mz_uint c;                                     \
 | |
|     TINFL_GET_BYTE(state_index, c);                \
 | |
|     bit_buf |= (((tinfl_bit_buf_t)c) << num_bits); \
 | |
|     num_bits += 8;                                 \
 | |
|   } while (num_bits < (mz_uint)(n))
 | |
| #define TINFL_SKIP_BITS(state_index, n) \
 | |
|   do {                                  \
 | |
|     if (num_bits < (mz_uint)(n)) {      \
 | |
|       TINFL_NEED_BITS(state_index, n);  \
 | |
|     }                                   \
 | |
|     bit_buf >>= (n);                    \
 | |
|     num_bits -= (n);                    \
 | |
|   }                                     \
 | |
|   MZ_MACRO_END
 | |
| #define TINFL_GET_BITS(state_index, b, n) \
 | |
|   do {                                    \
 | |
|     if (num_bits < (mz_uint)(n)) {        \
 | |
|       TINFL_NEED_BITS(state_index, n);    \
 | |
|     }                                     \
 | |
|     b = bit_buf & ((1 << (n)) - 1);       \
 | |
|     bit_buf >>= (n);                      \
 | |
|     num_bits -= (n);                      \
 | |
|   }                                       \
 | |
|   MZ_MACRO_END
 | |
| 
 | |
| // TINFL_HUFF_BITBUF_FILL() is only used rarely, when the number of bytes
 | |
| // remaining in the input buffer falls below 2.
 | |
| // It reads just enough bytes from the input stream that are needed to decode
 | |
| // the next Huffman code (and absolutely no more). It works by trying to fully
 | |
| // decode a
 | |
| // Huffman code by using whatever bits are currently present in the bit buffer.
 | |
| // If this fails, it reads another byte, and tries again until it succeeds or
 | |
| // until the
 | |
| // bit buffer contains >=15 bits (deflate's max. Huffman code size).
 | |
| #define TINFL_HUFF_BITBUF_FILL(state_index, pHuff)                     \
 | |
|   do {                                                                 \
 | |
|     temp = (pHuff)->m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]; \
 | |
|     if (temp >= 0) {                                                   \
 | |
|       code_len = temp >> 9;                                            \
 | |
|       if ((code_len) && (num_bits >= code_len)) break;                 \
 | |
|     } else if (num_bits > TINFL_FAST_LOOKUP_BITS) {                    \
 | |
|       code_len = TINFL_FAST_LOOKUP_BITS;                               \
 | |
|       do {                                                             \
 | |
|         temp = (pHuff)->m_tree[~temp + ((bit_buf >> code_len++) & 1)]; \
 | |
|       } while ((temp < 0) && (num_bits >= (code_len + 1)));            \
 | |
|       if (temp >= 0) break;                                            \
 | |
|     }                                                                  \
 | |
|     TINFL_GET_BYTE(state_index, c);                                    \
 | |
|     bit_buf |= (((tinfl_bit_buf_t)c) << num_bits);                     \
 | |
|     num_bits += 8;                                                     \
 | |
|   } while (num_bits < 15);
 | |
| 
 | |
| // TINFL_HUFF_DECODE() decodes the next Huffman coded symbol. It's more complex
 | |
| // than you would initially expect because the zlib API expects the decompressor
 | |
| // to never read
 | |
| // beyond the final byte of the deflate stream. (In other words, when this macro
 | |
| // wants to read another byte from the input, it REALLY needs another byte in
 | |
| // order to fully
 | |
| // decode the next Huffman code.) Handling this properly is particularly
 | |
| // important on raw deflate (non-zlib) streams, which aren't followed by a byte
 | |
| // aligned adler-32.
 | |
| // The slow path is only executed at the very end of the input buffer.
 | |
| #define TINFL_HUFF_DECODE(state_index, sym, pHuff)                             \
 | |
|   do {                                                                         \
 | |
|     int temp;                                                                  \
 | |
|     mz_uint code_len, c;                                                       \
 | |
|     if (num_bits < 15) {                                                       \
 | |
|       if ((pIn_buf_end - pIn_buf_cur) < 2) {                                   \
 | |
|         TINFL_HUFF_BITBUF_FILL(state_index, pHuff);                            \
 | |
|       } else {                                                                 \
 | |
|         bit_buf |= (((tinfl_bit_buf_t)pIn_buf_cur[0]) << num_bits) |           \
 | |
|                    (((tinfl_bit_buf_t)pIn_buf_cur[1]) << (num_bits + 8));      \
 | |
|         pIn_buf_cur += 2;                                                      \
 | |
|         num_bits += 16;                                                        \
 | |
|       }                                                                        \
 | |
|     }                                                                          \
 | |
|     if ((temp = (pHuff)->m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]) >= \
 | |
|         0)                                                                     \
 | |
|       code_len = temp >> 9, temp &= 511;                                       \
 | |
|     else {                                                                     \
 | |
|       code_len = TINFL_FAST_LOOKUP_BITS;                                       \
 | |
|       do {                                                                     \
 | |
|         temp = (pHuff)->m_tree[~temp + ((bit_buf >> code_len++) & 1)];         \
 | |
|       } while (temp < 0);                                                      \
 | |
|     }                                                                          \
 | |
|     sym = temp;                                                                \
 | |
|     bit_buf >>= code_len;                                                      \
 | |
|     num_bits -= code_len;                                                      \
 | |
|   }                                                                            \
 | |
|   MZ_MACRO_END
 | |
| 
 | |
| tinfl_status tinfl_decompress(tinfl_decompressor *r,
 | |
|                               const mz_uint8 *pIn_buf_next,
 | |
|                               size_t *pIn_buf_size, mz_uint8 *pOut_buf_start,
 | |
|                               mz_uint8 *pOut_buf_next, size_t *pOut_buf_size,
 | |
|                               const mz_uint32 decomp_flags) {
 | |
|   static const int s_length_base[31] = {
 | |
|       3,  4,  5,  6,  7,  8,  9,  10,  11,  13,  15,  17,  19,  23, 27, 31,
 | |
|       35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0,  0};
 | |
|   static const int s_length_extra[31] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,
 | |
|                                          1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4,
 | |
|                                          4, 4, 5, 5, 5, 5, 0, 0, 0};
 | |
|   static const int s_dist_base[32] = {
 | |
|       1,    2,    3,    4,    5,    7,     9,     13,    17,  25,   33,
 | |
|       49,   65,   97,   129,  193,  257,   385,   513,   769, 1025, 1537,
 | |
|       2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577, 0,   0};
 | |
|   static const int s_dist_extra[32] = {0, 0, 0,  0,  1,  1,  2,  2,  3,  3,
 | |
|                                        4, 4, 5,  5,  6,  6,  7,  7,  8,  8,
 | |
|                                        9, 9, 10, 10, 11, 11, 12, 12, 13, 13};
 | |
|   static const mz_uint8 s_length_dezigzag[19] = {
 | |
|       16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
 | |
|   static const int s_min_table_sizes[3] = {257, 1, 4};
 | |
| 
 | |
|   tinfl_status status = TINFL_STATUS_FAILED;
 | |
|   mz_uint32 num_bits, dist, counter, num_extra;
 | |
|   tinfl_bit_buf_t bit_buf;
 | |
|   const mz_uint8 *pIn_buf_cur = pIn_buf_next, *const pIn_buf_end =
 | |
|                                                   pIn_buf_next + *pIn_buf_size;
 | |
|   mz_uint8 *pOut_buf_cur = pOut_buf_next, *const pOut_buf_end =
 | |
|                                               pOut_buf_next + *pOut_buf_size;
 | |
|   size_t out_buf_size_mask =
 | |
|              (decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF)
 | |
|                  ? (size_t)-1
 | |
|                  : ((pOut_buf_next - pOut_buf_start) + *pOut_buf_size) - 1,
 | |
|          dist_from_out_buf_start;
 | |
| 
 | |
|   // Ensure the output buffer's size is a power of 2, unless the output buffer
 | |
|   // is large enough to hold the entire output file (in which case it doesn't
 | |
|   // matter).
 | |
|   if (((out_buf_size_mask + 1) & out_buf_size_mask) ||
 | |
|       (pOut_buf_next < pOut_buf_start)) {
 | |
|     *pIn_buf_size = *pOut_buf_size = 0;
 | |
|     return TINFL_STATUS_BAD_PARAM;
 | |
|   }
 | |
| 
 | |
|   num_bits = r->m_num_bits;
 | |
|   bit_buf = r->m_bit_buf;
 | |
|   dist = r->m_dist;
 | |
|   counter = r->m_counter;
 | |
|   num_extra = r->m_num_extra;
 | |
|   dist_from_out_buf_start = r->m_dist_from_out_buf_start;
 | |
|   TINFL_CR_BEGIN
 | |
| 
 | |
|   bit_buf = num_bits = dist = counter = num_extra = r->m_zhdr0 = r->m_zhdr1 = 0;
 | |
|   r->m_z_adler32 = r->m_check_adler32 = 1;
 | |
|   if (decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER) {
 | |
|     TINFL_GET_BYTE(1, r->m_zhdr0);
 | |
|     TINFL_GET_BYTE(2, r->m_zhdr1);
 | |
|     counter = (((r->m_zhdr0 * 256 + r->m_zhdr1) % 31 != 0) ||
 | |
|                (r->m_zhdr1 & 32) || ((r->m_zhdr0 & 15) != 8));
 | |
|     if (!(decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF))
 | |
|       counter |= (((1U << (8U + (r->m_zhdr0 >> 4))) > 32768U) ||
 | |
|                   ((out_buf_size_mask + 1) <
 | |
|                    (size_t)(1ULL << (8U + (r->m_zhdr0 >> 4)))));
 | |
|     if (counter) {
 | |
|       TINFL_CR_RETURN_FOREVER(36, TINFL_STATUS_FAILED);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   do {
 | |
|     TINFL_GET_BITS(3, r->m_final, 3);
 | |
|     r->m_type = r->m_final >> 1;
 | |
|     if (r->m_type == 0) {
 | |
|       TINFL_SKIP_BITS(5, num_bits & 7);
 | |
|       for (counter = 0; counter < 4; ++counter) {
 | |
|         if (num_bits)
 | |
|           TINFL_GET_BITS(6, r->m_raw_header[counter], 8);
 | |
|         else
 | |
|           TINFL_GET_BYTE(7, r->m_raw_header[counter]);
 | |
|       }
 | |
|       if ((counter = (r->m_raw_header[0] | (r->m_raw_header[1] << 8))) !=
 | |
|           (mz_uint)(0xFFFF ^
 | |
|                     (r->m_raw_header[2] | (r->m_raw_header[3] << 8)))) {
 | |
|         TINFL_CR_RETURN_FOREVER(39, TINFL_STATUS_FAILED);
 | |
|       }
 | |
|       while ((counter) && (num_bits)) {
 | |
|         TINFL_GET_BITS(51, dist, 8);
 | |
|         while (pOut_buf_cur >= pOut_buf_end) {
 | |
|           TINFL_CR_RETURN(52, TINFL_STATUS_HAS_MORE_OUTPUT);
 | |
|         }
 | |
|         *pOut_buf_cur++ = (mz_uint8)dist;
 | |
|         counter--;
 | |
|       }
 | |
|       while (counter) {
 | |
|         size_t n;
 | |
|         while (pOut_buf_cur >= pOut_buf_end) {
 | |
|           TINFL_CR_RETURN(9, TINFL_STATUS_HAS_MORE_OUTPUT);
 | |
|         }
 | |
|         while (pIn_buf_cur >= pIn_buf_end) {
 | |
|           if (decomp_flags & TINFL_FLAG_HAS_MORE_INPUT) {
 | |
|             TINFL_CR_RETURN(38, TINFL_STATUS_NEEDS_MORE_INPUT);
 | |
|           } else {
 | |
|             TINFL_CR_RETURN_FOREVER(40, TINFL_STATUS_FAILED);
 | |
|           }
 | |
|         }
 | |
|         n = MZ_MIN(MZ_MIN((size_t)(pOut_buf_end - pOut_buf_cur),
 | |
|                           (size_t)(pIn_buf_end - pIn_buf_cur)),
 | |
|                    counter);
 | |
|         TINFL_MEMCPY(pOut_buf_cur, pIn_buf_cur, n);
 | |
|         pIn_buf_cur += n;
 | |
|         pOut_buf_cur += n;
 | |
|         counter -= (mz_uint)n;
 | |
|       }
 | |
|     } else if (r->m_type == 3) {
 | |
|       TINFL_CR_RETURN_FOREVER(10, TINFL_STATUS_FAILED);
 | |
|     } else {
 | |
|       if (r->m_type == 1) {
 | |
|         mz_uint8 *p = r->m_tables[0].m_code_size;
 | |
|         mz_uint i;
 | |
|         r->m_table_sizes[0] = 288;
 | |
|         r->m_table_sizes[1] = 32;
 | |
|         TINFL_MEMSET(r->m_tables[1].m_code_size, 5, 32);
 | |
|         for (i = 0; i <= 143; ++i) *p++ = 8;
 | |
|         for (; i <= 255; ++i) *p++ = 9;
 | |
|         for (; i <= 279; ++i) *p++ = 7;
 | |
|         for (; i <= 287; ++i) *p++ = 8;
 | |
|       } else {
 | |
|         for (counter = 0; counter < 3; counter++) {
 | |
|           TINFL_GET_BITS(11, r->m_table_sizes[counter], "\05\05\04"[counter]);
 | |
|           r->m_table_sizes[counter] += s_min_table_sizes[counter];
 | |
|         }
 | |
|         MZ_CLEAR_OBJ(r->m_tables[2].m_code_size);
 | |
|         for (counter = 0; counter < r->m_table_sizes[2]; counter++) {
 | |
|           mz_uint s;
 | |
|           TINFL_GET_BITS(14, s, 3);
 | |
|           r->m_tables[2].m_code_size[s_length_dezigzag[counter]] = (mz_uint8)s;
 | |
|         }
 | |
|         r->m_table_sizes[2] = 19;
 | |
|       }
 | |
|       for (; (int)r->m_type >= 0; r->m_type--) {
 | |
|         int tree_next, tree_cur;
 | |
|         tinfl_huff_table *pTable;
 | |
|         mz_uint i, j, used_syms, total, sym_index, next_code[17],
 | |
|             total_syms[16];
 | |
|         pTable = &r->m_tables[r->m_type];
 | |
|         MZ_CLEAR_OBJ(total_syms);
 | |
|         MZ_CLEAR_OBJ(pTable->m_look_up);
 | |
|         MZ_CLEAR_OBJ(pTable->m_tree);
 | |
|         for (i = 0; i < r->m_table_sizes[r->m_type]; ++i)
 | |
|           total_syms[pTable->m_code_size[i]]++;
 | |
|         used_syms = 0, total = 0;
 | |
|         next_code[0] = next_code[1] = 0;
 | |
|         for (i = 1; i <= 15; ++i) {
 | |
|           used_syms += total_syms[i];
 | |
|           next_code[i + 1] = (total = ((total + total_syms[i]) << 1));
 | |
|         }
 | |
|         if ((65536 != total) && (used_syms > 1)) {
 | |
|           TINFL_CR_RETURN_FOREVER(35, TINFL_STATUS_FAILED);
 | |
|         }
 | |
|         for (tree_next = -1, sym_index = 0;
 | |
|              sym_index < r->m_table_sizes[r->m_type]; ++sym_index) {
 | |
|           mz_uint rev_code = 0, l, cur_code,
 | |
|                   code_size = pTable->m_code_size[sym_index];
 | |
|           if (!code_size) continue;
 | |
|           cur_code = next_code[code_size]++;
 | |
|           for (l = code_size; l > 0; l--, cur_code >>= 1)
 | |
|             rev_code = (rev_code << 1) | (cur_code & 1);
 | |
|           if (code_size <= TINFL_FAST_LOOKUP_BITS) {
 | |
|             mz_int16 k = (mz_int16)((code_size << 9) | sym_index);
 | |
|             while (rev_code < TINFL_FAST_LOOKUP_SIZE) {
 | |
|               pTable->m_look_up[rev_code] = k;
 | |
|               rev_code += (1 << code_size);
 | |
|             }
 | |
|             continue;
 | |
|           }
 | |
|           if (0 ==
 | |
|               (tree_cur = pTable->m_look_up[rev_code &
 | |
|                                             (TINFL_FAST_LOOKUP_SIZE - 1)])) {
 | |
|             pTable->m_look_up[rev_code & (TINFL_FAST_LOOKUP_SIZE - 1)] =
 | |
|                 (mz_int16)tree_next;
 | |
|             tree_cur = tree_next;
 | |
|             tree_next -= 2;
 | |
|           }
 | |
|           rev_code >>= (TINFL_FAST_LOOKUP_BITS - 1);
 | |
|           for (j = code_size; j > (TINFL_FAST_LOOKUP_BITS + 1); j--) {
 | |
|             tree_cur -= ((rev_code >>= 1) & 1);
 | |
|             if (!pTable->m_tree[-tree_cur - 1]) {
 | |
|               pTable->m_tree[-tree_cur - 1] = (mz_int16)tree_next;
 | |
|               tree_cur = tree_next;
 | |
|               tree_next -= 2;
 | |
|             } else
 | |
|               tree_cur = pTable->m_tree[-tree_cur - 1];
 | |
|           }
 | |
|           tree_cur -= ((rev_code >>= 1) & 1);
 | |
|           pTable->m_tree[-tree_cur - 1] = (mz_int16)sym_index;
 | |
|         }
 | |
|         if (r->m_type == 2) {
 | |
|           for (counter = 0;
 | |
|                counter < (r->m_table_sizes[0] + r->m_table_sizes[1]);) {
 | |
|             mz_uint s;
 | |
|             TINFL_HUFF_DECODE(16, dist, &r->m_tables[2]);
 | |
|             if (dist < 16) {
 | |
|               r->m_len_codes[counter++] = (mz_uint8)dist;
 | |
|               continue;
 | |
|             }
 | |
|             if ((dist == 16) && (!counter)) {
 | |
|               TINFL_CR_RETURN_FOREVER(17, TINFL_STATUS_FAILED);
 | |
|             }
 | |
|             num_extra = "\02\03\07"[dist - 16];
 | |
|             TINFL_GET_BITS(18, s, num_extra);
 | |
|             s += "\03\03\013"[dist - 16];
 | |
|             TINFL_MEMSET(r->m_len_codes + counter,
 | |
|                          (dist == 16) ? r->m_len_codes[counter - 1] : 0, s);
 | |
|             counter += s;
 | |
|           }
 | |
|           if ((r->m_table_sizes[0] + r->m_table_sizes[1]) != counter) {
 | |
|             TINFL_CR_RETURN_FOREVER(21, TINFL_STATUS_FAILED);
 | |
|           }
 | |
|           TINFL_MEMCPY(r->m_tables[0].m_code_size, r->m_len_codes,
 | |
|                        r->m_table_sizes[0]);
 | |
|           TINFL_MEMCPY(r->m_tables[1].m_code_size,
 | |
|                        r->m_len_codes + r->m_table_sizes[0],
 | |
|                        r->m_table_sizes[1]);
 | |
|         }
 | |
|       }
 | |
|       for (;;) {
 | |
|         mz_uint8 *pSrc;
 | |
|         for (;;) {
 | |
|           if (((pIn_buf_end - pIn_buf_cur) < 4) ||
 | |
|               ((pOut_buf_end - pOut_buf_cur) < 2)) {
 | |
|             TINFL_HUFF_DECODE(23, counter, &r->m_tables[0]);
 | |
|             if (counter >= 256) break;
 | |
|             while (pOut_buf_cur >= pOut_buf_end) {
 | |
|               TINFL_CR_RETURN(24, TINFL_STATUS_HAS_MORE_OUTPUT);
 | |
|             }
 | |
|             *pOut_buf_cur++ = (mz_uint8)counter;
 | |
|           } else {
 | |
|             int sym2;
 | |
|             mz_uint code_len;
 | |
| #if TINFL_USE_64BIT_BITBUF
 | |
|             if (num_bits < 30) {
 | |
|               bit_buf |=
 | |
|                   (((tinfl_bit_buf_t)MZ_READ_LE32(pIn_buf_cur)) << num_bits);
 | |
|               pIn_buf_cur += 4;
 | |
|               num_bits += 32;
 | |
|             }
 | |
| #else
 | |
|             if (num_bits < 15) {
 | |
|               bit_buf |=
 | |
|                   (((tinfl_bit_buf_t)MZ_READ_LE16(pIn_buf_cur)) << num_bits);
 | |
|               pIn_buf_cur += 2;
 | |
|               num_bits += 16;
 | |
|             }
 | |
| #endif
 | |
|             if ((sym2 =
 | |
|                      r->m_tables[0]
 | |
|                          .m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]) >=
 | |
|                 0)
 | |
|               code_len = sym2 >> 9;
 | |
|             else {
 | |
|               code_len = TINFL_FAST_LOOKUP_BITS;
 | |
|               do {
 | |
|                 sym2 = r->m_tables[0]
 | |
|                            .m_tree[~sym2 + ((bit_buf >> code_len++) & 1)];
 | |
|               } while (sym2 < 0);
 | |
|             }
 | |
|             counter = sym2;
 | |
|             bit_buf >>= code_len;
 | |
|             num_bits -= code_len;
 | |
|             if (counter & 256) break;
 | |
| 
 | |
| #if !TINFL_USE_64BIT_BITBUF
 | |
|             if (num_bits < 15) {
 | |
|               bit_buf |=
 | |
|                   (((tinfl_bit_buf_t)MZ_READ_LE16(pIn_buf_cur)) << num_bits);
 | |
|               pIn_buf_cur += 2;
 | |
|               num_bits += 16;
 | |
|             }
 | |
| #endif
 | |
|             if ((sym2 =
 | |
|                      r->m_tables[0]
 | |
|                          .m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]) >=
 | |
|                 0)
 | |
|               code_len = sym2 >> 9;
 | |
|             else {
 | |
|               code_len = TINFL_FAST_LOOKUP_BITS;
 | |
|               do {
 | |
|                 sym2 = r->m_tables[0]
 | |
|                            .m_tree[~sym2 + ((bit_buf >> code_len++) & 1)];
 | |
|               } while (sym2 < 0);
 | |
|             }
 | |
|             bit_buf >>= code_len;
 | |
|             num_bits -= code_len;
 | |
| 
 | |
|             pOut_buf_cur[0] = (mz_uint8)counter;
 | |
|             if (sym2 & 256) {
 | |
|               pOut_buf_cur++;
 | |
|               counter = sym2;
 | |
|               break;
 | |
|             }
 | |
|             pOut_buf_cur[1] = (mz_uint8)sym2;
 | |
|             pOut_buf_cur += 2;
 | |
|           }
 | |
|         }
 | |
|         if ((counter &= 511) == 256) break;
 | |
| 
 | |
|         num_extra = s_length_extra[counter - 257];
 | |
|         counter = s_length_base[counter - 257];
 | |
|         if (num_extra) {
 | |
|           mz_uint extra_bits;
 | |
|           TINFL_GET_BITS(25, extra_bits, num_extra);
 | |
|           counter += extra_bits;
 | |
|         }
 | |
| 
 | |
|         TINFL_HUFF_DECODE(26, dist, &r->m_tables[1]);
 | |
|         num_extra = s_dist_extra[dist];
 | |
|         dist = s_dist_base[dist];
 | |
|         if (num_extra) {
 | |
|           mz_uint extra_bits;
 | |
|           TINFL_GET_BITS(27, extra_bits, num_extra);
 | |
|           dist += extra_bits;
 | |
|         }
 | |
| 
 | |
|         dist_from_out_buf_start = pOut_buf_cur - pOut_buf_start;
 | |
|         if ((dist > dist_from_out_buf_start) &&
 | |
|             (decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF)) {
 | |
|           TINFL_CR_RETURN_FOREVER(37, TINFL_STATUS_FAILED);
 | |
|         }
 | |
| 
 | |
|         pSrc = pOut_buf_start +
 | |
|                ((dist_from_out_buf_start - dist) & out_buf_size_mask);
 | |
| 
 | |
|         if ((MZ_MAX(pOut_buf_cur, pSrc) + counter) > pOut_buf_end) {
 | |
|           while (counter--) {
 | |
|             while (pOut_buf_cur >= pOut_buf_end) {
 | |
|               TINFL_CR_RETURN(53, TINFL_STATUS_HAS_MORE_OUTPUT);
 | |
|             }
 | |
|             *pOut_buf_cur++ =
 | |
|                 pOut_buf_start[(dist_from_out_buf_start++ - dist) &
 | |
|                                out_buf_size_mask];
 | |
|           }
 | |
|           continue;
 | |
|         }
 | |
| #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES
 | |
|         else if ((counter >= 9) && (counter <= dist)) {
 | |
|           const mz_uint8 *pSrc_end = pSrc + (counter & ~7);
 | |
|           do {
 | |
|             ((mz_uint32 *)pOut_buf_cur)[0] = ((const mz_uint32 *)pSrc)[0];
 | |
|             ((mz_uint32 *)pOut_buf_cur)[1] = ((const mz_uint32 *)pSrc)[1];
 | |
|             pOut_buf_cur += 8;
 | |
|           } while ((pSrc += 8) < pSrc_end);
 | |
|           if ((counter &= 7) < 3) {
 | |
|             if (counter) {
 | |
|               pOut_buf_cur[0] = pSrc[0];
 | |
|               if (counter > 1) pOut_buf_cur[1] = pSrc[1];
 | |
|               pOut_buf_cur += counter;
 | |
|             }
 | |
|             continue;
 | |
|           }
 | |
|         }
 | |
| #endif
 | |
|         do {
 | |
|           pOut_buf_cur[0] = pSrc[0];
 | |
|           pOut_buf_cur[1] = pSrc[1];
 | |
|           pOut_buf_cur[2] = pSrc[2];
 | |
|           pOut_buf_cur += 3;
 | |
|           pSrc += 3;
 | |
|         } while ((int)(counter -= 3) > 2);
 | |
|         if ((int)counter > 0) {
 | |
|           pOut_buf_cur[0] = pSrc[0];
 | |
|           if ((int)counter > 1) pOut_buf_cur[1] = pSrc[1];
 | |
|           pOut_buf_cur += counter;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   } while (!(r->m_final & 1));
 | |
|   if (decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER) {
 | |
|     TINFL_SKIP_BITS(32, num_bits & 7);
 | |
|     for (counter = 0; counter < 4; ++counter) {
 | |
|       mz_uint s;
 | |
|       if (num_bits)
 | |
|         TINFL_GET_BITS(41, s, 8);
 | |
|       else
 | |
|         TINFL_GET_BYTE(42, s);
 | |
|       r->m_z_adler32 = (r->m_z_adler32 << 8) | s;
 | |
|     }
 | |
|   }
 | |
|   TINFL_CR_RETURN_FOREVER(34, TINFL_STATUS_DONE);
 | |
|   TINFL_CR_FINISH
 | |
| 
 | |
| common_exit:
 | |
|   r->m_num_bits = num_bits;
 | |
|   r->m_bit_buf = bit_buf;
 | |
|   r->m_dist = dist;
 | |
|   r->m_counter = counter;
 | |
|   r->m_num_extra = num_extra;
 | |
|   r->m_dist_from_out_buf_start = dist_from_out_buf_start;
 | |
|   *pIn_buf_size = pIn_buf_cur - pIn_buf_next;
 | |
|   *pOut_buf_size = pOut_buf_cur - pOut_buf_next;
 | |
|   if ((decomp_flags &
 | |
|        (TINFL_FLAG_PARSE_ZLIB_HEADER | TINFL_FLAG_COMPUTE_ADLER32)) &&
 | |
|       (status >= 0)) {
 | |
|     const mz_uint8 *ptr = pOut_buf_next;
 | |
|     size_t buf_len = *pOut_buf_size;
 | |
|     mz_uint32 i, s1 = r->m_check_adler32 & 0xffff,
 | |
|                  s2 = r->m_check_adler32 >> 16;
 | |
|     size_t block_len = buf_len % 5552;
 | |
|     while (buf_len) {
 | |
|       for (i = 0; i + 7 < block_len; i += 8, ptr += 8) {
 | |
|         s1 += ptr[0], s2 += s1;
 | |
|         s1 += ptr[1], s2 += s1;
 | |
|         s1 += ptr[2], s2 += s1;
 | |
|         s1 += ptr[3], s2 += s1;
 | |
|         s1 += ptr[4], s2 += s1;
 | |
|         s1 += ptr[5], s2 += s1;
 | |
|         s1 += ptr[6], s2 += s1;
 | |
|         s1 += ptr[7], s2 += s1;
 | |
|       }
 | |
|       for (; i < block_len; ++i) s1 += *ptr++, s2 += s1;
 | |
|       s1 %= 65521U, s2 %= 65521U;
 | |
|       buf_len -= block_len;
 | |
|       block_len = 5552;
 | |
|     }
 | |
|     r->m_check_adler32 = (s2 << 16) + s1;
 | |
|     if ((status == TINFL_STATUS_DONE) &&
 | |
|         (decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER) &&
 | |
|         (r->m_check_adler32 != r->m_z_adler32))
 | |
|       status = TINFL_STATUS_ADLER32_MISMATCH;
 | |
|   }
 | |
|   return status;
 | |
| }
 | |
| 
 | |
| // Higher level helper functions.
 | |
| void *tinfl_decompress_mem_to_heap(const void *pSrc_buf, size_t src_buf_len,
 | |
|                                    size_t *pOut_len, int flags) {
 | |
|   tinfl_decompressor decomp;
 | |
|   void *pBuf = NULL, *pNew_buf;
 | |
|   size_t src_buf_ofs = 0, out_buf_capacity = 0;
 | |
|   *pOut_len = 0;
 | |
|   tinfl_init(&decomp);
 | |
|   for (;;) {
 | |
|     size_t src_buf_size = src_buf_len - src_buf_ofs,
 | |
|            dst_buf_size = out_buf_capacity - *pOut_len, new_out_buf_capacity;
 | |
|     tinfl_status status = tinfl_decompress(
 | |
|         &decomp, (const mz_uint8 *)pSrc_buf + src_buf_ofs, &src_buf_size,
 | |
|         (mz_uint8 *)pBuf, pBuf ? (mz_uint8 *)pBuf + *pOut_len : NULL,
 | |
|         &dst_buf_size,
 | |
|         (flags & ~TINFL_FLAG_HAS_MORE_INPUT) |
 | |
|             TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF);
 | |
|     if ((status < 0) || (status == TINFL_STATUS_NEEDS_MORE_INPUT)) {
 | |
|       MZ_FREE(pBuf);
 | |
|       *pOut_len = 0;
 | |
|       return NULL;
 | |
|     }
 | |
|     src_buf_ofs += src_buf_size;
 | |
|     *pOut_len += dst_buf_size;
 | |
|     if (status == TINFL_STATUS_DONE) break;
 | |
|     new_out_buf_capacity = out_buf_capacity * 2;
 | |
|     if (new_out_buf_capacity < 128) new_out_buf_capacity = 128;
 | |
|     pNew_buf = MZ_REALLOC(pBuf, new_out_buf_capacity);
 | |
|     if (!pNew_buf) {
 | |
|       MZ_FREE(pBuf);
 | |
|       *pOut_len = 0;
 | |
|       return NULL;
 | |
|     }
 | |
|     pBuf = pNew_buf;
 | |
|     out_buf_capacity = new_out_buf_capacity;
 | |
|   }
 | |
|   return pBuf;
 | |
| }
 | |
| 
 | |
| size_t tinfl_decompress_mem_to_mem(void *pOut_buf, size_t out_buf_len,
 | |
|                                    const void *pSrc_buf, size_t src_buf_len,
 | |
|                                    int flags) {
 | |
|   tinfl_decompressor decomp;
 | |
|   tinfl_status status;
 | |
|   tinfl_init(&decomp);
 | |
|   status =
 | |
|       tinfl_decompress(&decomp, (const mz_uint8 *)pSrc_buf, &src_buf_len,
 | |
|                        (mz_uint8 *)pOut_buf, (mz_uint8 *)pOut_buf, &out_buf_len,
 | |
|                        (flags & ~TINFL_FLAG_HAS_MORE_INPUT) |
 | |
|                            TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF);
 | |
|   return (status != TINFL_STATUS_DONE) ? TINFL_DECOMPRESS_MEM_TO_MEM_FAILED
 | |
|                                        : out_buf_len;
 | |
| }
 | |
| 
 | |
| int tinfl_decompress_mem_to_callback(const void *pIn_buf, size_t *pIn_buf_size,
 | |
|                                      tinfl_put_buf_func_ptr pPut_buf_func,
 | |
|                                      void *pPut_buf_user, int flags) {
 | |
|   int result = 0;
 | |
|   tinfl_decompressor decomp;
 | |
|   mz_uint8 *pDict = (mz_uint8 *)MZ_MALLOC(TINFL_LZ_DICT_SIZE);
 | |
|   size_t in_buf_ofs = 0, dict_ofs = 0;
 | |
|   if (!pDict) return TINFL_STATUS_FAILED;
 | |
|   tinfl_init(&decomp);
 | |
|   for (;;) {
 | |
|     size_t in_buf_size = *pIn_buf_size - in_buf_ofs,
 | |
|            dst_buf_size = TINFL_LZ_DICT_SIZE - dict_ofs;
 | |
|     tinfl_status status =
 | |
|         tinfl_decompress(&decomp, (const mz_uint8 *)pIn_buf + in_buf_ofs,
 | |
|                          &in_buf_size, pDict, pDict + dict_ofs, &dst_buf_size,
 | |
|                          (flags & ~(TINFL_FLAG_HAS_MORE_INPUT |
 | |
|                                     TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF)));
 | |
|     in_buf_ofs += in_buf_size;
 | |
|     if ((dst_buf_size) &&
 | |
|         (!(*pPut_buf_func)(pDict + dict_ofs, (int)dst_buf_size, pPut_buf_user)))
 | |
|       break;
 | |
|     if (status != TINFL_STATUS_HAS_MORE_OUTPUT) {
 | |
|       result = (status == TINFL_STATUS_DONE);
 | |
|       break;
 | |
|     }
 | |
|     dict_ofs = (dict_ofs + dst_buf_size) & (TINFL_LZ_DICT_SIZE - 1);
 | |
|   }
 | |
|   MZ_FREE(pDict);
 | |
|   *pIn_buf_size = in_buf_ofs;
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| // ------------------- Low-level Compression (independent from all decompression
 | |
| // API's)
 | |
| 
 | |
| // Purposely making these tables static for faster init and thread safety.
 | |
| static const mz_uint16 s_tdefl_len_sym[256] = {
 | |
|     257, 258, 259, 260, 261, 262, 263, 264, 265, 265, 266, 266, 267, 267, 268,
 | |
|     268, 269, 269, 269, 269, 270, 270, 270, 270, 271, 271, 271, 271, 272, 272,
 | |
|     272, 272, 273, 273, 273, 273, 273, 273, 273, 273, 274, 274, 274, 274, 274,
 | |
|     274, 274, 274, 275, 275, 275, 275, 275, 275, 275, 275, 276, 276, 276, 276,
 | |
|     276, 276, 276, 276, 277, 277, 277, 277, 277, 277, 277, 277, 277, 277, 277,
 | |
|     277, 277, 277, 277, 277, 278, 278, 278, 278, 278, 278, 278, 278, 278, 278,
 | |
|     278, 278, 278, 278, 278, 278, 279, 279, 279, 279, 279, 279, 279, 279, 279,
 | |
|     279, 279, 279, 279, 279, 279, 279, 280, 280, 280, 280, 280, 280, 280, 280,
 | |
|     280, 280, 280, 280, 280, 280, 280, 280, 281, 281, 281, 281, 281, 281, 281,
 | |
|     281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281,
 | |
|     281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 282, 282, 282, 282, 282,
 | |
|     282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282,
 | |
|     282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 283, 283, 283,
 | |
|     283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283,
 | |
|     283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 284,
 | |
|     284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284,
 | |
|     284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284,
 | |
|     285};
 | |
| 
 | |
| static const mz_uint8 s_tdefl_len_extra[256] = {
 | |
|     0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2,
 | |
|     2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
 | |
|     3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
 | |
|     4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
 | |
|     4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
 | |
|     4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
 | |
|     5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
 | |
|     5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
 | |
|     5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
 | |
|     5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
 | |
|     5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 0};
 | |
| 
 | |
| static const mz_uint8 s_tdefl_small_dist_sym[512] = {
 | |
|     0,  1,  2,  3,  4,  4,  5,  5,  6,  6,  6,  6,  7,  7,  7,  7,  8,  8,  8,
 | |
|     8,  8,  8,  8,  8,  9,  9,  9,  9,  9,  9,  9,  9,  10, 10, 10, 10, 10, 10,
 | |
|     10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11,
 | |
|     11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
 | |
|     12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
 | |
|     12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
 | |
|     13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14,
 | |
|     14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
 | |
|     14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
 | |
|     14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
 | |
|     14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
 | |
|     15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
 | |
|     15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
 | |
|     15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
 | |
|     16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
 | |
|     16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
 | |
|     16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
 | |
|     16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
 | |
|     16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
 | |
|     16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
 | |
|     16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
 | |
|     17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
 | |
|     17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
 | |
|     17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
 | |
|     17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
 | |
|     17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
 | |
|     17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17};
 | |
| 
 | |
| static const mz_uint8 s_tdefl_small_dist_extra[512] = {
 | |
|     0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3,
 | |
|     3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
 | |
|     4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
 | |
|     5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
 | |
|     5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
 | |
|     5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
 | |
|     6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
 | |
|     6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
 | |
|     6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
 | |
|     6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
 | |
|     6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
 | |
|     7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
 | |
|     7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
 | |
|     7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
 | |
|     7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
 | |
|     7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
 | |
|     7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
 | |
|     7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
 | |
|     7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
 | |
|     7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
 | |
|     7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7};
 | |
| 
 | |
| static const mz_uint8 s_tdefl_large_dist_sym[128] = {
 | |
|     0,  0,  18, 19, 20, 20, 21, 21, 22, 22, 22, 22, 23, 23, 23, 23, 24, 24, 24,
 | |
|     24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26,
 | |
|     26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27,
 | |
|     27, 27, 27, 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
 | |
|     28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
 | |
|     28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
 | |
|     29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29};
 | |
| 
 | |
| static const mz_uint8 s_tdefl_large_dist_extra[128] = {
 | |
|     0,  0,  8,  8,  9,  9,  9,  9,  10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11,
 | |
|     11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12,
 | |
|     12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
 | |
|     12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
 | |
|     13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
 | |
|     13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
 | |
|     13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13};
 | |
| 
 | |
| // Radix sorts tdefl_sym_freq[] array by 16-bit key m_key. Returns ptr to sorted
 | |
| // values.
 | |
| typedef struct {
 | |
|   mz_uint16 m_key, m_sym_index;
 | |
| } tdefl_sym_freq;
 | |
| static tdefl_sym_freq *tdefl_radix_sort_syms(mz_uint num_syms,
 | |
|                                              tdefl_sym_freq *pSyms0,
 | |
|                                              tdefl_sym_freq *pSyms1) {
 | |
|   mz_uint32 total_passes = 2, pass_shift, pass, i, hist[256 * 2];
 | |
|   tdefl_sym_freq *pCur_syms = pSyms0, *pNew_syms = pSyms1;
 | |
|   MZ_CLEAR_OBJ(hist);
 | |
|   for (i = 0; i < num_syms; i++) {
 | |
|     mz_uint freq = pSyms0[i].m_key;
 | |
|     hist[freq & 0xFF]++;
 | |
|     hist[256 + ((freq >> 8) & 0xFF)]++;
 | |
|   }
 | |
|   while ((total_passes > 1) && (num_syms == hist[(total_passes - 1) * 256]))
 | |
|     total_passes--;
 | |
|   for (pass_shift = 0, pass = 0; pass < total_passes; pass++, pass_shift += 8) {
 | |
|     const mz_uint32 *pHist = &hist[pass << 8];
 | |
|     mz_uint offsets[256], cur_ofs = 0;
 | |
|     for (i = 0; i < 256; i++) {
 | |
|       offsets[i] = cur_ofs;
 | |
|       cur_ofs += pHist[i];
 | |
|     }
 | |
|     for (i = 0; i < num_syms; i++)
 | |
|       pNew_syms[offsets[(pCur_syms[i].m_key >> pass_shift) & 0xFF]++] =
 | |
|           pCur_syms[i];
 | |
|     {
 | |
|       tdefl_sym_freq *t = pCur_syms;
 | |
|       pCur_syms = pNew_syms;
 | |
|       pNew_syms = t;
 | |
|     }
 | |
|   }
 | |
|   return pCur_syms;
 | |
| }
 | |
| 
 | |
| // tdefl_calculate_minimum_redundancy() originally written by: Alistair Moffat,
 | |
| // alistair@cs.mu.oz.au, Jyrki Katajainen, jyrki@diku.dk, November 1996.
 | |
| static void tdefl_calculate_minimum_redundancy(tdefl_sym_freq *A, int n) {
 | |
|   int root, leaf, next, avbl, used, dpth;
 | |
|   if (n == 0)
 | |
|     return;
 | |
|   else if (n == 1) {
 | |
|     A[0].m_key = 1;
 | |
|     return;
 | |
|   }
 | |
|   A[0].m_key += A[1].m_key;
 | |
|   root = 0;
 | |
|   leaf = 2;
 | |
|   for (next = 1; next < n - 1; next++) {
 | |
|     if (leaf >= n || A[root].m_key < A[leaf].m_key) {
 | |
|       A[next].m_key = A[root].m_key;
 | |
|       A[root++].m_key = (mz_uint16)next;
 | |
|     } else
 | |
|       A[next].m_key = A[leaf++].m_key;
 | |
|     if (leaf >= n || (root < next && A[root].m_key < A[leaf].m_key)) {
 | |
|       A[next].m_key = (mz_uint16)(A[next].m_key + A[root].m_key);
 | |
|       A[root++].m_key = (mz_uint16)next;
 | |
|     } else
 | |
|       A[next].m_key = (mz_uint16)(A[next].m_key + A[leaf++].m_key);
 | |
|   }
 | |
|   A[n - 2].m_key = 0;
 | |
|   for (next = n - 3; next >= 0; next--)
 | |
|     A[next].m_key = A[A[next].m_key].m_key + 1;
 | |
|   avbl = 1;
 | |
|   used = dpth = 0;
 | |
|   root = n - 2;
 | |
|   next = n - 1;
 | |
|   while (avbl > 0) {
 | |
|     while (root >= 0 && (int)A[root].m_key == dpth) {
 | |
|       used++;
 | |
|       root--;
 | |
|     }
 | |
|     while (avbl > used) {
 | |
|       A[next--].m_key = (mz_uint16)(dpth);
 | |
|       avbl--;
 | |
|     }
 | |
|     avbl = 2 * used;
 | |
|     dpth++;
 | |
|     used = 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Limits canonical Huffman code table's max code size.
 | |
| enum { TDEFL_MAX_SUPPORTED_HUFF_CODESIZE = 32 };
 | |
| static void tdefl_huffman_enforce_max_code_size(int *pNum_codes,
 | |
|                                                 int code_list_len,
 | |
|                                                 int max_code_size) {
 | |
|   int i;
 | |
|   mz_uint32 total = 0;
 | |
|   if (code_list_len <= 1) return;
 | |
|   for (i = max_code_size + 1; i <= TDEFL_MAX_SUPPORTED_HUFF_CODESIZE; i++)
 | |
|     pNum_codes[max_code_size] += pNum_codes[i];
 | |
|   for (i = max_code_size; i > 0; i--)
 | |
|     total += (((mz_uint32)pNum_codes[i]) << (max_code_size - i));
 | |
|   while (total != (1UL << max_code_size)) {
 | |
|     pNum_codes[max_code_size]--;
 | |
|     for (i = max_code_size - 1; i > 0; i--)
 | |
|       if (pNum_codes[i]) {
 | |
|         pNum_codes[i]--;
 | |
|         pNum_codes[i + 1] += 2;
 | |
|         break;
 | |
|       }
 | |
|     total--;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void tdefl_optimize_huffman_table(tdefl_compressor *d, int table_num,
 | |
|                                          int table_len, int code_size_limit,
 | |
|                                          int static_table) {
 | |
|   int i, j, l, num_codes[1 + TDEFL_MAX_SUPPORTED_HUFF_CODESIZE];
 | |
|   mz_uint next_code[TDEFL_MAX_SUPPORTED_HUFF_CODESIZE + 1];
 | |
|   MZ_CLEAR_OBJ(num_codes);
 | |
|   if (static_table) {
 | |
|     for (i = 0; i < table_len; i++)
 | |
|       num_codes[d->m_huff_code_sizes[table_num][i]]++;
 | |
|   } else {
 | |
|     tdefl_sym_freq syms0[TDEFL_MAX_HUFF_SYMBOLS], syms1[TDEFL_MAX_HUFF_SYMBOLS],
 | |
|         *pSyms;
 | |
|     int num_used_syms = 0;
 | |
|     const mz_uint16 *pSym_count = &d->m_huff_count[table_num][0];
 | |
|     for (i = 0; i < table_len; i++)
 | |
|       if (pSym_count[i]) {
 | |
|         syms0[num_used_syms].m_key = (mz_uint16)pSym_count[i];
 | |
|         syms0[num_used_syms++].m_sym_index = (mz_uint16)i;
 | |
|       }
 | |
| 
 | |
|     pSyms = tdefl_radix_sort_syms(num_used_syms, syms0, syms1);
 | |
|     tdefl_calculate_minimum_redundancy(pSyms, num_used_syms);
 | |
| 
 | |
|     for (i = 0; i < num_used_syms; i++) num_codes[pSyms[i].m_key]++;
 | |
| 
 | |
|     tdefl_huffman_enforce_max_code_size(num_codes, num_used_syms,
 | |
|                                         code_size_limit);
 | |
| 
 | |
|     MZ_CLEAR_OBJ(d->m_huff_code_sizes[table_num]);
 | |
|     MZ_CLEAR_OBJ(d->m_huff_codes[table_num]);
 | |
|     for (i = 1, j = num_used_syms; i <= code_size_limit; i++)
 | |
|       for (l = num_codes[i]; l > 0; l--)
 | |
|         d->m_huff_code_sizes[table_num][pSyms[--j].m_sym_index] = (mz_uint8)(i);
 | |
|   }
 | |
| 
 | |
|   next_code[1] = 0;
 | |
|   for (j = 0, i = 2; i <= code_size_limit; i++)
 | |
|     next_code[i] = j = ((j + num_codes[i - 1]) << 1);
 | |
| 
 | |
|   for (i = 0; i < table_len; i++) {
 | |
|     mz_uint rev_code = 0, code, code_size;
 | |
|     if ((code_size = d->m_huff_code_sizes[table_num][i]) == 0) continue;
 | |
|     code = next_code[code_size]++;
 | |
|     for (l = code_size; l > 0; l--, code >>= 1)
 | |
|       rev_code = (rev_code << 1) | (code & 1);
 | |
|     d->m_huff_codes[table_num][i] = (mz_uint16)rev_code;
 | |
|   }
 | |
| }
 | |
| 
 | |
| #define TDEFL_PUT_BITS(b, l)                               \
 | |
|   do {                                                     \
 | |
|     mz_uint bits = b;                                      \
 | |
|     mz_uint len = l;                                       \
 | |
|     MZ_ASSERT(bits <= ((1U << len) - 1U));                 \
 | |
|     d->m_bit_buffer |= (bits << d->m_bits_in);             \
 | |
|     d->m_bits_in += len;                                   \
 | |
|     while (d->m_bits_in >= 8) {                            \
 | |
|       if (d->m_pOutput_buf < d->m_pOutput_buf_end)         \
 | |
|         *d->m_pOutput_buf++ = (mz_uint8)(d->m_bit_buffer); \
 | |
|       d->m_bit_buffer >>= 8;                               \
 | |
|       d->m_bits_in -= 8;                                   \
 | |
|     }                                                      \
 | |
|   }                                                        \
 | |
|   MZ_MACRO_END
 | |
| 
 | |
| #define TDEFL_RLE_PREV_CODE_SIZE()                                        \
 | |
|   {                                                                       \
 | |
|     if (rle_repeat_count) {                                               \
 | |
|       if (rle_repeat_count < 3) {                                         \
 | |
|         d->m_huff_count[2][prev_code_size] = (mz_uint16)(                 \
 | |
|             d->m_huff_count[2][prev_code_size] + rle_repeat_count);       \
 | |
|         while (rle_repeat_count--)                                        \
 | |
|           packed_code_sizes[num_packed_code_sizes++] = prev_code_size;    \
 | |
|       } else {                                                            \
 | |
|         d->m_huff_count[2][16] = (mz_uint16)(d->m_huff_count[2][16] + 1); \
 | |
|         packed_code_sizes[num_packed_code_sizes++] = 16;                  \
 | |
|         packed_code_sizes[num_packed_code_sizes++] =                      \
 | |
|             (mz_uint8)(rle_repeat_count - 3);                             \
 | |
|       }                                                                   \
 | |
|       rle_repeat_count = 0;                                               \
 | |
|     }                                                                     \
 | |
|   }
 | |
| 
 | |
| #define TDEFL_RLE_ZERO_CODE_SIZE()                                            \
 | |
|   {                                                                           \
 | |
|     if (rle_z_count) {                                                        \
 | |
|       if (rle_z_count < 3) {                                                  \
 | |
|         d->m_huff_count[2][0] =                                               \
 | |
|             (mz_uint16)(d->m_huff_count[2][0] + rle_z_count);                 \
 | |
|         while (rle_z_count--) packed_code_sizes[num_packed_code_sizes++] = 0; \
 | |
|       } else if (rle_z_count <= 10) {                                         \
 | |
|         d->m_huff_count[2][17] = (mz_uint16)(d->m_huff_count[2][17] + 1);     \
 | |
|         packed_code_sizes[num_packed_code_sizes++] = 17;                      \
 | |
|         packed_code_sizes[num_packed_code_sizes++] =                          \
 | |
|             (mz_uint8)(rle_z_count - 3);                                      \
 | |
|       } else {                                                                \
 | |
|         d->m_huff_count[2][18] = (mz_uint16)(d->m_huff_count[2][18] + 1);     \
 | |
|         packed_code_sizes[num_packed_code_sizes++] = 18;                      \
 | |
|         packed_code_sizes[num_packed_code_sizes++] =                          \
 | |
|             (mz_uint8)(rle_z_count - 11);                                     \
 | |
|       }                                                                       \
 | |
|       rle_z_count = 0;                                                        \
 | |
|     }                                                                         \
 | |
|   }
 | |
| 
 | |
| static mz_uint8 s_tdefl_packed_code_size_syms_swizzle[] = {
 | |
|     16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
 | |
| 
 | |
| static void tdefl_start_dynamic_block(tdefl_compressor *d) {
 | |
|   int num_lit_codes, num_dist_codes, num_bit_lengths;
 | |
|   mz_uint i, total_code_sizes_to_pack, num_packed_code_sizes, rle_z_count,
 | |
|       rle_repeat_count, packed_code_sizes_index;
 | |
|   mz_uint8
 | |
|       code_sizes_to_pack[TDEFL_MAX_HUFF_SYMBOLS_0 + TDEFL_MAX_HUFF_SYMBOLS_1],
 | |
|       packed_code_sizes[TDEFL_MAX_HUFF_SYMBOLS_0 + TDEFL_MAX_HUFF_SYMBOLS_1],
 | |
|       prev_code_size = 0xFF;
 | |
| 
 | |
|   d->m_huff_count[0][256] = 1;
 | |
| 
 | |
|   tdefl_optimize_huffman_table(d, 0, TDEFL_MAX_HUFF_SYMBOLS_0, 15, MZ_FALSE);
 | |
|   tdefl_optimize_huffman_table(d, 1, TDEFL_MAX_HUFF_SYMBOLS_1, 15, MZ_FALSE);
 | |
| 
 | |
|   for (num_lit_codes = 286; num_lit_codes > 257; num_lit_codes--)
 | |
|     if (d->m_huff_code_sizes[0][num_lit_codes - 1]) break;
 | |
|   for (num_dist_codes = 30; num_dist_codes > 1; num_dist_codes--)
 | |
|     if (d->m_huff_code_sizes[1][num_dist_codes - 1]) break;
 | |
| 
 | |
|   memcpy(code_sizes_to_pack, &d->m_huff_code_sizes[0][0], num_lit_codes);
 | |
|   memcpy(code_sizes_to_pack + num_lit_codes, &d->m_huff_code_sizes[1][0],
 | |
|          num_dist_codes);
 | |
|   total_code_sizes_to_pack = num_lit_codes + num_dist_codes;
 | |
|   num_packed_code_sizes = 0;
 | |
|   rle_z_count = 0;
 | |
|   rle_repeat_count = 0;
 | |
| 
 | |
|   memset(&d->m_huff_count[2][0], 0,
 | |
|          sizeof(d->m_huff_count[2][0]) * TDEFL_MAX_HUFF_SYMBOLS_2);
 | |
|   for (i = 0; i < total_code_sizes_to_pack; i++) {
 | |
|     mz_uint8 code_size = code_sizes_to_pack[i];
 | |
|     if (!code_size) {
 | |
|       TDEFL_RLE_PREV_CODE_SIZE();
 | |
|       if (++rle_z_count == 138) {
 | |
|         TDEFL_RLE_ZERO_CODE_SIZE();
 | |
|       }
 | |
|     } else {
 | |
|       TDEFL_RLE_ZERO_CODE_SIZE();
 | |
|       if (code_size != prev_code_size) {
 | |
|         TDEFL_RLE_PREV_CODE_SIZE();
 | |
|         d->m_huff_count[2][code_size] =
 | |
|             (mz_uint16)(d->m_huff_count[2][code_size] + 1);
 | |
|         packed_code_sizes[num_packed_code_sizes++] = code_size;
 | |
|       } else if (++rle_repeat_count == 6) {
 | |
|         TDEFL_RLE_PREV_CODE_SIZE();
 | |
|       }
 | |
|     }
 | |
|     prev_code_size = code_size;
 | |
|   }
 | |
|   if (rle_repeat_count) {
 | |
|     TDEFL_RLE_PREV_CODE_SIZE();
 | |
|   } else {
 | |
|     TDEFL_RLE_ZERO_CODE_SIZE();
 | |
|   }
 | |
| 
 | |
|   tdefl_optimize_huffman_table(d, 2, TDEFL_MAX_HUFF_SYMBOLS_2, 7, MZ_FALSE);
 | |
| 
 | |
|   TDEFL_PUT_BITS(2, 2);
 | |
| 
 | |
|   TDEFL_PUT_BITS(num_lit_codes - 257, 5);
 | |
|   TDEFL_PUT_BITS(num_dist_codes - 1, 5);
 | |
| 
 | |
|   for (num_bit_lengths = 18; num_bit_lengths >= 0; num_bit_lengths--)
 | |
|     if (d->m_huff_code_sizes
 | |
|             [2][s_tdefl_packed_code_size_syms_swizzle[num_bit_lengths]])
 | |
|       break;
 | |
|   num_bit_lengths = MZ_MAX(4, (num_bit_lengths + 1));
 | |
|   TDEFL_PUT_BITS(num_bit_lengths - 4, 4);
 | |
|   for (i = 0; (int)i < num_bit_lengths; i++)
 | |
|     TDEFL_PUT_BITS(
 | |
|         d->m_huff_code_sizes[2][s_tdefl_packed_code_size_syms_swizzle[i]], 3);
 | |
| 
 | |
|   for (packed_code_sizes_index = 0;
 | |
|        packed_code_sizes_index < num_packed_code_sizes;) {
 | |
|     mz_uint code = packed_code_sizes[packed_code_sizes_index++];
 | |
|     MZ_ASSERT(code < TDEFL_MAX_HUFF_SYMBOLS_2);
 | |
|     TDEFL_PUT_BITS(d->m_huff_codes[2][code], d->m_huff_code_sizes[2][code]);
 | |
|     if (code >= 16)
 | |
|       TDEFL_PUT_BITS(packed_code_sizes[packed_code_sizes_index++],
 | |
|                      "\02\03\07"[code - 16]);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void tdefl_start_static_block(tdefl_compressor *d) {
 | |
|   mz_uint i;
 | |
|   mz_uint8 *p = &d->m_huff_code_sizes[0][0];
 | |
| 
 | |
|   for (i = 0; i <= 143; ++i) *p++ = 8;
 | |
|   for (; i <= 255; ++i) *p++ = 9;
 | |
|   for (; i <= 279; ++i) *p++ = 7;
 | |
|   for (; i <= 287; ++i) *p++ = 8;
 | |
| 
 | |
|   memset(d->m_huff_code_sizes[1], 5, 32);
 | |
| 
 | |
|   tdefl_optimize_huffman_table(d, 0, 288, 15, MZ_TRUE);
 | |
|   tdefl_optimize_huffman_table(d, 1, 32, 15, MZ_TRUE);
 | |
| 
 | |
|   TDEFL_PUT_BITS(1, 2);
 | |
| }
 | |
| 
 | |
| static const mz_uint mz_bitmasks[17] = {
 | |
|     0x0000, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF,
 | |
|     0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF};
 | |
| 
 | |
| #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN && \
 | |
|     MINIZ_HAS_64BIT_REGISTERS
 | |
| static mz_bool tdefl_compress_lz_codes(tdefl_compressor *d) {
 | |
|   mz_uint flags;
 | |
|   mz_uint8 *pLZ_codes;
 | |
|   mz_uint8 *pOutput_buf = d->m_pOutput_buf;
 | |
|   mz_uint8 *pLZ_code_buf_end = d->m_pLZ_code_buf;
 | |
|   mz_uint64 bit_buffer = d->m_bit_buffer;
 | |
|   mz_uint bits_in = d->m_bits_in;
 | |
| 
 | |
| #define TDEFL_PUT_BITS_FAST(b, l)                \
 | |
|   {                                              \
 | |
|     bit_buffer |= (((mz_uint64)(b)) << bits_in); \
 | |
|     bits_in += (l);                              \
 | |
|   }
 | |
| 
 | |
|   flags = 1;
 | |
|   for (pLZ_codes = d->m_lz_code_buf; pLZ_codes < pLZ_code_buf_end;
 | |
|        flags >>= 1) {
 | |
|     if (flags == 1) flags = *pLZ_codes++ | 0x100;
 | |
| 
 | |
|     if (flags & 1) {
 | |
|       mz_uint s0, s1, n0, n1, sym, num_extra_bits;
 | |
|       mz_uint match_len = pLZ_codes[0],
 | |
|               match_dist = *(const mz_uint16 *)(pLZ_codes + 1);
 | |
|       pLZ_codes += 3;
 | |
| 
 | |
|       MZ_ASSERT(d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]]);
 | |
|       TDEFL_PUT_BITS_FAST(d->m_huff_codes[0][s_tdefl_len_sym[match_len]],
 | |
|                           d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]]);
 | |
|       TDEFL_PUT_BITS_FAST(match_len & mz_bitmasks[s_tdefl_len_extra[match_len]],
 | |
|                           s_tdefl_len_extra[match_len]);
 | |
| 
 | |
|       // This sequence coaxes MSVC into using cmov's vs. jmp's.
 | |
|       s0 = s_tdefl_small_dist_sym[match_dist & 511];
 | |
|       n0 = s_tdefl_small_dist_extra[match_dist & 511];
 | |
|       s1 = s_tdefl_large_dist_sym[match_dist >> 8];
 | |
|       n1 = s_tdefl_large_dist_extra[match_dist >> 8];
 | |
|       sym = (match_dist < 512) ? s0 : s1;
 | |
|       num_extra_bits = (match_dist < 512) ? n0 : n1;
 | |
| 
 | |
|       MZ_ASSERT(d->m_huff_code_sizes[1][sym]);
 | |
|       TDEFL_PUT_BITS_FAST(d->m_huff_codes[1][sym],
 | |
|                           d->m_huff_code_sizes[1][sym]);
 | |
|       TDEFL_PUT_BITS_FAST(match_dist & mz_bitmasks[num_extra_bits],
 | |
|                           num_extra_bits);
 | |
|     } else {
 | |
|       mz_uint lit = *pLZ_codes++;
 | |
|       MZ_ASSERT(d->m_huff_code_sizes[0][lit]);
 | |
|       TDEFL_PUT_BITS_FAST(d->m_huff_codes[0][lit],
 | |
|                           d->m_huff_code_sizes[0][lit]);
 | |
| 
 | |
|       if (((flags & 2) == 0) && (pLZ_codes < pLZ_code_buf_end)) {
 | |
|         flags >>= 1;
 | |
|         lit = *pLZ_codes++;
 | |
|         MZ_ASSERT(d->m_huff_code_sizes[0][lit]);
 | |
|         TDEFL_PUT_BITS_FAST(d->m_huff_codes[0][lit],
 | |
|                             d->m_huff_code_sizes[0][lit]);
 | |
| 
 | |
|         if (((flags & 2) == 0) && (pLZ_codes < pLZ_code_buf_end)) {
 | |
|           flags >>= 1;
 | |
|           lit = *pLZ_codes++;
 | |
|           MZ_ASSERT(d->m_huff_code_sizes[0][lit]);
 | |
|           TDEFL_PUT_BITS_FAST(d->m_huff_codes[0][lit],
 | |
|                               d->m_huff_code_sizes[0][lit]);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (pOutput_buf >= d->m_pOutput_buf_end) return MZ_FALSE;
 | |
| 
 | |
|     *(mz_uint64 *)pOutput_buf = bit_buffer;
 | |
|     pOutput_buf += (bits_in >> 3);
 | |
|     bit_buffer >>= (bits_in & ~7);
 | |
|     bits_in &= 7;
 | |
|   }
 | |
| 
 | |
| #undef TDEFL_PUT_BITS_FAST
 | |
| 
 | |
|   d->m_pOutput_buf = pOutput_buf;
 | |
|   d->m_bits_in = 0;
 | |
|   d->m_bit_buffer = 0;
 | |
| 
 | |
|   while (bits_in) {
 | |
|     mz_uint32 n = MZ_MIN(bits_in, 16);
 | |
|     TDEFL_PUT_BITS((mz_uint)bit_buffer & mz_bitmasks[n], n);
 | |
|     bit_buffer >>= n;
 | |
|     bits_in -= n;
 | |
|   }
 | |
| 
 | |
|   TDEFL_PUT_BITS(d->m_huff_codes[0][256], d->m_huff_code_sizes[0][256]);
 | |
| 
 | |
|   return (d->m_pOutput_buf < d->m_pOutput_buf_end);
 | |
| }
 | |
| #else
 | |
| static mz_bool tdefl_compress_lz_codes(tdefl_compressor *d) {
 | |
|   mz_uint flags;
 | |
|   mz_uint8 *pLZ_codes;
 | |
| 
 | |
|   flags = 1;
 | |
|   for (pLZ_codes = d->m_lz_code_buf; pLZ_codes < d->m_pLZ_code_buf;
 | |
|        flags >>= 1) {
 | |
|     if (flags == 1) flags = *pLZ_codes++ | 0x100;
 | |
|     if (flags & 1) {
 | |
|       mz_uint sym, num_extra_bits;
 | |
|       mz_uint match_len = pLZ_codes[0],
 | |
|               match_dist = (pLZ_codes[1] | (pLZ_codes[2] << 8));
 | |
|       pLZ_codes += 3;
 | |
| 
 | |
|       MZ_ASSERT(d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]]);
 | |
|       TDEFL_PUT_BITS(d->m_huff_codes[0][s_tdefl_len_sym[match_len]],
 | |
|                      d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]]);
 | |
|       TDEFL_PUT_BITS(match_len & mz_bitmasks[s_tdefl_len_extra[match_len]],
 | |
|                      s_tdefl_len_extra[match_len]);
 | |
| 
 | |
|       if (match_dist < 512) {
 | |
|         sym = s_tdefl_small_dist_sym[match_dist];
 | |
|         num_extra_bits = s_tdefl_small_dist_extra[match_dist];
 | |
|       } else {
 | |
|         sym = s_tdefl_large_dist_sym[match_dist >> 8];
 | |
|         num_extra_bits = s_tdefl_large_dist_extra[match_dist >> 8];
 | |
|       }
 | |
|       MZ_ASSERT(d->m_huff_code_sizes[1][sym]);
 | |
|       TDEFL_PUT_BITS(d->m_huff_codes[1][sym], d->m_huff_code_sizes[1][sym]);
 | |
|       TDEFL_PUT_BITS(match_dist & mz_bitmasks[num_extra_bits], num_extra_bits);
 | |
|     } else {
 | |
|       mz_uint lit = *pLZ_codes++;
 | |
|       MZ_ASSERT(d->m_huff_code_sizes[0][lit]);
 | |
|       TDEFL_PUT_BITS(d->m_huff_codes[0][lit], d->m_huff_code_sizes[0][lit]);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   TDEFL_PUT_BITS(d->m_huff_codes[0][256], d->m_huff_code_sizes[0][256]);
 | |
| 
 | |
|   return (d->m_pOutput_buf < d->m_pOutput_buf_end);
 | |
| }
 | |
| #endif  // MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN &&
 | |
|         // MINIZ_HAS_64BIT_REGISTERS
 | |
| 
 | |
| static mz_bool tdefl_compress_block(tdefl_compressor *d, mz_bool static_block) {
 | |
|   if (static_block)
 | |
|     tdefl_start_static_block(d);
 | |
|   else
 | |
|     tdefl_start_dynamic_block(d);
 | |
|   return tdefl_compress_lz_codes(d);
 | |
| }
 | |
| 
 | |
| static int tdefl_flush_block(tdefl_compressor *d, int flush) {
 | |
|   mz_uint saved_bit_buf, saved_bits_in;
 | |
|   mz_uint8 *pSaved_output_buf;
 | |
|   mz_bool comp_block_succeeded = MZ_FALSE;
 | |
|   int n, use_raw_block =
 | |
|              ((d->m_flags & TDEFL_FORCE_ALL_RAW_BLOCKS) != 0) &&
 | |
|              (d->m_lookahead_pos - d->m_lz_code_buf_dict_pos) <= d->m_dict_size;
 | |
|   mz_uint8 *pOutput_buf_start =
 | |
|       ((d->m_pPut_buf_func == NULL) &&
 | |
|        ((*d->m_pOut_buf_size - d->m_out_buf_ofs) >= TDEFL_OUT_BUF_SIZE))
 | |
|           ? ((mz_uint8 *)d->m_pOut_buf + d->m_out_buf_ofs)
 | |
|           : d->m_output_buf;
 | |
| 
 | |
|   d->m_pOutput_buf = pOutput_buf_start;
 | |
|   d->m_pOutput_buf_end = d->m_pOutput_buf + TDEFL_OUT_BUF_SIZE - 16;
 | |
| 
 | |
|   MZ_ASSERT(!d->m_output_flush_remaining);
 | |
|   d->m_output_flush_ofs = 0;
 | |
|   d->m_output_flush_remaining = 0;
 | |
| 
 | |
|   *d->m_pLZ_flags = (mz_uint8)(*d->m_pLZ_flags >> d->m_num_flags_left);
 | |
|   d->m_pLZ_code_buf -= (d->m_num_flags_left == 8);
 | |
| 
 | |
|   if ((d->m_flags & TDEFL_WRITE_ZLIB_HEADER) && (!d->m_block_index)) {
 | |
|     TDEFL_PUT_BITS(0x78, 8);
 | |
|     TDEFL_PUT_BITS(0x01, 8);
 | |
|   }
 | |
| 
 | |
|   TDEFL_PUT_BITS(flush == TDEFL_FINISH, 1);
 | |
| 
 | |
|   pSaved_output_buf = d->m_pOutput_buf;
 | |
|   saved_bit_buf = d->m_bit_buffer;
 | |
|   saved_bits_in = d->m_bits_in;
 | |
| 
 | |
|   if (!use_raw_block)
 | |
|     comp_block_succeeded =
 | |
|         tdefl_compress_block(d, (d->m_flags & TDEFL_FORCE_ALL_STATIC_BLOCKS) ||
 | |
|                                     (d->m_total_lz_bytes < 48));
 | |
| 
 | |
|   // If the block gets expanded, forget the current contents of the output
 | |
|   // buffer and send a raw block instead.
 | |
|   if (((use_raw_block) ||
 | |
|        ((d->m_total_lz_bytes) && ((d->m_pOutput_buf - pSaved_output_buf + 1U) >=
 | |
|                                   d->m_total_lz_bytes))) &&
 | |
|       ((d->m_lookahead_pos - d->m_lz_code_buf_dict_pos) <= d->m_dict_size)) {
 | |
|     mz_uint i;
 | |
|     d->m_pOutput_buf = pSaved_output_buf;
 | |
|     d->m_bit_buffer = saved_bit_buf, d->m_bits_in = saved_bits_in;
 | |
|     TDEFL_PUT_BITS(0, 2);
 | |
|     if (d->m_bits_in) {
 | |
|       TDEFL_PUT_BITS(0, 8 - d->m_bits_in);
 | |
|     }
 | |
|     for (i = 2; i; --i, d->m_total_lz_bytes ^= 0xFFFF) {
 | |
|       TDEFL_PUT_BITS(d->m_total_lz_bytes & 0xFFFF, 16);
 | |
|     }
 | |
|     for (i = 0; i < d->m_total_lz_bytes; ++i) {
 | |
|       TDEFL_PUT_BITS(
 | |
|           d->m_dict[(d->m_lz_code_buf_dict_pos + i) & TDEFL_LZ_DICT_SIZE_MASK],
 | |
|           8);
 | |
|     }
 | |
|   }
 | |
|   // Check for the extremely unlikely (if not impossible) case of the compressed
 | |
|   // block not fitting into the output buffer when using dynamic codes.
 | |
|   else if (!comp_block_succeeded) {
 | |
|     d->m_pOutput_buf = pSaved_output_buf;
 | |
|     d->m_bit_buffer = saved_bit_buf, d->m_bits_in = saved_bits_in;
 | |
|     tdefl_compress_block(d, MZ_TRUE);
 | |
|   }
 | |
| 
 | |
|   if (flush) {
 | |
|     if (flush == TDEFL_FINISH) {
 | |
|       if (d->m_bits_in) {
 | |
|         TDEFL_PUT_BITS(0, 8 - d->m_bits_in);
 | |
|       }
 | |
|       if (d->m_flags & TDEFL_WRITE_ZLIB_HEADER) {
 | |
|         mz_uint i, a = d->m_adler32;
 | |
|         for (i = 0; i < 4; i++) {
 | |
|           TDEFL_PUT_BITS((a >> 24) & 0xFF, 8);
 | |
|           a <<= 8;
 | |
|         }
 | |
|       }
 | |
|     } else {
 | |
|       mz_uint i, z = 0;
 | |
|       TDEFL_PUT_BITS(0, 3);
 | |
|       if (d->m_bits_in) {
 | |
|         TDEFL_PUT_BITS(0, 8 - d->m_bits_in);
 | |
|       }
 | |
|       for (i = 2; i; --i, z ^= 0xFFFF) {
 | |
|         TDEFL_PUT_BITS(z & 0xFFFF, 16);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   MZ_ASSERT(d->m_pOutput_buf < d->m_pOutput_buf_end);
 | |
| 
 | |
|   memset(&d->m_huff_count[0][0], 0,
 | |
|          sizeof(d->m_huff_count[0][0]) * TDEFL_MAX_HUFF_SYMBOLS_0);
 | |
|   memset(&d->m_huff_count[1][0], 0,
 | |
|          sizeof(d->m_huff_count[1][0]) * TDEFL_MAX_HUFF_SYMBOLS_1);
 | |
| 
 | |
|   d->m_pLZ_code_buf = d->m_lz_code_buf + 1;
 | |
|   d->m_pLZ_flags = d->m_lz_code_buf;
 | |
|   d->m_num_flags_left = 8;
 | |
|   d->m_lz_code_buf_dict_pos += d->m_total_lz_bytes;
 | |
|   d->m_total_lz_bytes = 0;
 | |
|   d->m_block_index++;
 | |
| 
 | |
|   if ((n = (int)(d->m_pOutput_buf - pOutput_buf_start)) != 0) {
 | |
|     if (d->m_pPut_buf_func) {
 | |
|       *d->m_pIn_buf_size = d->m_pSrc - (const mz_uint8 *)d->m_pIn_buf;
 | |
|       if (!(*d->m_pPut_buf_func)(d->m_output_buf, n, d->m_pPut_buf_user))
 | |
|         return (d->m_prev_return_status = TDEFL_STATUS_PUT_BUF_FAILED);
 | |
|     } else if (pOutput_buf_start == d->m_output_buf) {
 | |
|       int bytes_to_copy = (int)MZ_MIN(
 | |
|           (size_t)n, (size_t)(*d->m_pOut_buf_size - d->m_out_buf_ofs));
 | |
|       memcpy((mz_uint8 *)d->m_pOut_buf + d->m_out_buf_ofs, d->m_output_buf,
 | |
|              bytes_to_copy);
 | |
|       d->m_out_buf_ofs += bytes_to_copy;
 | |
|       if ((n -= bytes_to_copy) != 0) {
 | |
|         d->m_output_flush_ofs = bytes_to_copy;
 | |
|         d->m_output_flush_remaining = n;
 | |
|       }
 | |
|     } else {
 | |
|       d->m_out_buf_ofs += n;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return d->m_output_flush_remaining;
 | |
| }
 | |
| 
 | |
| #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES
 | |
| #define TDEFL_READ_UNALIGNED_WORD(p) *(const mz_uint16 *)(p)
 | |
| static MZ_FORCEINLINE void tdefl_find_match(
 | |
|     tdefl_compressor *d, mz_uint lookahead_pos, mz_uint max_dist,
 | |
|     mz_uint max_match_len, mz_uint *pMatch_dist, mz_uint *pMatch_len) {
 | |
|   mz_uint dist, pos = lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK,
 | |
|                 match_len = *pMatch_len, probe_pos = pos, next_probe_pos,
 | |
|                 probe_len;
 | |
|   mz_uint num_probes_left = d->m_max_probes[match_len >= 32];
 | |
|   const mz_uint16 *s = (const mz_uint16 *)(d->m_dict + pos), *p, *q;
 | |
|   mz_uint16 c01 = TDEFL_READ_UNALIGNED_WORD(&d->m_dict[pos + match_len - 1]),
 | |
|             s01 = TDEFL_READ_UNALIGNED_WORD(s);
 | |
|   MZ_ASSERT(max_match_len <= TDEFL_MAX_MATCH_LEN);
 | |
|   if (max_match_len <= match_len) return;
 | |
|   for (;;) {
 | |
|     for (;;) {
 | |
|       if (--num_probes_left == 0) return;
 | |
| #define TDEFL_PROBE                                                            \
 | |
|   next_probe_pos = d->m_next[probe_pos];                                       \
 | |
|   if ((!next_probe_pos) ||                                                     \
 | |
|       ((dist = (mz_uint16)(lookahead_pos - next_probe_pos)) > max_dist))       \
 | |
|     return;                                                                    \
 | |
|   probe_pos = next_probe_pos & TDEFL_LZ_DICT_SIZE_MASK;                        \
 | |
|   if (TDEFL_READ_UNALIGNED_WORD(&d->m_dict[probe_pos + match_len - 1]) == c01) \
 | |
|     break;
 | |
|       TDEFL_PROBE;
 | |
|       TDEFL_PROBE;
 | |
|       TDEFL_PROBE;
 | |
|     }
 | |
|     if (!dist) break;
 | |
|     q = (const mz_uint16 *)(d->m_dict + probe_pos);
 | |
|     if (TDEFL_READ_UNALIGNED_WORD(q) != s01) continue;
 | |
|     p = s;
 | |
|     probe_len = 32;
 | |
|     do {
 | |
|     } while (
 | |
|         (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) &&
 | |
|         (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) &&
 | |
|         (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) &&
 | |
|         (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) &&
 | |
|         (--probe_len > 0));
 | |
|     if (!probe_len) {
 | |
|       *pMatch_dist = dist;
 | |
|       *pMatch_len = MZ_MIN(max_match_len, TDEFL_MAX_MATCH_LEN);
 | |
|       break;
 | |
|     } else if ((probe_len = ((mz_uint)(p - s) * 2) +
 | |
|                             (mz_uint)(*(const mz_uint8 *)p ==
 | |
|                                       *(const mz_uint8 *)q)) > match_len) {
 | |
|       *pMatch_dist = dist;
 | |
|       if ((*pMatch_len = match_len = MZ_MIN(max_match_len, probe_len)) ==
 | |
|           max_match_len)
 | |
|         break;
 | |
|       c01 = TDEFL_READ_UNALIGNED_WORD(&d->m_dict[pos + match_len - 1]);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| #else
 | |
| static MZ_FORCEINLINE void tdefl_find_match(
 | |
|     tdefl_compressor *d, mz_uint lookahead_pos, mz_uint max_dist,
 | |
|     mz_uint max_match_len, mz_uint *pMatch_dist, mz_uint *pMatch_len) {
 | |
|   mz_uint dist, pos = lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK,
 | |
|                 match_len = *pMatch_len, probe_pos = pos, next_probe_pos,
 | |
|                 probe_len;
 | |
|   mz_uint num_probes_left = d->m_max_probes[match_len >= 32];
 | |
|   const mz_uint8 *s = d->m_dict + pos, *p, *q;
 | |
|   mz_uint8 c0 = d->m_dict[pos + match_len], c1 = d->m_dict[pos + match_len - 1];
 | |
|   MZ_ASSERT(max_match_len <= TDEFL_MAX_MATCH_LEN);
 | |
|   if (max_match_len <= match_len) return;
 | |
|   for (;;) {
 | |
|     for (;;) {
 | |
|       if (--num_probes_left == 0) return;
 | |
| #define TDEFL_PROBE                                                      \
 | |
|   next_probe_pos = d->m_next[probe_pos];                                 \
 | |
|   if ((!next_probe_pos) ||                                               \
 | |
|       ((dist = (mz_uint16)(lookahead_pos - next_probe_pos)) > max_dist)) \
 | |
|     return;                                                              \
 | |
|   probe_pos = next_probe_pos & TDEFL_LZ_DICT_SIZE_MASK;                  \
 | |
|   if ((d->m_dict[probe_pos + match_len] == c0) &&                        \
 | |
|       (d->m_dict[probe_pos + match_len - 1] == c1))                      \
 | |
|     break;
 | |
|       TDEFL_PROBE;
 | |
|       TDEFL_PROBE;
 | |
|       TDEFL_PROBE;
 | |
|     }
 | |
|     if (!dist) break;
 | |
|     p = s;
 | |
|     q = d->m_dict + probe_pos;
 | |
|     for (probe_len = 0; probe_len < max_match_len; probe_len++)
 | |
|       if (*p++ != *q++) break;
 | |
|     if (probe_len > match_len) {
 | |
|       *pMatch_dist = dist;
 | |
|       if ((*pMatch_len = match_len = probe_len) == max_match_len) return;
 | |
|       c0 = d->m_dict[pos + match_len];
 | |
|       c1 = d->m_dict[pos + match_len - 1];
 | |
|     }
 | |
|   }
 | |
| }
 | |
| #endif  // #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES
 | |
| 
 | |
| #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN
 | |
| static mz_bool tdefl_compress_fast(tdefl_compressor *d) {
 | |
|   // Faster, minimally featured LZRW1-style match+parse loop with better
 | |
|   // register utilization. Intended for applications where raw throughput is
 | |
|   // valued more highly than ratio.
 | |
|   mz_uint lookahead_pos = d->m_lookahead_pos,
 | |
|           lookahead_size = d->m_lookahead_size, dict_size = d->m_dict_size,
 | |
|           total_lz_bytes = d->m_total_lz_bytes,
 | |
|           num_flags_left = d->m_num_flags_left;
 | |
|   mz_uint8 *pLZ_code_buf = d->m_pLZ_code_buf, *pLZ_flags = d->m_pLZ_flags;
 | |
|   mz_uint cur_pos = lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK;
 | |
| 
 | |
|   while ((d->m_src_buf_left) || ((d->m_flush) && (lookahead_size))) {
 | |
|     const mz_uint TDEFL_COMP_FAST_LOOKAHEAD_SIZE = 4096;
 | |
|     mz_uint dst_pos =
 | |
|         (lookahead_pos + lookahead_size) & TDEFL_LZ_DICT_SIZE_MASK;
 | |
|     mz_uint num_bytes_to_process = (mz_uint)MZ_MIN(
 | |
|         d->m_src_buf_left, TDEFL_COMP_FAST_LOOKAHEAD_SIZE - lookahead_size);
 | |
|     d->m_src_buf_left -= num_bytes_to_process;
 | |
|     lookahead_size += num_bytes_to_process;
 | |
| 
 | |
|     while (num_bytes_to_process) {
 | |
|       mz_uint32 n = MZ_MIN(TDEFL_LZ_DICT_SIZE - dst_pos, num_bytes_to_process);
 | |
|       memcpy(d->m_dict + dst_pos, d->m_pSrc, n);
 | |
|       if (dst_pos < (TDEFL_MAX_MATCH_LEN - 1))
 | |
|         memcpy(d->m_dict + TDEFL_LZ_DICT_SIZE + dst_pos, d->m_pSrc,
 | |
|                MZ_MIN(n, (TDEFL_MAX_MATCH_LEN - 1) - dst_pos));
 | |
|       d->m_pSrc += n;
 | |
|       dst_pos = (dst_pos + n) & TDEFL_LZ_DICT_SIZE_MASK;
 | |
|       num_bytes_to_process -= n;
 | |
|     }
 | |
| 
 | |
|     dict_size = MZ_MIN(TDEFL_LZ_DICT_SIZE - lookahead_size, dict_size);
 | |
|     if ((!d->m_flush) && (lookahead_size < TDEFL_COMP_FAST_LOOKAHEAD_SIZE))
 | |
|       break;
 | |
| 
 | |
|     while (lookahead_size >= 4) {
 | |
|       mz_uint cur_match_dist, cur_match_len = 1;
 | |
|       mz_uint8 *pCur_dict = d->m_dict + cur_pos;
 | |
|       mz_uint first_trigram = (*(const mz_uint32 *)pCur_dict) & 0xFFFFFF;
 | |
|       mz_uint hash =
 | |
|           (first_trigram ^ (first_trigram >> (24 - (TDEFL_LZ_HASH_BITS - 8)))) &
 | |
|           TDEFL_LEVEL1_HASH_SIZE_MASK;
 | |
|       mz_uint probe_pos = d->m_hash[hash];
 | |
|       d->m_hash[hash] = (mz_uint16)lookahead_pos;
 | |
| 
 | |
|       if (((cur_match_dist = (mz_uint16)(lookahead_pos - probe_pos)) <=
 | |
|            dict_size) &&
 | |
|           ((*(const mz_uint32 *)(d->m_dict +
 | |
|                                  (probe_pos &= TDEFL_LZ_DICT_SIZE_MASK)) &
 | |
|             0xFFFFFF) == first_trigram)) {
 | |
|         const mz_uint16 *p = (const mz_uint16 *)pCur_dict;
 | |
|         const mz_uint16 *q = (const mz_uint16 *)(d->m_dict + probe_pos);
 | |
|         mz_uint32 probe_len = 32;
 | |
|         do {
 | |
|         } while ((TDEFL_READ_UNALIGNED_WORD(++p) ==
 | |
|                   TDEFL_READ_UNALIGNED_WORD(++q)) &&
 | |
|                  (TDEFL_READ_UNALIGNED_WORD(++p) ==
 | |
|                   TDEFL_READ_UNALIGNED_WORD(++q)) &&
 | |
|                  (TDEFL_READ_UNALIGNED_WORD(++p) ==
 | |
|                   TDEFL_READ_UNALIGNED_WORD(++q)) &&
 | |
|                  (TDEFL_READ_UNALIGNED_WORD(++p) ==
 | |
|                   TDEFL_READ_UNALIGNED_WORD(++q)) &&
 | |
|                  (--probe_len > 0));
 | |
|         cur_match_len = ((mz_uint)(p - (const mz_uint16 *)pCur_dict) * 2) +
 | |
|                         (mz_uint)(*(const mz_uint8 *)p == *(const mz_uint8 *)q);
 | |
|         if (!probe_len)
 | |
|           cur_match_len = cur_match_dist ? TDEFL_MAX_MATCH_LEN : 0;
 | |
| 
 | |
|         if ((cur_match_len < TDEFL_MIN_MATCH_LEN) ||
 | |
|             ((cur_match_len == TDEFL_MIN_MATCH_LEN) &&
 | |
|              (cur_match_dist >= 8U * 1024U))) {
 | |
|           cur_match_len = 1;
 | |
|           *pLZ_code_buf++ = (mz_uint8)first_trigram;
 | |
|           *pLZ_flags = (mz_uint8)(*pLZ_flags >> 1);
 | |
|           d->m_huff_count[0][(mz_uint8)first_trigram]++;
 | |
|         } else {
 | |
|           mz_uint32 s0, s1;
 | |
|           cur_match_len = MZ_MIN(cur_match_len, lookahead_size);
 | |
| 
 | |
|           MZ_ASSERT((cur_match_len >= TDEFL_MIN_MATCH_LEN) &&
 | |
|                     (cur_match_dist >= 1) &&
 | |
|                     (cur_match_dist <= TDEFL_LZ_DICT_SIZE));
 | |
| 
 | |
|           cur_match_dist--;
 | |
| 
 | |
|           pLZ_code_buf[0] = (mz_uint8)(cur_match_len - TDEFL_MIN_MATCH_LEN);
 | |
|           *(mz_uint16 *)(&pLZ_code_buf[1]) = (mz_uint16)cur_match_dist;
 | |
|           pLZ_code_buf += 3;
 | |
|           *pLZ_flags = (mz_uint8)((*pLZ_flags >> 1) | 0x80);
 | |
| 
 | |
|           s0 = s_tdefl_small_dist_sym[cur_match_dist & 511];
 | |
|           s1 = s_tdefl_large_dist_sym[cur_match_dist >> 8];
 | |
|           d->m_huff_count[1][(cur_match_dist < 512) ? s0 : s1]++;
 | |
| 
 | |
|           d->m_huff_count[0][s_tdefl_len_sym[cur_match_len -
 | |
|                                              TDEFL_MIN_MATCH_LEN]]++;
 | |
|         }
 | |
|       } else {
 | |
|         *pLZ_code_buf++ = (mz_uint8)first_trigram;
 | |
|         *pLZ_flags = (mz_uint8)(*pLZ_flags >> 1);
 | |
|         d->m_huff_count[0][(mz_uint8)first_trigram]++;
 | |
|       }
 | |
| 
 | |
|       if (--num_flags_left == 0) {
 | |
|         num_flags_left = 8;
 | |
|         pLZ_flags = pLZ_code_buf++;
 | |
|       }
 | |
| 
 | |
|       total_lz_bytes += cur_match_len;
 | |
|       lookahead_pos += cur_match_len;
 | |
|       dict_size = MZ_MIN(dict_size + cur_match_len, TDEFL_LZ_DICT_SIZE);
 | |
|       cur_pos = (cur_pos + cur_match_len) & TDEFL_LZ_DICT_SIZE_MASK;
 | |
|       MZ_ASSERT(lookahead_size >= cur_match_len);
 | |
|       lookahead_size -= cur_match_len;
 | |
| 
 | |
|       if (pLZ_code_buf > &d->m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE - 8]) {
 | |
|         int n;
 | |
|         d->m_lookahead_pos = lookahead_pos;
 | |
|         d->m_lookahead_size = lookahead_size;
 | |
|         d->m_dict_size = dict_size;
 | |
|         d->m_total_lz_bytes = total_lz_bytes;
 | |
|         d->m_pLZ_code_buf = pLZ_code_buf;
 | |
|         d->m_pLZ_flags = pLZ_flags;
 | |
|         d->m_num_flags_left = num_flags_left;
 | |
|         if ((n = tdefl_flush_block(d, 0)) != 0)
 | |
|           return (n < 0) ? MZ_FALSE : MZ_TRUE;
 | |
|         total_lz_bytes = d->m_total_lz_bytes;
 | |
|         pLZ_code_buf = d->m_pLZ_code_buf;
 | |
|         pLZ_flags = d->m_pLZ_flags;
 | |
|         num_flags_left = d->m_num_flags_left;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     while (lookahead_size) {
 | |
|       mz_uint8 lit = d->m_dict[cur_pos];
 | |
| 
 | |
|       total_lz_bytes++;
 | |
|       *pLZ_code_buf++ = lit;
 | |
|       *pLZ_flags = (mz_uint8)(*pLZ_flags >> 1);
 | |
|       if (--num_flags_left == 0) {
 | |
|         num_flags_left = 8;
 | |
|         pLZ_flags = pLZ_code_buf++;
 | |
|       }
 | |
| 
 | |
|       d->m_huff_count[0][lit]++;
 | |
| 
 | |
|       lookahead_pos++;
 | |
|       dict_size = MZ_MIN(dict_size + 1, TDEFL_LZ_DICT_SIZE);
 | |
|       cur_pos = (cur_pos + 1) & TDEFL_LZ_DICT_SIZE_MASK;
 | |
|       lookahead_size--;
 | |
| 
 | |
|       if (pLZ_code_buf > &d->m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE - 8]) {
 | |
|         int n;
 | |
|         d->m_lookahead_pos = lookahead_pos;
 | |
|         d->m_lookahead_size = lookahead_size;
 | |
|         d->m_dict_size = dict_size;
 | |
|         d->m_total_lz_bytes = total_lz_bytes;
 | |
|         d->m_pLZ_code_buf = pLZ_code_buf;
 | |
|         d->m_pLZ_flags = pLZ_flags;
 | |
|         d->m_num_flags_left = num_flags_left;
 | |
|         if ((n = tdefl_flush_block(d, 0)) != 0)
 | |
|           return (n < 0) ? MZ_FALSE : MZ_TRUE;
 | |
|         total_lz_bytes = d->m_total_lz_bytes;
 | |
|         pLZ_code_buf = d->m_pLZ_code_buf;
 | |
|         pLZ_flags = d->m_pLZ_flags;
 | |
|         num_flags_left = d->m_num_flags_left;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   d->m_lookahead_pos = lookahead_pos;
 | |
|   d->m_lookahead_size = lookahead_size;
 | |
|   d->m_dict_size = dict_size;
 | |
|   d->m_total_lz_bytes = total_lz_bytes;
 | |
|   d->m_pLZ_code_buf = pLZ_code_buf;
 | |
|   d->m_pLZ_flags = pLZ_flags;
 | |
|   d->m_num_flags_left = num_flags_left;
 | |
|   return MZ_TRUE;
 | |
| }
 | |
| #endif  // MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN
 | |
| 
 | |
| static MZ_FORCEINLINE void tdefl_record_literal(tdefl_compressor *d,
 | |
|                                                 mz_uint8 lit) {
 | |
|   d->m_total_lz_bytes++;
 | |
|   *d->m_pLZ_code_buf++ = lit;
 | |
|   *d->m_pLZ_flags = (mz_uint8)(*d->m_pLZ_flags >> 1);
 | |
|   if (--d->m_num_flags_left == 0) {
 | |
|     d->m_num_flags_left = 8;
 | |
|     d->m_pLZ_flags = d->m_pLZ_code_buf++;
 | |
|   }
 | |
|   d->m_huff_count[0][lit]++;
 | |
| }
 | |
| 
 | |
| static MZ_FORCEINLINE void tdefl_record_match(tdefl_compressor *d,
 | |
|                                               mz_uint match_len,
 | |
|                                               mz_uint match_dist) {
 | |
|   mz_uint32 s0, s1;
 | |
| 
 | |
|   MZ_ASSERT((match_len >= TDEFL_MIN_MATCH_LEN) && (match_dist >= 1) &&
 | |
|             (match_dist <= TDEFL_LZ_DICT_SIZE));
 | |
| 
 | |
|   d->m_total_lz_bytes += match_len;
 | |
| 
 | |
|   d->m_pLZ_code_buf[0] = (mz_uint8)(match_len - TDEFL_MIN_MATCH_LEN);
 | |
| 
 | |
|   match_dist -= 1;
 | |
|   d->m_pLZ_code_buf[1] = (mz_uint8)(match_dist & 0xFF);
 | |
|   d->m_pLZ_code_buf[2] = (mz_uint8)(match_dist >> 8);
 | |
|   d->m_pLZ_code_buf += 3;
 | |
| 
 | |
|   *d->m_pLZ_flags = (mz_uint8)((*d->m_pLZ_flags >> 1) | 0x80);
 | |
|   if (--d->m_num_flags_left == 0) {
 | |
|     d->m_num_flags_left = 8;
 | |
|     d->m_pLZ_flags = d->m_pLZ_code_buf++;
 | |
|   }
 | |
| 
 | |
|   s0 = s_tdefl_small_dist_sym[match_dist & 511];
 | |
|   s1 = s_tdefl_large_dist_sym[(match_dist >> 8) & 127];
 | |
|   d->m_huff_count[1][(match_dist < 512) ? s0 : s1]++;
 | |
| 
 | |
|   if (match_len >= TDEFL_MIN_MATCH_LEN)
 | |
|     d->m_huff_count[0][s_tdefl_len_sym[match_len - TDEFL_MIN_MATCH_LEN]]++;
 | |
| }
 | |
| 
 | |
| static mz_bool tdefl_compress_normal(tdefl_compressor *d) {
 | |
|   const mz_uint8 *pSrc = d->m_pSrc;
 | |
|   size_t src_buf_left = d->m_src_buf_left;
 | |
|   tdefl_flush flush = d->m_flush;
 | |
| 
 | |
|   while ((src_buf_left) || ((flush) && (d->m_lookahead_size))) {
 | |
|     mz_uint len_to_move, cur_match_dist, cur_match_len, cur_pos;
 | |
|     // Update dictionary and hash chains. Keeps the lookahead size equal to
 | |
|     // TDEFL_MAX_MATCH_LEN.
 | |
|     if ((d->m_lookahead_size + d->m_dict_size) >= (TDEFL_MIN_MATCH_LEN - 1)) {
 | |
|       mz_uint dst_pos = (d->m_lookahead_pos + d->m_lookahead_size) &
 | |
|                         TDEFL_LZ_DICT_SIZE_MASK,
 | |
|               ins_pos = d->m_lookahead_pos + d->m_lookahead_size - 2;
 | |
|       mz_uint hash = (d->m_dict[ins_pos & TDEFL_LZ_DICT_SIZE_MASK]
 | |
|                       << TDEFL_LZ_HASH_SHIFT) ^
 | |
|                      d->m_dict[(ins_pos + 1) & TDEFL_LZ_DICT_SIZE_MASK];
 | |
|       mz_uint num_bytes_to_process = (mz_uint)MZ_MIN(
 | |
|           src_buf_left, TDEFL_MAX_MATCH_LEN - d->m_lookahead_size);
 | |
|       const mz_uint8 *pSrc_end = pSrc + num_bytes_to_process;
 | |
|       src_buf_left -= num_bytes_to_process;
 | |
|       d->m_lookahead_size += num_bytes_to_process;
 | |
|       while (pSrc != pSrc_end) {
 | |
|         mz_uint8 c = *pSrc++;
 | |
|         d->m_dict[dst_pos] = c;
 | |
|         if (dst_pos < (TDEFL_MAX_MATCH_LEN - 1))
 | |
|           d->m_dict[TDEFL_LZ_DICT_SIZE + dst_pos] = c;
 | |
|         hash = ((hash << TDEFL_LZ_HASH_SHIFT) ^ c) & (TDEFL_LZ_HASH_SIZE - 1);
 | |
|         d->m_next[ins_pos & TDEFL_LZ_DICT_SIZE_MASK] = d->m_hash[hash];
 | |
|         d->m_hash[hash] = (mz_uint16)(ins_pos);
 | |
|         dst_pos = (dst_pos + 1) & TDEFL_LZ_DICT_SIZE_MASK;
 | |
|         ins_pos++;
 | |
|       }
 | |
|     } else {
 | |
|       while ((src_buf_left) && (d->m_lookahead_size < TDEFL_MAX_MATCH_LEN)) {
 | |
|         mz_uint8 c = *pSrc++;
 | |
|         mz_uint dst_pos = (d->m_lookahead_pos + d->m_lookahead_size) &
 | |
|                           TDEFL_LZ_DICT_SIZE_MASK;
 | |
|         src_buf_left--;
 | |
|         d->m_dict[dst_pos] = c;
 | |
|         if (dst_pos < (TDEFL_MAX_MATCH_LEN - 1))
 | |
|           d->m_dict[TDEFL_LZ_DICT_SIZE + dst_pos] = c;
 | |
|         if ((++d->m_lookahead_size + d->m_dict_size) >= TDEFL_MIN_MATCH_LEN) {
 | |
|           mz_uint ins_pos = d->m_lookahead_pos + (d->m_lookahead_size - 1) - 2;
 | |
|           mz_uint hash = ((d->m_dict[ins_pos & TDEFL_LZ_DICT_SIZE_MASK]
 | |
|                            << (TDEFL_LZ_HASH_SHIFT * 2)) ^
 | |
|                           (d->m_dict[(ins_pos + 1) & TDEFL_LZ_DICT_SIZE_MASK]
 | |
|                            << TDEFL_LZ_HASH_SHIFT) ^
 | |
|                           c) &
 | |
|                          (TDEFL_LZ_HASH_SIZE - 1);
 | |
|           d->m_next[ins_pos & TDEFL_LZ_DICT_SIZE_MASK] = d->m_hash[hash];
 | |
|           d->m_hash[hash] = (mz_uint16)(ins_pos);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     d->m_dict_size =
 | |
|         MZ_MIN(TDEFL_LZ_DICT_SIZE - d->m_lookahead_size, d->m_dict_size);
 | |
|     if ((!flush) && (d->m_lookahead_size < TDEFL_MAX_MATCH_LEN)) break;
 | |
| 
 | |
|     // Simple lazy/greedy parsing state machine.
 | |
|     len_to_move = 1;
 | |
|     cur_match_dist = 0;
 | |
|     cur_match_len =
 | |
|         d->m_saved_match_len ? d->m_saved_match_len : (TDEFL_MIN_MATCH_LEN - 1);
 | |
|     cur_pos = d->m_lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK;
 | |
|     if (d->m_flags & (TDEFL_RLE_MATCHES | TDEFL_FORCE_ALL_RAW_BLOCKS)) {
 | |
|       if ((d->m_dict_size) && (!(d->m_flags & TDEFL_FORCE_ALL_RAW_BLOCKS))) {
 | |
|         mz_uint8 c = d->m_dict[(cur_pos - 1) & TDEFL_LZ_DICT_SIZE_MASK];
 | |
|         cur_match_len = 0;
 | |
|         while (cur_match_len < d->m_lookahead_size) {
 | |
|           if (d->m_dict[cur_pos + cur_match_len] != c) break;
 | |
|           cur_match_len++;
 | |
|         }
 | |
|         if (cur_match_len < TDEFL_MIN_MATCH_LEN)
 | |
|           cur_match_len = 0;
 | |
|         else
 | |
|           cur_match_dist = 1;
 | |
|       }
 | |
|     } else {
 | |
|       tdefl_find_match(d, d->m_lookahead_pos, d->m_dict_size,
 | |
|                        d->m_lookahead_size, &cur_match_dist, &cur_match_len);
 | |
|     }
 | |
|     if (((cur_match_len == TDEFL_MIN_MATCH_LEN) &&
 | |
|          (cur_match_dist >= 8U * 1024U)) ||
 | |
|         (cur_pos == cur_match_dist) ||
 | |
|         ((d->m_flags & TDEFL_FILTER_MATCHES) && (cur_match_len <= 5))) {
 | |
|       cur_match_dist = cur_match_len = 0;
 | |
|     }
 | |
|     if (d->m_saved_match_len) {
 | |
|       if (cur_match_len > d->m_saved_match_len) {
 | |
|         tdefl_record_literal(d, (mz_uint8)d->m_saved_lit);
 | |
|         if (cur_match_len >= 128) {
 | |
|           tdefl_record_match(d, cur_match_len, cur_match_dist);
 | |
|           d->m_saved_match_len = 0;
 | |
|           len_to_move = cur_match_len;
 | |
|         } else {
 | |
|           d->m_saved_lit = d->m_dict[cur_pos];
 | |
|           d->m_saved_match_dist = cur_match_dist;
 | |
|           d->m_saved_match_len = cur_match_len;
 | |
|         }
 | |
|       } else {
 | |
|         tdefl_record_match(d, d->m_saved_match_len, d->m_saved_match_dist);
 | |
|         len_to_move = d->m_saved_match_len - 1;
 | |
|         d->m_saved_match_len = 0;
 | |
|       }
 | |
|     } else if (!cur_match_dist)
 | |
|       tdefl_record_literal(d,
 | |
|                            d->m_dict[MZ_MIN(cur_pos, sizeof(d->m_dict) - 1)]);
 | |
|     else if ((d->m_greedy_parsing) || (d->m_flags & TDEFL_RLE_MATCHES) ||
 | |
|              (cur_match_len >= 128)) {
 | |
|       tdefl_record_match(d, cur_match_len, cur_match_dist);
 | |
|       len_to_move = cur_match_len;
 | |
|     } else {
 | |
|       d->m_saved_lit = d->m_dict[MZ_MIN(cur_pos, sizeof(d->m_dict) - 1)];
 | |
|       d->m_saved_match_dist = cur_match_dist;
 | |
|       d->m_saved_match_len = cur_match_len;
 | |
|     }
 | |
|     // Move the lookahead forward by len_to_move bytes.
 | |
|     d->m_lookahead_pos += len_to_move;
 | |
|     MZ_ASSERT(d->m_lookahead_size >= len_to_move);
 | |
|     d->m_lookahead_size -= len_to_move;
 | |
|     d->m_dict_size =
 | |
|         MZ_MIN(d->m_dict_size + len_to_move, (mz_uint)TDEFL_LZ_DICT_SIZE);
 | |
|     // Check if it's time to flush the current LZ codes to the internal output
 | |
|     // buffer.
 | |
|     if ((d->m_pLZ_code_buf > &d->m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE - 8]) ||
 | |
|         ((d->m_total_lz_bytes > 31 * 1024) &&
 | |
|          (((((mz_uint)(d->m_pLZ_code_buf - d->m_lz_code_buf) * 115) >> 7) >=
 | |
|            d->m_total_lz_bytes) ||
 | |
|           (d->m_flags & TDEFL_FORCE_ALL_RAW_BLOCKS)))) {
 | |
|       int n;
 | |
|       d->m_pSrc = pSrc;
 | |
|       d->m_src_buf_left = src_buf_left;
 | |
|       if ((n = tdefl_flush_block(d, 0)) != 0)
 | |
|         return (n < 0) ? MZ_FALSE : MZ_TRUE;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   d->m_pSrc = pSrc;
 | |
|   d->m_src_buf_left = src_buf_left;
 | |
|   return MZ_TRUE;
 | |
| }
 | |
| 
 | |
| static tdefl_status tdefl_flush_output_buffer(tdefl_compressor *d) {
 | |
|   if (d->m_pIn_buf_size) {
 | |
|     *d->m_pIn_buf_size = d->m_pSrc - (const mz_uint8 *)d->m_pIn_buf;
 | |
|   }
 | |
| 
 | |
|   if (d->m_pOut_buf_size) {
 | |
|     size_t n = MZ_MIN(*d->m_pOut_buf_size - d->m_out_buf_ofs,
 | |
|                       d->m_output_flush_remaining);
 | |
|     memcpy((mz_uint8 *)d->m_pOut_buf + d->m_out_buf_ofs,
 | |
|            d->m_output_buf + d->m_output_flush_ofs, n);
 | |
|     d->m_output_flush_ofs += (mz_uint)n;
 | |
|     d->m_output_flush_remaining -= (mz_uint)n;
 | |
|     d->m_out_buf_ofs += n;
 | |
| 
 | |
|     *d->m_pOut_buf_size = d->m_out_buf_ofs;
 | |
|   }
 | |
| 
 | |
|   return (d->m_finished && !d->m_output_flush_remaining) ? TDEFL_STATUS_DONE
 | |
|                                                          : TDEFL_STATUS_OKAY;
 | |
| }
 | |
| 
 | |
| tdefl_status tdefl_compress(tdefl_compressor *d, const void *pIn_buf,
 | |
|                             size_t *pIn_buf_size, void *pOut_buf,
 | |
|                             size_t *pOut_buf_size, tdefl_flush flush) {
 | |
|   if (!d) {
 | |
|     if (pIn_buf_size) *pIn_buf_size = 0;
 | |
|     if (pOut_buf_size) *pOut_buf_size = 0;
 | |
|     return TDEFL_STATUS_BAD_PARAM;
 | |
|   }
 | |
| 
 | |
|   d->m_pIn_buf = pIn_buf;
 | |
|   d->m_pIn_buf_size = pIn_buf_size;
 | |
|   d->m_pOut_buf = pOut_buf;
 | |
|   d->m_pOut_buf_size = pOut_buf_size;
 | |
|   d->m_pSrc = (const mz_uint8 *)(pIn_buf);
 | |
|   d->m_src_buf_left = pIn_buf_size ? *pIn_buf_size : 0;
 | |
|   d->m_out_buf_ofs = 0;
 | |
|   d->m_flush = flush;
 | |
| 
 | |
|   if (((d->m_pPut_buf_func != NULL) ==
 | |
|        ((pOut_buf != NULL) || (pOut_buf_size != NULL))) ||
 | |
|       (d->m_prev_return_status != TDEFL_STATUS_OKAY) ||
 | |
|       (d->m_wants_to_finish && (flush != TDEFL_FINISH)) ||
 | |
|       (pIn_buf_size && *pIn_buf_size && !pIn_buf) ||
 | |
|       (pOut_buf_size && *pOut_buf_size && !pOut_buf)) {
 | |
|     if (pIn_buf_size) *pIn_buf_size = 0;
 | |
|     if (pOut_buf_size) *pOut_buf_size = 0;
 | |
|     return (d->m_prev_return_status = TDEFL_STATUS_BAD_PARAM);
 | |
|   }
 | |
|   d->m_wants_to_finish |= (flush == TDEFL_FINISH);
 | |
| 
 | |
|   if ((d->m_output_flush_remaining) || (d->m_finished))
 | |
|     return (d->m_prev_return_status = tdefl_flush_output_buffer(d));
 | |
| 
 | |
| #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN
 | |
|   if (((d->m_flags & TDEFL_MAX_PROBES_MASK) == 1) &&
 | |
|       ((d->m_flags & TDEFL_GREEDY_PARSING_FLAG) != 0) &&
 | |
|       ((d->m_flags & (TDEFL_FILTER_MATCHES | TDEFL_FORCE_ALL_RAW_BLOCKS |
 | |
|                       TDEFL_RLE_MATCHES)) == 0)) {
 | |
|     if (!tdefl_compress_fast(d)) return d->m_prev_return_status;
 | |
|   } else
 | |
| #endif  // #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN
 | |
|   {
 | |
|     if (!tdefl_compress_normal(d)) return d->m_prev_return_status;
 | |
|   }
 | |
| 
 | |
|   if ((d->m_flags & (TDEFL_WRITE_ZLIB_HEADER | TDEFL_COMPUTE_ADLER32)) &&
 | |
|       (pIn_buf))
 | |
|     d->m_adler32 =
 | |
|         (mz_uint32)mz_adler32(d->m_adler32, (const mz_uint8 *)pIn_buf,
 | |
|                               d->m_pSrc - (const mz_uint8 *)pIn_buf);
 | |
| 
 | |
|   if ((flush) && (!d->m_lookahead_size) && (!d->m_src_buf_left) &&
 | |
|       (!d->m_output_flush_remaining)) {
 | |
|     if (tdefl_flush_block(d, flush) < 0) return d->m_prev_return_status;
 | |
|     d->m_finished = (flush == TDEFL_FINISH);
 | |
|     if (flush == TDEFL_FULL_FLUSH) {
 | |
|       MZ_CLEAR_OBJ(d->m_hash);
 | |
|       MZ_CLEAR_OBJ(d->m_next);
 | |
|       d->m_dict_size = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return (d->m_prev_return_status = tdefl_flush_output_buffer(d));
 | |
| }
 | |
| 
 | |
| tdefl_status tdefl_compress_buffer(tdefl_compressor *d, const void *pIn_buf,
 | |
|                                    size_t in_buf_size, tdefl_flush flush) {
 | |
|   MZ_ASSERT(d->m_pPut_buf_func);
 | |
|   return tdefl_compress(d, pIn_buf, &in_buf_size, NULL, NULL, flush);
 | |
| }
 | |
| 
 | |
| tdefl_status tdefl_init(tdefl_compressor *d,
 | |
|                         tdefl_put_buf_func_ptr pPut_buf_func,
 | |
|                         void *pPut_buf_user, int flags) {
 | |
|   d->m_pPut_buf_func = pPut_buf_func;
 | |
|   d->m_pPut_buf_user = pPut_buf_user;
 | |
|   d->m_flags = (mz_uint)(flags);
 | |
|   d->m_max_probes[0] = 1 + ((flags & 0xFFF) + 2) / 3;
 | |
|   d->m_greedy_parsing = (flags & TDEFL_GREEDY_PARSING_FLAG) != 0;
 | |
|   d->m_max_probes[1] = 1 + (((flags & 0xFFF) >> 2) + 2) / 3;
 | |
|   if (!(flags & TDEFL_NONDETERMINISTIC_PARSING_FLAG)) MZ_CLEAR_OBJ(d->m_hash);
 | |
|   d->m_lookahead_pos = d->m_lookahead_size = d->m_dict_size =
 | |
|       d->m_total_lz_bytes = d->m_lz_code_buf_dict_pos = d->m_bits_in = 0;
 | |
|   d->m_output_flush_ofs = d->m_output_flush_remaining = d->m_finished =
 | |
|       d->m_block_index = d->m_bit_buffer = d->m_wants_to_finish = 0;
 | |
|   d->m_pLZ_code_buf = d->m_lz_code_buf + 1;
 | |
|   d->m_pLZ_flags = d->m_lz_code_buf;
 | |
|   d->m_num_flags_left = 8;
 | |
|   d->m_pOutput_buf = d->m_output_buf;
 | |
|   d->m_pOutput_buf_end = d->m_output_buf;
 | |
|   d->m_prev_return_status = TDEFL_STATUS_OKAY;
 | |
|   d->m_saved_match_dist = d->m_saved_match_len = d->m_saved_lit = 0;
 | |
|   d->m_adler32 = 1;
 | |
|   d->m_pIn_buf = NULL;
 | |
|   d->m_pOut_buf = NULL;
 | |
|   d->m_pIn_buf_size = NULL;
 | |
|   d->m_pOut_buf_size = NULL;
 | |
|   d->m_flush = TDEFL_NO_FLUSH;
 | |
|   d->m_pSrc = NULL;
 | |
|   d->m_src_buf_left = 0;
 | |
|   d->m_out_buf_ofs = 0;
 | |
|   memset(&d->m_huff_count[0][0], 0,
 | |
|          sizeof(d->m_huff_count[0][0]) * TDEFL_MAX_HUFF_SYMBOLS_0);
 | |
|   memset(&d->m_huff_count[1][0], 0,
 | |
|          sizeof(d->m_huff_count[1][0]) * TDEFL_MAX_HUFF_SYMBOLS_1);
 | |
|   return TDEFL_STATUS_OKAY;
 | |
| }
 | |
| 
 | |
| tdefl_status tdefl_get_prev_return_status(tdefl_compressor *d) {
 | |
|   return d->m_prev_return_status;
 | |
| }
 | |
| 
 | |
| mz_uint32 tdefl_get_adler32(tdefl_compressor *d) { return d->m_adler32; }
 | |
| 
 | |
| mz_bool tdefl_compress_mem_to_output(const void *pBuf, size_t buf_len,
 | |
|                                      tdefl_put_buf_func_ptr pPut_buf_func,
 | |
|                                      void *pPut_buf_user, int flags) {
 | |
|   tdefl_compressor *pComp;
 | |
|   mz_bool succeeded;
 | |
|   if (((buf_len) && (!pBuf)) || (!pPut_buf_func)) return MZ_FALSE;
 | |
|   pComp = (tdefl_compressor *)MZ_MALLOC(sizeof(tdefl_compressor));
 | |
|   if (!pComp) return MZ_FALSE;
 | |
|   succeeded = (tdefl_init(pComp, pPut_buf_func, pPut_buf_user, flags) ==
 | |
|                TDEFL_STATUS_OKAY);
 | |
|   succeeded =
 | |
|       succeeded && (tdefl_compress_buffer(pComp, pBuf, buf_len, TDEFL_FINISH) ==
 | |
|                     TDEFL_STATUS_DONE);
 | |
|   MZ_FREE(pComp);
 | |
|   return succeeded;
 | |
| }
 | |
| 
 | |
| typedef struct {
 | |
|   size_t m_size, m_capacity;
 | |
|   mz_uint8 *m_pBuf;
 | |
|   mz_bool m_expandable;
 | |
| } tdefl_output_buffer;
 | |
| 
 | |
| static mz_bool tdefl_output_buffer_putter(const void *pBuf, int len,
 | |
|                                           void *pUser) {
 | |
|   tdefl_output_buffer *p = (tdefl_output_buffer *)pUser;
 | |
|   size_t new_size = p->m_size + len;
 | |
|   if (new_size > p->m_capacity) {
 | |
|     size_t new_capacity = p->m_capacity;
 | |
|     mz_uint8 *pNew_buf;
 | |
|     if (!p->m_expandable) return MZ_FALSE;
 | |
|     do {
 | |
|       new_capacity = MZ_MAX(128U, new_capacity << 1U);
 | |
|     } while (new_size > new_capacity);
 | |
|     pNew_buf = (mz_uint8 *)MZ_REALLOC(p->m_pBuf, new_capacity);
 | |
|     if (!pNew_buf) return MZ_FALSE;
 | |
|     p->m_pBuf = pNew_buf;
 | |
|     p->m_capacity = new_capacity;
 | |
|   }
 | |
|   memcpy((mz_uint8 *)p->m_pBuf + p->m_size, pBuf, len);
 | |
|   p->m_size = new_size;
 | |
|   return MZ_TRUE;
 | |
| }
 | |
| 
 | |
| void *tdefl_compress_mem_to_heap(const void *pSrc_buf, size_t src_buf_len,
 | |
|                                  size_t *pOut_len, int flags) {
 | |
|   tdefl_output_buffer out_buf;
 | |
|   MZ_CLEAR_OBJ(out_buf);
 | |
|   if (!pOut_len)
 | |
|     return MZ_FALSE;
 | |
|   else
 | |
|     *pOut_len = 0;
 | |
|   out_buf.m_expandable = MZ_TRUE;
 | |
|   if (!tdefl_compress_mem_to_output(
 | |
|           pSrc_buf, src_buf_len, tdefl_output_buffer_putter, &out_buf, flags))
 | |
|     return NULL;
 | |
|   *pOut_len = out_buf.m_size;
 | |
|   return out_buf.m_pBuf;
 | |
| }
 | |
| 
 | |
| size_t tdefl_compress_mem_to_mem(void *pOut_buf, size_t out_buf_len,
 | |
|                                  const void *pSrc_buf, size_t src_buf_len,
 | |
|                                  int flags) {
 | |
|   tdefl_output_buffer out_buf;
 | |
|   MZ_CLEAR_OBJ(out_buf);
 | |
|   if (!pOut_buf) return 0;
 | |
|   out_buf.m_pBuf = (mz_uint8 *)pOut_buf;
 | |
|   out_buf.m_capacity = out_buf_len;
 | |
|   if (!tdefl_compress_mem_to_output(
 | |
|           pSrc_buf, src_buf_len, tdefl_output_buffer_putter, &out_buf, flags))
 | |
|     return 0;
 | |
|   return out_buf.m_size;
 | |
| }
 | |
| 
 | |
| #ifndef MINIZ_NO_ZLIB_APIS
 | |
| static const mz_uint s_tdefl_num_probes[11] = {0,   1,   6,   32,  16,  32,
 | |
|                                                128, 256, 512, 768, 1500};
 | |
| 
 | |
| // level may actually range from [0,10] (10 is a "hidden" max level, where we
 | |
| // want a bit more compression and it's fine if throughput to fall off a cliff
 | |
| // on some files).
 | |
| mz_uint tdefl_create_comp_flags_from_zip_params(int level, int window_bits,
 | |
|                                                 int strategy) {
 | |
|   mz_uint comp_flags =
 | |
|       s_tdefl_num_probes[(level >= 0) ? MZ_MIN(10, level) : MZ_DEFAULT_LEVEL] |
 | |
|       ((level <= 3) ? TDEFL_GREEDY_PARSING_FLAG : 0);
 | |
|   if (window_bits > 0) comp_flags |= TDEFL_WRITE_ZLIB_HEADER;
 | |
| 
 | |
|   if (!level)
 | |
|     comp_flags |= TDEFL_FORCE_ALL_RAW_BLOCKS;
 | |
|   else if (strategy == MZ_FILTERED)
 | |
|     comp_flags |= TDEFL_FILTER_MATCHES;
 | |
|   else if (strategy == MZ_HUFFMAN_ONLY)
 | |
|     comp_flags &= ~TDEFL_MAX_PROBES_MASK;
 | |
|   else if (strategy == MZ_FIXED)
 | |
|     comp_flags |= TDEFL_FORCE_ALL_STATIC_BLOCKS;
 | |
|   else if (strategy == MZ_RLE)
 | |
|     comp_flags |= TDEFL_RLE_MATCHES;
 | |
| 
 | |
|   return comp_flags;
 | |
| }
 | |
| #endif  // MINIZ_NO_ZLIB_APIS
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| #pragma warning(push)
 | |
| #pragma warning(disable : 4204)  // nonstandard extension used : non-constant
 | |
|                                  // aggregate initializer (also supported by GNU
 | |
|                                  // C and C99, so no big deal)
 | |
| #pragma warning(disable : 4244)  // 'initializing': conversion from '__int64' to
 | |
|                                  // 'int', possible loss of data
 | |
| #pragma warning(disable : 4267)  // 'argument': conversion from '__int64' to
 | |
|                                  // 'int', possible loss of data
 | |
| #pragma warning(disable : 4996)  // 'strdup': The POSIX name for this item is
 | |
|                                  // deprecated. Instead, use the ISO C and C++
 | |
|                                  // conformant name: _strdup.
 | |
| #endif
 | |
| 
 | |
| // Simple PNG writer function by Alex Evans, 2011. Released into the public
 | |
| // domain: https://gist.github.com/908299, more context at
 | |
| // http://altdevblogaday.org/2011/04/06/a-smaller-jpg-encoder/.
 | |
| // This is actually a modification of Alex's original code so PNG files
 | |
| // generated by this function pass pngcheck.
 | |
| void *tdefl_write_image_to_png_file_in_memory_ex(const void *pImage, int w,
 | |
|                                                  int h, int num_chans,
 | |
|                                                  size_t *pLen_out,
 | |
|                                                  mz_uint level, mz_bool flip) {
 | |
|   // Using a local copy of this array here in case MINIZ_NO_ZLIB_APIS was
 | |
|   // defined.
 | |
|   static const mz_uint s_tdefl_png_num_probes[11] = {
 | |
|       0, 1, 6, 32, 16, 32, 128, 256, 512, 768, 1500};
 | |
|   tdefl_compressor *pComp =
 | |
|       (tdefl_compressor *)MZ_MALLOC(sizeof(tdefl_compressor));
 | |
|   tdefl_output_buffer out_buf;
 | |
|   int i, bpl = w * num_chans, y, z;
 | |
|   mz_uint32 c;
 | |
|   *pLen_out = 0;
 | |
|   if (!pComp) return NULL;
 | |
|   MZ_CLEAR_OBJ(out_buf);
 | |
|   out_buf.m_expandable = MZ_TRUE;
 | |
|   out_buf.m_capacity = 57 + MZ_MAX(64, (1 + bpl) * h);
 | |
|   if (NULL == (out_buf.m_pBuf = (mz_uint8 *)MZ_MALLOC(out_buf.m_capacity))) {
 | |
|     MZ_FREE(pComp);
 | |
|     return NULL;
 | |
|   }
 | |
|   // write dummy header
 | |
|   for (z = 41; z; --z) tdefl_output_buffer_putter(&z, 1, &out_buf);
 | |
|   // compress image data
 | |
|   tdefl_init(
 | |
|       pComp, tdefl_output_buffer_putter, &out_buf,
 | |
|       s_tdefl_png_num_probes[MZ_MIN(10, level)] | TDEFL_WRITE_ZLIB_HEADER);
 | |
|   for (y = 0; y < h; ++y) {
 | |
|     tdefl_compress_buffer(pComp, &z, 1, TDEFL_NO_FLUSH);
 | |
|     tdefl_compress_buffer(pComp,
 | |
|                           (mz_uint8 *)pImage + (flip ? (h - 1 - y) : y) * bpl,
 | |
|                           bpl, TDEFL_NO_FLUSH);
 | |
|   }
 | |
|   if (tdefl_compress_buffer(pComp, NULL, 0, TDEFL_FINISH) !=
 | |
|       TDEFL_STATUS_DONE) {
 | |
|     MZ_FREE(pComp);
 | |
|     MZ_FREE(out_buf.m_pBuf);
 | |
|     return NULL;
 | |
|   }
 | |
|   // write real header
 | |
|   *pLen_out = out_buf.m_size - 41;
 | |
|   {
 | |
|     static const mz_uint8 chans[] = {0x00, 0x00, 0x04, 0x02, 0x06};
 | |
|     mz_uint8 pnghdr[41] = {0x89,
 | |
|                            0x50,
 | |
|                            0x4e,
 | |
|                            0x47,
 | |
|                            0x0d,
 | |
|                            0x0a,
 | |
|                            0x1a,
 | |
|                            0x0a,
 | |
|                            0x00,
 | |
|                            0x00,
 | |
|                            0x00,
 | |
|                            0x0d,
 | |
|                            0x49,
 | |
|                            0x48,
 | |
|                            0x44,
 | |
|                            0x52,
 | |
|                            0,
 | |
|                            0,
 | |
|                            (mz_uint8)(w >> 8),
 | |
|                            (mz_uint8)w,
 | |
|                            0,
 | |
|                            0,
 | |
|                            (mz_uint8)(h >> 8),
 | |
|                            (mz_uint8)h,
 | |
|                            8,
 | |
|                            chans[num_chans],
 | |
|                            0,
 | |
|                            0,
 | |
|                            0,
 | |
|                            0,
 | |
|                            0,
 | |
|                            0,
 | |
|                            0,
 | |
|                            (mz_uint8)(*pLen_out >> 24),
 | |
|                            (mz_uint8)(*pLen_out >> 16),
 | |
|                            (mz_uint8)(*pLen_out >> 8),
 | |
|                            (mz_uint8)*pLen_out,
 | |
|                            0x49,
 | |
|                            0x44,
 | |
|                            0x41,
 | |
|                            0x54};
 | |
|     c = (mz_uint32)mz_crc32(MZ_CRC32_INIT, pnghdr + 12, 17);
 | |
|     for (i = 0; i < 4; ++i, c <<= 8)
 | |
|       ((mz_uint8 *)(pnghdr + 29))[i] = (mz_uint8)(c >> 24);
 | |
|     memcpy(out_buf.m_pBuf, pnghdr, 41);
 | |
|   }
 | |
|   // write footer (IDAT CRC-32, followed by IEND chunk)
 | |
|   if (!tdefl_output_buffer_putter(
 | |
|           "\0\0\0\0\0\0\0\0\x49\x45\x4e\x44\xae\x42\x60\x82", 16, &out_buf)) {
 | |
|     *pLen_out = 0;
 | |
|     MZ_FREE(pComp);
 | |
|     MZ_FREE(out_buf.m_pBuf);
 | |
|     return NULL;
 | |
|   }
 | |
|   c = (mz_uint32)mz_crc32(MZ_CRC32_INIT, out_buf.m_pBuf + 41 - 4,
 | |
|                           *pLen_out + 4);
 | |
|   for (i = 0; i < 4; ++i, c <<= 8)
 | |
|     (out_buf.m_pBuf + out_buf.m_size - 16)[i] = (mz_uint8)(c >> 24);
 | |
|   // compute final size of file, grab compressed data buffer and return
 | |
|   *pLen_out += 57;
 | |
|   MZ_FREE(pComp);
 | |
|   return out_buf.m_pBuf;
 | |
| }
 | |
| void *tdefl_write_image_to_png_file_in_memory(const void *pImage, int w, int h,
 | |
|                                               int num_chans, size_t *pLen_out) {
 | |
|   // Level 6 corresponds to TDEFL_DEFAULT_MAX_PROBES or MZ_DEFAULT_LEVEL (but we
 | |
|   // can't depend on MZ_DEFAULT_LEVEL being available in case the zlib API's
 | |
|   // where #defined out)
 | |
|   return tdefl_write_image_to_png_file_in_memory_ex(pImage, w, h, num_chans,
 | |
|                                                     pLen_out, 6, MZ_FALSE);
 | |
| }
 | |
| 
 | |
| // ------------------- .ZIP archive reading
 | |
| 
 | |
| #ifndef MINIZ_NO_ARCHIVE_APIS
 | |
| #error "No arvhive APIs"
 | |
| 
 | |
| #ifdef MINIZ_NO_STDIO
 | |
| #define MZ_FILE void *
 | |
| #else
 | |
| #include <stdio.h>
 | |
| #include <sys/stat.h>
 | |
| 
 | |
| #if defined(_MSC_VER) || defined(__MINGW64__)
 | |
| static FILE *mz_fopen(const char *pFilename, const char *pMode) {
 | |
|   FILE *pFile = NULL;
 | |
|   fopen_s(&pFile, pFilename, pMode);
 | |
|   return pFile;
 | |
| }
 | |
| static FILE *mz_freopen(const char *pPath, const char *pMode, FILE *pStream) {
 | |
|   FILE *pFile = NULL;
 | |
|   if (freopen_s(&pFile, pPath, pMode, pStream)) return NULL;
 | |
|   return pFile;
 | |
| }
 | |
| #ifndef MINIZ_NO_TIME
 | |
| #include <sys/utime.h>
 | |
| #endif
 | |
| #define MZ_FILE FILE
 | |
| #define MZ_FOPEN mz_fopen
 | |
| #define MZ_FCLOSE fclose
 | |
| #define MZ_FREAD fread
 | |
| #define MZ_FWRITE fwrite
 | |
| #define MZ_FTELL64 _ftelli64
 | |
| #define MZ_FSEEK64 _fseeki64
 | |
| #define MZ_FILE_STAT_STRUCT _stat
 | |
| #define MZ_FILE_STAT _stat
 | |
| #define MZ_FFLUSH fflush
 | |
| #define MZ_FREOPEN mz_freopen
 | |
| #define MZ_DELETE_FILE remove
 | |
| #elif defined(__MINGW32__)
 | |
| #ifndef MINIZ_NO_TIME
 | |
| #include <sys/utime.h>
 | |
| #endif
 | |
| #define MZ_FILE FILE
 | |
| #define MZ_FOPEN(f, m) fopen(f, m)
 | |
| #define MZ_FCLOSE fclose
 | |
| #define MZ_FREAD fread
 | |
| #define MZ_FWRITE fwrite
 | |
| #define MZ_FTELL64 ftello64
 | |
| #define MZ_FSEEK64 fseeko64
 | |
| #define MZ_FILE_STAT_STRUCT _stat
 | |
| #define MZ_FILE_STAT _stat
 | |
| #define MZ_FFLUSH fflush
 | |
| #define MZ_FREOPEN(f, m, s) freopen(f, m, s)
 | |
| #define MZ_DELETE_FILE remove
 | |
| #elif defined(__TINYC__)
 | |
| #ifndef MINIZ_NO_TIME
 | |
| #include <sys/utime.h>
 | |
| #endif
 | |
| #define MZ_FILE FILE
 | |
| #define MZ_FOPEN(f, m) fopen(f, m)
 | |
| #define MZ_FCLOSE fclose
 | |
| #define MZ_FREAD fread
 | |
| #define MZ_FWRITE fwrite
 | |
| #define MZ_FTELL64 ftell
 | |
| #define MZ_FSEEK64 fseek
 | |
| #define MZ_FILE_STAT_STRUCT stat
 | |
| #define MZ_FILE_STAT stat
 | |
| #define MZ_FFLUSH fflush
 | |
| #define MZ_FREOPEN(f, m, s) freopen(f, m, s)
 | |
| #define MZ_DELETE_FILE remove
 | |
| #elif defined(__GNUC__) && defined(_LARGEFILE64_SOURCE) && _LARGEFILE64_SOURCE
 | |
| #ifndef MINIZ_NO_TIME
 | |
| #include <utime.h>
 | |
| #endif
 | |
| #define MZ_FILE FILE
 | |
| #define MZ_FOPEN(f, m) fopen64(f, m)
 | |
| #define MZ_FCLOSE fclose
 | |
| #define MZ_FREAD fread
 | |
| #define MZ_FWRITE fwrite
 | |
| #define MZ_FTELL64 ftello64
 | |
| #define MZ_FSEEK64 fseeko64
 | |
| #define MZ_FILE_STAT_STRUCT stat64
 | |
| #define MZ_FILE_STAT stat64
 | |
| #define MZ_FFLUSH fflush
 | |
| #define MZ_FREOPEN(p, m, s) freopen64(p, m, s)
 | |
| #define MZ_DELETE_FILE remove
 | |
| #else
 | |
| #ifndef MINIZ_NO_TIME
 | |
| #include <utime.h>
 | |
| #endif
 | |
| #define MZ_FILE FILE
 | |
| #define MZ_FOPEN(f, m) fopen(f, m)
 | |
| #define MZ_FCLOSE fclose
 | |
| #define MZ_FREAD fread
 | |
| #define MZ_FWRITE fwrite
 | |
| #define MZ_FTELL64 ftello
 | |
| #define MZ_FSEEK64 fseeko
 | |
| #define MZ_FILE_STAT_STRUCT stat
 | |
| #define MZ_FILE_STAT stat
 | |
| #define MZ_FFLUSH fflush
 | |
| #define MZ_FREOPEN(f, m, s) freopen(f, m, s)
 | |
| #define MZ_DELETE_FILE remove
 | |
| #endif  // #ifdef _MSC_VER
 | |
| #endif  // #ifdef MINIZ_NO_STDIO
 | |
| 
 | |
| #define MZ_TOLOWER(c) ((((c) >= 'A') && ((c) <= 'Z')) ? ((c) - 'A' + 'a') : (c))
 | |
| 
 | |
| // Various ZIP archive enums. To completely avoid cross platform compiler
 | |
| // alignment and platform endian issues, miniz.c doesn't use structs for any of
 | |
| // this stuff.
 | |
| enum {
 | |
|   // ZIP archive identifiers and record sizes
 | |
|   MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIG = 0x06054b50,
 | |
|   MZ_ZIP_CENTRAL_DIR_HEADER_SIG = 0x02014b50,
 | |
|   MZ_ZIP_LOCAL_DIR_HEADER_SIG = 0x04034b50,
 | |
|   MZ_ZIP_LOCAL_DIR_HEADER_SIZE = 30,
 | |
|   MZ_ZIP_CENTRAL_DIR_HEADER_SIZE = 46,
 | |
|   MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE = 22,
 | |
|   // Central directory header record offsets
 | |
|   MZ_ZIP_CDH_SIG_OFS = 0,
 | |
|   MZ_ZIP_CDH_VERSION_MADE_BY_OFS = 4,
 | |
|   MZ_ZIP_CDH_VERSION_NEEDED_OFS = 6,
 | |
|   MZ_ZIP_CDH_BIT_FLAG_OFS = 8,
 | |
|   MZ_ZIP_CDH_METHOD_OFS = 10,
 | |
|   MZ_ZIP_CDH_FILE_TIME_OFS = 12,
 | |
|   MZ_ZIP_CDH_FILE_DATE_OFS = 14,
 | |
|   MZ_ZIP_CDH_CRC32_OFS = 16,
 | |
|   MZ_ZIP_CDH_COMPRESSED_SIZE_OFS = 20,
 | |
|   MZ_ZIP_CDH_DECOMPRESSED_SIZE_OFS = 24,
 | |
|   MZ_ZIP_CDH_FILENAME_LEN_OFS = 28,
 | |
|   MZ_ZIP_CDH_EXTRA_LEN_OFS = 30,
 | |
|   MZ_ZIP_CDH_COMMENT_LEN_OFS = 32,
 | |
|   MZ_ZIP_CDH_DISK_START_OFS = 34,
 | |
|   MZ_ZIP_CDH_INTERNAL_ATTR_OFS = 36,
 | |
|   MZ_ZIP_CDH_EXTERNAL_ATTR_OFS = 38,
 | |
|   MZ_ZIP_CDH_LOCAL_HEADER_OFS = 42,
 | |
|   // Local directory header offsets
 | |
|   MZ_ZIP_LDH_SIG_OFS = 0,
 | |
|   MZ_ZIP_LDH_VERSION_NEEDED_OFS = 4,
 | |
|   MZ_ZIP_LDH_BIT_FLAG_OFS = 6,
 | |
|   MZ_ZIP_LDH_METHOD_OFS = 8,
 | |
|   MZ_ZIP_LDH_FILE_TIME_OFS = 10,
 | |
|   MZ_ZIP_LDH_FILE_DATE_OFS = 12,
 | |
|   MZ_ZIP_LDH_CRC32_OFS = 14,
 | |
|   MZ_ZIP_LDH_COMPRESSED_SIZE_OFS = 18,
 | |
|   MZ_ZIP_LDH_DECOMPRESSED_SIZE_OFS = 22,
 | |
|   MZ_ZIP_LDH_FILENAME_LEN_OFS = 26,
 | |
|   MZ_ZIP_LDH_EXTRA_LEN_OFS = 28,
 | |
|   // End of central directory offsets
 | |
|   MZ_ZIP_ECDH_SIG_OFS = 0,
 | |
|   MZ_ZIP_ECDH_NUM_THIS_DISK_OFS = 4,
 | |
|   MZ_ZIP_ECDH_NUM_DISK_CDIR_OFS = 6,
 | |
|   MZ_ZIP_ECDH_CDIR_NUM_ENTRIES_ON_DISK_OFS = 8,
 | |
|   MZ_ZIP_ECDH_CDIR_TOTAL_ENTRIES_OFS = 10,
 | |
|   MZ_ZIP_ECDH_CDIR_SIZE_OFS = 12,
 | |
|   MZ_ZIP_ECDH_CDIR_OFS_OFS = 16,
 | |
|   MZ_ZIP_ECDH_COMMENT_SIZE_OFS = 20,
 | |
| };
 | |
| 
 | |
| typedef struct {
 | |
|   void *m_p;
 | |
|   size_t m_size, m_capacity;
 | |
|   mz_uint m_element_size;
 | |
| } mz_zip_array;
 | |
| 
 | |
| struct mz_zip_internal_state_tag {
 | |
|   mz_zip_array m_central_dir;
 | |
|   mz_zip_array m_central_dir_offsets;
 | |
|   mz_zip_array m_sorted_central_dir_offsets;
 | |
|   MZ_FILE *m_pFile;
 | |
|   void *m_pMem;
 | |
|   size_t m_mem_size;
 | |
|   size_t m_mem_capacity;
 | |
| };
 | |
| 
 | |
| #define MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(array_ptr, element_size) \
 | |
|   (array_ptr)->m_element_size = element_size
 | |
| #define MZ_ZIP_ARRAY_ELEMENT(array_ptr, element_type, index) \
 | |
|   ((element_type *)((array_ptr)->m_p))[index]
 | |
| 
 | |
| static MZ_FORCEINLINE void mz_zip_array_clear(mz_zip_archive *pZip,
 | |
|                                               mz_zip_array *pArray) {
 | |
|   pZip->m_pFree(pZip->m_pAlloc_opaque, pArray->m_p);
 | |
|   memset(pArray, 0, sizeof(mz_zip_array));
 | |
| }
 | |
| 
 | |
| static mz_bool mz_zip_array_ensure_capacity(mz_zip_archive *pZip,
 | |
|                                             mz_zip_array *pArray,
 | |
|                                             size_t min_new_capacity,
 | |
|                                             mz_uint growing) {
 | |
|   void *pNew_p;
 | |
|   size_t new_capacity = min_new_capacity;
 | |
|   MZ_ASSERT(pArray->m_element_size);
 | |
|   if (pArray->m_capacity >= min_new_capacity) return MZ_TRUE;
 | |
|   if (growing) {
 | |
|     new_capacity = MZ_MAX(1, pArray->m_capacity);
 | |
|     while (new_capacity < min_new_capacity) new_capacity *= 2;
 | |
|   }
 | |
|   if (NULL == (pNew_p = pZip->m_pRealloc(pZip->m_pAlloc_opaque, pArray->m_p,
 | |
|                                          pArray->m_element_size, new_capacity)))
 | |
|     return MZ_FALSE;
 | |
|   pArray->m_p = pNew_p;
 | |
|   pArray->m_capacity = new_capacity;
 | |
|   return MZ_TRUE;
 | |
| }
 | |
| 
 | |
| static MZ_FORCEINLINE mz_bool mz_zip_array_reserve(mz_zip_archive *pZip,
 | |
|                                                    mz_zip_array *pArray,
 | |
|                                                    size_t new_capacity,
 | |
|                                                    mz_uint growing) {
 | |
|   if (new_capacity > pArray->m_capacity) {
 | |
|     if (!mz_zip_array_ensure_capacity(pZip, pArray, new_capacity, growing))
 | |
|       return MZ_FALSE;
 | |
|   }
 | |
|   return MZ_TRUE;
 | |
| }
 | |
| 
 | |
| static MZ_FORCEINLINE mz_bool mz_zip_array_resize(mz_zip_archive *pZip,
 | |
|                                                   mz_zip_array *pArray,
 | |
|                                                   size_t new_size,
 | |
|                                                   mz_uint growing) {
 | |
|   if (new_size > pArray->m_capacity) {
 | |
|     if (!mz_zip_array_ensure_capacity(pZip, pArray, new_size, growing))
 | |
|       return MZ_FALSE;
 | |
|   }
 | |
|   pArray->m_size = new_size;
 | |
|   return MZ_TRUE;
 | |
| }
 | |
| 
 | |
| static MZ_FORCEINLINE mz_bool mz_zip_array_ensure_room(mz_zip_archive *pZip,
 | |
|                                                        mz_zip_array *pArray,
 | |
|                                                        size_t n) {
 | |
|   return mz_zip_array_reserve(pZip, pArray, pArray->m_size + n, MZ_TRUE);
 | |
| }
 | |
| 
 | |
| static MZ_FORCEINLINE mz_bool mz_zip_array_push_back(mz_zip_archive *pZip,
 | |
|                                                      mz_zip_array *pArray,
 | |
|                                                      const void *pElements,
 | |
|                                                      size_t n) {
 | |
|   size_t orig_size = pArray->m_size;
 | |
|   if (!mz_zip_array_resize(pZip, pArray, orig_size + n, MZ_TRUE))
 | |
|     return MZ_FALSE;
 | |
|   memcpy((mz_uint8 *)pArray->m_p + orig_size * pArray->m_element_size,
 | |
|          pElements, n * pArray->m_element_size);
 | |
|   return MZ_TRUE;
 | |
| }
 | |
| 
 | |
| #ifndef MINIZ_NO_TIME
 | |
| static time_t mz_zip_dos_to_time_t(int dos_time, int dos_date) {
 | |
|   struct tm tm;
 | |
|   memset(&tm, 0, sizeof(tm));
 | |
|   tm.tm_isdst = -1;
 | |
|   tm.tm_year = ((dos_date >> 9) & 127) + 1980 - 1900;
 | |
|   tm.tm_mon = ((dos_date >> 5) & 15) - 1;
 | |
|   tm.tm_mday = dos_date & 31;
 | |
|   tm.tm_hour = (dos_time >> 11) & 31;
 | |
|   tm.tm_min = (dos_time >> 5) & 63;
 | |
|   tm.tm_sec = (dos_time << 1) & 62;
 | |
|   return mktime(&tm);
 | |
| }
 | |
| 
 | |
| static void mz_zip_time_to_dos_time(time_t time, mz_uint16 *pDOS_time,
 | |
|                                     mz_uint16 *pDOS_date) {
 | |
| #ifdef _MSC_VER
 | |
|   struct tm tm_struct;
 | |
|   struct tm *tm = &tm_struct;
 | |
|   errno_t err = localtime_s(tm, &time);
 | |
|   if (err) {
 | |
|     *pDOS_date = 0;
 | |
|     *pDOS_time = 0;
 | |
|     return;
 | |
|   }
 | |
| #else
 | |
|   struct tm *tm = localtime(&time);
 | |
| #endif
 | |
|   *pDOS_time = (mz_uint16)(((tm->tm_hour) << 11) + ((tm->tm_min) << 5) +
 | |
|                            ((tm->tm_sec) >> 1));
 | |
|   *pDOS_date = (mz_uint16)(((tm->tm_year + 1900 - 1980) << 9) +
 | |
|                            ((tm->tm_mon + 1) << 5) + tm->tm_mday);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef MINIZ_NO_STDIO
 | |
| static mz_bool mz_zip_get_file_modified_time(const char *pFilename,
 | |
|                                              mz_uint16 *pDOS_time,
 | |
|                                              mz_uint16 *pDOS_date) {
 | |
| #ifdef MINIZ_NO_TIME
 | |
|   (void)pFilename;
 | |
|   *pDOS_date = *pDOS_time = 0;
 | |
| #else
 | |
|   struct MZ_FILE_STAT_STRUCT file_stat;
 | |
|   // On Linux with x86 glibc, this call will fail on large files (>= 0x80000000
 | |
|   // bytes) unless you compiled with _LARGEFILE64_SOURCE. Argh.
 | |
|   if (MZ_FILE_STAT(pFilename, &file_stat) != 0) return MZ_FALSE;
 | |
|   mz_zip_time_to_dos_time(file_stat.st_mtime, pDOS_time, pDOS_date);
 | |
| #endif  // #ifdef MINIZ_NO_TIME
 | |
|   return MZ_TRUE;
 | |
| }
 | |
| 
 | |
| #ifndef MINIZ_NO_TIME
 | |
| static mz_bool mz_zip_set_file_times(const char *pFilename, time_t access_time,
 | |
|                                      time_t modified_time) {
 | |
|   struct utimbuf t;
 | |
|   t.actime = access_time;
 | |
|   t.modtime = modified_time;
 | |
|   return !utime(pFilename, &t);
 | |
| }
 | |
| #endif  // #ifndef MINIZ_NO_TIME
 | |
| #endif  // #ifndef MINIZ_NO_STDIO
 | |
| 
 | |
| static mz_bool mz_zip_reader_init_internal(mz_zip_archive *pZip,
 | |
|                                            mz_uint32 flags) {
 | |
|   (void)flags;
 | |
|   if ((!pZip) || (pZip->m_pState) || (pZip->m_zip_mode != MZ_ZIP_MODE_INVALID))
 | |
|     return MZ_FALSE;
 | |
| 
 | |
|   if (!pZip->m_pAlloc) pZip->m_pAlloc = def_alloc_func;
 | |
|   if (!pZip->m_pFree) pZip->m_pFree = def_free_func;
 | |
|   if (!pZip->m_pRealloc) pZip->m_pRealloc = def_realloc_func;
 | |
| 
 | |
|   pZip->m_zip_mode = MZ_ZIP_MODE_READING;
 | |
|   pZip->m_archive_size = 0;
 | |
|   pZip->m_central_directory_file_ofs = 0;
 | |
|   pZip->m_total_files = 0;
 | |
| 
 | |
|   if (NULL == (pZip->m_pState = (mz_zip_internal_state *)pZip->m_pAlloc(
 | |
|                    pZip->m_pAlloc_opaque, 1, sizeof(mz_zip_internal_state))))
 | |
|     return MZ_FALSE;
 | |
|   memset(pZip->m_pState, 0, sizeof(mz_zip_internal_state));
 | |
|   MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(&pZip->m_pState->m_central_dir,
 | |
|                                 sizeof(mz_uint8));
 | |
|   MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(&pZip->m_pState->m_central_dir_offsets,
 | |
|                                 sizeof(mz_uint32));
 | |
|   MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(&pZip->m_pState->m_sorted_central_dir_offsets,
 | |
|                                 sizeof(mz_uint32));
 | |
|   return MZ_TRUE;
 | |
| }
 | |
| 
 | |
| static MZ_FORCEINLINE mz_bool
 | |
| mz_zip_reader_filename_less(const mz_zip_array *pCentral_dir_array,
 | |
|                             const mz_zip_array *pCentral_dir_offsets,
 | |
|                             mz_uint l_index, mz_uint r_index) {
 | |
|   const mz_uint8 *pL = &MZ_ZIP_ARRAY_ELEMENT(
 | |
|                      pCentral_dir_array, mz_uint8,
 | |
|                      MZ_ZIP_ARRAY_ELEMENT(pCentral_dir_offsets, mz_uint32,
 | |
|                                           l_index)),
 | |
|                  *pE;
 | |
|   const mz_uint8 *pR = &MZ_ZIP_ARRAY_ELEMENT(
 | |
|       pCentral_dir_array, mz_uint8,
 | |
|       MZ_ZIP_ARRAY_ELEMENT(pCentral_dir_offsets, mz_uint32, r_index));
 | |
|   mz_uint l_len = MZ_READ_LE16(pL + MZ_ZIP_CDH_FILENAME_LEN_OFS),
 | |
|           r_len = MZ_READ_LE16(pR + MZ_ZIP_CDH_FILENAME_LEN_OFS);
 | |
|   mz_uint8 l = 0, r = 0;
 | |
|   pL += MZ_ZIP_CENTRAL_DIR_HEADER_SIZE;
 | |
|   pR += MZ_ZIP_CENTRAL_DIR_HEADER_SIZE;
 | |
|   pE = pL + MZ_MIN(l_len, r_len);
 | |
|   while (pL < pE) {
 | |
|     if ((l = MZ_TOLOWER(*pL)) != (r = MZ_TOLOWER(*pR))) break;
 | |
|     pL++;
 | |
|     pR++;
 | |
|   }
 | |
|   return (pL == pE) ? (l_len < r_len) : (l < r);
 | |
| }
 | |
| 
 | |
| #define MZ_SWAP_UINT32(a, b) \
 | |
|   do {                       \
 | |
|     mz_uint32 t = a;         \
 | |
|     a = b;                   \
 | |
|     b = t;                   \
 | |
|   }                          \
 | |
|   MZ_MACRO_END
 | |
| 
 | |
| // Heap sort of lowercased filenames, used to help accelerate plain central
 | |
| // directory searches by mz_zip_reader_locate_file(). (Could also use qsort(),
 | |
| // but it could allocate memory.)
 | |
| static void mz_zip_reader_sort_central_dir_offsets_by_filename(
 | |
|     mz_zip_archive *pZip) {
 | |
|   mz_zip_internal_state *pState = pZip->m_pState;
 | |
|   const mz_zip_array *pCentral_dir_offsets = &pState->m_central_dir_offsets;
 | |
|   const mz_zip_array *pCentral_dir = &pState->m_central_dir;
 | |
|   mz_uint32 *pIndices = &MZ_ZIP_ARRAY_ELEMENT(
 | |
|       &pState->m_sorted_central_dir_offsets, mz_uint32, 0);
 | |
|   const int size = pZip->m_total_files;
 | |
|   int start = (size - 2) >> 1, end;
 | |
|   while (start >= 0) {
 | |
|     int child, root = start;
 | |
|     for (;;) {
 | |
|       if ((child = (root << 1) + 1) >= size) break;
 | |
|       child +=
 | |
|           (((child + 1) < size) &&
 | |
|            (mz_zip_reader_filename_less(pCentral_dir, pCentral_dir_offsets,
 | |
|                                         pIndices[child], pIndices[child + 1])));
 | |
|       if (!mz_zip_reader_filename_less(pCentral_dir, pCentral_dir_offsets,
 | |
|                                        pIndices[root], pIndices[child]))
 | |
|         break;
 | |
|       MZ_SWAP_UINT32(pIndices[root], pIndices[child]);
 | |
|       root = child;
 | |
|     }
 | |
|     start--;
 | |
|   }
 | |
| 
 | |
|   end = size - 1;
 | |
|   while (end > 0) {
 | |
|     int child, root = 0;
 | |
|     MZ_SWAP_UINT32(pIndices[end], pIndices[0]);
 | |
|     for (;;) {
 | |
|       if ((child = (root << 1) + 1) >= end) break;
 | |
|       child +=
 | |
|           (((child + 1) < end) &&
 | |
|            mz_zip_reader_filename_less(pCentral_dir, pCentral_dir_offsets,
 | |
|                                        pIndices[child], pIndices[child + 1]));
 | |
|       if (!mz_zip_reader_filename_less(pCentral_dir, pCentral_dir_offsets,
 | |
|                                        pIndices[root], pIndices[child]))
 | |
|         break;
 | |
|       MZ_SWAP_UINT32(pIndices[root], pIndices[child]);
 | |
|       root = child;
 | |
|     }
 | |
|     end--;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static mz_bool mz_zip_reader_read_central_dir(mz_zip_archive *pZip,
 | |
|                                               mz_uint32 flags) {
 | |
|   mz_uint cdir_size, num_this_disk, cdir_disk_index;
 | |
|   mz_uint64 cdir_ofs;
 | |
|   mz_int64 cur_file_ofs;
 | |
|   const mz_uint8 *p;
 | |
|   mz_uint32 buf_u32[4096 / sizeof(mz_uint32)];
 | |
|   mz_uint8 *pBuf = (mz_uint8 *)buf_u32;
 | |
|   mz_bool sort_central_dir =
 | |
|       ((flags & MZ_ZIP_FLAG_DO_NOT_SORT_CENTRAL_DIRECTORY) == 0);
 | |
|   // Basic sanity checks - reject files which are too small, and check the first
 | |
|   // 4 bytes of the file to make sure a local header is there.
 | |
|   if (pZip->m_archive_size < MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE)
 | |
|     return MZ_FALSE;
 | |
|   // Find the end of central directory record by scanning the file from the end
 | |
|   // towards the beginning.
 | |
|   cur_file_ofs =
 | |
|       MZ_MAX((mz_int64)pZip->m_archive_size - (mz_int64)sizeof(buf_u32), 0);
 | |
|   for (;;) {
 | |
|     int i,
 | |
|         n = (int)MZ_MIN(sizeof(buf_u32), pZip->m_archive_size - cur_file_ofs);
 | |
|     if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pBuf, n) != (mz_uint)n)
 | |
|       return MZ_FALSE;
 | |
|     for (i = n - 4; i >= 0; --i)
 | |
|       if (MZ_READ_LE32(pBuf + i) == MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIG) break;
 | |
|     if (i >= 0) {
 | |
|       cur_file_ofs += i;
 | |
|       break;
 | |
|     }
 | |
|     if ((!cur_file_ofs) || ((pZip->m_archive_size - cur_file_ofs) >=
 | |
|                             (0xFFFF + MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE)))
 | |
|       return MZ_FALSE;
 | |
|     cur_file_ofs = MZ_MAX(cur_file_ofs - (sizeof(buf_u32) - 3), 0);
 | |
|   }
 | |
|   // Read and verify the end of central directory record.
 | |
|   if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pBuf,
 | |
|                     MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE) !=
 | |
|       MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE)
 | |
|     return MZ_FALSE;
 | |
|   if ((MZ_READ_LE32(pBuf + MZ_ZIP_ECDH_SIG_OFS) !=
 | |
|        MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIG) ||
 | |
|       ((pZip->m_total_files =
 | |
|             MZ_READ_LE16(pBuf + MZ_ZIP_ECDH_CDIR_TOTAL_ENTRIES_OFS)) !=
 | |
|        MZ_READ_LE16(pBuf + MZ_ZIP_ECDH_CDIR_NUM_ENTRIES_ON_DISK_OFS)))
 | |
|     return MZ_FALSE;
 | |
| 
 | |
|   num_this_disk = MZ_READ_LE16(pBuf + MZ_ZIP_ECDH_NUM_THIS_DISK_OFS);
 | |
|   cdir_disk_index = MZ_READ_LE16(pBuf + MZ_ZIP_ECDH_NUM_DISK_CDIR_OFS);
 | |
|   if (((num_this_disk | cdir_disk_index) != 0) &&
 | |
|       ((num_this_disk != 1) || (cdir_disk_index != 1)))
 | |
|     return MZ_FALSE;
 | |
| 
 | |
|   if ((cdir_size = MZ_READ_LE32(pBuf + MZ_ZIP_ECDH_CDIR_SIZE_OFS)) <
 | |
|       pZip->m_total_files * MZ_ZIP_CENTRAL_DIR_HEADER_SIZE)
 | |
|     return MZ_FALSE;
 | |
| 
 | |
|   cdir_ofs = MZ_READ_LE32(pBuf + MZ_ZIP_ECDH_CDIR_OFS_OFS);
 | |
|   if ((cdir_ofs + (mz_uint64)cdir_size) > pZip->m_archive_size) return MZ_FALSE;
 | |
| 
 | |
|   pZip->m_central_directory_file_ofs = cdir_ofs;
 | |
| 
 | |
|   if (pZip->m_total_files) {
 | |
|     mz_uint i, n;
 | |
| 
 | |
|     // Read the entire central directory into a heap block, and allocate another
 | |
|     // heap block to hold the unsorted central dir file record offsets, and
 | |
|     // another to hold the sorted indices.
 | |
|     if ((!mz_zip_array_resize(pZip, &pZip->m_pState->m_central_dir, cdir_size,
 | |
|                               MZ_FALSE)) ||
 | |
|         (!mz_zip_array_resize(pZip, &pZip->m_pState->m_central_dir_offsets,
 | |
|                               pZip->m_total_files, MZ_FALSE)))
 | |
|       return MZ_FALSE;
 | |
| 
 | |
|     if (sort_central_dir) {
 | |
|       if (!mz_zip_array_resize(pZip,
 | |
|                                &pZip->m_pState->m_sorted_central_dir_offsets,
 | |
|                                pZip->m_total_files, MZ_FALSE))
 | |
|         return MZ_FALSE;
 | |
|     }
 | |
| 
 | |
|     if (pZip->m_pRead(pZip->m_pIO_opaque, cdir_ofs,
 | |
|                       pZip->m_pState->m_central_dir.m_p,
 | |
|                       cdir_size) != cdir_size)
 | |
|       return MZ_FALSE;
 | |
| 
 | |
|     // Now create an index into the central directory file records, do some
 | |
|     // basic sanity checking on each record, and check for zip64 entries (which
 | |
|     // are not yet supported).
 | |
|     p = (const mz_uint8 *)pZip->m_pState->m_central_dir.m_p;
 | |
|     for (n = cdir_size, i = 0; i < pZip->m_total_files; ++i) {
 | |
|       mz_uint total_header_size, comp_size, decomp_size, disk_index;
 | |
|       if ((n < MZ_ZIP_CENTRAL_DIR_HEADER_SIZE) ||
 | |
|           (MZ_READ_LE32(p) != MZ_ZIP_CENTRAL_DIR_HEADER_SIG))
 | |
|         return MZ_FALSE;
 | |
|       MZ_ZIP_ARRAY_ELEMENT(&pZip->m_pState->m_central_dir_offsets, mz_uint32,
 | |
|                            i) =
 | |
|           (mz_uint32)(p - (const mz_uint8 *)pZip->m_pState->m_central_dir.m_p);
 | |
|       if (sort_central_dir)
 | |
|         MZ_ZIP_ARRAY_ELEMENT(&pZip->m_pState->m_sorted_central_dir_offsets,
 | |
|                              mz_uint32, i) = i;
 | |
|       comp_size = MZ_READ_LE32(p + MZ_ZIP_CDH_COMPRESSED_SIZE_OFS);
 | |
|       decomp_size = MZ_READ_LE32(p + MZ_ZIP_CDH_DECOMPRESSED_SIZE_OFS);
 | |
|       if (((!MZ_READ_LE32(p + MZ_ZIP_CDH_METHOD_OFS)) &&
 | |
|            (decomp_size != comp_size)) ||
 | |
|           (decomp_size && !comp_size) || (decomp_size == 0xFFFFFFFF) ||
 | |
|           (comp_size == 0xFFFFFFFF))
 | |
|         return MZ_FALSE;
 | |
|       disk_index = MZ_READ_LE16(p + MZ_ZIP_CDH_DISK_START_OFS);
 | |
|       if ((disk_index != num_this_disk) && (disk_index != 1)) return MZ_FALSE;
 | |
|       if (((mz_uint64)MZ_READ_LE32(p + MZ_ZIP_CDH_LOCAL_HEADER_OFS) +
 | |
|            MZ_ZIP_LOCAL_DIR_HEADER_SIZE + comp_size) > pZip->m_archive_size)
 | |
|         return MZ_FALSE;
 | |
|       if ((total_header_size = MZ_ZIP_CENTRAL_DIR_HEADER_SIZE +
 | |
|                                MZ_READ_LE16(p + MZ_ZIP_CDH_FILENAME_LEN_OFS) +
 | |
|                                MZ_READ_LE16(p + MZ_ZIP_CDH_EXTRA_LEN_OFS) +
 | |
|                                MZ_READ_LE16(p + MZ_ZIP_CDH_COMMENT_LEN_OFS)) >
 | |
|           n)
 | |
|         return MZ_FALSE;
 | |
|       n -= total_header_size;
 | |
|       p += total_header_size;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (sort_central_dir)
 | |
|     mz_zip_reader_sort_central_dir_offsets_by_filename(pZip);
 | |
| 
 | |
|   return MZ_TRUE;
 | |
| }
 | |
| 
 | |
| mz_bool mz_zip_reader_init(mz_zip_archive *pZip, mz_uint64 size,
 | |
|                            mz_uint32 flags) {
 | |
|   if ((!pZip) || (!pZip->m_pRead)) return MZ_FALSE;
 | |
|   if (!mz_zip_reader_init_internal(pZip, flags)) return MZ_FALSE;
 | |
|   pZip->m_archive_size = size;
 | |
|   if (!mz_zip_reader_read_central_dir(pZip, flags)) {
 | |
|     mz_zip_reader_end(pZip);
 | |
|     return MZ_FALSE;
 | |
|   }
 | |
|   return MZ_TRUE;
 | |
| }
 | |
| 
 | |
| static size_t mz_zip_mem_read_func(void *pOpaque, mz_uint64 file_ofs,
 | |
|                                    void *pBuf, size_t n) {
 | |
|   mz_zip_archive *pZip = (mz_zip_archive *)pOpaque;
 | |
|   size_t s = (file_ofs >= pZip->m_archive_size)
 | |
|                  ? 0
 | |
|                  : (size_t)MZ_MIN(pZip->m_archive_size - file_ofs, n);
 | |
|   memcpy(pBuf, (const mz_uint8 *)pZip->m_pState->m_pMem + file_ofs, s);
 | |
|   return s;
 | |
| }
 | |
| 
 | |
| mz_bool mz_zip_reader_init_mem(mz_zip_archive *pZip, const void *pMem,
 | |
|                                size_t size, mz_uint32 flags) {
 | |
|   if (!mz_zip_reader_init_internal(pZip, flags)) return MZ_FALSE;
 | |
|   pZip->m_archive_size = size;
 | |
|   pZip->m_pRead = mz_zip_mem_read_func;
 | |
|   pZip->m_pIO_opaque = pZip;
 | |
| #ifdef __cplusplus
 | |
|   pZip->m_pState->m_pMem = const_cast<void *>(pMem);
 | |
| #else
 | |
|   pZip->m_pState->m_pMem = (void *)pMem;
 | |
| #endif
 | |
|   pZip->m_pState->m_mem_size = size;
 | |
|   if (!mz_zip_reader_read_central_dir(pZip, flags)) {
 | |
|     mz_zip_reader_end(pZip);
 | |
|     return MZ_FALSE;
 | |
|   }
 | |
|   return MZ_TRUE;
 | |
| }
 | |
| 
 | |
| #ifndef MINIZ_NO_STDIO
 | |
| static size_t mz_zip_file_read_func(void *pOpaque, mz_uint64 file_ofs,
 | |
|                                     void *pBuf, size_t n) {
 | |
|   mz_zip_archive *pZip = (mz_zip_archive *)pOpaque;
 | |
|   mz_int64 cur_ofs = MZ_FTELL64(pZip->m_pState->m_pFile);
 | |
|   if (((mz_int64)file_ofs < 0) ||
 | |
|       (((cur_ofs != (mz_int64)file_ofs)) &&
 | |
|        (MZ_FSEEK64(pZip->m_pState->m_pFile, (mz_int64)file_ofs, SEEK_SET))))
 | |
|     return 0;
 | |
|   return MZ_FREAD(pBuf, 1, n, pZip->m_pState->m_pFile);
 | |
| }
 | |
| 
 | |
| mz_bool mz_zip_reader_init_file(mz_zip_archive *pZip, const char *pFilename,
 | |
|                                 mz_uint32 flags) {
 | |
|   mz_uint64 file_size;
 | |
|   MZ_FILE *pFile = MZ_FOPEN(pFilename, "rb");
 | |
|   if (!pFile) return MZ_FALSE;
 | |
|   if (MZ_FSEEK64(pFile, 0, SEEK_END)) {
 | |
|     MZ_FCLOSE(pFile);
 | |
|     return MZ_FALSE;
 | |
|   }
 | |
|   file_size = MZ_FTELL64(pFile);
 | |
|   if (!mz_zip_reader_init_internal(pZip, flags)) {
 | |
|     MZ_FCLOSE(pFile);
 | |
|     return MZ_FALSE;
 | |
|   }
 | |
|   pZip->m_pRead = mz_zip_file_read_func;
 | |
|   pZip->m_pIO_opaque = pZip;
 | |
|   pZip->m_pState->m_pFile = pFile;
 | |
|   pZip->m_archive_size = file_size;
 | |
|   if (!mz_zip_reader_read_central_dir(pZip, flags)) {
 | |
|     mz_zip_reader_end(pZip);
 | |
|     return MZ_FALSE;
 | |
|   }
 | |
|   return MZ_TRUE;
 | |
| }
 | |
| #endif  // #ifndef MINIZ_NO_STDIO
 | |
| 
 | |
| mz_uint mz_zip_reader_get_num_files(mz_zip_archive *pZip) {
 | |
|   return pZip ? pZip->m_total_files : 0;
 | |
| }
 | |
| 
 | |
| static MZ_FORCEINLINE const mz_uint8 *mz_zip_reader_get_cdh(
 | |
|     mz_zip_archive *pZip, mz_uint file_index) {
 | |
|   if ((!pZip) || (!pZip->m_pState) || (file_index >= pZip->m_total_files) ||
 | |
|       (pZip->m_zip_mode != MZ_ZIP_MODE_READING))
 | |
|     return NULL;
 | |
|   return &MZ_ZIP_ARRAY_ELEMENT(
 | |
|       &pZip->m_pState->m_central_dir, mz_uint8,
 | |
|       MZ_ZIP_ARRAY_ELEMENT(&pZip->m_pState->m_central_dir_offsets, mz_uint32,
 | |
|                            file_index));
 | |
| }
 | |
| 
 | |
| mz_bool mz_zip_reader_is_file_encrypted(mz_zip_archive *pZip,
 | |
|                                         mz_uint file_index) {
 | |
|   mz_uint m_bit_flag;
 | |
|   const mz_uint8 *p = mz_zip_reader_get_cdh(pZip, file_index);
 | |
|   if (!p) return MZ_FALSE;
 | |
|   m_bit_flag = MZ_READ_LE16(p + MZ_ZIP_CDH_BIT_FLAG_OFS);
 | |
|   return (m_bit_flag & 1);
 | |
| }
 | |
| 
 | |
| mz_bool mz_zip_reader_is_file_a_directory(mz_zip_archive *pZip,
 | |
|                                           mz_uint file_index) {
 | |
|   mz_uint filename_len, external_attr;
 | |
|   const mz_uint8 *p = mz_zip_reader_get_cdh(pZip, file_index);
 | |
|   if (!p) return MZ_FALSE;
 | |
| 
 | |
|   // First see if the filename ends with a '/' character.
 | |
|   filename_len = MZ_READ_LE16(p + MZ_ZIP_CDH_FILENAME_LEN_OFS);
 | |
|   if (filename_len) {
 | |
|     if (*(p + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE + filename_len - 1) == '/')
 | |
|       return MZ_TRUE;
 | |
|   }
 | |
| 
 | |
|   // Bugfix: This code was also checking if the internal attribute was non-zero,
 | |
|   // which wasn't correct.
 | |
|   // Most/all zip writers (hopefully) set DOS file/directory attributes in the
 | |
|   // low 16-bits, so check for the DOS directory flag and ignore the source OS
 | |
|   // ID in the created by field.
 | |
|   // FIXME: Remove this check? Is it necessary - we already check the filename.
 | |
|   external_attr = MZ_READ_LE32(p + MZ_ZIP_CDH_EXTERNAL_ATTR_OFS);
 | |
|   if ((external_attr & 0x10) != 0) return MZ_TRUE;
 | |
| 
 | |
|   return MZ_FALSE;
 | |
| }
 | |
| 
 | |
| mz_bool mz_zip_reader_file_stat(mz_zip_archive *pZip, mz_uint file_index,
 | |
|                                 mz_zip_archive_file_stat *pStat) {
 | |
|   mz_uint n;
 | |
|   const mz_uint8 *p = mz_zip_reader_get_cdh(pZip, file_index);
 | |
|   if ((!p) || (!pStat)) return MZ_FALSE;
 | |
| 
 | |
|   // Unpack the central directory record.
 | |
|   pStat->m_file_index = file_index;
 | |
|   pStat->m_central_dir_ofs = MZ_ZIP_ARRAY_ELEMENT(
 | |
|       &pZip->m_pState->m_central_dir_offsets, mz_uint32, file_index);
 | |
|   pStat->m_version_made_by = MZ_READ_LE16(p + MZ_ZIP_CDH_VERSION_MADE_BY_OFS);
 | |
|   pStat->m_version_needed = MZ_READ_LE16(p + MZ_ZIP_CDH_VERSION_NEEDED_OFS);
 | |
|   pStat->m_bit_flag = MZ_READ_LE16(p + MZ_ZIP_CDH_BIT_FLAG_OFS);
 | |
|   pStat->m_method = MZ_READ_LE16(p + MZ_ZIP_CDH_METHOD_OFS);
 | |
| #ifndef MINIZ_NO_TIME
 | |
|   pStat->m_time =
 | |
|       mz_zip_dos_to_time_t(MZ_READ_LE16(p + MZ_ZIP_CDH_FILE_TIME_OFS),
 | |
|                            MZ_READ_LE16(p + MZ_ZIP_CDH_FILE_DATE_OFS));
 | |
| #endif
 | |
|   pStat->m_crc32 = MZ_READ_LE32(p + MZ_ZIP_CDH_CRC32_OFS);
 | |
|   pStat->m_comp_size = MZ_READ_LE32(p + MZ_ZIP_CDH_COMPRESSED_SIZE_OFS);
 | |
|   pStat->m_uncomp_size = MZ_READ_LE32(p + MZ_ZIP_CDH_DECOMPRESSED_SIZE_OFS);
 | |
|   pStat->m_internal_attr = MZ_READ_LE16(p + MZ_ZIP_CDH_INTERNAL_ATTR_OFS);
 | |
|   pStat->m_external_attr = MZ_READ_LE32(p + MZ_ZIP_CDH_EXTERNAL_ATTR_OFS);
 | |
|   pStat->m_local_header_ofs = MZ_READ_LE32(p + MZ_ZIP_CDH_LOCAL_HEADER_OFS);
 | |
| 
 | |
|   // Copy as much of the filename and comment as possible.
 | |
|   n = MZ_READ_LE16(p + MZ_ZIP_CDH_FILENAME_LEN_OFS);
 | |
|   n = MZ_MIN(n, MZ_ZIP_MAX_ARCHIVE_FILENAME_SIZE - 1);
 | |
|   memcpy(pStat->m_filename, p + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE, n);
 | |
|   pStat->m_filename[n] = '\0';
 | |
| 
 | |
|   n = MZ_READ_LE16(p + MZ_ZIP_CDH_COMMENT_LEN_OFS);
 | |
|   n = MZ_MIN(n, MZ_ZIP_MAX_ARCHIVE_FILE_COMMENT_SIZE - 1);
 | |
|   pStat->m_comment_size = n;
 | |
|   memcpy(pStat->m_comment,
 | |
|          p + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE +
 | |
|              MZ_READ_LE16(p + MZ_ZIP_CDH_FILENAME_LEN_OFS) +
 | |
|              MZ_READ_LE16(p + MZ_ZIP_CDH_EXTRA_LEN_OFS),
 | |
|          n);
 | |
|   pStat->m_comment[n] = '\0';
 | |
| 
 | |
|   return MZ_TRUE;
 | |
| }
 | |
| 
 | |
| mz_uint mz_zip_reader_get_filename(mz_zip_archive *pZip, mz_uint file_index,
 | |
|                                    char *pFilename, mz_uint filename_buf_size) {
 | |
|   mz_uint n;
 | |
|   const mz_uint8 *p = mz_zip_reader_get_cdh(pZip, file_index);
 | |
|   if (!p) {
 | |
|     if (filename_buf_size) pFilename[0] = '\0';
 | |
|     return 0;
 | |
|   }
 | |
|   n = MZ_READ_LE16(p + MZ_ZIP_CDH_FILENAME_LEN_OFS);
 | |
|   if (filename_buf_size) {
 | |
|     n = MZ_MIN(n, filename_buf_size - 1);
 | |
|     memcpy(pFilename, p + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE, n);
 | |
|     pFilename[n] = '\0';
 | |
|   }
 | |
|   return n + 1;
 | |
| }
 | |
| 
 | |
| static MZ_FORCEINLINE mz_bool mz_zip_reader_string_equal(const char *pA,
 | |
|                                                          const char *pB,
 | |
|                                                          mz_uint len,
 | |
|                                                          mz_uint flags) {
 | |
|   mz_uint i;
 | |
|   if (flags & MZ_ZIP_FLAG_CASE_SENSITIVE) return 0 == memcmp(pA, pB, len);
 | |
|   for (i = 0; i < len; ++i)
 | |
|     if (MZ_TOLOWER(pA[i]) != MZ_TOLOWER(pB[i])) return MZ_FALSE;
 | |
|   return MZ_TRUE;
 | |
| }
 | |
| 
 | |
| static MZ_FORCEINLINE int mz_zip_reader_filename_compare(
 | |
|     const mz_zip_array *pCentral_dir_array,
 | |
|     const mz_zip_array *pCentral_dir_offsets, mz_uint l_index, const char *pR,
 | |
|     mz_uint r_len) {
 | |
|   const mz_uint8 *pL = &MZ_ZIP_ARRAY_ELEMENT(
 | |
|                      pCentral_dir_array, mz_uint8,
 | |
|                      MZ_ZIP_ARRAY_ELEMENT(pCentral_dir_offsets, mz_uint32,
 | |
|                                           l_index)),
 | |
|                  *pE;
 | |
|   mz_uint l_len = MZ_READ_LE16(pL + MZ_ZIP_CDH_FILENAME_LEN_OFS);
 | |
|   mz_uint8 l = 0, r = 0;
 | |
|   pL += MZ_ZIP_CENTRAL_DIR_HEADER_SIZE;
 | |
|   pE = pL + MZ_MIN(l_len, r_len);
 | |
|   while (pL < pE) {
 | |
|     if ((l = MZ_TOLOWER(*pL)) != (r = MZ_TOLOWER(*pR))) break;
 | |
|     pL++;
 | |
|     pR++;
 | |
|   }
 | |
|   return (pL == pE) ? (int)(l_len - r_len) : (l - r);
 | |
| }
 | |
| 
 | |
| static int mz_zip_reader_locate_file_binary_search(mz_zip_archive *pZip,
 | |
|                                                    const char *pFilename) {
 | |
|   mz_zip_internal_state *pState = pZip->m_pState;
 | |
|   const mz_zip_array *pCentral_dir_offsets = &pState->m_central_dir_offsets;
 | |
|   const mz_zip_array *pCentral_dir = &pState->m_central_dir;
 | |
|   mz_uint32 *pIndices = &MZ_ZIP_ARRAY_ELEMENT(
 | |
|       &pState->m_sorted_central_dir_offsets, mz_uint32, 0);
 | |
|   const int size = pZip->m_total_files;
 | |
|   const mz_uint filename_len = (mz_uint)strlen(pFilename);
 | |
|   int l = 0, h = size - 1;
 | |
|   while (l <= h) {
 | |
|     int m = (l + h) >> 1, file_index = pIndices[m],
 | |
|         comp =
 | |
|             mz_zip_reader_filename_compare(pCentral_dir, pCentral_dir_offsets,
 | |
|                                            file_index, pFilename, filename_len);
 | |
|     if (!comp)
 | |
|       return file_index;
 | |
|     else if (comp < 0)
 | |
|       l = m + 1;
 | |
|     else
 | |
|       h = m - 1;
 | |
|   }
 | |
|   return -1;
 | |
| }
 | |
| 
 | |
| int mz_zip_reader_locate_file(mz_zip_archive *pZip, const char *pName,
 | |
|                               const char *pComment, mz_uint flags) {
 | |
|   mz_uint file_index;
 | |
|   size_t name_len, comment_len;
 | |
|   if ((!pZip) || (!pZip->m_pState) || (!pName) ||
 | |
|       (pZip->m_zip_mode != MZ_ZIP_MODE_READING))
 | |
|     return -1;
 | |
|   if (((flags & (MZ_ZIP_FLAG_IGNORE_PATH | MZ_ZIP_FLAG_CASE_SENSITIVE)) == 0) &&
 | |
|       (!pComment) && (pZip->m_pState->m_sorted_central_dir_offsets.m_size))
 | |
|     return mz_zip_reader_locate_file_binary_search(pZip, pName);
 | |
|   name_len = strlen(pName);
 | |
|   if (name_len > 0xFFFF) return -1;
 | |
|   comment_len = pComment ? strlen(pComment) : 0;
 | |
|   if (comment_len > 0xFFFF) return -1;
 | |
|   for (file_index = 0; file_index < pZip->m_total_files; file_index++) {
 | |
|     const mz_uint8 *pHeader = &MZ_ZIP_ARRAY_ELEMENT(
 | |
|         &pZip->m_pState->m_central_dir, mz_uint8,
 | |
|         MZ_ZIP_ARRAY_ELEMENT(&pZip->m_pState->m_central_dir_offsets, mz_uint32,
 | |
|                              file_index));
 | |
|     mz_uint filename_len = MZ_READ_LE16(pHeader + MZ_ZIP_CDH_FILENAME_LEN_OFS);
 | |
|     const char *pFilename =
 | |
|         (const char *)pHeader + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE;
 | |
|     if (filename_len < name_len) continue;
 | |
|     if (comment_len) {
 | |
|       mz_uint file_extra_len = MZ_READ_LE16(pHeader + MZ_ZIP_CDH_EXTRA_LEN_OFS),
 | |
|               file_comment_len =
 | |
|                   MZ_READ_LE16(pHeader + MZ_ZIP_CDH_COMMENT_LEN_OFS);
 | |
|       const char *pFile_comment = pFilename + filename_len + file_extra_len;
 | |
|       if ((file_comment_len != comment_len) ||
 | |
|           (!mz_zip_reader_string_equal(pComment, pFile_comment,
 | |
|                                        file_comment_len, flags)))
 | |
|         continue;
 | |
|     }
 | |
|     if ((flags & MZ_ZIP_FLAG_IGNORE_PATH) && (filename_len)) {
 | |
|       int ofs = filename_len - 1;
 | |
|       do {
 | |
|         if ((pFilename[ofs] == '/') || (pFilename[ofs] == '\\') ||
 | |
|             (pFilename[ofs] == ':'))
 | |
|           break;
 | |
|       } while (--ofs >= 0);
 | |
|       ofs++;
 | |
|       pFilename += ofs;
 | |
|       filename_len -= ofs;
 | |
|     }
 | |
|     if ((filename_len == name_len) &&
 | |
|         (mz_zip_reader_string_equal(pName, pFilename, filename_len, flags)))
 | |
|       return file_index;
 | |
|   }
 | |
|   return -1;
 | |
| }
 | |
| 
 | |
| mz_bool mz_zip_reader_extract_to_mem_no_alloc(mz_zip_archive *pZip,
 | |
|                                               mz_uint file_index, void *pBuf,
 | |
|                                               size_t buf_size, mz_uint flags,
 | |
|                                               void *pUser_read_buf,
 | |
|                                               size_t user_read_buf_size) {
 | |
|   int status = TINFL_STATUS_DONE;
 | |
|   mz_uint64 needed_size, cur_file_ofs, comp_remaining,
 | |
|       out_buf_ofs = 0, read_buf_size, read_buf_ofs = 0, read_buf_avail;
 | |
|   mz_zip_archive_file_stat file_stat;
 | |
|   void *pRead_buf;
 | |
|   mz_uint32
 | |
|       local_header_u32[(MZ_ZIP_LOCAL_DIR_HEADER_SIZE + sizeof(mz_uint32) - 1) /
 | |
|                        sizeof(mz_uint32)];
 | |
|   mz_uint8 *pLocal_header = (mz_uint8 *)local_header_u32;
 | |
|   tinfl_decompressor inflator;
 | |
| 
 | |
|   if ((buf_size) && (!pBuf)) return MZ_FALSE;
 | |
| 
 | |
|   if (!mz_zip_reader_file_stat(pZip, file_index, &file_stat)) return MZ_FALSE;
 | |
| 
 | |
|   // Empty file, or a directory (but not always a directory - I've seen odd zips
 | |
|   // with directories that have compressed data which inflates to 0 bytes)
 | |
|   if (!file_stat.m_comp_size) return MZ_TRUE;
 | |
| 
 | |
|   // Entry is a subdirectory (I've seen old zips with dir entries which have
 | |
|   // compressed deflate data which inflates to 0 bytes, but these entries claim
 | |
|   // to uncompress to 512 bytes in the headers).
 | |
|   // I'm torn how to handle this case - should it fail instead?
 | |
|   if (mz_zip_reader_is_file_a_directory(pZip, file_index)) return MZ_TRUE;
 | |
| 
 | |
|   // Encryption and patch files are not supported.
 | |
|   if (file_stat.m_bit_flag & (1 | 32)) return MZ_FALSE;
 | |
| 
 | |
|   // This function only supports stored and deflate.
 | |
|   if ((!(flags & MZ_ZIP_FLAG_COMPRESSED_DATA)) && (file_stat.m_method != 0) &&
 | |
|       (file_stat.m_method != MZ_DEFLATED))
 | |
|     return MZ_FALSE;
 | |
| 
 | |
|   // Ensure supplied output buffer is large enough.
 | |
|   needed_size = (flags & MZ_ZIP_FLAG_COMPRESSED_DATA) ? file_stat.m_comp_size
 | |
|                                                       : file_stat.m_uncomp_size;
 | |
|   if (buf_size < needed_size) return MZ_FALSE;
 | |
| 
 | |
|   // Read and parse the local directory entry.
 | |
|   cur_file_ofs = file_stat.m_local_header_ofs;
 | |
|   if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pLocal_header,
 | |
|                     MZ_ZIP_LOCAL_DIR_HEADER_SIZE) !=
 | |
|       MZ_ZIP_LOCAL_DIR_HEADER_SIZE)
 | |
|     return MZ_FALSE;
 | |
|   if (MZ_READ_LE32(pLocal_header) != MZ_ZIP_LOCAL_DIR_HEADER_SIG)
 | |
|     return MZ_FALSE;
 | |
| 
 | |
|   cur_file_ofs += MZ_ZIP_LOCAL_DIR_HEADER_SIZE +
 | |
|                   MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_FILENAME_LEN_OFS) +
 | |
|                   MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_EXTRA_LEN_OFS);
 | |
|   if ((cur_file_ofs + file_stat.m_comp_size) > pZip->m_archive_size)
 | |
|     return MZ_FALSE;
 | |
| 
 | |
|   if ((flags & MZ_ZIP_FLAG_COMPRESSED_DATA) || (!file_stat.m_method)) {
 | |
|     // The file is stored or the caller has requested the compressed data.
 | |
|     if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pBuf,
 | |
|                       (size_t)needed_size) != needed_size)
 | |
|       return MZ_FALSE;
 | |
|     return ((flags & MZ_ZIP_FLAG_COMPRESSED_DATA) != 0) ||
 | |
|            (mz_crc32(MZ_CRC32_INIT, (const mz_uint8 *)pBuf,
 | |
|                      (size_t)file_stat.m_uncomp_size) == file_stat.m_crc32);
 | |
|   }
 | |
| 
 | |
|   // Decompress the file either directly from memory or from a file input
 | |
|   // buffer.
 | |
|   tinfl_init(&inflator);
 | |
| 
 | |
|   if (pZip->m_pState->m_pMem) {
 | |
|     // Read directly from the archive in memory.
 | |
|     pRead_buf = (mz_uint8 *)pZip->m_pState->m_pMem + cur_file_ofs;
 | |
|     read_buf_size = read_buf_avail = file_stat.m_comp_size;
 | |
|     comp_remaining = 0;
 | |
|   } else if (pUser_read_buf) {
 | |
|     // Use a user provided read buffer.
 | |
|     if (!user_read_buf_size) return MZ_FALSE;
 | |
|     pRead_buf = (mz_uint8 *)pUser_read_buf;
 | |
|     read_buf_size = user_read_buf_size;
 | |
|     read_buf_avail = 0;
 | |
|     comp_remaining = file_stat.m_comp_size;
 | |
|   } else {
 | |
|     // Temporarily allocate a read buffer.
 | |
|     read_buf_size =
 | |
|         MZ_MIN(file_stat.m_comp_size, (mz_uint)MZ_ZIP_MAX_IO_BUF_SIZE);
 | |
| #ifdef _MSC_VER
 | |
|     if (((0, sizeof(size_t) == sizeof(mz_uint32))) &&
 | |
|         (read_buf_size > 0x7FFFFFFF))
 | |
| #else
 | |
|     if (((sizeof(size_t) == sizeof(mz_uint32))) && (read_buf_size > 0x7FFFFFFF))
 | |
| #endif
 | |
|       return MZ_FALSE;
 | |
|     if (NULL == (pRead_buf = pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1,
 | |
|                                             (size_t)read_buf_size)))
 | |
|       return MZ_FALSE;
 | |
|     read_buf_avail = 0;
 | |
|     comp_remaining = file_stat.m_comp_size;
 | |
|   }
 | |
| 
 | |
|   do {
 | |
|     size_t in_buf_size,
 | |
|         out_buf_size = (size_t)(file_stat.m_uncomp_size - out_buf_ofs);
 | |
|     if ((!read_buf_avail) && (!pZip->m_pState->m_pMem)) {
 | |
|       read_buf_avail = MZ_MIN(read_buf_size, comp_remaining);
 | |
|       if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pRead_buf,
 | |
|                         (size_t)read_buf_avail) != read_buf_avail) {
 | |
|         status = TINFL_STATUS_FAILED;
 | |
|         break;
 | |
|       }
 | |
|       cur_file_ofs += read_buf_avail;
 | |
|       comp_remaining -= read_buf_avail;
 | |
|       read_buf_ofs = 0;
 | |
|     }
 | |
|     in_buf_size = (size_t)read_buf_avail;
 | |
|     status = tinfl_decompress(
 | |
|         &inflator, (mz_uint8 *)pRead_buf + read_buf_ofs, &in_buf_size,
 | |
|         (mz_uint8 *)pBuf, (mz_uint8 *)pBuf + out_buf_ofs, &out_buf_size,
 | |
|         TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF |
 | |
|             (comp_remaining ? TINFL_FLAG_HAS_MORE_INPUT : 0));
 | |
|     read_buf_avail -= in_buf_size;
 | |
|     read_buf_ofs += in_buf_size;
 | |
|     out_buf_ofs += out_buf_size;
 | |
|   } while (status == TINFL_STATUS_NEEDS_MORE_INPUT);
 | |
| 
 | |
|   if (status == TINFL_STATUS_DONE) {
 | |
|     // Make sure the entire file was decompressed, and check its CRC.
 | |
|     if ((out_buf_ofs != file_stat.m_uncomp_size) ||
 | |
|         (mz_crc32(MZ_CRC32_INIT, (const mz_uint8 *)pBuf,
 | |
|                   (size_t)file_stat.m_uncomp_size) != file_stat.m_crc32))
 | |
|       status = TINFL_STATUS_FAILED;
 | |
|   }
 | |
| 
 | |
|   if ((!pZip->m_pState->m_pMem) && (!pUser_read_buf))
 | |
|     pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf);
 | |
| 
 | |
|   return status == TINFL_STATUS_DONE;
 | |
| }
 | |
| 
 | |
| mz_bool mz_zip_reader_extract_file_to_mem_no_alloc(
 | |
|     mz_zip_archive *pZip, const char *pFilename, void *pBuf, size_t buf_size,
 | |
|     mz_uint flags, void *pUser_read_buf, size_t user_read_buf_size) {
 | |
|   int file_index = mz_zip_reader_locate_file(pZip, pFilename, NULL, flags);
 | |
|   if (file_index < 0) return MZ_FALSE;
 | |
|   return mz_zip_reader_extract_to_mem_no_alloc(pZip, file_index, pBuf, buf_size,
 | |
|                                                flags, pUser_read_buf,
 | |
|                                                user_read_buf_size);
 | |
| }
 | |
| 
 | |
| mz_bool mz_zip_reader_extract_to_mem(mz_zip_archive *pZip, mz_uint file_index,
 | |
|                                      void *pBuf, size_t buf_size,
 | |
|                                      mz_uint flags) {
 | |
|   return mz_zip_reader_extract_to_mem_no_alloc(pZip, file_index, pBuf, buf_size,
 | |
|                                                flags, NULL, 0);
 | |
| }
 | |
| 
 | |
| mz_bool mz_zip_reader_extract_file_to_mem(mz_zip_archive *pZip,
 | |
|                                           const char *pFilename, void *pBuf,
 | |
|                                           size_t buf_size, mz_uint flags) {
 | |
|   return mz_zip_reader_extract_file_to_mem_no_alloc(pZip, pFilename, pBuf,
 | |
|                                                     buf_size, flags, NULL, 0);
 | |
| }
 | |
| 
 | |
| void *mz_zip_reader_extract_to_heap(mz_zip_archive *pZip, mz_uint file_index,
 | |
|                                     size_t *pSize, mz_uint flags) {
 | |
|   mz_uint64 comp_size, uncomp_size, alloc_size;
 | |
|   const mz_uint8 *p = mz_zip_reader_get_cdh(pZip, file_index);
 | |
|   void *pBuf;
 | |
| 
 | |
|   if (pSize) *pSize = 0;
 | |
|   if (!p) return NULL;
 | |
| 
 | |
|   comp_size = MZ_READ_LE32(p + MZ_ZIP_CDH_COMPRESSED_SIZE_OFS);
 | |
|   uncomp_size = MZ_READ_LE32(p + MZ_ZIP_CDH_DECOMPRESSED_SIZE_OFS);
 | |
| 
 | |
|   alloc_size = (flags & MZ_ZIP_FLAG_COMPRESSED_DATA) ? comp_size : uncomp_size;
 | |
| #ifdef _MSC_VER
 | |
|   if (((0, sizeof(size_t) == sizeof(mz_uint32))) && (alloc_size > 0x7FFFFFFF))
 | |
| #else
 | |
|   if (((sizeof(size_t) == sizeof(mz_uint32))) && (alloc_size > 0x7FFFFFFF))
 | |
| #endif
 | |
|     return NULL;
 | |
|   if (NULL ==
 | |
|       (pBuf = pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1, (size_t)alloc_size)))
 | |
|     return NULL;
 | |
| 
 | |
|   if (!mz_zip_reader_extract_to_mem(pZip, file_index, pBuf, (size_t)alloc_size,
 | |
|                                     flags)) {
 | |
|     pZip->m_pFree(pZip->m_pAlloc_opaque, pBuf);
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   if (pSize) *pSize = (size_t)alloc_size;
 | |
|   return pBuf;
 | |
| }
 | |
| 
 | |
| void *mz_zip_reader_extract_file_to_heap(mz_zip_archive *pZip,
 | |
|                                          const char *pFilename, size_t *pSize,
 | |
|                                          mz_uint flags) {
 | |
|   int file_index = mz_zip_reader_locate_file(pZip, pFilename, NULL, flags);
 | |
|   if (file_index < 0) {
 | |
|     if (pSize) *pSize = 0;
 | |
|     return MZ_FALSE;
 | |
|   }
 | |
|   return mz_zip_reader_extract_to_heap(pZip, file_index, pSize, flags);
 | |
| }
 | |
| 
 | |
| mz_bool mz_zip_reader_extract_to_callback(mz_zip_archive *pZip,
 | |
|                                           mz_uint file_index,
 | |
|                                           mz_file_write_func pCallback,
 | |
|                                           void *pOpaque, mz_uint flags) {
 | |
|   int status = TINFL_STATUS_DONE;
 | |
|   mz_uint file_crc32 = MZ_CRC32_INIT;
 | |
|   mz_uint64 read_buf_size, read_buf_ofs = 0, read_buf_avail, comp_remaining,
 | |
|                            out_buf_ofs = 0, cur_file_ofs;
 | |
|   mz_zip_archive_file_stat file_stat;
 | |
|   void *pRead_buf = NULL;
 | |
|   void *pWrite_buf = NULL;
 | |
|   mz_uint32
 | |
|       local_header_u32[(MZ_ZIP_LOCAL_DIR_HEADER_SIZE + sizeof(mz_uint32) - 1) /
 | |
|                        sizeof(mz_uint32)];
 | |
|   mz_uint8 *pLocal_header = (mz_uint8 *)local_header_u32;
 | |
| 
 | |
|   if (!mz_zip_reader_file_stat(pZip, file_index, &file_stat)) return MZ_FALSE;
 | |
| 
 | |
|   // Empty file, or a directory (but not always a directory - I've seen odd zips
 | |
|   // with directories that have compressed data which inflates to 0 bytes)
 | |
|   if (!file_stat.m_comp_size) return MZ_TRUE;
 | |
| 
 | |
|   // Entry is a subdirectory (I've seen old zips with dir entries which have
 | |
|   // compressed deflate data which inflates to 0 bytes, but these entries claim
 | |
|   // to uncompress to 512 bytes in the headers).
 | |
|   // I'm torn how to handle this case - should it fail instead?
 | |
|   if (mz_zip_reader_is_file_a_directory(pZip, file_index)) return MZ_TRUE;
 | |
| 
 | |
|   // Encryption and patch files are not supported.
 | |
|   if (file_stat.m_bit_flag & (1 | 32)) return MZ_FALSE;
 | |
| 
 | |
|   // This function only supports stored and deflate.
 | |
|   if ((!(flags & MZ_ZIP_FLAG_COMPRESSED_DATA)) && (file_stat.m_method != 0) &&
 | |
|       (file_stat.m_method != MZ_DEFLATED))
 | |
|     return MZ_FALSE;
 | |
| 
 | |
|   // Read and parse the local directory entry.
 | |
|   cur_file_ofs = file_stat.m_local_header_ofs;
 | |
|   if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pLocal_header,
 | |
|                     MZ_ZIP_LOCAL_DIR_HEADER_SIZE) !=
 | |
|       MZ_ZIP_LOCAL_DIR_HEADER_SIZE)
 | |
|     return MZ_FALSE;
 | |
|   if (MZ_READ_LE32(pLocal_header) != MZ_ZIP_LOCAL_DIR_HEADER_SIG)
 | |
|     return MZ_FALSE;
 | |
| 
 | |
|   cur_file_ofs += MZ_ZIP_LOCAL_DIR_HEADER_SIZE +
 | |
|                   MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_FILENAME_LEN_OFS) +
 | |
|                   MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_EXTRA_LEN_OFS);
 | |
|   if ((cur_file_ofs + file_stat.m_comp_size) > pZip->m_archive_size)
 | |
|     return MZ_FALSE;
 | |
| 
 | |
|   // Decompress the file either directly from memory or from a file input
 | |
|   // buffer.
 | |
|   if (pZip->m_pState->m_pMem) {
 | |
|     pRead_buf = (mz_uint8 *)pZip->m_pState->m_pMem + cur_file_ofs;
 | |
|     read_buf_size = read_buf_avail = file_stat.m_comp_size;
 | |
|     comp_remaining = 0;
 | |
|   } else {
 | |
|     read_buf_size =
 | |
|         MZ_MIN(file_stat.m_comp_size, (mz_uint)MZ_ZIP_MAX_IO_BUF_SIZE);
 | |
|     if (NULL == (pRead_buf = pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1,
 | |
|                                             (size_t)read_buf_size)))
 | |
|       return MZ_FALSE;
 | |
|     read_buf_avail = 0;
 | |
|     comp_remaining = file_stat.m_comp_size;
 | |
|   }
 | |
| 
 | |
|   if ((flags & MZ_ZIP_FLAG_COMPRESSED_DATA) || (!file_stat.m_method)) {
 | |
|     // The file is stored or the caller has requested the compressed data.
 | |
|     if (pZip->m_pState->m_pMem) {
 | |
| #ifdef _MSC_VER
 | |
|       if (((0, sizeof(size_t) == sizeof(mz_uint32))) &&
 | |
|           (file_stat.m_comp_size > 0xFFFFFFFF))
 | |
| #else
 | |
|       if (((sizeof(size_t) == sizeof(mz_uint32))) &&
 | |
|           (file_stat.m_comp_size > 0xFFFFFFFF))
 | |
| #endif
 | |
|         return MZ_FALSE;
 | |
|       if (pCallback(pOpaque, out_buf_ofs, pRead_buf,
 | |
|                     (size_t)file_stat.m_comp_size) != file_stat.m_comp_size)
 | |
|         status = TINFL_STATUS_FAILED;
 | |
|       else if (!(flags & MZ_ZIP_FLAG_COMPRESSED_DATA))
 | |
|         file_crc32 =
 | |
|             (mz_uint32)mz_crc32(file_crc32, (const mz_uint8 *)pRead_buf,
 | |
|                                 (size_t)file_stat.m_comp_size);
 | |
|       cur_file_ofs += file_stat.m_comp_size;
 | |
|       out_buf_ofs += file_stat.m_comp_size;
 | |
|       comp_remaining = 0;
 | |
|     } else {
 | |
|       while (comp_remaining) {
 | |
|         read_buf_avail = MZ_MIN(read_buf_size, comp_remaining);
 | |
|         if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pRead_buf,
 | |
|                           (size_t)read_buf_avail) != read_buf_avail) {
 | |
|           status = TINFL_STATUS_FAILED;
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         if (!(flags & MZ_ZIP_FLAG_COMPRESSED_DATA))
 | |
|           file_crc32 = (mz_uint32)mz_crc32(
 | |
|               file_crc32, (const mz_uint8 *)pRead_buf, (size_t)read_buf_avail);
 | |
| 
 | |
|         if (pCallback(pOpaque, out_buf_ofs, pRead_buf,
 | |
|                       (size_t)read_buf_avail) != read_buf_avail) {
 | |
|           status = TINFL_STATUS_FAILED;
 | |
|           break;
 | |
|         }
 | |
|         cur_file_ofs += read_buf_avail;
 | |
|         out_buf_ofs += read_buf_avail;
 | |
|         comp_remaining -= read_buf_avail;
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     tinfl_decompressor inflator;
 | |
|     tinfl_init(&inflator);
 | |
| 
 | |
|     if (NULL == (pWrite_buf = pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1,
 | |
|                                              TINFL_LZ_DICT_SIZE)))
 | |
|       status = TINFL_STATUS_FAILED;
 | |
|     else {
 | |
|       do {
 | |
|         mz_uint8 *pWrite_buf_cur =
 | |
|             (mz_uint8 *)pWrite_buf + (out_buf_ofs & (TINFL_LZ_DICT_SIZE - 1));
 | |
|         size_t in_buf_size,
 | |
|             out_buf_size =
 | |
|                 TINFL_LZ_DICT_SIZE - (out_buf_ofs & (TINFL_LZ_DICT_SIZE - 1));
 | |
|         if ((!read_buf_avail) && (!pZip->m_pState->m_pMem)) {
 | |
|           read_buf_avail = MZ_MIN(read_buf_size, comp_remaining);
 | |
|           if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pRead_buf,
 | |
|                             (size_t)read_buf_avail) != read_buf_avail) {
 | |
|             status = TINFL_STATUS_FAILED;
 | |
|             break;
 | |
|           }
 | |
|           cur_file_ofs += read_buf_avail;
 | |
|           comp_remaining -= read_buf_avail;
 | |
|           read_buf_ofs = 0;
 | |
|         }
 | |
| 
 | |
|         in_buf_size = (size_t)read_buf_avail;
 | |
|         status = tinfl_decompress(
 | |
|             &inflator, (const mz_uint8 *)pRead_buf + read_buf_ofs, &in_buf_size,
 | |
|             (mz_uint8 *)pWrite_buf, pWrite_buf_cur, &out_buf_size,
 | |
|             comp_remaining ? TINFL_FLAG_HAS_MORE_INPUT : 0);
 | |
|         read_buf_avail -= in_buf_size;
 | |
|         read_buf_ofs += in_buf_size;
 | |
| 
 | |
|         if (out_buf_size) {
 | |
|           if (pCallback(pOpaque, out_buf_ofs, pWrite_buf_cur, out_buf_size) !=
 | |
|               out_buf_size) {
 | |
|             status = TINFL_STATUS_FAILED;
 | |
|             break;
 | |
|           }
 | |
|           file_crc32 =
 | |
|               (mz_uint32)mz_crc32(file_crc32, pWrite_buf_cur, out_buf_size);
 | |
|           if ((out_buf_ofs += out_buf_size) > file_stat.m_uncomp_size) {
 | |
|             status = TINFL_STATUS_FAILED;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       } while ((status == TINFL_STATUS_NEEDS_MORE_INPUT) ||
 | |
|                (status == TINFL_STATUS_HAS_MORE_OUTPUT));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if ((status == TINFL_STATUS_DONE) &&
 | |
|       (!(flags & MZ_ZIP_FLAG_COMPRESSED_DATA))) {
 | |
|     // Make sure the entire file was decompressed, and check its CRC.
 | |
|     if ((out_buf_ofs != file_stat.m_uncomp_size) ||
 | |
|         (file_crc32 != file_stat.m_crc32))
 | |
|       status = TINFL_STATUS_FAILED;
 | |
|   }
 | |
| 
 | |
|   if (!pZip->m_pState->m_pMem) pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf);
 | |
|   if (pWrite_buf) pZip->m_pFree(pZip->m_pAlloc_opaque, pWrite_buf);
 | |
| 
 | |
|   return status == TINFL_STATUS_DONE;
 | |
| }
 | |
| 
 | |
| mz_bool mz_zip_reader_extract_file_to_callback(mz_zip_archive *pZip,
 | |
|                                                const char *pFilename,
 | |
|                                                mz_file_write_func pCallback,
 | |
|                                                void *pOpaque, mz_uint flags) {
 | |
|   int file_index = mz_zip_reader_locate_file(pZip, pFilename, NULL, flags);
 | |
|   if (file_index < 0) return MZ_FALSE;
 | |
|   return mz_zip_reader_extract_to_callback(pZip, file_index, pCallback, pOpaque,
 | |
|                                            flags);
 | |
| }
 | |
| 
 | |
| #ifndef MINIZ_NO_STDIO
 | |
| static size_t mz_zip_file_write_callback(void *pOpaque, mz_uint64 ofs,
 | |
|                                          const void *pBuf, size_t n) {
 | |
|   (void)ofs;
 | |
|   return MZ_FWRITE(pBuf, 1, n, (MZ_FILE *)pOpaque);
 | |
| }
 | |
| 
 | |
| mz_bool mz_zip_reader_extract_to_file(mz_zip_archive *pZip, mz_uint file_index,
 | |
|                                       const char *pDst_filename,
 | |
|                                       mz_uint flags) {
 | |
|   mz_bool status;
 | |
|   mz_zip_archive_file_stat file_stat;
 | |
|   MZ_FILE *pFile;
 | |
|   if (!mz_zip_reader_file_stat(pZip, file_index, &file_stat)) return MZ_FALSE;
 | |
|   pFile = MZ_FOPEN(pDst_filename, "wb");
 | |
|   if (!pFile) return MZ_FALSE;
 | |
|   status = mz_zip_reader_extract_to_callback(
 | |
|       pZip, file_index, mz_zip_file_write_callback, pFile, flags);
 | |
|   if (MZ_FCLOSE(pFile) == EOF) return MZ_FALSE;
 | |
| #ifndef MINIZ_NO_TIME
 | |
|   if (status)
 | |
|     mz_zip_set_file_times(pDst_filename, file_stat.m_time, file_stat.m_time);
 | |
| #endif
 | |
|   return status;
 | |
| }
 | |
| #endif  // #ifndef MINIZ_NO_STDIO
 | |
| 
 | |
| mz_bool mz_zip_reader_end(mz_zip_archive *pZip) {
 | |
|   if ((!pZip) || (!pZip->m_pState) || (!pZip->m_pAlloc) || (!pZip->m_pFree) ||
 | |
|       (pZip->m_zip_mode != MZ_ZIP_MODE_READING))
 | |
|     return MZ_FALSE;
 | |
| 
 | |
|   if (pZip->m_pState) {
 | |
|     mz_zip_internal_state *pState = pZip->m_pState;
 | |
|     pZip->m_pState = NULL;
 | |
|     mz_zip_array_clear(pZip, &pState->m_central_dir);
 | |
|     mz_zip_array_clear(pZip, &pState->m_central_dir_offsets);
 | |
|     mz_zip_array_clear(pZip, &pState->m_sorted_central_dir_offsets);
 | |
| 
 | |
| #ifndef MINIZ_NO_STDIO
 | |
|     if (pState->m_pFile) {
 | |
|       MZ_FCLOSE(pState->m_pFile);
 | |
|       pState->m_pFile = NULL;
 | |
|     }
 | |
| #endif  // #ifndef MINIZ_NO_STDIO
 | |
| 
 | |
|     pZip->m_pFree(pZip->m_pAlloc_opaque, pState);
 | |
|   }
 | |
|   pZip->m_zip_mode = MZ_ZIP_MODE_INVALID;
 | |
| 
 | |
|   return MZ_TRUE;
 | |
| }
 | |
| 
 | |
| #ifndef MINIZ_NO_STDIO
 | |
| mz_bool mz_zip_reader_extract_file_to_file(mz_zip_archive *pZip,
 | |
|                                            const char *pArchive_filename,
 | |
|                                            const char *pDst_filename,
 | |
|                                            mz_uint flags) {
 | |
|   int file_index =
 | |
|       mz_zip_reader_locate_file(pZip, pArchive_filename, NULL, flags);
 | |
|   if (file_index < 0) return MZ_FALSE;
 | |
|   return mz_zip_reader_extract_to_file(pZip, file_index, pDst_filename, flags);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| // ------------------- .ZIP archive writing
 | |
| 
 | |
| #ifndef MINIZ_NO_ARCHIVE_WRITING_APIS
 | |
| 
 | |
| static void mz_write_le16(mz_uint8 *p, mz_uint16 v) {
 | |
|   p[0] = (mz_uint8)v;
 | |
|   p[1] = (mz_uint8)(v >> 8);
 | |
| }
 | |
| static void mz_write_le32(mz_uint8 *p, mz_uint32 v) {
 | |
|   p[0] = (mz_uint8)v;
 | |
|   p[1] = (mz_uint8)(v >> 8);
 | |
|   p[2] = (mz_uint8)(v >> 16);
 | |
|   p[3] = (mz_uint8)(v >> 24);
 | |
| }
 | |
| #define MZ_WRITE_LE16(p, v) mz_write_le16((mz_uint8 *)(p), (mz_uint16)(v))
 | |
| #define MZ_WRITE_LE32(p, v) mz_write_le32((mz_uint8 *)(p), (mz_uint32)(v))
 | |
| 
 | |
| mz_bool mz_zip_writer_init(mz_zip_archive *pZip, mz_uint64 existing_size) {
 | |
|   if ((!pZip) || (pZip->m_pState) || (!pZip->m_pWrite) ||
 | |
|       (pZip->m_zip_mode != MZ_ZIP_MODE_INVALID))
 | |
|     return MZ_FALSE;
 | |
| 
 | |
|   if (pZip->m_file_offset_alignment) {
 | |
|     // Ensure user specified file offset alignment is a power of 2.
 | |
|     if (pZip->m_file_offset_alignment & (pZip->m_file_offset_alignment - 1))
 | |
|       return MZ_FALSE;
 | |
|   }
 | |
| 
 | |
|   if (!pZip->m_pAlloc) pZip->m_pAlloc = def_alloc_func;
 | |
|   if (!pZip->m_pFree) pZip->m_pFree = def_free_func;
 | |
|   if (!pZip->m_pRealloc) pZip->m_pRealloc = def_realloc_func;
 | |
| 
 | |
|   pZip->m_zip_mode = MZ_ZIP_MODE_WRITING;
 | |
|   pZip->m_archive_size = existing_size;
 | |
|   pZip->m_central_directory_file_ofs = 0;
 | |
|   pZip->m_total_files = 0;
 | |
| 
 | |
|   if (NULL == (pZip->m_pState = (mz_zip_internal_state *)pZip->m_pAlloc(
 | |
|                    pZip->m_pAlloc_opaque, 1, sizeof(mz_zip_internal_state))))
 | |
|     return MZ_FALSE;
 | |
|   memset(pZip->m_pState, 0, sizeof(mz_zip_internal_state));
 | |
|   MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(&pZip->m_pState->m_central_dir,
 | |
|                                 sizeof(mz_uint8));
 | |
|   MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(&pZip->m_pState->m_central_dir_offsets,
 | |
|                                 sizeof(mz_uint32));
 | |
|   MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(&pZip->m_pState->m_sorted_central_dir_offsets,
 | |
|                                 sizeof(mz_uint32));
 | |
|   return MZ_TRUE;
 | |
| }
 | |
| 
 | |
| static size_t mz_zip_heap_write_func(void *pOpaque, mz_uint64 file_ofs,
 | |
|                                      const void *pBuf, size_t n) {
 | |
|   mz_zip_archive *pZip = (mz_zip_archive *)pOpaque;
 | |
|   mz_zip_internal_state *pState = pZip->m_pState;
 | |
|   mz_uint64 new_size = MZ_MAX(file_ofs + n, pState->m_mem_size);
 | |
| #ifdef _MSC_VER
 | |
|   if ((!n) ||
 | |
|       ((0, sizeof(size_t) == sizeof(mz_uint32)) && (new_size > 0x7FFFFFFF)))
 | |
| #else
 | |
|   if ((!n) ||
 | |
|       ((sizeof(size_t) == sizeof(mz_uint32)) && (new_size > 0x7FFFFFFF)))
 | |
| #endif
 | |
|     return 0;
 | |
|   if (new_size > pState->m_mem_capacity) {
 | |
|     void *pNew_block;
 | |
|     size_t new_capacity = MZ_MAX(64, pState->m_mem_capacity);
 | |
|     while (new_capacity < new_size) new_capacity *= 2;
 | |
|     if (NULL == (pNew_block = pZip->m_pRealloc(
 | |
|                      pZip->m_pAlloc_opaque, pState->m_pMem, 1, new_capacity)))
 | |
|       return 0;
 | |
|     pState->m_pMem = pNew_block;
 | |
|     pState->m_mem_capacity = new_capacity;
 | |
|   }
 | |
|   memcpy((mz_uint8 *)pState->m_pMem + file_ofs, pBuf, n);
 | |
|   pState->m_mem_size = (size_t)new_size;
 | |
|   return n;
 | |
| }
 | |
| 
 | |
| mz_bool mz_zip_writer_init_heap(mz_zip_archive *pZip,
 | |
|                                 size_t size_to_reserve_at_beginning,
 | |
|                                 size_t initial_allocation_size) {
 | |
|   pZip->m_pWrite = mz_zip_heap_write_func;
 | |
|   pZip->m_pIO_opaque = pZip;
 | |
|   if (!mz_zip_writer_init(pZip, size_to_reserve_at_beginning)) return MZ_FALSE;
 | |
|   if (0 != (initial_allocation_size = MZ_MAX(initial_allocation_size,
 | |
|                                              size_to_reserve_at_beginning))) {
 | |
|     if (NULL == (pZip->m_pState->m_pMem = pZip->m_pAlloc(
 | |
|                      pZip->m_pAlloc_opaque, 1, initial_allocation_size))) {
 | |
|       mz_zip_writer_end(pZip);
 | |
|       return MZ_FALSE;
 | |
|     }
 | |
|     pZip->m_pState->m_mem_capacity = initial_allocation_size;
 | |
|   }
 | |
|   return MZ_TRUE;
 | |
| }
 | |
| 
 | |
| #ifndef MINIZ_NO_STDIO
 | |
| static size_t mz_zip_file_write_func(void *pOpaque, mz_uint64 file_ofs,
 | |
|                                      const void *pBuf, size_t n) {
 | |
|   mz_zip_archive *pZip = (mz_zip_archive *)pOpaque;
 | |
|   mz_int64 cur_ofs = MZ_FTELL64(pZip->m_pState->m_pFile);
 | |
|   if (((mz_int64)file_ofs < 0) ||
 | |
|       (((cur_ofs != (mz_int64)file_ofs)) &&
 | |
|        (MZ_FSEEK64(pZip->m_pState->m_pFile, (mz_int64)file_ofs, SEEK_SET))))
 | |
|     return 0;
 | |
|   return MZ_FWRITE(pBuf, 1, n, pZip->m_pState->m_pFile);
 | |
| }
 | |
| 
 | |
| mz_bool mz_zip_writer_init_file(mz_zip_archive *pZip, const char *pFilename,
 | |
|                                 mz_uint64 size_to_reserve_at_beginning) {
 | |
|   MZ_FILE *pFile;
 | |
|   pZip->m_pWrite = mz_zip_file_write_func;
 | |
|   pZip->m_pIO_opaque = pZip;
 | |
|   if (!mz_zip_writer_init(pZip, size_to_reserve_at_beginning)) return MZ_FALSE;
 | |
|   if (NULL == (pFile = MZ_FOPEN(pFilename, "wb"))) {
 | |
|     mz_zip_writer_end(pZip);
 | |
|     return MZ_FALSE;
 | |
|   }
 | |
|   pZip->m_pState->m_pFile = pFile;
 | |
|   if (size_to_reserve_at_beginning) {
 | |
|     mz_uint64 cur_ofs = 0;
 | |
|     char buf[4096];
 | |
|     MZ_CLEAR_OBJ(buf);
 | |
|     do {
 | |
|       size_t n = (size_t)MZ_MIN(sizeof(buf), size_to_reserve_at_beginning);
 | |
|       if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_ofs, buf, n) != n) {
 | |
|         mz_zip_writer_end(pZip);
 | |
|         return MZ_FALSE;
 | |
|       }
 | |
|       cur_ofs += n;
 | |
|       size_to_reserve_at_beginning -= n;
 | |
|     } while (size_to_reserve_at_beginning);
 | |
|   }
 | |
|   return MZ_TRUE;
 | |
| }
 | |
| #endif  // #ifndef MINIZ_NO_STDIO
 | |
| 
 | |
| mz_bool mz_zip_writer_init_from_reader(mz_zip_archive *pZip,
 | |
|                                        const char *pFilename) {
 | |
|   mz_zip_internal_state *pState;
 | |
|   if ((!pZip) || (!pZip->m_pState) || (pZip->m_zip_mode != MZ_ZIP_MODE_READING))
 | |
|     return MZ_FALSE;
 | |
|   // No sense in trying to write to an archive that's already at the support max
 | |
|   // size
 | |
|   if ((pZip->m_total_files == 0xFFFF) ||
 | |
|       ((pZip->m_archive_size + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE +
 | |
|         MZ_ZIP_LOCAL_DIR_HEADER_SIZE) > 0xFFFFFFFF))
 | |
|     return MZ_FALSE;
 | |
| 
 | |
|   pState = pZip->m_pState;
 | |
| 
 | |
|   if (pState->m_pFile) {
 | |
| #ifdef MINIZ_NO_STDIO
 | |
|     pFilename;
 | |
|     return MZ_FALSE;
 | |
| #else
 | |
|     // Archive is being read from stdio - try to reopen as writable.
 | |
|     if (pZip->m_pIO_opaque != pZip) return MZ_FALSE;
 | |
|     if (!pFilename) return MZ_FALSE;
 | |
|     pZip->m_pWrite = mz_zip_file_write_func;
 | |
|     if (NULL ==
 | |
|         (pState->m_pFile = MZ_FREOPEN(pFilename, "r+b", pState->m_pFile))) {
 | |
|       // The mz_zip_archive is now in a bogus state because pState->m_pFile is
 | |
|       // NULL, so just close it.
 | |
|       mz_zip_reader_end(pZip);
 | |
|       return MZ_FALSE;
 | |
|     }
 | |
| #endif  // #ifdef MINIZ_NO_STDIO
 | |
|   } else if (pState->m_pMem) {
 | |
|     // Archive lives in a memory block. Assume it's from the heap that we can
 | |
|     // resize using the realloc callback.
 | |
|     if (pZip->m_pIO_opaque != pZip) return MZ_FALSE;
 | |
|     pState->m_mem_capacity = pState->m_mem_size;
 | |
|     pZip->m_pWrite = mz_zip_heap_write_func;
 | |
|   }
 | |
|   // Archive is being read via a user provided read function - make sure the
 | |
|   // user has specified a write function too.
 | |
|   else if (!pZip->m_pWrite)
 | |
|     return MZ_FALSE;
 | |
| 
 | |
|   // Start writing new files at the archive's current central directory
 | |
|   // location.
 | |
|   pZip->m_archive_size = pZip->m_central_directory_file_ofs;
 | |
|   pZip->m_zip_mode = MZ_ZIP_MODE_WRITING;
 | |
|   pZip->m_central_directory_file_ofs = 0;
 | |
| 
 | |
|   return MZ_TRUE;
 | |
| }
 | |
| 
 | |
| mz_bool mz_zip_writer_add_mem(mz_zip_archive *pZip, const char *pArchive_name,
 | |
|                               const void *pBuf, size_t buf_size,
 | |
|                               mz_uint level_and_flags) {
 | |
|   return mz_zip_writer_add_mem_ex(pZip, pArchive_name, pBuf, buf_size, NULL, 0,
 | |
|                                   level_and_flags, 0, 0);
 | |
| }
 | |
| 
 | |
| typedef struct {
 | |
|   mz_zip_archive *m_pZip;
 | |
|   mz_uint64 m_cur_archive_file_ofs;
 | |
|   mz_uint64 m_comp_size;
 | |
| } mz_zip_writer_add_state;
 | |
| 
 | |
| static mz_bool mz_zip_writer_add_put_buf_callback(const void *pBuf, int len,
 | |
|                                                   void *pUser) {
 | |
|   mz_zip_writer_add_state *pState = (mz_zip_writer_add_state *)pUser;
 | |
|   if ((int)pState->m_pZip->m_pWrite(pState->m_pZip->m_pIO_opaque,
 | |
|                                     pState->m_cur_archive_file_ofs, pBuf,
 | |
|                                     len) != len)
 | |
|     return MZ_FALSE;
 | |
|   pState->m_cur_archive_file_ofs += len;
 | |
|   pState->m_comp_size += len;
 | |
|   return MZ_TRUE;
 | |
| }
 | |
| 
 | |
| static mz_bool mz_zip_writer_create_local_dir_header(
 | |
|     mz_zip_archive *pZip, mz_uint8 *pDst, mz_uint16 filename_size,
 | |
|     mz_uint16 extra_size, mz_uint64 uncomp_size, mz_uint64 comp_size,
 | |
|     mz_uint32 uncomp_crc32, mz_uint16 method, mz_uint16 bit_flags,
 | |
|     mz_uint16 dos_time, mz_uint16 dos_date) {
 | |
|   (void)pZip;
 | |
|   memset(pDst, 0, MZ_ZIP_LOCAL_DIR_HEADER_SIZE);
 | |
|   MZ_WRITE_LE32(pDst + MZ_ZIP_LDH_SIG_OFS, MZ_ZIP_LOCAL_DIR_HEADER_SIG);
 | |
|   MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_VERSION_NEEDED_OFS, method ? 20 : 0);
 | |
|   MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_BIT_FLAG_OFS, bit_flags);
 | |
|   MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_METHOD_OFS, method);
 | |
|   MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_FILE_TIME_OFS, dos_time);
 | |
|   MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_FILE_DATE_OFS, dos_date);
 | |
|   MZ_WRITE_LE32(pDst + MZ_ZIP_LDH_CRC32_OFS, uncomp_crc32);
 | |
|   MZ_WRITE_LE32(pDst + MZ_ZIP_LDH_COMPRESSED_SIZE_OFS, comp_size);
 | |
|   MZ_WRITE_LE32(pDst + MZ_ZIP_LDH_DECOMPRESSED_SIZE_OFS, uncomp_size);
 | |
|   MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_FILENAME_LEN_OFS, filename_size);
 | |
|   MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_EXTRA_LEN_OFS, extra_size);
 | |
|   return MZ_TRUE;
 | |
| }
 | |
| 
 | |
| static mz_bool mz_zip_writer_create_central_dir_header(
 | |
|     mz_zip_archive *pZip, mz_uint8 *pDst, mz_uint16 filename_size,
 | |
|     mz_uint16 extra_size, mz_uint16 comment_size, mz_uint64 uncomp_size,
 | |
|     mz_uint64 comp_size, mz_uint32 uncomp_crc32, mz_uint16 method,
 | |
|     mz_uint16 bit_flags, mz_uint16 dos_time, mz_uint16 dos_date,
 | |
|     mz_uint64 local_header_ofs, mz_uint32 ext_attributes) {
 | |
|   (void)pZip;
 | |
|   memset(pDst, 0, MZ_ZIP_CENTRAL_DIR_HEADER_SIZE);
 | |
|   MZ_WRITE_LE32(pDst + MZ_ZIP_CDH_SIG_OFS, MZ_ZIP_CENTRAL_DIR_HEADER_SIG);
 | |
|   MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_VERSION_NEEDED_OFS, method ? 20 : 0);
 | |
|   MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_BIT_FLAG_OFS, bit_flags);
 | |
|   MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_METHOD_OFS, method);
 | |
|   MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_FILE_TIME_OFS, dos_time);
 | |
|   MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_FILE_DATE_OFS, dos_date);
 | |
|   MZ_WRITE_LE32(pDst + MZ_ZIP_CDH_CRC32_OFS, uncomp_crc32);
 | |
|   MZ_WRITE_LE32(pDst + MZ_ZIP_CDH_COMPRESSED_SIZE_OFS, comp_size);
 | |
|   MZ_WRITE_LE32(pDst + MZ_ZIP_CDH_DECOMPRESSED_SIZE_OFS, uncomp_size);
 | |
|   MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_FILENAME_LEN_OFS, filename_size);
 | |
|   MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_EXTRA_LEN_OFS, extra_size);
 | |
|   MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_COMMENT_LEN_OFS, comment_size);
 | |
|   MZ_WRITE_LE32(pDst + MZ_ZIP_CDH_EXTERNAL_ATTR_OFS, ext_attributes);
 | |
|   MZ_WRITE_LE32(pDst + MZ_ZIP_CDH_LOCAL_HEADER_OFS, local_header_ofs);
 | |
|   return MZ_TRUE;
 | |
| }
 | |
| 
 | |
| static mz_bool mz_zip_writer_add_to_central_dir(
 | |
|     mz_zip_archive *pZip, const char *pFilename, mz_uint16 filename_size,
 | |
|     const void *pExtra, mz_uint16 extra_size, const void *pComment,
 | |
|     mz_uint16 comment_size, mz_uint64 uncomp_size, mz_uint64 comp_size,
 | |
|     mz_uint32 uncomp_crc32, mz_uint16 method, mz_uint16 bit_flags,
 | |
|     mz_uint16 dos_time, mz_uint16 dos_date, mz_uint64 local_header_ofs,
 | |
|     mz_uint32 ext_attributes) {
 | |
|   mz_zip_internal_state *pState = pZip->m_pState;
 | |
|   mz_uint32 central_dir_ofs = (mz_uint32)pState->m_central_dir.m_size;
 | |
|   size_t orig_central_dir_size = pState->m_central_dir.m_size;
 | |
|   mz_uint8 central_dir_header[MZ_ZIP_CENTRAL_DIR_HEADER_SIZE];
 | |
| 
 | |
|   // No zip64 support yet
 | |
|   if ((local_header_ofs > 0xFFFFFFFF) ||
 | |
|       (((mz_uint64)pState->m_central_dir.m_size +
 | |
|         MZ_ZIP_CENTRAL_DIR_HEADER_SIZE + filename_size + extra_size +
 | |
|         comment_size) > 0xFFFFFFFF))
 | |
|     return MZ_FALSE;
 | |
| 
 | |
|   if (!mz_zip_writer_create_central_dir_header(
 | |
|           pZip, central_dir_header, filename_size, extra_size, comment_size,
 | |
|           uncomp_size, comp_size, uncomp_crc32, method, bit_flags, dos_time,
 | |
|           dos_date, local_header_ofs, ext_attributes))
 | |
|     return MZ_FALSE;
 | |
| 
 | |
|   if ((!mz_zip_array_push_back(pZip, &pState->m_central_dir, central_dir_header,
 | |
|                                MZ_ZIP_CENTRAL_DIR_HEADER_SIZE)) ||
 | |
|       (!mz_zip_array_push_back(pZip, &pState->m_central_dir, pFilename,
 | |
|                                filename_size)) ||
 | |
|       (!mz_zip_array_push_back(pZip, &pState->m_central_dir, pExtra,
 | |
|                                extra_size)) ||
 | |
|       (!mz_zip_array_push_back(pZip, &pState->m_central_dir, pComment,
 | |
|                                comment_size)) ||
 | |
|       (!mz_zip_array_push_back(pZip, &pState->m_central_dir_offsets,
 | |
|                                ¢ral_dir_ofs, 1))) {
 | |
|     // Try to push the central directory array back into its original state.
 | |
|     mz_zip_array_resize(pZip, &pState->m_central_dir, orig_central_dir_size,
 | |
|                         MZ_FALSE);
 | |
|     return MZ_FALSE;
 | |
|   }
 | |
| 
 | |
|   return MZ_TRUE;
 | |
| }
 | |
| 
 | |
| static mz_bool mz_zip_writer_validate_archive_name(const char *pArchive_name) {
 | |
|   // Basic ZIP archive filename validity checks: Valid filenames cannot start
 | |
|   // with a forward slash, cannot contain a drive letter, and cannot use
 | |
|   // DOS-style backward slashes.
 | |
|   if (*pArchive_name == '/') return MZ_FALSE;
 | |
|   while (*pArchive_name) {
 | |
|     if ((*pArchive_name == '\\') || (*pArchive_name == ':')) return MZ_FALSE;
 | |
|     pArchive_name++;
 | |
|   }
 | |
|   return MZ_TRUE;
 | |
| }
 | |
| 
 | |
| static mz_uint mz_zip_writer_compute_padding_needed_for_file_alignment(
 | |
|     mz_zip_archive *pZip) {
 | |
|   mz_uint32 n;
 | |
|   if (!pZip->m_file_offset_alignment) return 0;
 | |
|   n = (mz_uint32)(pZip->m_archive_size & (pZip->m_file_offset_alignment - 1));
 | |
|   return (pZip->m_file_offset_alignment - n) &
 | |
|          (pZip->m_file_offset_alignment - 1);
 | |
| }
 | |
| 
 | |
| static mz_bool mz_zip_writer_write_zeros(mz_zip_archive *pZip,
 | |
|                                          mz_uint64 cur_file_ofs, mz_uint32 n) {
 | |
|   char buf[4096];
 | |
|   memset(buf, 0, MZ_MIN(sizeof(buf), n));
 | |
|   while (n) {
 | |
|     mz_uint32 s = MZ_MIN(sizeof(buf), n);
 | |
|     if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_file_ofs, buf, s) != s)
 | |
|       return MZ_FALSE;
 | |
|     cur_file_ofs += s;
 | |
|     n -= s;
 | |
|   }
 | |
|   return MZ_TRUE;
 | |
| }
 | |
| 
 | |
| mz_bool mz_zip_writer_add_mem_ex(mz_zip_archive *pZip,
 | |
|                                  const char *pArchive_name, const void *pBuf,
 | |
|                                  size_t buf_size, const void *pComment,
 | |
|                                  mz_uint16 comment_size,
 | |
|                                  mz_uint level_and_flags, mz_uint64 uncomp_size,
 | |
|                                  mz_uint32 uncomp_crc32) {
 | |
|   mz_uint16 method = 0, dos_time = 0, dos_date = 0;
 | |
|   mz_uint level, ext_attributes = 0, num_alignment_padding_bytes;
 | |
|   mz_uint64 local_dir_header_ofs = pZip->m_archive_size,
 | |
|             cur_archive_file_ofs = pZip->m_archive_size, comp_size = 0;
 | |
|   size_t archive_name_size;
 | |
|   mz_uint8 local_dir_header[MZ_ZIP_LOCAL_DIR_HEADER_SIZE];
 | |
|   tdefl_compressor *pComp = NULL;
 | |
|   mz_bool store_data_uncompressed;
 | |
|   mz_zip_internal_state *pState;
 | |
| 
 | |
|   if ((int)level_and_flags < 0) level_and_flags = MZ_DEFAULT_LEVEL;
 | |
|   level = level_and_flags & 0xF;
 | |
|   store_data_uncompressed =
 | |
|       ((!level) || (level_and_flags & MZ_ZIP_FLAG_COMPRESSED_DATA));
 | |
| 
 | |
|   if ((!pZip) || (!pZip->m_pState) ||
 | |
|       (pZip->m_zip_mode != MZ_ZIP_MODE_WRITING) || ((buf_size) && (!pBuf)) ||
 | |
|       (!pArchive_name) || ((comment_size) && (!pComment)) ||
 | |
|       (pZip->m_total_files == 0xFFFF) || (level > MZ_UBER_COMPRESSION))
 | |
|     return MZ_FALSE;
 | |
| 
 | |
|   pState = pZip->m_pState;
 | |
| 
 | |
|   if ((!(level_and_flags & MZ_ZIP_FLAG_COMPRESSED_DATA)) && (uncomp_size))
 | |
|     return MZ_FALSE;
 | |
|   // No zip64 support yet
 | |
|   if ((buf_size > 0xFFFFFFFF) || (uncomp_size > 0xFFFFFFFF)) return MZ_FALSE;
 | |
|   if (!mz_zip_writer_validate_archive_name(pArchive_name)) return MZ_FALSE;
 | |
| 
 | |
| #ifndef MINIZ_NO_TIME
 | |
|   {
 | |
|     time_t cur_time;
 | |
|     time(&cur_time);
 | |
|     mz_zip_time_to_dos_time(cur_time, &dos_time, &dos_date);
 | |
|   }
 | |
| #endif  // #ifndef MINIZ_NO_TIME
 | |
| 
 | |
|   archive_name_size = strlen(pArchive_name);
 | |
|   if (archive_name_size > 0xFFFF) return MZ_FALSE;
 | |
| 
 | |
|   num_alignment_padding_bytes =
 | |
|       mz_zip_writer_compute_padding_needed_for_file_alignment(pZip);
 | |
| 
 | |
|   // no zip64 support yet
 | |
|   if ((pZip->m_total_files == 0xFFFF) ||
 | |
|       ((pZip->m_archive_size + num_alignment_padding_bytes +
 | |
|         MZ_ZIP_LOCAL_DIR_HEADER_SIZE + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE +
 | |
|         comment_size + archive_name_size) > 0xFFFFFFFF))
 | |
|     return MZ_FALSE;
 | |
| 
 | |
|   if ((archive_name_size) && (pArchive_name[archive_name_size - 1] == '/')) {
 | |
|     // Set DOS Subdirectory attribute bit.
 | |
|     ext_attributes |= 0x10;
 | |
|     // Subdirectories cannot contain data.
 | |
|     if ((buf_size) || (uncomp_size)) return MZ_FALSE;
 | |
|   }
 | |
| 
 | |
|   // Try to do any allocations before writing to the archive, so if an
 | |
|   // allocation fails the file remains unmodified. (A good idea if we're doing
 | |
|   // an in-place modification.)
 | |
|   if ((!mz_zip_array_ensure_room(
 | |
|           pZip, &pState->m_central_dir,
 | |
|           MZ_ZIP_CENTRAL_DIR_HEADER_SIZE + archive_name_size + comment_size)) ||
 | |
|       (!mz_zip_array_ensure_room(pZip, &pState->m_central_dir_offsets, 1)))
 | |
|     return MZ_FALSE;
 | |
| 
 | |
|   if ((!store_data_uncompressed) && (buf_size)) {
 | |
|     if (NULL == (pComp = (tdefl_compressor *)pZip->m_pAlloc(
 | |
|                      pZip->m_pAlloc_opaque, 1, sizeof(tdefl_compressor))))
 | |
|       return MZ_FALSE;
 | |
|   }
 | |
| 
 | |
|   if (!mz_zip_writer_write_zeros(
 | |
|           pZip, cur_archive_file_ofs,
 | |
|           num_alignment_padding_bytes + sizeof(local_dir_header))) {
 | |
|     pZip->m_pFree(pZip->m_pAlloc_opaque, pComp);
 | |
|     return MZ_FALSE;
 | |
|   }
 | |
|   local_dir_header_ofs += num_alignment_padding_bytes;
 | |
|   if (pZip->m_file_offset_alignment) {
 | |
|     MZ_ASSERT((local_dir_header_ofs & (pZip->m_file_offset_alignment - 1)) ==
 | |
|               0);
 | |
|   }
 | |
|   cur_archive_file_ofs +=
 | |
|       num_alignment_padding_bytes + sizeof(local_dir_header);
 | |
| 
 | |
|   MZ_CLEAR_OBJ(local_dir_header);
 | |
|   if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_archive_file_ofs, pArchive_name,
 | |
|                      archive_name_size) != archive_name_size) {
 | |
|     pZip->m_pFree(pZip->m_pAlloc_opaque, pComp);
 | |
|     return MZ_FALSE;
 | |
|   }
 | |
|   cur_archive_file_ofs += archive_name_size;
 | |
| 
 | |
|   if (!(level_and_flags & MZ_ZIP_FLAG_COMPRESSED_DATA)) {
 | |
|     uncomp_crc32 =
 | |
|         (mz_uint32)mz_crc32(MZ_CRC32_INIT, (const mz_uint8 *)pBuf, buf_size);
 | |
|     uncomp_size = buf_size;
 | |
|     if (uncomp_size <= 3) {
 | |
|       level = 0;
 | |
|       store_data_uncompressed = MZ_TRUE;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (store_data_uncompressed) {
 | |
|     if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_archive_file_ofs, pBuf,
 | |
|                        buf_size) != buf_size) {
 | |
|       pZip->m_pFree(pZip->m_pAlloc_opaque, pComp);
 | |
|       return MZ_FALSE;
 | |
|     }
 | |
| 
 | |
|     cur_archive_file_ofs += buf_size;
 | |
|     comp_size = buf_size;
 | |
| 
 | |
|     if (level_and_flags & MZ_ZIP_FLAG_COMPRESSED_DATA) method = MZ_DEFLATED;
 | |
|   } else if (buf_size) {
 | |
|     mz_zip_writer_add_state state;
 | |
| 
 | |
|     state.m_pZip = pZip;
 | |
|     state.m_cur_archive_file_ofs = cur_archive_file_ofs;
 | |
|     state.m_comp_size = 0;
 | |
| 
 | |
|     if ((tdefl_init(pComp, mz_zip_writer_add_put_buf_callback, &state,
 | |
|                     tdefl_create_comp_flags_from_zip_params(
 | |
|                         level, -15, MZ_DEFAULT_STRATEGY)) !=
 | |
|          TDEFL_STATUS_OKAY) ||
 | |
|         (tdefl_compress_buffer(pComp, pBuf, buf_size, TDEFL_FINISH) !=
 | |
|          TDEFL_STATUS_DONE)) {
 | |
|       pZip->m_pFree(pZip->m_pAlloc_opaque, pComp);
 | |
|       return MZ_FALSE;
 | |
|     }
 | |
| 
 | |
|     comp_size = state.m_comp_size;
 | |
|     cur_archive_file_ofs = state.m_cur_archive_file_ofs;
 | |
| 
 | |
|     method = MZ_DEFLATED;
 | |
|   }
 | |
| 
 | |
|   pZip->m_pFree(pZip->m_pAlloc_opaque, pComp);
 | |
|   pComp = NULL;
 | |
| 
 | |
|   // no zip64 support yet
 | |
|   if ((comp_size > 0xFFFFFFFF) || (cur_archive_file_ofs > 0xFFFFFFFF))
 | |
|     return MZ_FALSE;
 | |
| 
 | |
|   if (!mz_zip_writer_create_local_dir_header(
 | |
|           pZip, local_dir_header, (mz_uint16)archive_name_size, 0, uncomp_size,
 | |
|           comp_size, uncomp_crc32, method, 0, dos_time, dos_date))
 | |
|     return MZ_FALSE;
 | |
| 
 | |
|   if (pZip->m_pWrite(pZip->m_pIO_opaque, local_dir_header_ofs, local_dir_header,
 | |
|                      sizeof(local_dir_header)) != sizeof(local_dir_header))
 | |
|     return MZ_FALSE;
 | |
| 
 | |
|   if (!mz_zip_writer_add_to_central_dir(
 | |
|           pZip, pArchive_name, (mz_uint16)archive_name_size, NULL, 0, pComment,
 | |
|           comment_size, uncomp_size, comp_size, uncomp_crc32, method, 0,
 | |
|           dos_time, dos_date, local_dir_header_ofs, ext_attributes))
 | |
|     return MZ_FALSE;
 | |
| 
 | |
|   pZip->m_total_files++;
 | |
|   pZip->m_archive_size = cur_archive_file_ofs;
 | |
| 
 | |
|   return MZ_TRUE;
 | |
| }
 | |
| 
 | |
| #ifndef MINIZ_NO_STDIO
 | |
| mz_bool mz_zip_writer_add_file(mz_zip_archive *pZip, const char *pArchive_name,
 | |
|                                const char *pSrc_filename, const void *pComment,
 | |
|                                mz_uint16 comment_size,
 | |
|                                mz_uint level_and_flags) {
 | |
|   mz_uint uncomp_crc32 = MZ_CRC32_INIT, level, num_alignment_padding_bytes;
 | |
|   mz_uint16 method = 0, dos_time = 0, dos_date = 0, ext_attributes = 0;
 | |
|   mz_uint64 local_dir_header_ofs = pZip->m_archive_size,
 | |
|             cur_archive_file_ofs = pZip->m_archive_size, uncomp_size = 0,
 | |
|             comp_size = 0;
 | |
|   size_t archive_name_size;
 | |
|   mz_uint8 local_dir_header[MZ_ZIP_LOCAL_DIR_HEADER_SIZE];
 | |
|   MZ_FILE *pSrc_file = NULL;
 | |
| 
 | |
|   if ((int)level_and_flags < 0) level_and_flags = MZ_DEFAULT_LEVEL;
 | |
|   level = level_and_flags & 0xF;
 | |
| 
 | |
|   if ((!pZip) || (!pZip->m_pState) ||
 | |
|       (pZip->m_zip_mode != MZ_ZIP_MODE_WRITING) || (!pArchive_name) ||
 | |
|       ((comment_size) && (!pComment)) || (level > MZ_UBER_COMPRESSION))
 | |
|     return MZ_FALSE;
 | |
|   if (level_and_flags & MZ_ZIP_FLAG_COMPRESSED_DATA) return MZ_FALSE;
 | |
|   if (!mz_zip_writer_validate_archive_name(pArchive_name)) return MZ_FALSE;
 | |
| 
 | |
|   archive_name_size = strlen(pArchive_name);
 | |
|   if (archive_name_size > 0xFFFF) return MZ_FALSE;
 | |
| 
 | |
|   num_alignment_padding_bytes =
 | |
|       mz_zip_writer_compute_padding_needed_for_file_alignment(pZip);
 | |
| 
 | |
|   // no zip64 support yet
 | |
|   if ((pZip->m_total_files == 0xFFFF) ||
 | |
|       ((pZip->m_archive_size + num_alignment_padding_bytes +
 | |
|         MZ_ZIP_LOCAL_DIR_HEADER_SIZE + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE +
 | |
|         comment_size + archive_name_size) > 0xFFFFFFFF))
 | |
|     return MZ_FALSE;
 | |
| 
 | |
|   if (!mz_zip_get_file_modified_time(pSrc_filename, &dos_time, &dos_date))
 | |
|     return MZ_FALSE;
 | |
| 
 | |
|   pSrc_file = MZ_FOPEN(pSrc_filename, "rb");
 | |
|   if (!pSrc_file) return MZ_FALSE;
 | |
|   MZ_FSEEK64(pSrc_file, 0, SEEK_END);
 | |
|   uncomp_size = MZ_FTELL64(pSrc_file);
 | |
|   MZ_FSEEK64(pSrc_file, 0, SEEK_SET);
 | |
| 
 | |
|   if (uncomp_size > 0xFFFFFFFF) {
 | |
|     // No zip64 support yet
 | |
|     MZ_FCLOSE(pSrc_file);
 | |
|     return MZ_FALSE;
 | |
|   }
 | |
|   if (uncomp_size <= 3) level = 0;
 | |
| 
 | |
|   if (!mz_zip_writer_write_zeros(
 | |
|           pZip, cur_archive_file_ofs,
 | |
|           num_alignment_padding_bytes + sizeof(local_dir_header))) {
 | |
|     MZ_FCLOSE(pSrc_file);
 | |
|     return MZ_FALSE;
 | |
|   }
 | |
|   local_dir_header_ofs += num_alignment_padding_bytes;
 | |
|   if (pZip->m_file_offset_alignment) {
 | |
|     MZ_ASSERT((local_dir_header_ofs & (pZip->m_file_offset_alignment - 1)) ==
 | |
|               0);
 | |
|   }
 | |
|   cur_archive_file_ofs +=
 | |
|       num_alignment_padding_bytes + sizeof(local_dir_header);
 | |
| 
 | |
|   MZ_CLEAR_OBJ(local_dir_header);
 | |
|   if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_archive_file_ofs, pArchive_name,
 | |
|                      archive_name_size) != archive_name_size) {
 | |
|     MZ_FCLOSE(pSrc_file);
 | |
|     return MZ_FALSE;
 | |
|   }
 | |
|   cur_archive_file_ofs += archive_name_size;
 | |
| 
 | |
|   if (uncomp_size) {
 | |
|     mz_uint64 uncomp_remaining = uncomp_size;
 | |
|     void *pRead_buf =
 | |
|         pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1, MZ_ZIP_MAX_IO_BUF_SIZE);
 | |
|     if (!pRead_buf) {
 | |
|       MZ_FCLOSE(pSrc_file);
 | |
|       return MZ_FALSE;
 | |
|     }
 | |
| 
 | |
|     if (!level) {
 | |
|       while (uncomp_remaining) {
 | |
|         mz_uint n =
 | |
|             (mz_uint)MZ_MIN((mz_uint)MZ_ZIP_MAX_IO_BUF_SIZE, uncomp_remaining);
 | |
|         if ((MZ_FREAD(pRead_buf, 1, n, pSrc_file) != n) ||
 | |
|             (pZip->m_pWrite(pZip->m_pIO_opaque, cur_archive_file_ofs, pRead_buf,
 | |
|                             n) != n)) {
 | |
|           pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf);
 | |
|           MZ_FCLOSE(pSrc_file);
 | |
|           return MZ_FALSE;
 | |
|         }
 | |
|         uncomp_crc32 =
 | |
|             (mz_uint32)mz_crc32(uncomp_crc32, (const mz_uint8 *)pRead_buf, n);
 | |
|         uncomp_remaining -= n;
 | |
|         cur_archive_file_ofs += n;
 | |
|       }
 | |
|       comp_size = uncomp_size;
 | |
|     } else {
 | |
|       mz_bool result = MZ_FALSE;
 | |
|       mz_zip_writer_add_state state;
 | |
|       tdefl_compressor *pComp = (tdefl_compressor *)pZip->m_pAlloc(
 | |
|           pZip->m_pAlloc_opaque, 1, sizeof(tdefl_compressor));
 | |
|       if (!pComp) {
 | |
|         pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf);
 | |
|         MZ_FCLOSE(pSrc_file);
 | |
|         return MZ_FALSE;
 | |
|       }
 | |
| 
 | |
|       state.m_pZip = pZip;
 | |
|       state.m_cur_archive_file_ofs = cur_archive_file_ofs;
 | |
|       state.m_comp_size = 0;
 | |
| 
 | |
|       if (tdefl_init(pComp, mz_zip_writer_add_put_buf_callback, &state,
 | |
|                      tdefl_create_comp_flags_from_zip_params(
 | |
|                          level, -15, MZ_DEFAULT_STRATEGY)) !=
 | |
|           TDEFL_STATUS_OKAY) {
 | |
|         pZip->m_pFree(pZip->m_pAlloc_opaque, pComp);
 | |
|         pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf);
 | |
|         MZ_FCLOSE(pSrc_file);
 | |
|         return MZ_FALSE;
 | |
|       }
 | |
| 
 | |
|       for (;;) {
 | |
|         size_t in_buf_size = (mz_uint32)MZ_MIN(uncomp_remaining,
 | |
|                                                (mz_uint)MZ_ZIP_MAX_IO_BUF_SIZE);
 | |
|         tdefl_status status;
 | |
| 
 | |
|         if (MZ_FREAD(pRead_buf, 1, in_buf_size, pSrc_file) != in_buf_size)
 | |
|           break;
 | |
| 
 | |
|         uncomp_crc32 = (mz_uint32)mz_crc32(
 | |
|             uncomp_crc32, (const mz_uint8 *)pRead_buf, in_buf_size);
 | |
|         uncomp_remaining -= in_buf_size;
 | |
| 
 | |
|         status = tdefl_compress_buffer(
 | |
|             pComp, pRead_buf, in_buf_size,
 | |
|             uncomp_remaining ? TDEFL_NO_FLUSH : TDEFL_FINISH);
 | |
|         if (status == TDEFL_STATUS_DONE) {
 | |
|           result = MZ_TRUE;
 | |
|           break;
 | |
|         } else if (status != TDEFL_STATUS_OKAY)
 | |
|           break;
 | |
|       }
 | |
| 
 | |
|       pZip->m_pFree(pZip->m_pAlloc_opaque, pComp);
 | |
| 
 | |
|       if (!result) {
 | |
|         pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf);
 | |
|         MZ_FCLOSE(pSrc_file);
 | |
|         return MZ_FALSE;
 | |
|       }
 | |
| 
 | |
|       comp_size = state.m_comp_size;
 | |
|       cur_archive_file_ofs = state.m_cur_archive_file_ofs;
 | |
| 
 | |
|       method = MZ_DEFLATED;
 | |
|     }
 | |
| 
 | |
|     pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf);
 | |
|   }
 | |
| 
 | |
|   MZ_FCLOSE(pSrc_file);
 | |
|   pSrc_file = NULL;
 | |
| 
 | |
|   // no zip64 support yet
 | |
|   if ((comp_size > 0xFFFFFFFF) || (cur_archive_file_ofs > 0xFFFFFFFF))
 | |
|     return MZ_FALSE;
 | |
| 
 | |
|   if (!mz_zip_writer_create_local_dir_header(
 | |
|           pZip, local_dir_header, (mz_uint16)archive_name_size, 0, uncomp_size,
 | |
|           comp_size, uncomp_crc32, method, 0, dos_time, dos_date))
 | |
|     return MZ_FALSE;
 | |
| 
 | |
|   if (pZip->m_pWrite(pZip->m_pIO_opaque, local_dir_header_ofs, local_dir_header,
 | |
|                      sizeof(local_dir_header)) != sizeof(local_dir_header))
 | |
|     return MZ_FALSE;
 | |
| 
 | |
|   if (!mz_zip_writer_add_to_central_dir(
 | |
|           pZip, pArchive_name, (mz_uint16)archive_name_size, NULL, 0, pComment,
 | |
|           comment_size, uncomp_size, comp_size, uncomp_crc32, method, 0,
 | |
|           dos_time, dos_date, local_dir_header_ofs, ext_attributes))
 | |
|     return MZ_FALSE;
 | |
| 
 | |
|   pZip->m_total_files++;
 | |
|   pZip->m_archive_size = cur_archive_file_ofs;
 | |
| 
 | |
|   return MZ_TRUE;
 | |
| }
 | |
| #endif  // #ifndef MINIZ_NO_STDIO
 | |
| 
 | |
| mz_bool mz_zip_writer_add_from_zip_reader(mz_zip_archive *pZip,
 | |
|                                           mz_zip_archive *pSource_zip,
 | |
|                                           mz_uint file_index) {
 | |
|   mz_uint n, bit_flags, num_alignment_padding_bytes;
 | |
|   mz_uint64 comp_bytes_remaining, local_dir_header_ofs;
 | |
|   mz_uint64 cur_src_file_ofs, cur_dst_file_ofs;
 | |
|   mz_uint32
 | |
|       local_header_u32[(MZ_ZIP_LOCAL_DIR_HEADER_SIZE + sizeof(mz_uint32) - 1) /
 | |
|                        sizeof(mz_uint32)];
 | |
|   mz_uint8 *pLocal_header = (mz_uint8 *)local_header_u32;
 | |
|   mz_uint8 central_header[MZ_ZIP_CENTRAL_DIR_HEADER_SIZE];
 | |
|   size_t orig_central_dir_size;
 | |
|   mz_zip_internal_state *pState;
 | |
|   void *pBuf;
 | |
|   const mz_uint8 *pSrc_central_header;
 | |
| 
 | |
|   if ((!pZip) || (!pZip->m_pState) || (pZip->m_zip_mode != MZ_ZIP_MODE_WRITING))
 | |
|     return MZ_FALSE;
 | |
|   if (NULL ==
 | |
|       (pSrc_central_header = mz_zip_reader_get_cdh(pSource_zip, file_index)))
 | |
|     return MZ_FALSE;
 | |
|   pState = pZip->m_pState;
 | |
| 
 | |
|   num_alignment_padding_bytes =
 | |
|       mz_zip_writer_compute_padding_needed_for_file_alignment(pZip);
 | |
| 
 | |
|   // no zip64 support yet
 | |
|   if ((pZip->m_total_files == 0xFFFF) ||
 | |
|       ((pZip->m_archive_size + num_alignment_padding_bytes +
 | |
|         MZ_ZIP_LOCAL_DIR_HEADER_SIZE + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE) >
 | |
|        0xFFFFFFFF))
 | |
|     return MZ_FALSE;
 | |
| 
 | |
|   cur_src_file_ofs =
 | |
|       MZ_READ_LE32(pSrc_central_header + MZ_ZIP_CDH_LOCAL_HEADER_OFS);
 | |
|   cur_dst_file_ofs = pZip->m_archive_size;
 | |
| 
 | |
|   if (pSource_zip->m_pRead(pSource_zip->m_pIO_opaque, cur_src_file_ofs,
 | |
|                            pLocal_header, MZ_ZIP_LOCAL_DIR_HEADER_SIZE) !=
 | |
|       MZ_ZIP_LOCAL_DIR_HEADER_SIZE)
 | |
|     return MZ_FALSE;
 | |
|   if (MZ_READ_LE32(pLocal_header) != MZ_ZIP_LOCAL_DIR_HEADER_SIG)
 | |
|     return MZ_FALSE;
 | |
|   cur_src_file_ofs += MZ_ZIP_LOCAL_DIR_HEADER_SIZE;
 | |
| 
 | |
|   if (!mz_zip_writer_write_zeros(pZip, cur_dst_file_ofs,
 | |
|                                  num_alignment_padding_bytes))
 | |
|     return MZ_FALSE;
 | |
|   cur_dst_file_ofs += num_alignment_padding_bytes;
 | |
|   local_dir_header_ofs = cur_dst_file_ofs;
 | |
|   if (pZip->m_file_offset_alignment) {
 | |
|     MZ_ASSERT((local_dir_header_ofs & (pZip->m_file_offset_alignment - 1)) ==
 | |
|               0);
 | |
|   }
 | |
| 
 | |
|   if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_dst_file_ofs, pLocal_header,
 | |
|                      MZ_ZIP_LOCAL_DIR_HEADER_SIZE) !=
 | |
|       MZ_ZIP_LOCAL_DIR_HEADER_SIZE)
 | |
|     return MZ_FALSE;
 | |
|   cur_dst_file_ofs += MZ_ZIP_LOCAL_DIR_HEADER_SIZE;
 | |
| 
 | |
|   n = MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_FILENAME_LEN_OFS) +
 | |
|       MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_EXTRA_LEN_OFS);
 | |
|   comp_bytes_remaining =
 | |
|       n + MZ_READ_LE32(pSrc_central_header + MZ_ZIP_CDH_COMPRESSED_SIZE_OFS);
 | |
| 
 | |
|   if (NULL == (pBuf = pZip->m_pAlloc(
 | |
|                    pZip->m_pAlloc_opaque, 1,
 | |
|                    (size_t)MZ_MAX(sizeof(mz_uint32) * 4,
 | |
|                                   MZ_MIN((mz_uint)MZ_ZIP_MAX_IO_BUF_SIZE,
 | |
|                                          comp_bytes_remaining)))))
 | |
|     return MZ_FALSE;
 | |
| 
 | |
|   while (comp_bytes_remaining) {
 | |
|     n = (mz_uint)MZ_MIN((mz_uint)MZ_ZIP_MAX_IO_BUF_SIZE, comp_bytes_remaining);
 | |
|     if (pSource_zip->m_pRead(pSource_zip->m_pIO_opaque, cur_src_file_ofs, pBuf,
 | |
|                              n) != n) {
 | |
|       pZip->m_pFree(pZip->m_pAlloc_opaque, pBuf);
 | |
|       return MZ_FALSE;
 | |
|     }
 | |
|     cur_src_file_ofs += n;
 | |
| 
 | |
|     if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_dst_file_ofs, pBuf, n) != n) {
 | |
|       pZip->m_pFree(pZip->m_pAlloc_opaque, pBuf);
 | |
|       return MZ_FALSE;
 | |
|     }
 | |
|     cur_dst_file_ofs += n;
 | |
| 
 | |
|     comp_bytes_remaining -= n;
 | |
|   }
 | |
| 
 | |
|   bit_flags = MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_BIT_FLAG_OFS);
 | |
|   if (bit_flags & 8) {
 | |
|     // Copy data descriptor
 | |
|     if (pSource_zip->m_pRead(pSource_zip->m_pIO_opaque, cur_src_file_ofs, pBuf,
 | |
|                              sizeof(mz_uint32) * 4) != sizeof(mz_uint32) * 4) {
 | |
|       pZip->m_pFree(pZip->m_pAlloc_opaque, pBuf);
 | |
|       return MZ_FALSE;
 | |
|     }
 | |
| 
 | |
|     n = sizeof(mz_uint32) * ((MZ_READ_LE32(pBuf) == 0x08074b50) ? 4 : 3);
 | |
|     if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_dst_file_ofs, pBuf, n) != n) {
 | |
|       pZip->m_pFree(pZip->m_pAlloc_opaque, pBuf);
 | |
|       return MZ_FALSE;
 | |
|     }
 | |
| 
 | |
|     cur_src_file_ofs += n;
 | |
|     cur_dst_file_ofs += n;
 | |
|   }
 | |
|   pZip->m_pFree(pZip->m_pAlloc_opaque, pBuf);
 | |
| 
 | |
|   // no zip64 support yet
 | |
|   if (cur_dst_file_ofs > 0xFFFFFFFF) return MZ_FALSE;
 | |
| 
 | |
|   orig_central_dir_size = pState->m_central_dir.m_size;
 | |
| 
 | |
|   memcpy(central_header, pSrc_central_header, MZ_ZIP_CENTRAL_DIR_HEADER_SIZE);
 | |
|   MZ_WRITE_LE32(central_header + MZ_ZIP_CDH_LOCAL_HEADER_OFS,
 | |
|                 local_dir_header_ofs);
 | |
|   if (!mz_zip_array_push_back(pZip, &pState->m_central_dir, central_header,
 | |
|                               MZ_ZIP_CENTRAL_DIR_HEADER_SIZE))
 | |
|     return MZ_FALSE;
 | |
| 
 | |
|   n = MZ_READ_LE16(pSrc_central_header + MZ_ZIP_CDH_FILENAME_LEN_OFS) +
 | |
|       MZ_READ_LE16(pSrc_central_header + MZ_ZIP_CDH_EXTRA_LEN_OFS) +
 | |
|       MZ_READ_LE16(pSrc_central_header + MZ_ZIP_CDH_COMMENT_LEN_OFS);
 | |
|   if (!mz_zip_array_push_back(
 | |
|           pZip, &pState->m_central_dir,
 | |
|           pSrc_central_header + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE, n)) {
 | |
|     mz_zip_array_resize(pZip, &pState->m_central_dir, orig_central_dir_size,
 | |
|                         MZ_FALSE);
 | |
|     return MZ_FALSE;
 | |
|   }
 | |
| 
 | |
|   if (pState->m_central_dir.m_size > 0xFFFFFFFF) return MZ_FALSE;
 | |
|   n = (mz_uint32)orig_central_dir_size;
 | |
|   if (!mz_zip_array_push_back(pZip, &pState->m_central_dir_offsets, &n, 1)) {
 | |
|     mz_zip_array_resize(pZip, &pState->m_central_dir, orig_central_dir_size,
 | |
|                         MZ_FALSE);
 | |
|     return MZ_FALSE;
 | |
|   }
 | |
| 
 | |
|   pZip->m_total_files++;
 | |
|   pZip->m_archive_size = cur_dst_file_ofs;
 | |
| 
 | |
|   return MZ_TRUE;
 | |
| }
 | |
| 
 | |
| mz_bool mz_zip_writer_finalize_archive(mz_zip_archive *pZip) {
 | |
|   mz_zip_internal_state *pState;
 | |
|   mz_uint64 central_dir_ofs, central_dir_size;
 | |
|   mz_uint8 hdr[MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE];
 | |
| 
 | |
|   if ((!pZip) || (!pZip->m_pState) || (pZip->m_zip_mode != MZ_ZIP_MODE_WRITING))
 | |
|     return MZ_FALSE;
 | |
| 
 | |
|   pState = pZip->m_pState;
 | |
| 
 | |
|   // no zip64 support yet
 | |
|   if ((pZip->m_total_files > 0xFFFF) ||
 | |
|       ((pZip->m_archive_size + pState->m_central_dir.m_size +
 | |
|         MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE) > 0xFFFFFFFF))
 | |
|     return MZ_FALSE;
 | |
| 
 | |
|   central_dir_ofs = 0;
 | |
|   central_dir_size = 0;
 | |
|   if (pZip->m_total_files) {
 | |
|     // Write central directory
 | |
|     central_dir_ofs = pZip->m_archive_size;
 | |
|     central_dir_size = pState->m_central_dir.m_size;
 | |
|     pZip->m_central_directory_file_ofs = central_dir_ofs;
 | |
|     if (pZip->m_pWrite(pZip->m_pIO_opaque, central_dir_ofs,
 | |
|                        pState->m_central_dir.m_p,
 | |
|                        (size_t)central_dir_size) != central_dir_size)
 | |
|       return MZ_FALSE;
 | |
|     pZip->m_archive_size += central_dir_size;
 | |
|   }
 | |
| 
 | |
|   // Write end of central directory record
 | |
|   MZ_CLEAR_OBJ(hdr);
 | |
|   MZ_WRITE_LE32(hdr + MZ_ZIP_ECDH_SIG_OFS,
 | |
|                 MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIG);
 | |
|   MZ_WRITE_LE16(hdr + MZ_ZIP_ECDH_CDIR_NUM_ENTRIES_ON_DISK_OFS,
 | |
|                 pZip->m_total_files);
 | |
|   MZ_WRITE_LE16(hdr + MZ_ZIP_ECDH_CDIR_TOTAL_ENTRIES_OFS, pZip->m_total_files);
 | |
|   MZ_WRITE_LE32(hdr + MZ_ZIP_ECDH_CDIR_SIZE_OFS, central_dir_size);
 | |
|   MZ_WRITE_LE32(hdr + MZ_ZIP_ECDH_CDIR_OFS_OFS, central_dir_ofs);
 | |
| 
 | |
|   if (pZip->m_pWrite(pZip->m_pIO_opaque, pZip->m_archive_size, hdr,
 | |
|                      sizeof(hdr)) != sizeof(hdr))
 | |
|     return MZ_FALSE;
 | |
| #ifndef MINIZ_NO_STDIO
 | |
|   if ((pState->m_pFile) && (MZ_FFLUSH(pState->m_pFile) == EOF)) return MZ_FALSE;
 | |
| #endif  // #ifndef MINIZ_NO_STDIO
 | |
| 
 | |
|   pZip->m_archive_size += sizeof(hdr);
 | |
| 
 | |
|   pZip->m_zip_mode = MZ_ZIP_MODE_WRITING_HAS_BEEN_FINALIZED;
 | |
|   return MZ_TRUE;
 | |
| }
 | |
| 
 | |
| mz_bool mz_zip_writer_finalize_heap_archive(mz_zip_archive *pZip, void **pBuf,
 | |
|                                             size_t *pSize) {
 | |
|   if ((!pZip) || (!pZip->m_pState) || (!pBuf) || (!pSize)) return MZ_FALSE;
 | |
|   if (pZip->m_pWrite != mz_zip_heap_write_func) return MZ_FALSE;
 | |
|   if (!mz_zip_writer_finalize_archive(pZip)) return MZ_FALSE;
 | |
| 
 | |
|   *pBuf = pZip->m_pState->m_pMem;
 | |
|   *pSize = pZip->m_pState->m_mem_size;
 | |
|   pZip->m_pState->m_pMem = NULL;
 | |
|   pZip->m_pState->m_mem_size = pZip->m_pState->m_mem_capacity = 0;
 | |
|   return MZ_TRUE;
 | |
| }
 | |
| 
 | |
| mz_bool mz_zip_writer_end(mz_zip_archive *pZip) {
 | |
|   mz_zip_internal_state *pState;
 | |
|   mz_bool status = MZ_TRUE;
 | |
|   if ((!pZip) || (!pZip->m_pState) || (!pZip->m_pAlloc) || (!pZip->m_pFree) ||
 | |
|       ((pZip->m_zip_mode != MZ_ZIP_MODE_WRITING) &&
 | |
|        (pZip->m_zip_mode != MZ_ZIP_MODE_WRITING_HAS_BEEN_FINALIZED)))
 | |
|     return MZ_FALSE;
 | |
| 
 | |
|   pState = pZip->m_pState;
 | |
|   pZip->m_pState = NULL;
 | |
|   mz_zip_array_clear(pZip, &pState->m_central_dir);
 | |
|   mz_zip_array_clear(pZip, &pState->m_central_dir_offsets);
 | |
|   mz_zip_array_clear(pZip, &pState->m_sorted_central_dir_offsets);
 | |
| 
 | |
| #ifndef MINIZ_NO_STDIO
 | |
|   if (pState->m_pFile) {
 | |
|     MZ_FCLOSE(pState->m_pFile);
 | |
|     pState->m_pFile = NULL;
 | |
|   }
 | |
| #endif  // #ifndef MINIZ_NO_STDIO
 | |
| 
 | |
|   if ((pZip->m_pWrite == mz_zip_heap_write_func) && (pState->m_pMem)) {
 | |
|     pZip->m_pFree(pZip->m_pAlloc_opaque, pState->m_pMem);
 | |
|     pState->m_pMem = NULL;
 | |
|   }
 | |
| 
 | |
|   pZip->m_pFree(pZip->m_pAlloc_opaque, pState);
 | |
|   pZip->m_zip_mode = MZ_ZIP_MODE_INVALID;
 | |
|   return status;
 | |
| }
 | |
| 
 | |
| #ifndef MINIZ_NO_STDIO
 | |
| mz_bool mz_zip_add_mem_to_archive_file_in_place(
 | |
|     const char *pZip_filename, const char *pArchive_name, const void *pBuf,
 | |
|     size_t buf_size, const void *pComment, mz_uint16 comment_size,
 | |
|     mz_uint level_and_flags) {
 | |
|   mz_bool status, created_new_archive = MZ_FALSE;
 | |
|   mz_zip_archive zip_archive;
 | |
|   struct MZ_FILE_STAT_STRUCT file_stat;
 | |
|   MZ_CLEAR_OBJ(zip_archive);
 | |
|   if ((int)level_and_flags < 0) level_and_flags = MZ_DEFAULT_LEVEL;
 | |
|   if ((!pZip_filename) || (!pArchive_name) || ((buf_size) && (!pBuf)) ||
 | |
|       ((comment_size) && (!pComment)) ||
 | |
|       ((level_and_flags & 0xF) > MZ_UBER_COMPRESSION))
 | |
|     return MZ_FALSE;
 | |
|   if (!mz_zip_writer_validate_archive_name(pArchive_name)) return MZ_FALSE;
 | |
|   if (MZ_FILE_STAT(pZip_filename, &file_stat) != 0) {
 | |
|     // Create a new archive.
 | |
|     if (!mz_zip_writer_init_file(&zip_archive, pZip_filename, 0))
 | |
|       return MZ_FALSE;
 | |
|     created_new_archive = MZ_TRUE;
 | |
|   } else {
 | |
|     // Append to an existing archive.
 | |
|     if (!mz_zip_reader_init_file(
 | |
|             &zip_archive, pZip_filename,
 | |
|             level_and_flags | MZ_ZIP_FLAG_DO_NOT_SORT_CENTRAL_DIRECTORY))
 | |
|       return MZ_FALSE;
 | |
|     if (!mz_zip_writer_init_from_reader(&zip_archive, pZip_filename)) {
 | |
|       mz_zip_reader_end(&zip_archive);
 | |
|       return MZ_FALSE;
 | |
|     }
 | |
|   }
 | |
|   status =
 | |
|       mz_zip_writer_add_mem_ex(&zip_archive, pArchive_name, pBuf, buf_size,
 | |
|                                pComment, comment_size, level_and_flags, 0, 0);
 | |
|   // Always finalize, even if adding failed for some reason, so we have a valid
 | |
|   // central directory. (This may not always succeed, but we can try.)
 | |
|   if (!mz_zip_writer_finalize_archive(&zip_archive)) status = MZ_FALSE;
 | |
|   if (!mz_zip_writer_end(&zip_archive)) status = MZ_FALSE;
 | |
|   if ((!status) && (created_new_archive)) {
 | |
|     // It's a new archive and something went wrong, so just delete it.
 | |
|     int ignoredStatus = MZ_DELETE_FILE(pZip_filename);
 | |
|     (void)ignoredStatus;
 | |
|   }
 | |
|   return status;
 | |
| }
 | |
| 
 | |
| void *mz_zip_extract_archive_file_to_heap(const char *pZip_filename,
 | |
|                                           const char *pArchive_name,
 | |
|                                           size_t *pSize, mz_uint flags) {
 | |
|   int file_index;
 | |
|   mz_zip_archive zip_archive;
 | |
|   void *p = NULL;
 | |
| 
 | |
|   if (pSize) *pSize = 0;
 | |
| 
 | |
|   if ((!pZip_filename) || (!pArchive_name)) return NULL;
 | |
| 
 | |
|   MZ_CLEAR_OBJ(zip_archive);
 | |
|   if (!mz_zip_reader_init_file(
 | |
|           &zip_archive, pZip_filename,
 | |
|           flags | MZ_ZIP_FLAG_DO_NOT_SORT_CENTRAL_DIRECTORY))
 | |
|     return NULL;
 | |
| 
 | |
|   if ((file_index = mz_zip_reader_locate_file(&zip_archive, pArchive_name, NULL,
 | |
|                                               flags)) >= 0)
 | |
|     p = mz_zip_reader_extract_to_heap(&zip_archive, file_index, pSize, flags);
 | |
| 
 | |
|   mz_zip_reader_end(&zip_archive);
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| #endif  // #ifndef MINIZ_NO_STDIO
 | |
| 
 | |
| #endif  // #ifndef MINIZ_NO_ARCHIVE_WRITING_APIS
 | |
| 
 | |
| #endif  // #ifndef MINIZ_NO_ARCHIVE_APIS
 | |
| 
 | |
| #ifdef __cplusplus
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| #pragma warning(pop)
 | |
| #endif
 | |
| 
 | |
| #endif  // MINIZ_HEADER_FILE_ONLY
 | |
| 
 | |
| /*
 | |
|   This is free and unencumbered software released into the public domain.
 | |
| 
 | |
|   Anyone is free to copy, modify, publish, use, compile, sell, or
 | |
|   distribute this software, either in source code form or as a compiled
 | |
|   binary, for any purpose, commercial or non-commercial, and by any
 | |
|   means.
 | |
| 
 | |
|   In jurisdictions that recognize copyright laws, the author or authors
 | |
|   of this software dedicate any and all copyright interest in the
 | |
|   software to the public domain. We make this dedication for the benefit
 | |
|   of the public at large and to the detriment of our heirs and
 | |
|   successors. We intend this dedication to be an overt act of
 | |
|   relinquishment in perpetuity of all present and future rights to this
 | |
|   software under copyright law.
 | |
| 
 | |
|   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 | |
|   EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 | |
|   MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
 | |
|   IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
 | |
|   OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 | |
|   ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 | |
|   OTHER DEALINGS IN THE SOFTWARE.
 | |
| 
 | |
|   For more information, please refer to <http://unlicense.org/>
 | |
| */
 | |
| 
 | |
| // ---------------------- end of miniz ----------------------------------------
 | |
| 
 | |
| #ifdef __clang__
 | |
| #pragma clang diagnostic pop
 | |
| #endif
 | |
| 
 | |
| }  // namespace miniz
 | |
| #else
 | |
| 
 | |
| // Reuse MINIZ_LITTE_ENDIAN macro
 | |
| 
 | |
| #if defined(_M_IX86) || defined(_M_X64) || defined(__i386__) || \
 | |
|     defined(__i386) || defined(__i486__) || defined(__i486) ||  \
 | |
|     defined(i386) || defined(__ia64__) || defined(__x86_64__)
 | |
| // MINIZ_X86_OR_X64_CPU is only used to help set the below macros.
 | |
| #define MINIZ_X86_OR_X64_CPU 1
 | |
| #endif
 | |
| 
 | |
| #if defined(__sparcv9)
 | |
| // Big endian
 | |
| #else
 | |
| #if (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) || MINIZ_X86_OR_X64_CPU
 | |
| // Set MINIZ_LITTLE_ENDIAN to 1 if the processor is little endian.
 | |
| #define MINIZ_LITTLE_ENDIAN 1
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #endif  // TINYEXR_USE_MINIZ
 | |
| 
 | |
| // static bool IsBigEndian(void) {
 | |
| //  union {
 | |
| //    unsigned int i;
 | |
| //    char c[4];
 | |
| //  } bint = {0x01020304};
 | |
| //
 | |
| //  return bint.c[0] == 1;
 | |
| //}
 | |
| 
 | |
| static void SetErrorMessage(const std::string &msg, const char **err) {
 | |
|   if (err) {
 | |
| #ifdef _WIN32
 | |
|     (*err) = _strdup(msg.c_str());
 | |
| #else
 | |
|     (*err) = strdup(msg.c_str());
 | |
| #endif
 | |
|   }
 | |
| }
 | |
| 
 | |
| static const int kEXRVersionSize = 8;
 | |
| 
 | |
| static void cpy2(unsigned short *dst_val, const unsigned short *src_val) {
 | |
|   unsigned char *dst = reinterpret_cast<unsigned char *>(dst_val);
 | |
|   const unsigned char *src = reinterpret_cast<const unsigned char *>(src_val);
 | |
| 
 | |
|   dst[0] = src[0];
 | |
|   dst[1] = src[1];
 | |
| }
 | |
| 
 | |
| static void swap2(unsigned short *val) {
 | |
| #ifdef MINIZ_LITTLE_ENDIAN
 | |
|   (void)val;
 | |
| #else
 | |
|   unsigned short tmp = *val;
 | |
|   unsigned char *dst = reinterpret_cast<unsigned char *>(val);
 | |
|   unsigned char *src = reinterpret_cast<unsigned char *>(&tmp);
 | |
| 
 | |
|   dst[0] = src[1];
 | |
|   dst[1] = src[0];
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifdef __clang__
 | |
| #pragma clang diagnostic push
 | |
| #pragma clang diagnostic ignored "-Wunused-function"
 | |
| #endif
 | |
| 
 | |
| #ifdef __GNUC__
 | |
| #pragma GCC diagnostic push
 | |
| #pragma GCC diagnostic ignored "-Wunused-function"
 | |
| #endif
 | |
| static void cpy4(int *dst_val, const int *src_val) {
 | |
|   unsigned char *dst = reinterpret_cast<unsigned char *>(dst_val);
 | |
|   const unsigned char *src = reinterpret_cast<const unsigned char *>(src_val);
 | |
| 
 | |
|   dst[0] = src[0];
 | |
|   dst[1] = src[1];
 | |
|   dst[2] = src[2];
 | |
|   dst[3] = src[3];
 | |
| }
 | |
| 
 | |
| static void cpy4(unsigned int *dst_val, const unsigned int *src_val) {
 | |
|   unsigned char *dst = reinterpret_cast<unsigned char *>(dst_val);
 | |
|   const unsigned char *src = reinterpret_cast<const unsigned char *>(src_val);
 | |
| 
 | |
|   dst[0] = src[0];
 | |
|   dst[1] = src[1];
 | |
|   dst[2] = src[2];
 | |
|   dst[3] = src[3];
 | |
| }
 | |
| 
 | |
| static void cpy4(float *dst_val, const float *src_val) {
 | |
|   unsigned char *dst = reinterpret_cast<unsigned char *>(dst_val);
 | |
|   const unsigned char *src = reinterpret_cast<const unsigned char *>(src_val);
 | |
| 
 | |
|   dst[0] = src[0];
 | |
|   dst[1] = src[1];
 | |
|   dst[2] = src[2];
 | |
|   dst[3] = src[3];
 | |
| }
 | |
| #ifdef __clang__
 | |
| #pragma clang diagnostic pop
 | |
| #endif
 | |
| 
 | |
| #ifdef __GNUC__
 | |
| #pragma GCC diagnostic pop
 | |
| #endif
 | |
| 
 | |
| static void swap4(unsigned int *val) {
 | |
| #ifdef MINIZ_LITTLE_ENDIAN
 | |
|   (void)val;
 | |
| #else
 | |
|   unsigned int tmp = *val;
 | |
|   unsigned char *dst = reinterpret_cast<unsigned char *>(val);
 | |
|   unsigned char *src = reinterpret_cast<unsigned char *>(&tmp);
 | |
| 
 | |
|   dst[0] = src[3];
 | |
|   dst[1] = src[2];
 | |
|   dst[2] = src[1];
 | |
|   dst[3] = src[0];
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void swap4(int *val) {
 | |
| #ifdef MINIZ_LITTLE_ENDIAN
 | |
|   (void)val;
 | |
| #else
 | |
|   int tmp = *val;
 | |
|   unsigned char *dst = reinterpret_cast<unsigned char *>(val);
 | |
|   unsigned char *src = reinterpret_cast<unsigned char *>(&tmp);
 | |
| 
 | |
|   dst[0] = src[3];
 | |
|   dst[1] = src[2];
 | |
|   dst[2] = src[1];
 | |
|   dst[3] = src[0];
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void swap4(float *val) {
 | |
| #ifdef MINIZ_LITTLE_ENDIAN
 | |
|   (void)val;
 | |
| #else
 | |
|   float tmp = *val;
 | |
|   unsigned char *dst = reinterpret_cast<unsigned char *>(val);
 | |
|   unsigned char *src = reinterpret_cast<unsigned char *>(&tmp);
 | |
| 
 | |
|   dst[0] = src[3];
 | |
|   dst[1] = src[2];
 | |
|   dst[2] = src[1];
 | |
|   dst[3] = src[0];
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| static void cpy8(tinyexr::tinyexr_uint64 *dst_val, const tinyexr::tinyexr_uint64 *src_val) {
 | |
|   unsigned char *dst = reinterpret_cast<unsigned char *>(dst_val);
 | |
|   const unsigned char *src = reinterpret_cast<const unsigned char *>(src_val);
 | |
| 
 | |
|   dst[0] = src[0];
 | |
|   dst[1] = src[1];
 | |
|   dst[2] = src[2];
 | |
|   dst[3] = src[3];
 | |
|   dst[4] = src[4];
 | |
|   dst[5] = src[5];
 | |
|   dst[6] = src[6];
 | |
|   dst[7] = src[7];
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void swap8(tinyexr::tinyexr_uint64 *val) {
 | |
| #ifdef MINIZ_LITTLE_ENDIAN
 | |
|   (void)val;
 | |
| #else
 | |
|   tinyexr::tinyexr_uint64 tmp = (*val);
 | |
|   unsigned char *dst = reinterpret_cast<unsigned char *>(val);
 | |
|   unsigned char *src = reinterpret_cast<unsigned char *>(&tmp);
 | |
| 
 | |
|   dst[0] = src[7];
 | |
|   dst[1] = src[6];
 | |
|   dst[2] = src[5];
 | |
|   dst[3] = src[4];
 | |
|   dst[4] = src[3];
 | |
|   dst[5] = src[2];
 | |
|   dst[6] = src[1];
 | |
|   dst[7] = src[0];
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // https://gist.github.com/rygorous/2156668
 | |
| // Reuse MINIZ_LITTLE_ENDIAN flag from miniz.
 | |
| union FP32 {
 | |
|   unsigned int u;
 | |
|   float f;
 | |
|   struct {
 | |
| #if MINIZ_LITTLE_ENDIAN
 | |
|     unsigned int Mantissa : 23;
 | |
|     unsigned int Exponent : 8;
 | |
|     unsigned int Sign : 1;
 | |
| #else
 | |
|     unsigned int Sign : 1;
 | |
|     unsigned int Exponent : 8;
 | |
|     unsigned int Mantissa : 23;
 | |
| #endif
 | |
|   } s;
 | |
| };
 | |
| 
 | |
| #ifdef __clang__
 | |
| #pragma clang diagnostic push
 | |
| #pragma clang diagnostic ignored "-Wpadded"
 | |
| #endif
 | |
| 
 | |
| union FP16 {
 | |
|   unsigned short u;
 | |
|   struct {
 | |
| #if MINIZ_LITTLE_ENDIAN
 | |
|     unsigned int Mantissa : 10;
 | |
|     unsigned int Exponent : 5;
 | |
|     unsigned int Sign : 1;
 | |
| #else
 | |
|     unsigned int Sign : 1;
 | |
|     unsigned int Exponent : 5;
 | |
|     unsigned int Mantissa : 10;
 | |
| #endif
 | |
|   } s;
 | |
| };
 | |
| 
 | |
| #ifdef __clang__
 | |
| #pragma clang diagnostic pop
 | |
| #endif
 | |
| 
 | |
| static FP32 half_to_float(FP16 h) {
 | |
|   static const FP32 magic = {113 << 23};
 | |
|   static const unsigned int shifted_exp = 0x7c00
 | |
|                                           << 13;  // exponent mask after shift
 | |
|   FP32 o;
 | |
| 
 | |
|   o.u = (h.u & 0x7fffU) << 13U;           // exponent/mantissa bits
 | |
|   unsigned int exp_ = shifted_exp & o.u;  // just the exponent
 | |
|   o.u += (127 - 15) << 23;                // exponent adjust
 | |
| 
 | |
|   // handle exponent special cases
 | |
|   if (exp_ == shifted_exp)    // Inf/NaN?
 | |
|     o.u += (128 - 16) << 23;  // extra exp adjust
 | |
|   else if (exp_ == 0)         // Zero/Denormal?
 | |
|   {
 | |
|     o.u += 1 << 23;  // extra exp adjust
 | |
|     o.f -= magic.f;  // renormalize
 | |
|   }
 | |
| 
 | |
|   o.u |= (h.u & 0x8000U) << 16U;  // sign bit
 | |
|   return o;
 | |
| }
 | |
| 
 | |
| static FP16 float_to_half_full(FP32 f) {
 | |
|   FP16 o = {0};
 | |
| 
 | |
|   // Based on ISPC reference code (with minor modifications)
 | |
|   if (f.s.Exponent == 0)  // Signed zero/denormal (which will underflow)
 | |
|     o.s.Exponent = 0;
 | |
|   else if (f.s.Exponent == 255)  // Inf or NaN (all exponent bits set)
 | |
|   {
 | |
|     o.s.Exponent = 31;
 | |
|     o.s.Mantissa = f.s.Mantissa ? 0x200 : 0;  // NaN->qNaN and Inf->Inf
 | |
|   } else                                      // Normalized number
 | |
|   {
 | |
|     // Exponent unbias the single, then bias the halfp
 | |
|     int newexp = f.s.Exponent - 127 + 15;
 | |
|     if (newexp >= 31)  // Overflow, return signed infinity
 | |
|       o.s.Exponent = 31;
 | |
|     else if (newexp <= 0)  // Underflow
 | |
|     {
 | |
|       if ((14 - newexp) <= 24)  // Mantissa might be non-zero
 | |
|       {
 | |
|         unsigned int mant = f.s.Mantissa | 0x800000;  // Hidden 1 bit
 | |
|         o.s.Mantissa = mant >> (14 - newexp);
 | |
|         if ((mant >> (13 - newexp)) & 1)  // Check for rounding
 | |
|           o.u++;  // Round, might overflow into exp bit, but this is OK
 | |
|       }
 | |
|     } else {
 | |
|       o.s.Exponent = static_cast<unsigned int>(newexp);
 | |
|       o.s.Mantissa = f.s.Mantissa >> 13;
 | |
|       if (f.s.Mantissa & 0x1000)  // Check for rounding
 | |
|         o.u++;                    // Round, might overflow to inf, this is OK
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   o.s.Sign = f.s.Sign;
 | |
|   return o;
 | |
| }
 | |
| 
 | |
| // NOTE: From OpenEXR code
 | |
| // #define IMF_INCREASING_Y  0
 | |
| // #define IMF_DECREASING_Y  1
 | |
| // #define IMF_RAMDOM_Y    2
 | |
| //
 | |
| // #define IMF_NO_COMPRESSION  0
 | |
| // #define IMF_RLE_COMPRESSION 1
 | |
| // #define IMF_ZIPS_COMPRESSION  2
 | |
| // #define IMF_ZIP_COMPRESSION 3
 | |
| // #define IMF_PIZ_COMPRESSION 4
 | |
| // #define IMF_PXR24_COMPRESSION 5
 | |
| // #define IMF_B44_COMPRESSION 6
 | |
| // #define IMF_B44A_COMPRESSION  7
 | |
| 
 | |
| #ifdef __clang__
 | |
| #pragma clang diagnostic push
 | |
| 
 | |
| #if __has_warning("-Wzero-as-null-pointer-constant")
 | |
| #pragma clang diagnostic ignored "-Wzero-as-null-pointer-constant"
 | |
| #endif
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static const char *ReadString(std::string *s, const char *ptr, size_t len) {
 | |
|   // Read untile NULL(\0).
 | |
|   const char *p = ptr;
 | |
|   const char *q = ptr;
 | |
|   while ((size_t(q - ptr) < len) && (*q) != 0) {
 | |
|     q++;
 | |
|   }
 | |
| 
 | |
|   if (size_t(q - ptr) >= len) {
 | |
|     (*s) = std::string();
 | |
|     return NULL;
 | |
|   }
 | |
| 
 | |
|   (*s) = std::string(p, q);
 | |
| 
 | |
|   return q + 1;  // skip '\0'
 | |
| }
 | |
| 
 | |
| static bool ReadAttribute(std::string *name, std::string *type,
 | |
|                           std::vector<unsigned char> *data, size_t *marker_size,
 | |
|                           const char *marker, size_t size) {
 | |
|   size_t name_len = strnlen(marker, size);
 | |
|   if (name_len == size) {
 | |
|     // String does not have a terminating character.
 | |
|     return false;
 | |
|   }
 | |
|   *name = std::string(marker, name_len);
 | |
| 
 | |
|   marker += name_len + 1;
 | |
|   size -= name_len + 1;
 | |
| 
 | |
|   size_t type_len = strnlen(marker, size);
 | |
|   if (type_len == size) {
 | |
|     return false;
 | |
|   }
 | |
|   *type = std::string(marker, type_len);
 | |
| 
 | |
|   marker += type_len + 1;
 | |
|   size -= type_len + 1;
 | |
| 
 | |
|   if (size < sizeof(uint32_t)) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   uint32_t data_len;
 | |
|   memcpy(&data_len, marker, sizeof(uint32_t));
 | |
|   tinyexr::swap4(reinterpret_cast<unsigned int *>(&data_len));
 | |
| 
 | |
|   if (data_len == 0) {
 | |
|     if ((*type).compare("string") == 0) {
 | |
|       // Accept empty string attribute.
 | |
| 
 | |
|       marker += sizeof(uint32_t);
 | |
|       size -= sizeof(uint32_t);
 | |
| 
 | |
|       *marker_size = name_len + 1 + type_len + 1 + sizeof(uint32_t);
 | |
| 
 | |
|       data->resize(1);
 | |
|       (*data)[0] = '\0';
 | |
| 
 | |
|       return true;
 | |
|     } else {
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   marker += sizeof(uint32_t);
 | |
|   size -= sizeof(uint32_t);
 | |
| 
 | |
|   if (size < data_len) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   data->resize(static_cast<size_t>(data_len));
 | |
|   memcpy(&data->at(0), marker, static_cast<size_t>(data_len));
 | |
| 
 | |
|   *marker_size = name_len + 1 + type_len + 1 + sizeof(uint32_t) + data_len;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static void WriteAttributeToMemory(std::vector<unsigned char> *out,
 | |
|                                    const char *name, const char *type,
 | |
|                                    const unsigned char *data, int len) {
 | |
|   out->insert(out->end(), name, name + strlen(name) + 1);
 | |
|   out->insert(out->end(), type, type + strlen(type) + 1);
 | |
| 
 | |
|   int outLen = len;
 | |
|   tinyexr::swap4(&outLen);
 | |
|   out->insert(out->end(), reinterpret_cast<unsigned char *>(&outLen),
 | |
|               reinterpret_cast<unsigned char *>(&outLen) + sizeof(int));
 | |
|   out->insert(out->end(), data, data + len);
 | |
| }
 | |
| 
 | |
| typedef struct {
 | |
|   std::string name;  // less than 255 bytes long
 | |
|   int pixel_type;
 | |
|   int x_sampling;
 | |
|   int y_sampling;
 | |
|   unsigned char p_linear;
 | |
|   unsigned char pad[3];
 | |
| } ChannelInfo;
 | |
| 
 | |
| typedef struct {
 | |
|   int min_x;
 | |
|   int min_y;
 | |
|   int max_x;
 | |
|   int max_y;
 | |
| } Box2iInfo;
 | |
| 
 | |
| struct HeaderInfo {
 | |
|   std::vector<tinyexr::ChannelInfo> channels;
 | |
|   std::vector<EXRAttribute> attributes;
 | |
| 
 | |
|   Box2iInfo data_window;
 | |
|   int line_order;
 | |
|   Box2iInfo display_window;
 | |
|   float screen_window_center[2];
 | |
|   float screen_window_width;
 | |
|   float pixel_aspect_ratio;
 | |
| 
 | |
|   int chunk_count;
 | |
| 
 | |
|   // Tiled format
 | |
|   int tile_size_x;
 | |
|   int tile_size_y;
 | |
|   int tile_level_mode;
 | |
|   int tile_rounding_mode;
 | |
| 
 | |
|   unsigned int header_len;
 | |
| 
 | |
|   int compression_type;
 | |
| 
 | |
|   void clear() {
 | |
|     channels.clear();
 | |
|     attributes.clear();
 | |
| 
 | |
|     data_window.min_x = 0;
 | |
|     data_window.min_y = 0;
 | |
|     data_window.max_x = 0;
 | |
|     data_window.max_y = 0;
 | |
|     line_order = 0;
 | |
|     display_window.min_x = 0;
 | |
|     display_window.min_y = 0;
 | |
|     display_window.max_x = 0;
 | |
|     display_window.max_y = 0;
 | |
|     screen_window_center[0] = 0.0f;
 | |
|     screen_window_center[1] = 0.0f;
 | |
|     screen_window_width = 0.0f;
 | |
|     pixel_aspect_ratio = 0.0f;
 | |
| 
 | |
|     chunk_count = 0;
 | |
| 
 | |
|     // Tiled format
 | |
|     tile_size_x = 0;
 | |
|     tile_size_y = 0;
 | |
|     tile_level_mode = 0;
 | |
|     tile_rounding_mode = 0;
 | |
| 
 | |
|     header_len = 0;
 | |
|     compression_type = 0;
 | |
|   }
 | |
| };
 | |
| 
 | |
| static bool ReadChannelInfo(std::vector<ChannelInfo> &channels,
 | |
|                             const std::vector<unsigned char> &data) {
 | |
|   const char *p = reinterpret_cast<const char *>(&data.at(0));
 | |
| 
 | |
|   for (;;) {
 | |
|     if ((*p) == 0) {
 | |
|       break;
 | |
|     }
 | |
|     ChannelInfo info;
 | |
| 
 | |
|     tinyexr_int64 data_len = static_cast<tinyexr_int64>(data.size()) -
 | |
|                              (p - reinterpret_cast<const char *>(data.data()));
 | |
|     if (data_len < 0) {
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     p = ReadString(&info.name, p, size_t(data_len));
 | |
|     if ((p == NULL) && (info.name.empty())) {
 | |
|       // Buffer overrun. Issue #51.
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     const unsigned char *data_end =
 | |
|         reinterpret_cast<const unsigned char *>(p) + 16;
 | |
|     if (data_end >= (data.data() + data.size())) {
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     memcpy(&info.pixel_type, p, sizeof(int));
 | |
|     p += 4;
 | |
|     info.p_linear = static_cast<unsigned char>(p[0]);  // uchar
 | |
|     p += 1 + 3;                                        // reserved: uchar[3]
 | |
|     memcpy(&info.x_sampling, p, sizeof(int));          // int
 | |
|     p += 4;
 | |
|     memcpy(&info.y_sampling, p, sizeof(int));  // int
 | |
|     p += 4;
 | |
| 
 | |
|     tinyexr::swap4(&info.pixel_type);
 | |
|     tinyexr::swap4(&info.x_sampling);
 | |
|     tinyexr::swap4(&info.y_sampling);
 | |
| 
 | |
|     channels.push_back(info);
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static void WriteChannelInfo(std::vector<unsigned char> &data,
 | |
|                              const std::vector<ChannelInfo> &channels) {
 | |
|   size_t sz = 0;
 | |
| 
 | |
|   // Calculate total size.
 | |
|   for (size_t c = 0; c < channels.size(); c++) {
 | |
|     sz += strlen(channels[c].name.c_str()) + 1;  // +1 for \0
 | |
|     sz += 16;                                    // 4 * int
 | |
|   }
 | |
|   data.resize(sz + 1);
 | |
| 
 | |
|   unsigned char *p = &data.at(0);
 | |
| 
 | |
|   for (size_t c = 0; c < channels.size(); c++) {
 | |
|     memcpy(p, channels[c].name.c_str(), strlen(channels[c].name.c_str()));
 | |
|     p += strlen(channels[c].name.c_str());
 | |
|     (*p) = '\0';
 | |
|     p++;
 | |
| 
 | |
|     int pixel_type = channels[c].pixel_type;
 | |
|     int x_sampling = channels[c].x_sampling;
 | |
|     int y_sampling = channels[c].y_sampling;
 | |
|     tinyexr::swap4(&pixel_type);
 | |
|     tinyexr::swap4(&x_sampling);
 | |
|     tinyexr::swap4(&y_sampling);
 | |
| 
 | |
|     memcpy(p, &pixel_type, sizeof(int));
 | |
|     p += sizeof(int);
 | |
| 
 | |
|     (*p) = channels[c].p_linear;
 | |
|     p += 4;
 | |
| 
 | |
|     memcpy(p, &x_sampling, sizeof(int));
 | |
|     p += sizeof(int);
 | |
| 
 | |
|     memcpy(p, &y_sampling, sizeof(int));
 | |
|     p += sizeof(int);
 | |
|   }
 | |
| 
 | |
|   (*p) = '\0';
 | |
| }
 | |
| 
 | |
| static void CompressZip(unsigned char *dst,
 | |
|                         tinyexr::tinyexr_uint64 &compressedSize,
 | |
|                         const unsigned char *src, unsigned long src_size) {
 | |
|   std::vector<unsigned char> tmpBuf(src_size);
 | |
| 
 | |
|   //
 | |
|   // Apply EXR-specific? postprocess. Grabbed from OpenEXR's
 | |
|   // ImfZipCompressor.cpp
 | |
|   //
 | |
| 
 | |
|   //
 | |
|   // Reorder the pixel data.
 | |
|   //
 | |
| 
 | |
|   const char *srcPtr = reinterpret_cast<const char *>(src);
 | |
| 
 | |
|   {
 | |
|     char *t1 = reinterpret_cast<char *>(&tmpBuf.at(0));
 | |
|     char *t2 = reinterpret_cast<char *>(&tmpBuf.at(0)) + (src_size + 1) / 2;
 | |
|     const char *stop = srcPtr + src_size;
 | |
| 
 | |
|     for (;;) {
 | |
|       if (srcPtr < stop)
 | |
|         *(t1++) = *(srcPtr++);
 | |
|       else
 | |
|         break;
 | |
| 
 | |
|       if (srcPtr < stop)
 | |
|         *(t2++) = *(srcPtr++);
 | |
|       else
 | |
|         break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Predictor.
 | |
|   //
 | |
| 
 | |
|   {
 | |
|     unsigned char *t = &tmpBuf.at(0) + 1;
 | |
|     unsigned char *stop = &tmpBuf.at(0) + src_size;
 | |
|     int p = t[-1];
 | |
| 
 | |
|     while (t < stop) {
 | |
|       int d = int(t[0]) - p + (128 + 256);
 | |
|       p = t[0];
 | |
|       t[0] = static_cast<unsigned char>(d);
 | |
|       ++t;
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #if TINYEXR_USE_MINIZ
 | |
|   //
 | |
|   // Compress the data using miniz
 | |
|   //
 | |
| 
 | |
|   miniz::mz_ulong outSize = miniz::mz_compressBound(src_size);
 | |
|   int ret = miniz::mz_compress(
 | |
|       dst, &outSize, static_cast<const unsigned char *>(&tmpBuf.at(0)),
 | |
|       src_size);
 | |
|   assert(ret == miniz::MZ_OK);
 | |
|   (void)ret;
 | |
| 
 | |
|   compressedSize = outSize;
 | |
| #else
 | |
|   uLong outSize = compressBound(static_cast<uLong>(src_size));
 | |
|   int ret = compress(dst, &outSize, static_cast<const Bytef *>(&tmpBuf.at(0)),
 | |
|                      src_size);
 | |
|   assert(ret == Z_OK);
 | |
| 
 | |
|   compressedSize = outSize;
 | |
| #endif
 | |
| 
 | |
|   // Use uncompressed data when compressed data is larger than uncompressed.
 | |
|   // (Issue 40)
 | |
|   if (compressedSize >= src_size) {
 | |
|     compressedSize = src_size;
 | |
|     memcpy(dst, src, src_size);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool DecompressZip(unsigned char *dst,
 | |
|                           unsigned long *uncompressed_size /* inout */,
 | |
|                           const unsigned char *src, unsigned long src_size) {
 | |
|   if ((*uncompressed_size) == src_size) {
 | |
|     // Data is not compressed(Issue 40).
 | |
|     memcpy(dst, src, src_size);
 | |
|     return true;
 | |
|   }
 | |
|   std::vector<unsigned char> tmpBuf(*uncompressed_size);
 | |
| 
 | |
| #if TINYEXR_USE_MINIZ
 | |
|   int ret =
 | |
|       miniz::mz_uncompress(&tmpBuf.at(0), uncompressed_size, src, src_size);
 | |
|   if (miniz::MZ_OK != ret) {
 | |
|     return false;
 | |
|   }
 | |
| #else
 | |
|   int ret = uncompress(&tmpBuf.at(0), uncompressed_size, src, src_size);
 | |
|   if (Z_OK != ret) {
 | |
|     return false;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   //
 | |
|   // Apply EXR-specific? postprocess. Grabbed from OpenEXR's
 | |
|   // ImfZipCompressor.cpp
 | |
|   //
 | |
| 
 | |
|   // Predictor.
 | |
|   {
 | |
|     unsigned char *t = &tmpBuf.at(0) + 1;
 | |
|     unsigned char *stop = &tmpBuf.at(0) + (*uncompressed_size);
 | |
| 
 | |
|     while (t < stop) {
 | |
|       int d = int(t[-1]) + int(t[0]) - 128;
 | |
|       t[0] = static_cast<unsigned char>(d);
 | |
|       ++t;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Reorder the pixel data.
 | |
|   {
 | |
|     const char *t1 = reinterpret_cast<const char *>(&tmpBuf.at(0));
 | |
|     const char *t2 = reinterpret_cast<const char *>(&tmpBuf.at(0)) +
 | |
|                      (*uncompressed_size + 1) / 2;
 | |
|     char *s = reinterpret_cast<char *>(dst);
 | |
|     char *stop = s + (*uncompressed_size);
 | |
| 
 | |
|     for (;;) {
 | |
|       if (s < stop)
 | |
|         *(s++) = *(t1++);
 | |
|       else
 | |
|         break;
 | |
| 
 | |
|       if (s < stop)
 | |
|         *(s++) = *(t2++);
 | |
|       else
 | |
|         break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // RLE code from OpenEXR --------------------------------------
 | |
| 
 | |
| #ifdef __clang__
 | |
| #pragma clang diagnostic push
 | |
| #pragma clang diagnostic ignored "-Wsign-conversion"
 | |
| #if __has_warning("-Wextra-semi-stmt")
 | |
| #pragma clang diagnostic ignored "-Wextra-semi-stmt"
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| #pragma warning(push)
 | |
| #pragma warning(disable : 4204)  // nonstandard extension used : non-constant
 | |
|                                  // aggregate initializer (also supported by GNU
 | |
|                                  // C and C99, so no big deal)
 | |
| #pragma warning(disable : 4244)  // 'initializing': conversion from '__int64' to
 | |
|                                  // 'int', possible loss of data
 | |
| #pragma warning(disable : 4267)  // 'argument': conversion from '__int64' to
 | |
|                                  // 'int', possible loss of data
 | |
| #pragma warning(disable : 4996)  // 'strdup': The POSIX name for this item is
 | |
|                                  // deprecated. Instead, use the ISO C and C++
 | |
|                                  // conformant name: _strdup.
 | |
| #endif
 | |
| 
 | |
| const int MIN_RUN_LENGTH = 3;
 | |
| const int MAX_RUN_LENGTH = 127;
 | |
| 
 | |
| //
 | |
| // Compress an array of bytes, using run-length encoding,
 | |
| // and return the length of the compressed data.
 | |
| //
 | |
| 
 | |
| static int rleCompress(int inLength, const char in[], signed char out[]) {
 | |
|   const char *inEnd = in + inLength;
 | |
|   const char *runStart = in;
 | |
|   const char *runEnd = in + 1;
 | |
|   signed char *outWrite = out;
 | |
| 
 | |
|   while (runStart < inEnd) {
 | |
|     while (runEnd < inEnd && *runStart == *runEnd &&
 | |
|            runEnd - runStart - 1 < MAX_RUN_LENGTH) {
 | |
|       ++runEnd;
 | |
|     }
 | |
| 
 | |
|     if (runEnd - runStart >= MIN_RUN_LENGTH) {
 | |
|       //
 | |
|       // Compressible run
 | |
|       //
 | |
| 
 | |
|       *outWrite++ = static_cast<char>(runEnd - runStart) - 1;
 | |
|       *outWrite++ = *(reinterpret_cast<const signed char *>(runStart));
 | |
|       runStart = runEnd;
 | |
|     } else {
 | |
|       //
 | |
|       // Uncompressable run
 | |
|       //
 | |
| 
 | |
|       while (runEnd < inEnd &&
 | |
|              ((runEnd + 1 >= inEnd || *runEnd != *(runEnd + 1)) ||
 | |
|               (runEnd + 2 >= inEnd || *(runEnd + 1) != *(runEnd + 2))) &&
 | |
|              runEnd - runStart < MAX_RUN_LENGTH) {
 | |
|         ++runEnd;
 | |
|       }
 | |
| 
 | |
|       *outWrite++ = static_cast<char>(runStart - runEnd);
 | |
| 
 | |
|       while (runStart < runEnd) {
 | |
|         *outWrite++ = *(reinterpret_cast<const signed char *>(runStart++));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     ++runEnd;
 | |
|   }
 | |
| 
 | |
|   return static_cast<int>(outWrite - out);
 | |
| }
 | |
| 
 | |
| //
 | |
| // Uncompress an array of bytes compressed with rleCompress().
 | |
| // Returns the length of the oncompressed data, or 0 if the
 | |
| // length of the uncompressed data would be more than maxLength.
 | |
| //
 | |
| 
 | |
| static int rleUncompress(int inLength, int maxLength, const signed char in[],
 | |
|                          char out[]) {
 | |
|   char *outStart = out;
 | |
| 
 | |
|   while (inLength > 0) {
 | |
|     if (*in < 0) {
 | |
|       int count = -(static_cast<int>(*in++));
 | |
|       inLength -= count + 1;
 | |
| 
 | |
|       // Fixes #116: Add bounds check to in buffer.
 | |
|       if ((0 > (maxLength -= count)) || (inLength < 0)) return 0;
 | |
| 
 | |
|       memcpy(out, in, count);
 | |
|       out += count;
 | |
|       in += count;
 | |
|     } else {
 | |
|       int count = *in++;
 | |
|       inLength -= 2;
 | |
| 
 | |
|       if (0 > (maxLength -= count + 1)) return 0;
 | |
| 
 | |
|       memset(out, *reinterpret_cast<const char *>(in), count + 1);
 | |
|       out += count + 1;
 | |
| 
 | |
|       in++;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return static_cast<int>(out - outStart);
 | |
| }
 | |
| 
 | |
| #ifdef __clang__
 | |
| #pragma clang diagnostic pop
 | |
| #endif
 | |
| 
 | |
| // End of RLE code from OpenEXR -----------------------------------
 | |
| 
 | |
| static void CompressRle(unsigned char *dst,
 | |
|                         tinyexr::tinyexr_uint64 &compressedSize,
 | |
|                         const unsigned char *src, unsigned long src_size) {
 | |
|   std::vector<unsigned char> tmpBuf(src_size);
 | |
| 
 | |
|   //
 | |
|   // Apply EXR-specific? postprocess. Grabbed from OpenEXR's
 | |
|   // ImfRleCompressor.cpp
 | |
|   //
 | |
| 
 | |
|   //
 | |
|   // Reorder the pixel data.
 | |
|   //
 | |
| 
 | |
|   const char *srcPtr = reinterpret_cast<const char *>(src);
 | |
| 
 | |
|   {
 | |
|     char *t1 = reinterpret_cast<char *>(&tmpBuf.at(0));
 | |
|     char *t2 = reinterpret_cast<char *>(&tmpBuf.at(0)) + (src_size + 1) / 2;
 | |
|     const char *stop = srcPtr + src_size;
 | |
| 
 | |
|     for (;;) {
 | |
|       if (srcPtr < stop)
 | |
|         *(t1++) = *(srcPtr++);
 | |
|       else
 | |
|         break;
 | |
| 
 | |
|       if (srcPtr < stop)
 | |
|         *(t2++) = *(srcPtr++);
 | |
|       else
 | |
|         break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Predictor.
 | |
|   //
 | |
| 
 | |
|   {
 | |
|     unsigned char *t = &tmpBuf.at(0) + 1;
 | |
|     unsigned char *stop = &tmpBuf.at(0) + src_size;
 | |
|     int p = t[-1];
 | |
| 
 | |
|     while (t < stop) {
 | |
|       int d = int(t[0]) - p + (128 + 256);
 | |
|       p = t[0];
 | |
|       t[0] = static_cast<unsigned char>(d);
 | |
|       ++t;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // outSize will be (srcSiz * 3) / 2 at max.
 | |
|   int outSize = rleCompress(static_cast<int>(src_size),
 | |
|                             reinterpret_cast<const char *>(&tmpBuf.at(0)),
 | |
|                             reinterpret_cast<signed char *>(dst));
 | |
|   assert(outSize > 0);
 | |
| 
 | |
|   compressedSize = static_cast<tinyexr::tinyexr_uint64>(outSize);
 | |
| 
 | |
|   // Use uncompressed data when compressed data is larger than uncompressed.
 | |
|   // (Issue 40)
 | |
|   if (compressedSize >= src_size) {
 | |
|     compressedSize = src_size;
 | |
|     memcpy(dst, src, src_size);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool DecompressRle(unsigned char *dst,
 | |
|                           const unsigned long uncompressed_size,
 | |
|                           const unsigned char *src, unsigned long src_size) {
 | |
|   if (uncompressed_size == src_size) {
 | |
|     // Data is not compressed(Issue 40).
 | |
|     memcpy(dst, src, src_size);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Workaround for issue #112.
 | |
|   // TODO(syoyo): Add more robust out-of-bounds check in `rleUncompress`.
 | |
|   if (src_size <= 2) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   std::vector<unsigned char> tmpBuf(uncompressed_size);
 | |
| 
 | |
|   int ret = rleUncompress(static_cast<int>(src_size),
 | |
|                           static_cast<int>(uncompressed_size),
 | |
|                           reinterpret_cast<const signed char *>(src),
 | |
|                           reinterpret_cast<char *>(&tmpBuf.at(0)));
 | |
|   if (ret != static_cast<int>(uncompressed_size)) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Apply EXR-specific? postprocess. Grabbed from OpenEXR's
 | |
|   // ImfRleCompressor.cpp
 | |
|   //
 | |
| 
 | |
|   // Predictor.
 | |
|   {
 | |
|     unsigned char *t = &tmpBuf.at(0) + 1;
 | |
|     unsigned char *stop = &tmpBuf.at(0) + uncompressed_size;
 | |
| 
 | |
|     while (t < stop) {
 | |
|       int d = int(t[-1]) + int(t[0]) - 128;
 | |
|       t[0] = static_cast<unsigned char>(d);
 | |
|       ++t;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Reorder the pixel data.
 | |
|   {
 | |
|     const char *t1 = reinterpret_cast<const char *>(&tmpBuf.at(0));
 | |
|     const char *t2 = reinterpret_cast<const char *>(&tmpBuf.at(0)) +
 | |
|                      (uncompressed_size + 1) / 2;
 | |
|     char *s = reinterpret_cast<char *>(dst);
 | |
|     char *stop = s + uncompressed_size;
 | |
| 
 | |
|     for (;;) {
 | |
|       if (s < stop)
 | |
|         *(s++) = *(t1++);
 | |
|       else
 | |
|         break;
 | |
| 
 | |
|       if (s < stop)
 | |
|         *(s++) = *(t2++);
 | |
|       else
 | |
|         break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| #if TINYEXR_USE_PIZ
 | |
| 
 | |
| #ifdef __clang__
 | |
| #pragma clang diagnostic push
 | |
| #pragma clang diagnostic ignored "-Wc++11-long-long"
 | |
| #pragma clang diagnostic ignored "-Wold-style-cast"
 | |
| #pragma clang diagnostic ignored "-Wpadded"
 | |
| #pragma clang diagnostic ignored "-Wsign-conversion"
 | |
| #pragma clang diagnostic ignored "-Wc++11-extensions"
 | |
| #pragma clang diagnostic ignored "-Wconversion"
 | |
| #pragma clang diagnostic ignored "-Wc++98-compat-pedantic"
 | |
| 
 | |
| #if __has_warning("-Wcast-qual")
 | |
| #pragma clang diagnostic ignored "-Wcast-qual"
 | |
| #endif
 | |
| 
 | |
| #if __has_warning("-Wextra-semi-stmt")
 | |
| #pragma clang diagnostic ignored "-Wextra-semi-stmt"
 | |
| #endif
 | |
| 
 | |
| #endif
 | |
| 
 | |
| //
 | |
| // PIZ compress/uncompress, based on OpenEXR's ImfPizCompressor.cpp
 | |
| //
 | |
| // -----------------------------------------------------------------
 | |
| // Copyright (c) 2004, Industrial Light & Magic, a division of Lucas
 | |
| // Digital Ltd. LLC)
 | |
| // (3 clause BSD license)
 | |
| //
 | |
| 
 | |
| struct PIZChannelData {
 | |
|   unsigned short *start;
 | |
|   unsigned short *end;
 | |
|   int nx;
 | |
|   int ny;
 | |
|   int ys;
 | |
|   int size;
 | |
| };
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| //
 | |
| //  16-bit Haar Wavelet encoding and decoding
 | |
| //
 | |
| //  The source code in this file is derived from the encoding
 | |
| //  and decoding routines written by Christian Rouet for his
 | |
| //  PIZ image file format.
 | |
| //
 | |
| //-----------------------------------------------------------------------------
 | |
| 
 | |
| //
 | |
| // Wavelet basis functions without modulo arithmetic; they produce
 | |
| // the best compression ratios when the wavelet-transformed data are
 | |
| // Huffman-encoded, but the wavelet transform works only for 14-bit
 | |
| // data (untransformed data values must be less than (1 << 14)).
 | |
| //
 | |
| 
 | |
| inline void wenc14(unsigned short a, unsigned short b, unsigned short &l,
 | |
|                    unsigned short &h) {
 | |
|   short as = static_cast<short>(a);
 | |
|   short bs = static_cast<short>(b);
 | |
| 
 | |
|   short ms = (as + bs) >> 1;
 | |
|   short ds = as - bs;
 | |
| 
 | |
|   l = static_cast<unsigned short>(ms);
 | |
|   h = static_cast<unsigned short>(ds);
 | |
| }
 | |
| 
 | |
| inline void wdec14(unsigned short l, unsigned short h, unsigned short &a,
 | |
|                    unsigned short &b) {
 | |
|   short ls = static_cast<short>(l);
 | |
|   short hs = static_cast<short>(h);
 | |
| 
 | |
|   int hi = hs;
 | |
|   int ai = ls + (hi & 1) + (hi >> 1);
 | |
| 
 | |
|   short as = static_cast<short>(ai);
 | |
|   short bs = static_cast<short>(ai - hi);
 | |
| 
 | |
|   a = static_cast<unsigned short>(as);
 | |
|   b = static_cast<unsigned short>(bs);
 | |
| }
 | |
| 
 | |
| //
 | |
| // Wavelet basis functions with modulo arithmetic; they work with full
 | |
| // 16-bit data, but Huffman-encoding the wavelet-transformed data doesn't
 | |
| // compress the data quite as well.
 | |
| //
 | |
| 
 | |
| const int NBITS = 16;
 | |
| const int A_OFFSET = 1 << (NBITS - 1);
 | |
| const int M_OFFSET = 1 << (NBITS - 1);
 | |
| const int MOD_MASK = (1 << NBITS) - 1;
 | |
| 
 | |
| inline void wenc16(unsigned short a, unsigned short b, unsigned short &l,
 | |
|                    unsigned short &h) {
 | |
|   int ao = (a + A_OFFSET) & MOD_MASK;
 | |
|   int m = ((ao + b) >> 1);
 | |
|   int d = ao - b;
 | |
| 
 | |
|   if (d < 0) m = (m + M_OFFSET) & MOD_MASK;
 | |
| 
 | |
|   d &= MOD_MASK;
 | |
| 
 | |
|   l = static_cast<unsigned short>(m);
 | |
|   h = static_cast<unsigned short>(d);
 | |
| }
 | |
| 
 | |
| inline void wdec16(unsigned short l, unsigned short h, unsigned short &a,
 | |
|                    unsigned short &b) {
 | |
|   int m = l;
 | |
|   int d = h;
 | |
|   int bb = (m - (d >> 1)) & MOD_MASK;
 | |
|   int aa = (d + bb - A_OFFSET) & MOD_MASK;
 | |
|   b = static_cast<unsigned short>(bb);
 | |
|   a = static_cast<unsigned short>(aa);
 | |
| }
 | |
| 
 | |
| //
 | |
| // 2D Wavelet encoding:
 | |
| //
 | |
| 
 | |
| static void wav2Encode(
 | |
|     unsigned short *in,  // io: values are transformed in place
 | |
|     int nx,              // i : x size
 | |
|     int ox,              // i : x offset
 | |
|     int ny,              // i : y size
 | |
|     int oy,              // i : y offset
 | |
|     unsigned short mx)   // i : maximum in[x][y] value
 | |
| {
 | |
|   bool w14 = (mx < (1 << 14));
 | |
|   int n = (nx > ny) ? ny : nx;
 | |
|   int p = 1;   // == 1 <<  level
 | |
|   int p2 = 2;  // == 1 << (level+1)
 | |
| 
 | |
|   //
 | |
|   // Hierarchical loop on smaller dimension n
 | |
|   //
 | |
| 
 | |
|   while (p2 <= n) {
 | |
|     unsigned short *py = in;
 | |
|     unsigned short *ey = in + oy * (ny - p2);
 | |
|     int oy1 = oy * p;
 | |
|     int oy2 = oy * p2;
 | |
|     int ox1 = ox * p;
 | |
|     int ox2 = ox * p2;
 | |
|     unsigned short i00, i01, i10, i11;
 | |
| 
 | |
|     //
 | |
|     // Y loop
 | |
|     //
 | |
| 
 | |
|     for (; py <= ey; py += oy2) {
 | |
|       unsigned short *px = py;
 | |
|       unsigned short *ex = py + ox * (nx - p2);
 | |
| 
 | |
|       //
 | |
|       // X loop
 | |
|       //
 | |
| 
 | |
|       for (; px <= ex; px += ox2) {
 | |
|         unsigned short *p01 = px + ox1;
 | |
|         unsigned short *p10 = px + oy1;
 | |
|         unsigned short *p11 = p10 + ox1;
 | |
| 
 | |
|         //
 | |
|         // 2D wavelet encoding
 | |
|         //
 | |
| 
 | |
|         if (w14) {
 | |
|           wenc14(*px, *p01, i00, i01);
 | |
|           wenc14(*p10, *p11, i10, i11);
 | |
|           wenc14(i00, i10, *px, *p10);
 | |
|           wenc14(i01, i11, *p01, *p11);
 | |
|         } else {
 | |
|           wenc16(*px, *p01, i00, i01);
 | |
|           wenc16(*p10, *p11, i10, i11);
 | |
|           wenc16(i00, i10, *px, *p10);
 | |
|           wenc16(i01, i11, *p01, *p11);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       //
 | |
|       // Encode (1D) odd column (still in Y loop)
 | |
|       //
 | |
| 
 | |
|       if (nx & p) {
 | |
|         unsigned short *p10 = px + oy1;
 | |
| 
 | |
|         if (w14)
 | |
|           wenc14(*px, *p10, i00, *p10);
 | |
|         else
 | |
|           wenc16(*px, *p10, i00, *p10);
 | |
| 
 | |
|         *px = i00;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     //
 | |
|     // Encode (1D) odd line (must loop in X)
 | |
|     //
 | |
| 
 | |
|     if (ny & p) {
 | |
|       unsigned short *px = py;
 | |
|       unsigned short *ex = py + ox * (nx - p2);
 | |
| 
 | |
|       for (; px <= ex; px += ox2) {
 | |
|         unsigned short *p01 = px + ox1;
 | |
| 
 | |
|         if (w14)
 | |
|           wenc14(*px, *p01, i00, *p01);
 | |
|         else
 | |
|           wenc16(*px, *p01, i00, *p01);
 | |
| 
 | |
|         *px = i00;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     //
 | |
|     // Next level
 | |
|     //
 | |
| 
 | |
|     p = p2;
 | |
|     p2 <<= 1;
 | |
|   }
 | |
| }
 | |
| 
 | |
| //
 | |
| // 2D Wavelet decoding:
 | |
| //
 | |
| 
 | |
| static void wav2Decode(
 | |
|     unsigned short *in,  // io: values are transformed in place
 | |
|     int nx,              // i : x size
 | |
|     int ox,              // i : x offset
 | |
|     int ny,              // i : y size
 | |
|     int oy,              // i : y offset
 | |
|     unsigned short mx)   // i : maximum in[x][y] value
 | |
| {
 | |
|   bool w14 = (mx < (1 << 14));
 | |
|   int n = (nx > ny) ? ny : nx;
 | |
|   int p = 1;
 | |
|   int p2;
 | |
| 
 | |
|   //
 | |
|   // Search max level
 | |
|   //
 | |
| 
 | |
|   while (p <= n) p <<= 1;
 | |
| 
 | |
|   p >>= 1;
 | |
|   p2 = p;
 | |
|   p >>= 1;
 | |
| 
 | |
|   //
 | |
|   // Hierarchical loop on smaller dimension n
 | |
|   //
 | |
| 
 | |
|   while (p >= 1) {
 | |
|     unsigned short *py = in;
 | |
|     unsigned short *ey = in + oy * (ny - p2);
 | |
|     int oy1 = oy * p;
 | |
|     int oy2 = oy * p2;
 | |
|     int ox1 = ox * p;
 | |
|     int ox2 = ox * p2;
 | |
|     unsigned short i00, i01, i10, i11;
 | |
| 
 | |
|     //
 | |
|     // Y loop
 | |
|     //
 | |
| 
 | |
|     for (; py <= ey; py += oy2) {
 | |
|       unsigned short *px = py;
 | |
|       unsigned short *ex = py + ox * (nx - p2);
 | |
| 
 | |
|       //
 | |
|       // X loop
 | |
|       //
 | |
| 
 | |
|       for (; px <= ex; px += ox2) {
 | |
|         unsigned short *p01 = px + ox1;
 | |
|         unsigned short *p10 = px + oy1;
 | |
|         unsigned short *p11 = p10 + ox1;
 | |
| 
 | |
|         //
 | |
|         // 2D wavelet decoding
 | |
|         //
 | |
| 
 | |
|         if (w14) {
 | |
|           wdec14(*px, *p10, i00, i10);
 | |
|           wdec14(*p01, *p11, i01, i11);
 | |
|           wdec14(i00, i01, *px, *p01);
 | |
|           wdec14(i10, i11, *p10, *p11);
 | |
|         } else {
 | |
|           wdec16(*px, *p10, i00, i10);
 | |
|           wdec16(*p01, *p11, i01, i11);
 | |
|           wdec16(i00, i01, *px, *p01);
 | |
|           wdec16(i10, i11, *p10, *p11);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       //
 | |
|       // Decode (1D) odd column (still in Y loop)
 | |
|       //
 | |
| 
 | |
|       if (nx & p) {
 | |
|         unsigned short *p10 = px + oy1;
 | |
| 
 | |
|         if (w14)
 | |
|           wdec14(*px, *p10, i00, *p10);
 | |
|         else
 | |
|           wdec16(*px, *p10, i00, *p10);
 | |
| 
 | |
|         *px = i00;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     //
 | |
|     // Decode (1D) odd line (must loop in X)
 | |
|     //
 | |
| 
 | |
|     if (ny & p) {
 | |
|       unsigned short *px = py;
 | |
|       unsigned short *ex = py + ox * (nx - p2);
 | |
| 
 | |
|       for (; px <= ex; px += ox2) {
 | |
|         unsigned short *p01 = px + ox1;
 | |
| 
 | |
|         if (w14)
 | |
|           wdec14(*px, *p01, i00, *p01);
 | |
|         else
 | |
|           wdec16(*px, *p01, i00, *p01);
 | |
| 
 | |
|         *px = i00;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     //
 | |
|     // Next level
 | |
|     //
 | |
| 
 | |
|     p2 = p;
 | |
|     p >>= 1;
 | |
|   }
 | |
| }
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| //
 | |
| //  16-bit Huffman compression and decompression.
 | |
| //
 | |
| //  The source code in this file is derived from the 8-bit
 | |
| //  Huffman compression and decompression routines written
 | |
| //  by Christian Rouet for his PIZ image file format.
 | |
| //
 | |
| //-----------------------------------------------------------------------------
 | |
| 
 | |
| // Adds some modification for tinyexr.
 | |
| 
 | |
| const int HUF_ENCBITS = 16;  // literal (value) bit length
 | |
| const int HUF_DECBITS = 14;  // decoding bit size (>= 8)
 | |
| 
 | |
| const int HUF_ENCSIZE = (1 << HUF_ENCBITS) + 1;  // encoding table size
 | |
| const int HUF_DECSIZE = 1 << HUF_DECBITS;        // decoding table size
 | |
| const int HUF_DECMASK = HUF_DECSIZE - 1;
 | |
| 
 | |
| struct HufDec {  // short code    long code
 | |
|   //-------------------------------
 | |
|   unsigned int len : 8;   // code length    0
 | |
|   unsigned int lit : 24;  // lit      p size
 | |
|   unsigned int *p;        // 0      lits
 | |
| };
 | |
| 
 | |
| inline long long hufLength(long long code) { return code & 63; }
 | |
| 
 | |
| inline long long hufCode(long long code) { return code >> 6; }
 | |
| 
 | |
| inline void outputBits(int nBits, long long bits, long long &c, int &lc,
 | |
|                        char *&out) {
 | |
|   c <<= nBits;
 | |
|   lc += nBits;
 | |
| 
 | |
|   c |= bits;
 | |
| 
 | |
|   while (lc >= 8) *out++ = static_cast<char>((c >> (lc -= 8)));
 | |
| }
 | |
| 
 | |
| inline long long getBits(int nBits, long long &c, int &lc, const char *&in) {
 | |
|   while (lc < nBits) {
 | |
|     c = (c << 8) | *(reinterpret_cast<const unsigned char *>(in++));
 | |
|     lc += 8;
 | |
|   }
 | |
| 
 | |
|   lc -= nBits;
 | |
|   return (c >> lc) & ((1 << nBits) - 1);
 | |
| }
 | |
| 
 | |
| //
 | |
| // ENCODING TABLE BUILDING & (UN)PACKING
 | |
| //
 | |
| 
 | |
| //
 | |
| // Build a "canonical" Huffman code table:
 | |
| //  - for each (uncompressed) symbol, hcode contains the length
 | |
| //    of the corresponding code (in the compressed data)
 | |
| //  - canonical codes are computed and stored in hcode
 | |
| //  - the rules for constructing canonical codes are as follows:
 | |
| //    * shorter codes (if filled with zeroes to the right)
 | |
| //      have a numerically higher value than longer codes
 | |
| //    * for codes with the same length, numerical values
 | |
| //      increase with numerical symbol values
 | |
| //  - because the canonical code table can be constructed from
 | |
| //    symbol lengths alone, the code table can be transmitted
 | |
| //    without sending the actual code values
 | |
| //  - see http://www.compressconsult.com/huffman/
 | |
| //
 | |
| 
 | |
| static void hufCanonicalCodeTable(long long hcode[HUF_ENCSIZE]) {
 | |
|   long long n[59];
 | |
| 
 | |
|   //
 | |
|   // For each i from 0 through 58, count the
 | |
|   // number of different codes of length i, and
 | |
|   // store the count in n[i].
 | |
|   //
 | |
| 
 | |
|   for (int i = 0; i <= 58; ++i) n[i] = 0;
 | |
| 
 | |
|   for (int i = 0; i < HUF_ENCSIZE; ++i) n[hcode[i]] += 1;
 | |
| 
 | |
|   //
 | |
|   // For each i from 58 through 1, compute the
 | |
|   // numerically lowest code with length i, and
 | |
|   // store that code in n[i].
 | |
|   //
 | |
| 
 | |
|   long long c = 0;
 | |
| 
 | |
|   for (int i = 58; i > 0; --i) {
 | |
|     long long nc = ((c + n[i]) >> 1);
 | |
|     n[i] = c;
 | |
|     c = nc;
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // hcode[i] contains the length, l, of the
 | |
|   // code for symbol i.  Assign the next available
 | |
|   // code of length l to the symbol and store both
 | |
|   // l and the code in hcode[i].
 | |
|   //
 | |
| 
 | |
|   for (int i = 0; i < HUF_ENCSIZE; ++i) {
 | |
|     int l = static_cast<int>(hcode[i]);
 | |
| 
 | |
|     if (l > 0) hcode[i] = l | (n[l]++ << 6);
 | |
|   }
 | |
| }
 | |
| 
 | |
| //
 | |
| // Compute Huffman codes (based on frq input) and store them in frq:
 | |
| //  - code structure is : [63:lsb - 6:msb] | [5-0: bit length];
 | |
| //  - max code length is 58 bits;
 | |
| //  - codes outside the range [im-iM] have a null length (unused values);
 | |
| //  - original frequencies are destroyed;
 | |
| //  - encoding tables are used by hufEncode() and hufBuildDecTable();
 | |
| //
 | |
| 
 | |
| struct FHeapCompare {
 | |
|   bool operator()(long long *a, long long *b) { return *a > *b; }
 | |
| };
 | |
| 
 | |
| static void hufBuildEncTable(
 | |
|     long long *frq,  // io: input frequencies [HUF_ENCSIZE], output table
 | |
|     int *im,         //  o: min frq index
 | |
|     int *iM)         //  o: max frq index
 | |
| {
 | |
|   //
 | |
|   // This function assumes that when it is called, array frq
 | |
|   // indicates the frequency of all possible symbols in the data
 | |
|   // that are to be Huffman-encoded.  (frq[i] contains the number
 | |
|   // of occurrences of symbol i in the data.)
 | |
|   //
 | |
|   // The loop below does three things:
 | |
|   //
 | |
|   // 1) Finds the minimum and maximum indices that point
 | |
|   //    to non-zero entries in frq:
 | |
|   //
 | |
|   //     frq[im] != 0, and frq[i] == 0 for all i < im
 | |
|   //     frq[iM] != 0, and frq[i] == 0 for all i > iM
 | |
|   //
 | |
|   // 2) Fills array fHeap with pointers to all non-zero
 | |
|   //    entries in frq.
 | |
|   //
 | |
|   // 3) Initializes array hlink such that hlink[i] == i
 | |
|   //    for all array entries.
 | |
|   //
 | |
| 
 | |
|   std::vector<int> hlink(HUF_ENCSIZE);
 | |
|   std::vector<long long *> fHeap(HUF_ENCSIZE);
 | |
| 
 | |
|   *im = 0;
 | |
| 
 | |
|   while (!frq[*im]) (*im)++;
 | |
| 
 | |
|   int nf = 0;
 | |
| 
 | |
|   for (int i = *im; i < HUF_ENCSIZE; i++) {
 | |
|     hlink[i] = i;
 | |
| 
 | |
|     if (frq[i]) {
 | |
|       fHeap[nf] = &frq[i];
 | |
|       nf++;
 | |
|       *iM = i;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Add a pseudo-symbol, with a frequency count of 1, to frq;
 | |
|   // adjust the fHeap and hlink array accordingly.  Function
 | |
|   // hufEncode() uses the pseudo-symbol for run-length encoding.
 | |
|   //
 | |
| 
 | |
|   (*iM)++;
 | |
|   frq[*iM] = 1;
 | |
|   fHeap[nf] = &frq[*iM];
 | |
|   nf++;
 | |
| 
 | |
|   //
 | |
|   // Build an array, scode, such that scode[i] contains the number
 | |
|   // of bits assigned to symbol i.  Conceptually this is done by
 | |
|   // constructing a tree whose leaves are the symbols with non-zero
 | |
|   // frequency:
 | |
|   //
 | |
|   //     Make a heap that contains all symbols with a non-zero frequency,
 | |
|   //     with the least frequent symbol on top.
 | |
|   //
 | |
|   //     Repeat until only one symbol is left on the heap:
 | |
|   //
 | |
|   //         Take the two least frequent symbols off the top of the heap.
 | |
|   //         Create a new node that has first two nodes as children, and
 | |
|   //         whose frequency is the sum of the frequencies of the first
 | |
|   //         two nodes.  Put the new node back into the heap.
 | |
|   //
 | |
|   // The last node left on the heap is the root of the tree.  For each
 | |
|   // leaf node, the distance between the root and the leaf is the length
 | |
|   // of the code for the corresponding symbol.
 | |
|   //
 | |
|   // The loop below doesn't actually build the tree; instead we compute
 | |
|   // the distances of the leaves from the root on the fly.  When a new
 | |
|   // node is added to the heap, then that node's descendants are linked
 | |
|   // into a single linear list that starts at the new node, and the code
 | |
|   // lengths of the descendants (that is, their distance from the root
 | |
|   // of the tree) are incremented by one.
 | |
|   //
 | |
| 
 | |
|   std::make_heap(&fHeap[0], &fHeap[nf], FHeapCompare());
 | |
| 
 | |
|   std::vector<long long> scode(HUF_ENCSIZE);
 | |
|   memset(scode.data(), 0, sizeof(long long) * HUF_ENCSIZE);
 | |
| 
 | |
|   while (nf > 1) {
 | |
|     //
 | |
|     // Find the indices, mm and m, of the two smallest non-zero frq
 | |
|     // values in fHeap, add the smallest frq to the second-smallest
 | |
|     // frq, and remove the smallest frq value from fHeap.
 | |
|     //
 | |
| 
 | |
|     int mm = fHeap[0] - frq;
 | |
|     std::pop_heap(&fHeap[0], &fHeap[nf], FHeapCompare());
 | |
|     --nf;
 | |
| 
 | |
|     int m = fHeap[0] - frq;
 | |
|     std::pop_heap(&fHeap[0], &fHeap[nf], FHeapCompare());
 | |
| 
 | |
|     frq[m] += frq[mm];
 | |
|     std::push_heap(&fHeap[0], &fHeap[nf], FHeapCompare());
 | |
| 
 | |
|     //
 | |
|     // The entries in scode are linked into lists with the
 | |
|     // entries in hlink serving as "next" pointers and with
 | |
|     // the end of a list marked by hlink[j] == j.
 | |
|     //
 | |
|     // Traverse the lists that start at scode[m] and scode[mm].
 | |
|     // For each element visited, increment the length of the
 | |
|     // corresponding code by one bit. (If we visit scode[j]
 | |
|     // during the traversal, then the code for symbol j becomes
 | |
|     // one bit longer.)
 | |
|     //
 | |
|     // Merge the lists that start at scode[m] and scode[mm]
 | |
|     // into a single list that starts at scode[m].
 | |
|     //
 | |
| 
 | |
|     //
 | |
|     // Add a bit to all codes in the first list.
 | |
|     //
 | |
| 
 | |
|     for (int j = m;; j = hlink[j]) {
 | |
|       scode[j]++;
 | |
| 
 | |
|       assert(scode[j] <= 58);
 | |
| 
 | |
|       if (hlink[j] == j) {
 | |
|         //
 | |
|         // Merge the two lists.
 | |
|         //
 | |
| 
 | |
|         hlink[j] = mm;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     //
 | |
|     // Add a bit to all codes in the second list
 | |
|     //
 | |
| 
 | |
|     for (int j = mm;; j = hlink[j]) {
 | |
|       scode[j]++;
 | |
| 
 | |
|       assert(scode[j] <= 58);
 | |
| 
 | |
|       if (hlink[j] == j) break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Build a canonical Huffman code table, replacing the code
 | |
|   // lengths in scode with (code, code length) pairs.  Copy the
 | |
|   // code table from scode into frq.
 | |
|   //
 | |
| 
 | |
|   hufCanonicalCodeTable(scode.data());
 | |
|   memcpy(frq, scode.data(), sizeof(long long) * HUF_ENCSIZE);
 | |
| }
 | |
| 
 | |
| //
 | |
| // Pack an encoding table:
 | |
| //  - only code lengths, not actual codes, are stored
 | |
| //  - runs of zeroes are compressed as follows:
 | |
| //
 | |
| //    unpacked    packed
 | |
| //    --------------------------------
 | |
| //    1 zero    0  (6 bits)
 | |
| //    2 zeroes    59
 | |
| //    3 zeroes    60
 | |
| //    4 zeroes    61
 | |
| //    5 zeroes    62
 | |
| //    n zeroes (6 or more)  63 n-6  (6 + 8 bits)
 | |
| //
 | |
| 
 | |
| const int SHORT_ZEROCODE_RUN = 59;
 | |
| const int LONG_ZEROCODE_RUN = 63;
 | |
| const int SHORTEST_LONG_RUN = 2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN;
 | |
| const int LONGEST_LONG_RUN = 255 + SHORTEST_LONG_RUN;
 | |
| 
 | |
| static void hufPackEncTable(
 | |
|     const long long *hcode,  // i : encoding table [HUF_ENCSIZE]
 | |
|     int im,                  // i : min hcode index
 | |
|     int iM,                  // i : max hcode index
 | |
|     char **pcode)            //  o: ptr to packed table (updated)
 | |
| {
 | |
|   char *p = *pcode;
 | |
|   long long c = 0;
 | |
|   int lc = 0;
 | |
| 
 | |
|   for (; im <= iM; im++) {
 | |
|     int l = hufLength(hcode[im]);
 | |
| 
 | |
|     if (l == 0) {
 | |
|       int zerun = 1;
 | |
| 
 | |
|       while ((im < iM) && (zerun < LONGEST_LONG_RUN)) {
 | |
|         if (hufLength(hcode[im + 1]) > 0) break;
 | |
|         im++;
 | |
|         zerun++;
 | |
|       }
 | |
| 
 | |
|       if (zerun >= 2) {
 | |
|         if (zerun >= SHORTEST_LONG_RUN) {
 | |
|           outputBits(6, LONG_ZEROCODE_RUN, c, lc, p);
 | |
|           outputBits(8, zerun - SHORTEST_LONG_RUN, c, lc, p);
 | |
|         } else {
 | |
|           outputBits(6, SHORT_ZEROCODE_RUN + zerun - 2, c, lc, p);
 | |
|         }
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     outputBits(6, l, c, lc, p);
 | |
|   }
 | |
| 
 | |
|   if (lc > 0) *p++ = (unsigned char)(c << (8 - lc));
 | |
| 
 | |
|   *pcode = p;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Unpack an encoding table packed by hufPackEncTable():
 | |
| //
 | |
| 
 | |
| static bool hufUnpackEncTable(
 | |
|     const char **pcode,  // io: ptr to packed table (updated)
 | |
|     int ni,              // i : input size (in bytes)
 | |
|     int im,              // i : min hcode index
 | |
|     int iM,              // i : max hcode index
 | |
|     long long *hcode)    //  o: encoding table [HUF_ENCSIZE]
 | |
| {
 | |
|   memset(hcode, 0, sizeof(long long) * HUF_ENCSIZE);
 | |
| 
 | |
|   const char *p = *pcode;
 | |
|   long long c = 0;
 | |
|   int lc = 0;
 | |
| 
 | |
|   for (; im <= iM; im++) {
 | |
|     if (p - *pcode >= ni) {
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     long long l = hcode[im] = getBits(6, c, lc, p);  // code length
 | |
| 
 | |
|     if (l == (long long)LONG_ZEROCODE_RUN) {
 | |
|       if (p - *pcode > ni) {
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       int zerun = getBits(8, c, lc, p) + SHORTEST_LONG_RUN;
 | |
| 
 | |
|       if (im + zerun > iM + 1) {
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       while (zerun--) hcode[im++] = 0;
 | |
| 
 | |
|       im--;
 | |
|     } else if (l >= (long long)SHORT_ZEROCODE_RUN) {
 | |
|       int zerun = l - SHORT_ZEROCODE_RUN + 2;
 | |
| 
 | |
|       if (im + zerun > iM + 1) {
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       while (zerun--) hcode[im++] = 0;
 | |
| 
 | |
|       im--;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   *pcode = const_cast<char *>(p);
 | |
| 
 | |
|   hufCanonicalCodeTable(hcode);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| //
 | |
| // DECODING TABLE BUILDING
 | |
| //
 | |
| 
 | |
| //
 | |
| // Clear a newly allocated decoding table so that it contains only zeroes.
 | |
| //
 | |
| 
 | |
| static void hufClearDecTable(HufDec *hdecod)  // io: (allocated by caller)
 | |
| //     decoding table [HUF_DECSIZE]
 | |
| {
 | |
|   for (int i = 0; i < HUF_DECSIZE; i++) {
 | |
|     hdecod[i].len = 0;
 | |
|     hdecod[i].lit = 0;
 | |
|     hdecod[i].p = NULL;
 | |
|   }
 | |
|   // memset(hdecod, 0, sizeof(HufDec) * HUF_DECSIZE);
 | |
| }
 | |
| 
 | |
| //
 | |
| // Build a decoding hash table based on the encoding table hcode:
 | |
| //  - short codes (<= HUF_DECBITS) are resolved with a single table access;
 | |
| //  - long code entry allocations are not optimized, because long codes are
 | |
| //    unfrequent;
 | |
| //  - decoding tables are used by hufDecode();
 | |
| //
 | |
| 
 | |
| static bool hufBuildDecTable(const long long *hcode,  // i : encoding table
 | |
|                              int im,                  // i : min index in hcode
 | |
|                              int iM,                  // i : max index in hcode
 | |
|                              HufDec *hdecod)  //  o: (allocated by caller)
 | |
| //     decoding table [HUF_DECSIZE]
 | |
| {
 | |
|   //
 | |
|   // Init hashtable & loop on all codes.
 | |
|   // Assumes that hufClearDecTable(hdecod) has already been called.
 | |
|   //
 | |
| 
 | |
|   for (; im <= iM; im++) {
 | |
|     long long c = hufCode(hcode[im]);
 | |
|     int l = hufLength(hcode[im]);
 | |
| 
 | |
|     if (c >> l) {
 | |
|       //
 | |
|       // Error: c is supposed to be an l-bit code,
 | |
|       // but c contains a value that is greater
 | |
|       // than the largest l-bit number.
 | |
|       //
 | |
| 
 | |
|       // invalidTableEntry();
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     if (l > HUF_DECBITS) {
 | |
|       //
 | |
|       // Long code: add a secondary entry
 | |
|       //
 | |
| 
 | |
|       HufDec *pl = hdecod + (c >> (l - HUF_DECBITS));
 | |
| 
 | |
|       if (pl->len) {
 | |
|         //
 | |
|         // Error: a short code has already
 | |
|         // been stored in table entry *pl.
 | |
|         //
 | |
| 
 | |
|         // invalidTableEntry();
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       pl->lit++;
 | |
| 
 | |
|       if (pl->p) {
 | |
|         unsigned int *p = pl->p;
 | |
|         pl->p = new unsigned int[pl->lit];
 | |
| 
 | |
|         for (int i = 0; i < pl->lit - 1; ++i) pl->p[i] = p[i];
 | |
| 
 | |
|         delete[] p;
 | |
|       } else {
 | |
|         pl->p = new unsigned int[1];
 | |
|       }
 | |
| 
 | |
|       pl->p[pl->lit - 1] = im;
 | |
|     } else if (l) {
 | |
|       //
 | |
|       // Short code: init all primary entries
 | |
|       //
 | |
| 
 | |
|       HufDec *pl = hdecod + (c << (HUF_DECBITS - l));
 | |
| 
 | |
|       for (long long i = 1ULL << (HUF_DECBITS - l); i > 0; i--, pl++) {
 | |
|         if (pl->len || pl->p) {
 | |
|           //
 | |
|           // Error: a short code or a long code has
 | |
|           // already been stored in table entry *pl.
 | |
|           //
 | |
| 
 | |
|           // invalidTableEntry();
 | |
|           return false;
 | |
|         }
 | |
| 
 | |
|         pl->len = l;
 | |
|         pl->lit = im;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Free the long code entries of a decoding table built by hufBuildDecTable()
 | |
| //
 | |
| 
 | |
| static void hufFreeDecTable(HufDec *hdecod)  // io: Decoding table
 | |
| {
 | |
|   for (int i = 0; i < HUF_DECSIZE; i++) {
 | |
|     if (hdecod[i].p) {
 | |
|       delete[] hdecod[i].p;
 | |
|       hdecod[i].p = 0;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| //
 | |
| // ENCODING
 | |
| //
 | |
| 
 | |
| inline void outputCode(long long code, long long &c, int &lc, char *&out) {
 | |
|   outputBits(hufLength(code), hufCode(code), c, lc, out);
 | |
| }
 | |
| 
 | |
| inline void sendCode(long long sCode, int runCount, long long runCode,
 | |
|                      long long &c, int &lc, char *&out) {
 | |
|   //
 | |
|   // Output a run of runCount instances of the symbol sCount.
 | |
|   // Output the symbols explicitly, or if that is shorter, output
 | |
|   // the sCode symbol once followed by a runCode symbol and runCount
 | |
|   // expressed as an 8-bit number.
 | |
|   //
 | |
| 
 | |
|   if (hufLength(sCode) + hufLength(runCode) + 8 < hufLength(sCode) * runCount) {
 | |
|     outputCode(sCode, c, lc, out);
 | |
|     outputCode(runCode, c, lc, out);
 | |
|     outputBits(8, runCount, c, lc, out);
 | |
|   } else {
 | |
|     while (runCount-- >= 0) outputCode(sCode, c, lc, out);
 | |
|   }
 | |
| }
 | |
| 
 | |
| //
 | |
| // Encode (compress) ni values based on the Huffman encoding table hcode:
 | |
| //
 | |
| 
 | |
| static int hufEncode            // return: output size (in bits)
 | |
|     (const long long *hcode,    // i : encoding table
 | |
|      const unsigned short *in,  // i : uncompressed input buffer
 | |
|      const int ni,              // i : input buffer size (in bytes)
 | |
|      int rlc,                   // i : rl code
 | |
|      char *out)                 //  o: compressed output buffer
 | |
| {
 | |
|   char *outStart = out;
 | |
|   long long c = 0;  // bits not yet written to out
 | |
|   int lc = 0;       // number of valid bits in c (LSB)
 | |
|   int s = in[0];
 | |
|   int cs = 0;
 | |
| 
 | |
|   //
 | |
|   // Loop on input values
 | |
|   //
 | |
| 
 | |
|   for (int i = 1; i < ni; i++) {
 | |
|     //
 | |
|     // Count same values or send code
 | |
|     //
 | |
| 
 | |
|     if (s == in[i] && cs < 255) {
 | |
|       cs++;
 | |
|     } else {
 | |
|       sendCode(hcode[s], cs, hcode[rlc], c, lc, out);
 | |
|       cs = 0;
 | |
|     }
 | |
| 
 | |
|     s = in[i];
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Send remaining code
 | |
|   //
 | |
| 
 | |
|   sendCode(hcode[s], cs, hcode[rlc], c, lc, out);
 | |
| 
 | |
|   if (lc) *out = (c << (8 - lc)) & 0xff;
 | |
| 
 | |
|   return (out - outStart) * 8 + lc;
 | |
| }
 | |
| 
 | |
| //
 | |
| // DECODING
 | |
| //
 | |
| 
 | |
| //
 | |
| // In order to force the compiler to inline them,
 | |
| // getChar() and getCode() are implemented as macros
 | |
| // instead of "inline" functions.
 | |
| //
 | |
| 
 | |
| #define getChar(c, lc, in)                   \
 | |
|   {                                          \
 | |
|     c = (c << 8) | *(unsigned char *)(in++); \
 | |
|     lc += 8;                                 \
 | |
|   }
 | |
| 
 | |
| #if 0
 | |
| #define getCode(po, rlc, c, lc, in, out, ob, oe) \
 | |
|   {                                              \
 | |
|     if (po == rlc) {                             \
 | |
|       if (lc < 8) getChar(c, lc, in);            \
 | |
|                                                  \
 | |
|       lc -= 8;                                   \
 | |
|                                                  \
 | |
|       unsigned char cs = (c >> lc);              \
 | |
|                                                  \
 | |
|       if (out + cs > oe) return false;           \
 | |
|                                                  \
 | |
|       /* TinyEXR issue 78 */                     \
 | |
|       unsigned short s = out[-1];                \
 | |
|                                                  \
 | |
|       while (cs-- > 0) *out++ = s;               \
 | |
|     } else if (out < oe) {                       \
 | |
|       *out++ = po;                               \
 | |
|     } else {                                     \
 | |
|       return false;                              \
 | |
|     }                                            \
 | |
|   }
 | |
| #else
 | |
| static bool getCode(int po, int rlc, long long &c, int &lc, const char *&in,
 | |
|                     const char *in_end, unsigned short *&out,
 | |
|                     const unsigned short *ob, const unsigned short *oe) {
 | |
|   (void)ob;
 | |
|   if (po == rlc) {
 | |
|     if (lc < 8) {
 | |
|       /* TinyEXR issue 78 */
 | |
|       if ((in + 1) >= in_end) {
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       getChar(c, lc, in);
 | |
|     }
 | |
| 
 | |
|     lc -= 8;
 | |
| 
 | |
|     unsigned char cs = (c >> lc);
 | |
| 
 | |
|     if (out + cs > oe) return false;
 | |
| 
 | |
|     // Bounds check for safety
 | |
|     // Issue 100.
 | |
|     if ((out - 1) < ob) return false;
 | |
|     unsigned short s = out[-1];
 | |
| 
 | |
|     while (cs-- > 0) *out++ = s;
 | |
|   } else if (out < oe) {
 | |
|     *out++ = po;
 | |
|   } else {
 | |
|     return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| //
 | |
| // Decode (uncompress) ni bits based on encoding & decoding tables:
 | |
| //
 | |
| 
 | |
| static bool hufDecode(const long long *hcode,  // i : encoding table
 | |
|                       const HufDec *hdecod,    // i : decoding table
 | |
|                       const char *in,          // i : compressed input buffer
 | |
|                       int ni,                  // i : input size (in bits)
 | |
|                       int rlc,                 // i : run-length code
 | |
|                       int no,  // i : expected output size (in bytes)
 | |
|                       unsigned short *out)  //  o: uncompressed output buffer
 | |
| {
 | |
|   long long c = 0;
 | |
|   int lc = 0;
 | |
|   unsigned short *outb = out;          // begin
 | |
|   unsigned short *oe = out + no;       // end
 | |
|   const char *ie = in + (ni + 7) / 8;  // input byte size
 | |
| 
 | |
|   //
 | |
|   // Loop on input bytes
 | |
|   //
 | |
| 
 | |
|   while (in < ie) {
 | |
|     getChar(c, lc, in);
 | |
| 
 | |
|     //
 | |
|     // Access decoding table
 | |
|     //
 | |
| 
 | |
|     while (lc >= HUF_DECBITS) {
 | |
|       const HufDec pl = hdecod[(c >> (lc - HUF_DECBITS)) & HUF_DECMASK];
 | |
| 
 | |
|       if (pl.len) {
 | |
|         //
 | |
|         // Get short code
 | |
|         //
 | |
| 
 | |
|         lc -= pl.len;
 | |
|         // std::cout << "lit = " << pl.lit << std::endl;
 | |
|         // std::cout << "rlc = " << rlc << std::endl;
 | |
|         // std::cout << "c = " << c << std::endl;
 | |
|         // std::cout << "lc = " << lc << std::endl;
 | |
|         // std::cout << "in = " << in << std::endl;
 | |
|         // std::cout << "out = " << out << std::endl;
 | |
|         // std::cout << "oe = " << oe << std::endl;
 | |
|         if (!getCode(pl.lit, rlc, c, lc, in, ie, out, outb, oe)) {
 | |
|           return false;
 | |
|         }
 | |
|       } else {
 | |
|         if (!pl.p) {
 | |
|           return false;
 | |
|         }
 | |
|         // invalidCode(); // wrong code
 | |
| 
 | |
|         //
 | |
|         // Search long code
 | |
|         //
 | |
| 
 | |
|         int j;
 | |
| 
 | |
|         for (j = 0; j < pl.lit; j++) {
 | |
|           int l = hufLength(hcode[pl.p[j]]);
 | |
| 
 | |
|           while (lc < l && in < ie)  // get more bits
 | |
|             getChar(c, lc, in);
 | |
| 
 | |
|           if (lc >= l) {
 | |
|             if (hufCode(hcode[pl.p[j]]) ==
 | |
|                 ((c >> (lc - l)) & (((long long)(1) << l) - 1))) {
 | |
|               //
 | |
|               // Found : get long code
 | |
|               //
 | |
| 
 | |
|               lc -= l;
 | |
|               if (!getCode(pl.p[j], rlc, c, lc, in, ie, out, outb, oe)) {
 | |
|                 return false;
 | |
|               }
 | |
|               break;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         if (j == pl.lit) {
 | |
|           return false;
 | |
|           // invalidCode(); // Not found
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Get remaining (short) codes
 | |
|   //
 | |
| 
 | |
|   int i = (8 - ni) & 7;
 | |
|   c >>= i;
 | |
|   lc -= i;
 | |
| 
 | |
|   while (lc > 0) {
 | |
|     const HufDec pl = hdecod[(c << (HUF_DECBITS - lc)) & HUF_DECMASK];
 | |
| 
 | |
|     if (pl.len) {
 | |
|       lc -= pl.len;
 | |
|       if (!getCode(pl.lit, rlc, c, lc, in, ie, out, outb, oe)) {
 | |
|         return false;
 | |
|       }
 | |
|     } else {
 | |
|       return false;
 | |
|       // invalidCode(); // wrong (long) code
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (out - outb != no) {
 | |
|     return false;
 | |
|   }
 | |
|   // notEnoughData ();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static void countFrequencies(std::vector<long long> &freq,
 | |
|                              const unsigned short data[/*n*/], int n) {
 | |
|   for (int i = 0; i < HUF_ENCSIZE; ++i) freq[i] = 0;
 | |
| 
 | |
|   for (int i = 0; i < n; ++i) ++freq[data[i]];
 | |
| }
 | |
| 
 | |
| static void writeUInt(char buf[4], unsigned int i) {
 | |
|   unsigned char *b = (unsigned char *)buf;
 | |
| 
 | |
|   b[0] = i;
 | |
|   b[1] = i >> 8;
 | |
|   b[2] = i >> 16;
 | |
|   b[3] = i >> 24;
 | |
| }
 | |
| 
 | |
| static unsigned int readUInt(const char buf[4]) {
 | |
|   const unsigned char *b = (const unsigned char *)buf;
 | |
| 
 | |
|   return (b[0] & 0x000000ff) | ((b[1] << 8) & 0x0000ff00) |
 | |
|          ((b[2] << 16) & 0x00ff0000) | ((b[3] << 24) & 0xff000000);
 | |
| }
 | |
| 
 | |
| //
 | |
| // EXTERNAL INTERFACE
 | |
| //
 | |
| 
 | |
| static int hufCompress(const unsigned short raw[], int nRaw,
 | |
|                        char compressed[]) {
 | |
|   if (nRaw == 0) return 0;
 | |
| 
 | |
|   std::vector<long long> freq(HUF_ENCSIZE);
 | |
| 
 | |
|   countFrequencies(freq, raw, nRaw);
 | |
| 
 | |
|   int im = 0;
 | |
|   int iM = 0;
 | |
|   hufBuildEncTable(freq.data(), &im, &iM);
 | |
| 
 | |
|   char *tableStart = compressed + 20;
 | |
|   char *tableEnd = tableStart;
 | |
|   hufPackEncTable(freq.data(), im, iM, &tableEnd);
 | |
|   int tableLength = tableEnd - tableStart;
 | |
| 
 | |
|   char *dataStart = tableEnd;
 | |
|   int nBits = hufEncode(freq.data(), raw, nRaw, iM, dataStart);
 | |
|   int data_length = (nBits + 7) / 8;
 | |
| 
 | |
|   writeUInt(compressed, im);
 | |
|   writeUInt(compressed + 4, iM);
 | |
|   writeUInt(compressed + 8, tableLength);
 | |
|   writeUInt(compressed + 12, nBits);
 | |
|   writeUInt(compressed + 16, 0);  // room for future extensions
 | |
| 
 | |
|   return dataStart + data_length - compressed;
 | |
| }
 | |
| 
 | |
| static bool hufUncompress(const char compressed[], int nCompressed,
 | |
|                           std::vector<unsigned short> *raw) {
 | |
|   if (nCompressed == 0) {
 | |
|     if (raw->size() != 0) return false;
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   int im = readUInt(compressed);
 | |
|   int iM = readUInt(compressed + 4);
 | |
|   // int tableLength = readUInt (compressed + 8);
 | |
|   int nBits = readUInt(compressed + 12);
 | |
| 
 | |
|   if (im < 0 || im >= HUF_ENCSIZE || iM < 0 || iM >= HUF_ENCSIZE) return false;
 | |
| 
 | |
|   const char *ptr = compressed + 20;
 | |
| 
 | |
|   //
 | |
|   // Fast decoder needs at least 2x64-bits of compressed data, and
 | |
|   // needs to be run-able on this platform. Otherwise, fall back
 | |
|   // to the original decoder
 | |
|   //
 | |
| 
 | |
|   // if (FastHufDecoder::enabled() && nBits > 128)
 | |
|   //{
 | |
|   //    FastHufDecoder fhd (ptr, nCompressed - (ptr - compressed), im, iM, iM);
 | |
|   //    fhd.decode ((unsigned char*)ptr, nBits, raw, nRaw);
 | |
|   //}
 | |
|   // else
 | |
|   {
 | |
|     std::vector<long long> freq(HUF_ENCSIZE);
 | |
|     std::vector<HufDec> hdec(HUF_DECSIZE);
 | |
| 
 | |
|     hufClearDecTable(&hdec.at(0));
 | |
| 
 | |
|     hufUnpackEncTable(&ptr, nCompressed - (ptr - compressed), im, iM,
 | |
|                       &freq.at(0));
 | |
| 
 | |
|     {
 | |
|       if (nBits > 8 * (nCompressed - (ptr - compressed))) {
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       hufBuildDecTable(&freq.at(0), im, iM, &hdec.at(0));
 | |
|       hufDecode(&freq.at(0), &hdec.at(0), ptr, nBits, iM, raw->size(),
 | |
|                 raw->data());
 | |
|     }
 | |
|     // catch (...)
 | |
|     //{
 | |
|     //    hufFreeDecTable (hdec);
 | |
|     //    throw;
 | |
|     //}
 | |
| 
 | |
|     hufFreeDecTable(&hdec.at(0));
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Functions to compress the range of values in the pixel data
 | |
| //
 | |
| 
 | |
| const int USHORT_RANGE = (1 << 16);
 | |
| const int BITMAP_SIZE = (USHORT_RANGE >> 3);
 | |
| 
 | |
| static void bitmapFromData(const unsigned short data[/*nData*/], int nData,
 | |
|                            unsigned char bitmap[BITMAP_SIZE],
 | |
|                            unsigned short &minNonZero,
 | |
|                            unsigned short &maxNonZero) {
 | |
|   for (int i = 0; i < BITMAP_SIZE; ++i) bitmap[i] = 0;
 | |
| 
 | |
|   for (int i = 0; i < nData; ++i) bitmap[data[i] >> 3] |= (1 << (data[i] & 7));
 | |
| 
 | |
|   bitmap[0] &= ~1;  // zero is not explicitly stored in
 | |
|                     // the bitmap; we assume that the
 | |
|                     // data always contain zeroes
 | |
|   minNonZero = BITMAP_SIZE - 1;
 | |
|   maxNonZero = 0;
 | |
| 
 | |
|   for (int i = 0; i < BITMAP_SIZE; ++i) {
 | |
|     if (bitmap[i]) {
 | |
|       if (minNonZero > i) minNonZero = i;
 | |
|       if (maxNonZero < i) maxNonZero = i;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static unsigned short forwardLutFromBitmap(
 | |
|     const unsigned char bitmap[BITMAP_SIZE], unsigned short lut[USHORT_RANGE]) {
 | |
|   int k = 0;
 | |
| 
 | |
|   for (int i = 0; i < USHORT_RANGE; ++i) {
 | |
|     if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7))))
 | |
|       lut[i] = k++;
 | |
|     else
 | |
|       lut[i] = 0;
 | |
|   }
 | |
| 
 | |
|   return k - 1;  // maximum value stored in lut[],
 | |
| }  // i.e. number of ones in bitmap minus 1
 | |
| 
 | |
| static unsigned short reverseLutFromBitmap(
 | |
|     const unsigned char bitmap[BITMAP_SIZE], unsigned short lut[USHORT_RANGE]) {
 | |
|   int k = 0;
 | |
| 
 | |
|   for (int i = 0; i < USHORT_RANGE; ++i) {
 | |
|     if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7)))) lut[k++] = i;
 | |
|   }
 | |
| 
 | |
|   int n = k - 1;
 | |
| 
 | |
|   while (k < USHORT_RANGE) lut[k++] = 0;
 | |
| 
 | |
|   return n;  // maximum k where lut[k] is non-zero,
 | |
| }  // i.e. number of ones in bitmap minus 1
 | |
| 
 | |
| static void applyLut(const unsigned short lut[USHORT_RANGE],
 | |
|                      unsigned short data[/*nData*/], int nData) {
 | |
|   for (int i = 0; i < nData; ++i) data[i] = lut[data[i]];
 | |
| }
 | |
| 
 | |
| #ifdef __clang__
 | |
| #pragma clang diagnostic pop
 | |
| #endif  // __clang__
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| #pragma warning(pop)
 | |
| #endif
 | |
| 
 | |
| static bool CompressPiz(unsigned char *outPtr, unsigned int *outSize,
 | |
|                         const unsigned char *inPtr, size_t inSize,
 | |
|                         const std::vector<ChannelInfo> &channelInfo,
 | |
|                         int data_width, int num_lines) {
 | |
|   std::vector<unsigned char> bitmap(BITMAP_SIZE);
 | |
|   unsigned short minNonZero;
 | |
|   unsigned short maxNonZero;
 | |
| 
 | |
| #if !MINIZ_LITTLE_ENDIAN
 | |
|   // @todo { PIZ compression on BigEndian architecture. }
 | |
|   assert(0);
 | |
|   return false;
 | |
| #endif
 | |
| 
 | |
|   // Assume `inSize` is multiple of 2 or 4.
 | |
|   std::vector<unsigned short> tmpBuffer(inSize / sizeof(unsigned short));
 | |
| 
 | |
|   std::vector<PIZChannelData> channelData(channelInfo.size());
 | |
|   unsigned short *tmpBufferEnd = &tmpBuffer.at(0);
 | |
| 
 | |
|   for (size_t c = 0; c < channelData.size(); c++) {
 | |
|     PIZChannelData &cd = channelData[c];
 | |
| 
 | |
|     cd.start = tmpBufferEnd;
 | |
|     cd.end = cd.start;
 | |
| 
 | |
|     cd.nx = data_width;
 | |
|     cd.ny = num_lines;
 | |
|     // cd.ys = c.channel().ySampling;
 | |
| 
 | |
|     size_t pixelSize = sizeof(int);  // UINT and FLOAT
 | |
|     if (channelInfo[c].pixel_type == TINYEXR_PIXELTYPE_HALF) {
 | |
|       pixelSize = sizeof(short);
 | |
|     }
 | |
| 
 | |
|     cd.size = static_cast<int>(pixelSize / sizeof(short));
 | |
| 
 | |
|     tmpBufferEnd += cd.nx * cd.ny * cd.size;
 | |
|   }
 | |
| 
 | |
|   const unsigned char *ptr = inPtr;
 | |
|   for (int y = 0; y < num_lines; ++y) {
 | |
|     for (size_t i = 0; i < channelData.size(); ++i) {
 | |
|       PIZChannelData &cd = channelData[i];
 | |
| 
 | |
|       // if (modp (y, cd.ys) != 0)
 | |
|       //    continue;
 | |
| 
 | |
|       size_t n = static_cast<size_t>(cd.nx * cd.size);
 | |
|       memcpy(cd.end, ptr, n * sizeof(unsigned short));
 | |
|       ptr += n * sizeof(unsigned short);
 | |
|       cd.end += n;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bitmapFromData(&tmpBuffer.at(0), static_cast<int>(tmpBuffer.size()),
 | |
|                  bitmap.data(), minNonZero, maxNonZero);
 | |
| 
 | |
|   std::vector<unsigned short> lut(USHORT_RANGE);
 | |
|   unsigned short maxValue = forwardLutFromBitmap(bitmap.data(), lut.data());
 | |
|   applyLut(lut.data(), &tmpBuffer.at(0), static_cast<int>(tmpBuffer.size()));
 | |
| 
 | |
|   //
 | |
|   // Store range compression info in _outBuffer
 | |
|   //
 | |
| 
 | |
|   char *buf = reinterpret_cast<char *>(outPtr);
 | |
| 
 | |
|   memcpy(buf, &minNonZero, sizeof(unsigned short));
 | |
|   buf += sizeof(unsigned short);
 | |
|   memcpy(buf, &maxNonZero, sizeof(unsigned short));
 | |
|   buf += sizeof(unsigned short);
 | |
| 
 | |
|   if (minNonZero <= maxNonZero) {
 | |
|     memcpy(buf, reinterpret_cast<char *>(&bitmap[0] + minNonZero),
 | |
|            maxNonZero - minNonZero + 1);
 | |
|     buf += maxNonZero - minNonZero + 1;
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Apply wavelet encoding
 | |
|   //
 | |
| 
 | |
|   for (size_t i = 0; i < channelData.size(); ++i) {
 | |
|     PIZChannelData &cd = channelData[i];
 | |
| 
 | |
|     for (int j = 0; j < cd.size; ++j) {
 | |
|       wav2Encode(cd.start + j, cd.nx, cd.size, cd.ny, cd.nx * cd.size,
 | |
|                  maxValue);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Apply Huffman encoding; append the result to _outBuffer
 | |
|   //
 | |
| 
 | |
|   // length header(4byte), then huff data. Initialize length header with zero,
 | |
|   // then later fill it by `length`.
 | |
|   char *lengthPtr = buf;
 | |
|   int zero = 0;
 | |
|   memcpy(buf, &zero, sizeof(int));
 | |
|   buf += sizeof(int);
 | |
| 
 | |
|   int length =
 | |
|       hufCompress(&tmpBuffer.at(0), static_cast<int>(tmpBuffer.size()), buf);
 | |
|   memcpy(lengthPtr, &length, sizeof(int));
 | |
| 
 | |
|   (*outSize) = static_cast<unsigned int>(
 | |
|       (reinterpret_cast<unsigned char *>(buf) - outPtr) +
 | |
|       static_cast<unsigned int>(length));
 | |
| 
 | |
|   // Use uncompressed data when compressed data is larger than uncompressed.
 | |
|   // (Issue 40)
 | |
|   if ((*outSize) >= inSize) {
 | |
|     (*outSize) = static_cast<unsigned int>(inSize);
 | |
|     memcpy(outPtr, inPtr, inSize);
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool DecompressPiz(unsigned char *outPtr, const unsigned char *inPtr,
 | |
|                           size_t tmpBufSize, size_t inLen, int num_channels,
 | |
|                           const EXRChannelInfo *channels, int data_width,
 | |
|                           int num_lines) {
 | |
|   if (inLen == tmpBufSize) {
 | |
|     // Data is not compressed(Issue 40).
 | |
|     memcpy(outPtr, inPtr, inLen);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   std::vector<unsigned char> bitmap(BITMAP_SIZE);
 | |
|   unsigned short minNonZero;
 | |
|   unsigned short maxNonZero;
 | |
| 
 | |
| #if !MINIZ_LITTLE_ENDIAN
 | |
|   // @todo { PIZ compression on BigEndian architecture. }
 | |
|   assert(0);
 | |
|   return false;
 | |
| #endif
 | |
| 
 | |
|   memset(bitmap.data(), 0, BITMAP_SIZE);
 | |
| 
 | |
|   const unsigned char *ptr = inPtr;
 | |
|   // minNonZero = *(reinterpret_cast<const unsigned short *>(ptr));
 | |
|   tinyexr::cpy2(&minNonZero, reinterpret_cast<const unsigned short *>(ptr));
 | |
|   // maxNonZero = *(reinterpret_cast<const unsigned short *>(ptr + 2));
 | |
|   tinyexr::cpy2(&maxNonZero, reinterpret_cast<const unsigned short *>(ptr + 2));
 | |
|   ptr += 4;
 | |
| 
 | |
|   if (maxNonZero >= BITMAP_SIZE) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (minNonZero <= maxNonZero) {
 | |
|     memcpy(reinterpret_cast<char *>(&bitmap[0] + minNonZero), ptr,
 | |
|            maxNonZero - minNonZero + 1);
 | |
|     ptr += maxNonZero - minNonZero + 1;
 | |
|   }
 | |
| 
 | |
|   std::vector<unsigned short> lut(USHORT_RANGE);
 | |
|   memset(lut.data(), 0, sizeof(unsigned short) * USHORT_RANGE);
 | |
|   unsigned short maxValue = reverseLutFromBitmap(bitmap.data(), lut.data());
 | |
| 
 | |
|   //
 | |
|   // Huffman decoding
 | |
|   //
 | |
| 
 | |
|   int length;
 | |
| 
 | |
|   // length = *(reinterpret_cast<const int *>(ptr));
 | |
|   tinyexr::cpy4(&length, reinterpret_cast<const int *>(ptr));
 | |
|   ptr += sizeof(int);
 | |
| 
 | |
|   if (size_t((ptr - inPtr) + length) > inLen) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   std::vector<unsigned short> tmpBuffer(tmpBufSize);
 | |
|   hufUncompress(reinterpret_cast<const char *>(ptr), length, &tmpBuffer);
 | |
| 
 | |
|   //
 | |
|   // Wavelet decoding
 | |
|   //
 | |
| 
 | |
|   std::vector<PIZChannelData> channelData(static_cast<size_t>(num_channels));
 | |
| 
 | |
|   unsigned short *tmpBufferEnd = &tmpBuffer.at(0);
 | |
| 
 | |
|   for (size_t i = 0; i < static_cast<size_t>(num_channels); ++i) {
 | |
|     const EXRChannelInfo &chan = channels[i];
 | |
| 
 | |
|     size_t pixelSize = sizeof(int);  // UINT and FLOAT
 | |
|     if (chan.pixel_type == TINYEXR_PIXELTYPE_HALF) {
 | |
|       pixelSize = sizeof(short);
 | |
|     }
 | |
| 
 | |
|     channelData[i].start = tmpBufferEnd;
 | |
|     channelData[i].end = channelData[i].start;
 | |
|     channelData[i].nx = data_width;
 | |
|     channelData[i].ny = num_lines;
 | |
|     // channelData[i].ys = 1;
 | |
|     channelData[i].size = static_cast<int>(pixelSize / sizeof(short));
 | |
| 
 | |
|     tmpBufferEnd += channelData[i].nx * channelData[i].ny * channelData[i].size;
 | |
|   }
 | |
| 
 | |
|   for (size_t i = 0; i < channelData.size(); ++i) {
 | |
|     PIZChannelData &cd = channelData[i];
 | |
| 
 | |
|     for (int j = 0; j < cd.size; ++j) {
 | |
|       wav2Decode(cd.start + j, cd.nx, cd.size, cd.ny, cd.nx * cd.size,
 | |
|                  maxValue);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   //
 | |
|   // Expand the pixel data to their original range
 | |
|   //
 | |
| 
 | |
|   applyLut(lut.data(), &tmpBuffer.at(0), static_cast<int>(tmpBufSize));
 | |
| 
 | |
|   for (int y = 0; y < num_lines; y++) {
 | |
|     for (size_t i = 0; i < channelData.size(); ++i) {
 | |
|       PIZChannelData &cd = channelData[i];
 | |
| 
 | |
|       // if (modp (y, cd.ys) != 0)
 | |
|       //    continue;
 | |
| 
 | |
|       size_t n = static_cast<size_t>(cd.nx * cd.size);
 | |
|       memcpy(outPtr, cd.end, static_cast<size_t>(n * sizeof(unsigned short)));
 | |
|       outPtr += n * sizeof(unsigned short);
 | |
|       cd.end += n;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| #endif  // TINYEXR_USE_PIZ
 | |
| 
 | |
| #if TINYEXR_USE_ZFP
 | |
| 
 | |
| struct ZFPCompressionParam {
 | |
|   double rate;
 | |
|   unsigned int precision;
 | |
|   unsigned int __pad0;
 | |
|   double tolerance;
 | |
|   int type;  // TINYEXR_ZFP_COMPRESSIONTYPE_*
 | |
|   unsigned int __pad1;
 | |
| 
 | |
|   ZFPCompressionParam() {
 | |
|     type = TINYEXR_ZFP_COMPRESSIONTYPE_RATE;
 | |
|     rate = 2.0;
 | |
|     precision = 0;
 | |
|     tolerance = 0.0;
 | |
|   }
 | |
| };
 | |
| 
 | |
| static bool FindZFPCompressionParam(ZFPCompressionParam *param,
 | |
|                                     const EXRAttribute *attributes,
 | |
|                                     int num_attributes, std::string *err) {
 | |
|   bool foundType = false;
 | |
| 
 | |
|   for (int i = 0; i < num_attributes; i++) {
 | |
|     if ((strcmp(attributes[i].name, "zfpCompressionType") == 0)) {
 | |
|       if (attributes[i].size == 1) {
 | |
|         param->type = static_cast<int>(attributes[i].value[0]);
 | |
|         foundType = true;
 | |
|         break;
 | |
|       } else {
 | |
|         if (err) {
 | |
|           (*err) +=
 | |
|               "zfpCompressionType attribute must be uchar(1 byte) type.\n";
 | |
|         }
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!foundType) {
 | |
|     if (err) {
 | |
|       (*err) += "`zfpCompressionType` attribute not found.\n";
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (param->type == TINYEXR_ZFP_COMPRESSIONTYPE_RATE) {
 | |
|     for (int i = 0; i < num_attributes; i++) {
 | |
|       if ((strcmp(attributes[i].name, "zfpCompressionRate") == 0) &&
 | |
|           (attributes[i].size == 8)) {
 | |
|         param->rate = *(reinterpret_cast<double *>(attributes[i].value));
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (err) {
 | |
|       (*err) += "`zfpCompressionRate` attribute not found.\n";
 | |
|     }
 | |
| 
 | |
|   } else if (param->type == TINYEXR_ZFP_COMPRESSIONTYPE_PRECISION) {
 | |
|     for (int i = 0; i < num_attributes; i++) {
 | |
|       if ((strcmp(attributes[i].name, "zfpCompressionPrecision") == 0) &&
 | |
|           (attributes[i].size == 4)) {
 | |
|         param->rate = *(reinterpret_cast<int *>(attributes[i].value));
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (err) {
 | |
|       (*err) += "`zfpCompressionPrecision` attribute not found.\n";
 | |
|     }
 | |
| 
 | |
|   } else if (param->type == TINYEXR_ZFP_COMPRESSIONTYPE_ACCURACY) {
 | |
|     for (int i = 0; i < num_attributes; i++) {
 | |
|       if ((strcmp(attributes[i].name, "zfpCompressionTolerance") == 0) &&
 | |
|           (attributes[i].size == 8)) {
 | |
|         param->tolerance = *(reinterpret_cast<double *>(attributes[i].value));
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (err) {
 | |
|       (*err) += "`zfpCompressionTolerance` attribute not found.\n";
 | |
|     }
 | |
|   } else {
 | |
|     if (err) {
 | |
|       (*err) += "Unknown value specified for `zfpCompressionType`.\n";
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Assume pixel format is FLOAT for all channels.
 | |
| static bool DecompressZfp(float *dst, int dst_width, int dst_num_lines,
 | |
|                           size_t num_channels, const unsigned char *src,
 | |
|                           unsigned long src_size,
 | |
|                           const ZFPCompressionParam ¶m) {
 | |
|   size_t uncompressed_size =
 | |
|       size_t(dst_width) * size_t(dst_num_lines) * num_channels;
 | |
| 
 | |
|   if (uncompressed_size == src_size) {
 | |
|     // Data is not compressed(Issue 40).
 | |
|     memcpy(dst, src, src_size);
 | |
|   }
 | |
| 
 | |
|   zfp_stream *zfp = NULL;
 | |
|   zfp_field *field = NULL;
 | |
| 
 | |
|   assert((dst_width % 4) == 0);
 | |
|   assert((dst_num_lines % 4) == 0);
 | |
| 
 | |
|   if ((size_t(dst_width) & 3U) || (size_t(dst_num_lines) & 3U)) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   field =
 | |
|       zfp_field_2d(reinterpret_cast<void *>(const_cast<unsigned char *>(src)),
 | |
|                    zfp_type_float, static_cast<unsigned int>(dst_width),
 | |
|                    static_cast<unsigned int>(dst_num_lines) *
 | |
|                        static_cast<unsigned int>(num_channels));
 | |
|   zfp = zfp_stream_open(NULL);
 | |
| 
 | |
|   if (param.type == TINYEXR_ZFP_COMPRESSIONTYPE_RATE) {
 | |
|     zfp_stream_set_rate(zfp, param.rate, zfp_type_float, /* dimension */ 2,
 | |
|                         /* write random access */ 0);
 | |
|   } else if (param.type == TINYEXR_ZFP_COMPRESSIONTYPE_PRECISION) {
 | |
|     zfp_stream_set_precision(zfp, param.precision);
 | |
|   } else if (param.type == TINYEXR_ZFP_COMPRESSIONTYPE_ACCURACY) {
 | |
|     zfp_stream_set_accuracy(zfp, param.tolerance);
 | |
|   } else {
 | |
|     assert(0);
 | |
|   }
 | |
| 
 | |
|   size_t buf_size = zfp_stream_maximum_size(zfp, field);
 | |
|   std::vector<unsigned char> buf(buf_size);
 | |
|   memcpy(&buf.at(0), src, src_size);
 | |
| 
 | |
|   bitstream *stream = stream_open(&buf.at(0), buf_size);
 | |
|   zfp_stream_set_bit_stream(zfp, stream);
 | |
|   zfp_stream_rewind(zfp);
 | |
| 
 | |
|   size_t image_size = size_t(dst_width) * size_t(dst_num_lines);
 | |
| 
 | |
|   for (size_t c = 0; c < size_t(num_channels); c++) {
 | |
|     // decompress 4x4 pixel block.
 | |
|     for (size_t y = 0; y < size_t(dst_num_lines); y += 4) {
 | |
|       for (size_t x = 0; x < size_t(dst_width); x += 4) {
 | |
|         float fblock[16];
 | |
|         zfp_decode_block_float_2(zfp, fblock);
 | |
|         for (size_t j = 0; j < 4; j++) {
 | |
|           for (size_t i = 0; i < 4; i++) {
 | |
|             dst[c * image_size + ((y + j) * size_t(dst_width) + (x + i))] =
 | |
|                 fblock[j * 4 + i];
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   zfp_field_free(field);
 | |
|   zfp_stream_close(zfp);
 | |
|   stream_close(stream);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Assume pixel format is FLOAT for all channels.
 | |
| static bool CompressZfp(std::vector<unsigned char> *outBuf,
 | |
|                         unsigned int *outSize, const float *inPtr, int width,
 | |
|                         int num_lines, int num_channels,
 | |
|                         const ZFPCompressionParam ¶m) {
 | |
|   zfp_stream *zfp = NULL;
 | |
|   zfp_field *field = NULL;
 | |
| 
 | |
|   assert((width % 4) == 0);
 | |
|   assert((num_lines % 4) == 0);
 | |
| 
 | |
|   if ((size_t(width) & 3U) || (size_t(num_lines) & 3U)) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // create input array.
 | |
|   field = zfp_field_2d(reinterpret_cast<void *>(const_cast<float *>(inPtr)),
 | |
|                        zfp_type_float, static_cast<unsigned int>(width),
 | |
|                        static_cast<unsigned int>(num_lines * num_channels));
 | |
| 
 | |
|   zfp = zfp_stream_open(NULL);
 | |
| 
 | |
|   if (param.type == TINYEXR_ZFP_COMPRESSIONTYPE_RATE) {
 | |
|     zfp_stream_set_rate(zfp, param.rate, zfp_type_float, 2, 0);
 | |
|   } else if (param.type == TINYEXR_ZFP_COMPRESSIONTYPE_PRECISION) {
 | |
|     zfp_stream_set_precision(zfp, param.precision);
 | |
|   } else if (param.type == TINYEXR_ZFP_COMPRESSIONTYPE_ACCURACY) {
 | |
|     zfp_stream_set_accuracy(zfp, param.tolerance);
 | |
|   } else {
 | |
|     assert(0);
 | |
|   }
 | |
| 
 | |
|   size_t buf_size = zfp_stream_maximum_size(zfp, field);
 | |
| 
 | |
|   outBuf->resize(buf_size);
 | |
| 
 | |
|   bitstream *stream = stream_open(&outBuf->at(0), buf_size);
 | |
|   zfp_stream_set_bit_stream(zfp, stream);
 | |
|   zfp_field_free(field);
 | |
| 
 | |
|   size_t image_size = size_t(width) * size_t(num_lines);
 | |
| 
 | |
|   for (size_t c = 0; c < size_t(num_channels); c++) {
 | |
|     // compress 4x4 pixel block.
 | |
|     for (size_t y = 0; y < size_t(num_lines); y += 4) {
 | |
|       for (size_t x = 0; x < size_t(width); x += 4) {
 | |
|         float fblock[16];
 | |
|         for (size_t j = 0; j < 4; j++) {
 | |
|           for (size_t i = 0; i < 4; i++) {
 | |
|             fblock[j * 4 + i] =
 | |
|                 inPtr[c * image_size + ((y + j) * size_t(width) + (x + i))];
 | |
|           }
 | |
|         }
 | |
|         zfp_encode_block_float_2(zfp, fblock);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   zfp_stream_flush(zfp);
 | |
|   (*outSize) = static_cast<unsigned int>(zfp_stream_compressed_size(zfp));
 | |
| 
 | |
|   zfp_stream_close(zfp);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| //
 | |
| // -----------------------------------------------------------------
 | |
| //
 | |
| 
 | |
| // TODO(syoyo): Refactor function arguments.
 | |
| static bool DecodePixelData(/* out */ unsigned char **out_images,
 | |
|                             const int *requested_pixel_types,
 | |
|                             const unsigned char *data_ptr, size_t data_len,
 | |
|                             int compression_type, int line_order, int width,
 | |
|                             int height, int x_stride, int y, int line_no,
 | |
|                             int num_lines, size_t pixel_data_size,
 | |
|                             size_t num_attributes,
 | |
|                             const EXRAttribute *attributes, size_t num_channels,
 | |
|                             const EXRChannelInfo *channels,
 | |
|                             const std::vector<size_t> &channel_offset_list) {
 | |
|   if (compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) {  // PIZ
 | |
| #if TINYEXR_USE_PIZ
 | |
|     if ((width == 0) || (num_lines == 0) || (pixel_data_size == 0)) {
 | |
|       // Invalid input #90
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Allocate original data size.
 | |
|     std::vector<unsigned char> outBuf(static_cast<size_t>(
 | |
|         static_cast<size_t>(width * num_lines) * pixel_data_size));
 | |
|     size_t tmpBufLen = outBuf.size();
 | |
| 
 | |
|     bool ret = tinyexr::DecompressPiz(
 | |
|         reinterpret_cast<unsigned char *>(&outBuf.at(0)), data_ptr, tmpBufLen,
 | |
|         data_len, static_cast<int>(num_channels), channels, width, num_lines);
 | |
| 
 | |
|     if (!ret) {
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // For PIZ_COMPRESSION:
 | |
|     //   pixel sample data for channel 0 for scanline 0
 | |
|     //   pixel sample data for channel 1 for scanline 0
 | |
|     //   pixel sample data for channel ... for scanline 0
 | |
|     //   pixel sample data for channel n for scanline 0
 | |
|     //   pixel sample data for channel 0 for scanline 1
 | |
|     //   pixel sample data for channel 1 for scanline 1
 | |
|     //   pixel sample data for channel ... for scanline 1
 | |
|     //   pixel sample data for channel n for scanline 1
 | |
|     //   ...
 | |
|     for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) {
 | |
|       if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) {
 | |
|         for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) {
 | |
|           const unsigned short *line_ptr = reinterpret_cast<unsigned short *>(
 | |
|               &outBuf.at(v * pixel_data_size * static_cast<size_t>(width) +
 | |
|                          channel_offset_list[c] * static_cast<size_t>(width)));
 | |
|           for (size_t u = 0; u < static_cast<size_t>(width); u++) {
 | |
|             FP16 hf;
 | |
| 
 | |
|             // hf.u = line_ptr[u];
 | |
|             // use `cpy` to avoid unaligned memory access when compiler's
 | |
|             // optimization is on.
 | |
|             tinyexr::cpy2(&(hf.u), line_ptr + u);
 | |
| 
 | |
|             tinyexr::swap2(reinterpret_cast<unsigned short *>(&hf.u));
 | |
| 
 | |
|             if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_HALF) {
 | |
|               unsigned short *image =
 | |
|                   reinterpret_cast<unsigned short **>(out_images)[c];
 | |
|               if (line_order == 0) {
 | |
|                 image += (static_cast<size_t>(line_no) + v) *
 | |
|                              static_cast<size_t>(x_stride) +
 | |
|                          u;
 | |
|               } else {
 | |
|                 image += static_cast<size_t>(
 | |
|                              (height - 1 - (line_no + static_cast<int>(v)))) *
 | |
|                              static_cast<size_t>(x_stride) +
 | |
|                          u;
 | |
|               }
 | |
|               *image = hf.u;
 | |
|             } else {  // HALF -> FLOAT
 | |
|               FP32 f32 = half_to_float(hf);
 | |
|               float *image = reinterpret_cast<float **>(out_images)[c];
 | |
|               size_t offset = 0;
 | |
|               if (line_order == 0) {
 | |
|                 offset = (static_cast<size_t>(line_no) + v) *
 | |
|                              static_cast<size_t>(x_stride) +
 | |
|                          u;
 | |
|               } else {
 | |
|                 offset = static_cast<size_t>(
 | |
|                              (height - 1 - (line_no + static_cast<int>(v)))) *
 | |
|                              static_cast<size_t>(x_stride) +
 | |
|                          u;
 | |
|               }
 | |
|               image += offset;
 | |
|               *image = f32.f;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) {
 | |
|         assert(requested_pixel_types[c] == TINYEXR_PIXELTYPE_UINT);
 | |
| 
 | |
|         for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) {
 | |
|           const unsigned int *line_ptr = reinterpret_cast<unsigned int *>(
 | |
|               &outBuf.at(v * pixel_data_size * static_cast<size_t>(width) +
 | |
|                          channel_offset_list[c] * static_cast<size_t>(width)));
 | |
|           for (size_t u = 0; u < static_cast<size_t>(width); u++) {
 | |
|             unsigned int val;
 | |
|             // val = line_ptr[u];
 | |
|             tinyexr::cpy4(&val, line_ptr + u);
 | |
| 
 | |
|             tinyexr::swap4(&val);
 | |
| 
 | |
|             unsigned int *image =
 | |
|                 reinterpret_cast<unsigned int **>(out_images)[c];
 | |
|             if (line_order == 0) {
 | |
|               image += (static_cast<size_t>(line_no) + v) *
 | |
|                            static_cast<size_t>(x_stride) +
 | |
|                        u;
 | |
|             } else {
 | |
|               image += static_cast<size_t>(
 | |
|                            (height - 1 - (line_no + static_cast<int>(v)))) *
 | |
|                            static_cast<size_t>(x_stride) +
 | |
|                        u;
 | |
|             }
 | |
|             *image = val;
 | |
|           }
 | |
|         }
 | |
|       } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) {
 | |
|         assert(requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT);
 | |
|         for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) {
 | |
|           const float *line_ptr = reinterpret_cast<float *>(&outBuf.at(
 | |
|               v * pixel_data_size * static_cast<size_t>(x_stride) +
 | |
|               channel_offset_list[c] * static_cast<size_t>(x_stride)));
 | |
|           for (size_t u = 0; u < static_cast<size_t>(width); u++) {
 | |
|             float val;
 | |
|             // val = line_ptr[u];
 | |
|             tinyexr::cpy4(&val, line_ptr + u);
 | |
| 
 | |
|             tinyexr::swap4(reinterpret_cast<unsigned int *>(&val));
 | |
| 
 | |
|             float *image = reinterpret_cast<float **>(out_images)[c];
 | |
|             if (line_order == 0) {
 | |
|               image += (static_cast<size_t>(line_no) + v) *
 | |
|                            static_cast<size_t>(x_stride) +
 | |
|                        u;
 | |
|             } else {
 | |
|               image += static_cast<size_t>(
 | |
|                            (height - 1 - (line_no + static_cast<int>(v)))) *
 | |
|                            static_cast<size_t>(x_stride) +
 | |
|                        u;
 | |
|             }
 | |
|             *image = val;
 | |
|           }
 | |
|         }
 | |
|       } else {
 | |
|         assert(0);
 | |
|       }
 | |
|     }
 | |
| #else
 | |
|     assert(0 && "PIZ is enabled in this build");
 | |
|     return false;
 | |
| #endif
 | |
| 
 | |
|   } else if (compression_type == TINYEXR_COMPRESSIONTYPE_ZIPS ||
 | |
|              compression_type == TINYEXR_COMPRESSIONTYPE_ZIP) {
 | |
|     // Allocate original data size.
 | |
|     std::vector<unsigned char> outBuf(static_cast<size_t>(width) *
 | |
|                                       static_cast<size_t>(num_lines) *
 | |
|                                       pixel_data_size);
 | |
| 
 | |
|     unsigned long dstLen = static_cast<unsigned long>(outBuf.size());
 | |
|     assert(dstLen > 0);
 | |
|     if (!tinyexr::DecompressZip(
 | |
|             reinterpret_cast<unsigned char *>(&outBuf.at(0)), &dstLen, data_ptr,
 | |
|             static_cast<unsigned long>(data_len))) {
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // For ZIP_COMPRESSION:
 | |
|     //   pixel sample data for channel 0 for scanline 0
 | |
|     //   pixel sample data for channel 1 for scanline 0
 | |
|     //   pixel sample data for channel ... for scanline 0
 | |
|     //   pixel sample data for channel n for scanline 0
 | |
|     //   pixel sample data for channel 0 for scanline 1
 | |
|     //   pixel sample data for channel 1 for scanline 1
 | |
|     //   pixel sample data for channel ... for scanline 1
 | |
|     //   pixel sample data for channel n for scanline 1
 | |
|     //   ...
 | |
|     for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) {
 | |
|       if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) {
 | |
|         for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) {
 | |
|           const unsigned short *line_ptr = reinterpret_cast<unsigned short *>(
 | |
|               &outBuf.at(v * static_cast<size_t>(pixel_data_size) *
 | |
|                              static_cast<size_t>(width) +
 | |
|                          channel_offset_list[c] * static_cast<size_t>(width)));
 | |
|           for (size_t u = 0; u < static_cast<size_t>(width); u++) {
 | |
|             tinyexr::FP16 hf;
 | |
| 
 | |
|             // hf.u = line_ptr[u];
 | |
|             tinyexr::cpy2(&(hf.u), line_ptr + u);
 | |
| 
 | |
|             tinyexr::swap2(reinterpret_cast<unsigned short *>(&hf.u));
 | |
| 
 | |
|             if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_HALF) {
 | |
|               unsigned short *image =
 | |
|                   reinterpret_cast<unsigned short **>(out_images)[c];
 | |
|               if (line_order == 0) {
 | |
|                 image += (static_cast<size_t>(line_no) + v) *
 | |
|                              static_cast<size_t>(x_stride) +
 | |
|                          u;
 | |
|               } else {
 | |
|                 image += (static_cast<size_t>(height) - 1U -
 | |
|                           (static_cast<size_t>(line_no) + v)) *
 | |
|                              static_cast<size_t>(x_stride) +
 | |
|                          u;
 | |
|               }
 | |
|               *image = hf.u;
 | |
|             } else {  // HALF -> FLOAT
 | |
|               tinyexr::FP32 f32 = half_to_float(hf);
 | |
|               float *image = reinterpret_cast<float **>(out_images)[c];
 | |
|               size_t offset = 0;
 | |
|               if (line_order == 0) {
 | |
|                 offset = (static_cast<size_t>(line_no) + v) *
 | |
|                              static_cast<size_t>(x_stride) +
 | |
|                          u;
 | |
|               } else {
 | |
|                 offset = (static_cast<size_t>(height) - 1U -
 | |
|                           (static_cast<size_t>(line_no) + v)) *
 | |
|                              static_cast<size_t>(x_stride) +
 | |
|                          u;
 | |
|               }
 | |
|               image += offset;
 | |
| 
 | |
|               *image = f32.f;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) {
 | |
|         assert(requested_pixel_types[c] == TINYEXR_PIXELTYPE_UINT);
 | |
| 
 | |
|         for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) {
 | |
|           const unsigned int *line_ptr = reinterpret_cast<unsigned int *>(
 | |
|               &outBuf.at(v * pixel_data_size * static_cast<size_t>(width) +
 | |
|                          channel_offset_list[c] * static_cast<size_t>(width)));
 | |
|           for (size_t u = 0; u < static_cast<size_t>(width); u++) {
 | |
|             unsigned int val;
 | |
|             // val = line_ptr[u];
 | |
|             tinyexr::cpy4(&val, line_ptr + u);
 | |
| 
 | |
|             tinyexr::swap4(&val);
 | |
| 
 | |
|             unsigned int *image =
 | |
|                 reinterpret_cast<unsigned int **>(out_images)[c];
 | |
|             if (line_order == 0) {
 | |
|               image += (static_cast<size_t>(line_no) + v) *
 | |
|                            static_cast<size_t>(x_stride) +
 | |
|                        u;
 | |
|             } else {
 | |
|               image += (static_cast<size_t>(height) - 1U -
 | |
|                         (static_cast<size_t>(line_no) + v)) *
 | |
|                            static_cast<size_t>(x_stride) +
 | |
|                        u;
 | |
|             }
 | |
|             *image = val;
 | |
|           }
 | |
|         }
 | |
|       } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) {
 | |
|         assert(requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT);
 | |
|         for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) {
 | |
|           const float *line_ptr = reinterpret_cast<float *>(
 | |
|               &outBuf.at(v * pixel_data_size * static_cast<size_t>(width) +
 | |
|                          channel_offset_list[c] * static_cast<size_t>(width)));
 | |
|           for (size_t u = 0; u < static_cast<size_t>(width); u++) {
 | |
|             float val;
 | |
|             // val = line_ptr[u];
 | |
|             tinyexr::cpy4(&val, line_ptr + u);
 | |
| 
 | |
|             tinyexr::swap4(reinterpret_cast<unsigned int *>(&val));
 | |
| 
 | |
|             float *image = reinterpret_cast<float **>(out_images)[c];
 | |
|             if (line_order == 0) {
 | |
|               image += (static_cast<size_t>(line_no) + v) *
 | |
|                            static_cast<size_t>(x_stride) +
 | |
|                        u;
 | |
|             } else {
 | |
|               image += (static_cast<size_t>(height) - 1U -
 | |
|                         (static_cast<size_t>(line_no) + v)) *
 | |
|                            static_cast<size_t>(x_stride) +
 | |
|                        u;
 | |
|             }
 | |
|             *image = val;
 | |
|           }
 | |
|         }
 | |
|       } else {
 | |
|         assert(0);
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
|   } else if (compression_type == TINYEXR_COMPRESSIONTYPE_RLE) {
 | |
|     // Allocate original data size.
 | |
|     std::vector<unsigned char> outBuf(static_cast<size_t>(width) *
 | |
|                                       static_cast<size_t>(num_lines) *
 | |
|                                       pixel_data_size);
 | |
| 
 | |
|     unsigned long dstLen = static_cast<unsigned long>(outBuf.size());
 | |
|     if (dstLen == 0) {
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     if (!tinyexr::DecompressRle(
 | |
|             reinterpret_cast<unsigned char *>(&outBuf.at(0)), dstLen, data_ptr,
 | |
|             static_cast<unsigned long>(data_len))) {
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // For RLE_COMPRESSION:
 | |
|     //   pixel sample data for channel 0 for scanline 0
 | |
|     //   pixel sample data for channel 1 for scanline 0
 | |
|     //   pixel sample data for channel ... for scanline 0
 | |
|     //   pixel sample data for channel n for scanline 0
 | |
|     //   pixel sample data for channel 0 for scanline 1
 | |
|     //   pixel sample data for channel 1 for scanline 1
 | |
|     //   pixel sample data for channel ... for scanline 1
 | |
|     //   pixel sample data for channel n for scanline 1
 | |
|     //   ...
 | |
|     for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) {
 | |
|       if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) {
 | |
|         for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) {
 | |
|           const unsigned short *line_ptr = reinterpret_cast<unsigned short *>(
 | |
|               &outBuf.at(v * static_cast<size_t>(pixel_data_size) *
 | |
|                              static_cast<size_t>(width) +
 | |
|                          channel_offset_list[c] * static_cast<size_t>(width)));
 | |
|           for (size_t u = 0; u < static_cast<size_t>(width); u++) {
 | |
|             tinyexr::FP16 hf;
 | |
| 
 | |
|             // hf.u = line_ptr[u];
 | |
|             tinyexr::cpy2(&(hf.u), line_ptr + u);
 | |
| 
 | |
|             tinyexr::swap2(reinterpret_cast<unsigned short *>(&hf.u));
 | |
| 
 | |
|             if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_HALF) {
 | |
|               unsigned short *image =
 | |
|                   reinterpret_cast<unsigned short **>(out_images)[c];
 | |
|               if (line_order == 0) {
 | |
|                 image += (static_cast<size_t>(line_no) + v) *
 | |
|                              static_cast<size_t>(x_stride) +
 | |
|                          u;
 | |
|               } else {
 | |
|                 image += (static_cast<size_t>(height) - 1U -
 | |
|                           (static_cast<size_t>(line_no) + v)) *
 | |
|                              static_cast<size_t>(x_stride) +
 | |
|                          u;
 | |
|               }
 | |
|               *image = hf.u;
 | |
|             } else {  // HALF -> FLOAT
 | |
|               tinyexr::FP32 f32 = half_to_float(hf);
 | |
|               float *image = reinterpret_cast<float **>(out_images)[c];
 | |
|               if (line_order == 0) {
 | |
|                 image += (static_cast<size_t>(line_no) + v) *
 | |
|                              static_cast<size_t>(x_stride) +
 | |
|                          u;
 | |
|               } else {
 | |
|                 image += (static_cast<size_t>(height) - 1U -
 | |
|                           (static_cast<size_t>(line_no) + v)) *
 | |
|                              static_cast<size_t>(x_stride) +
 | |
|                          u;
 | |
|               }
 | |
|               *image = f32.f;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) {
 | |
|         assert(requested_pixel_types[c] == TINYEXR_PIXELTYPE_UINT);
 | |
| 
 | |
|         for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) {
 | |
|           const unsigned int *line_ptr = reinterpret_cast<unsigned int *>(
 | |
|               &outBuf.at(v * pixel_data_size * static_cast<size_t>(width) +
 | |
|                          channel_offset_list[c] * static_cast<size_t>(width)));
 | |
|           for (size_t u = 0; u < static_cast<size_t>(width); u++) {
 | |
|             unsigned int val;
 | |
|             // val = line_ptr[u];
 | |
|             tinyexr::cpy4(&val, line_ptr + u);
 | |
| 
 | |
|             tinyexr::swap4(&val);
 | |
| 
 | |
|             unsigned int *image =
 | |
|                 reinterpret_cast<unsigned int **>(out_images)[c];
 | |
|             if (line_order == 0) {
 | |
|               image += (static_cast<size_t>(line_no) + v) *
 | |
|                            static_cast<size_t>(x_stride) +
 | |
|                        u;
 | |
|             } else {
 | |
|               image += (static_cast<size_t>(height) - 1U -
 | |
|                         (static_cast<size_t>(line_no) + v)) *
 | |
|                            static_cast<size_t>(x_stride) +
 | |
|                        u;
 | |
|             }
 | |
|             *image = val;
 | |
|           }
 | |
|         }
 | |
|       } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) {
 | |
|         assert(requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT);
 | |
|         for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) {
 | |
|           const float *line_ptr = reinterpret_cast<float *>(
 | |
|               &outBuf.at(v * pixel_data_size * static_cast<size_t>(width) +
 | |
|                          channel_offset_list[c] * static_cast<size_t>(width)));
 | |
|           for (size_t u = 0; u < static_cast<size_t>(width); u++) {
 | |
|             float val;
 | |
|             // val = line_ptr[u];
 | |
|             tinyexr::cpy4(&val, line_ptr + u);
 | |
| 
 | |
|             tinyexr::swap4(reinterpret_cast<unsigned int *>(&val));
 | |
| 
 | |
|             float *image = reinterpret_cast<float **>(out_images)[c];
 | |
|             if (line_order == 0) {
 | |
|               image += (static_cast<size_t>(line_no) + v) *
 | |
|                            static_cast<size_t>(x_stride) +
 | |
|                        u;
 | |
|             } else {
 | |
|               image += (static_cast<size_t>(height) - 1U -
 | |
|                         (static_cast<size_t>(line_no) + v)) *
 | |
|                            static_cast<size_t>(x_stride) +
 | |
|                        u;
 | |
|             }
 | |
|             *image = val;
 | |
|           }
 | |
|         }
 | |
|       } else {
 | |
|         assert(0);
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
|   } else if (compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) {
 | |
| #if TINYEXR_USE_ZFP
 | |
|     tinyexr::ZFPCompressionParam zfp_compression_param;
 | |
|     std::string e;
 | |
|     if (!tinyexr::FindZFPCompressionParam(&zfp_compression_param, attributes,
 | |
|                                           int(num_attributes), &e)) {
 | |
|       // This code path should not be reachable.
 | |
|       assert(0);
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Allocate original data size.
 | |
|     std::vector<unsigned char> outBuf(static_cast<size_t>(width) *
 | |
|                                       static_cast<size_t>(num_lines) *
 | |
|                                       pixel_data_size);
 | |
| 
 | |
|     unsigned long dstLen = outBuf.size();
 | |
|     assert(dstLen > 0);
 | |
|     tinyexr::DecompressZfp(reinterpret_cast<float *>(&outBuf.at(0)), width,
 | |
|                            num_lines, num_channels, data_ptr,
 | |
|                            static_cast<unsigned long>(data_len),
 | |
|                            zfp_compression_param);
 | |
| 
 | |
|     // For ZFP_COMPRESSION:
 | |
|     //   pixel sample data for channel 0 for scanline 0
 | |
|     //   pixel sample data for channel 1 for scanline 0
 | |
|     //   pixel sample data for channel ... for scanline 0
 | |
|     //   pixel sample data for channel n for scanline 0
 | |
|     //   pixel sample data for channel 0 for scanline 1
 | |
|     //   pixel sample data for channel 1 for scanline 1
 | |
|     //   pixel sample data for channel ... for scanline 1
 | |
|     //   pixel sample data for channel n for scanline 1
 | |
|     //   ...
 | |
|     for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) {
 | |
|       assert(channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT);
 | |
|       if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) {
 | |
|         assert(requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT);
 | |
|         for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) {
 | |
|           const float *line_ptr = reinterpret_cast<float *>(
 | |
|               &outBuf.at(v * pixel_data_size * static_cast<size_t>(width) +
 | |
|                          channel_offset_list[c] * static_cast<size_t>(width)));
 | |
|           for (size_t u = 0; u < static_cast<size_t>(width); u++) {
 | |
|             float val;
 | |
|             tinyexr::cpy4(&val, line_ptr + u);
 | |
| 
 | |
|             tinyexr::swap4(reinterpret_cast<unsigned int *>(&val));
 | |
| 
 | |
|             float *image = reinterpret_cast<float **>(out_images)[c];
 | |
|             if (line_order == 0) {
 | |
|               image += (static_cast<size_t>(line_no) + v) *
 | |
|                            static_cast<size_t>(x_stride) +
 | |
|                        u;
 | |
|             } else {
 | |
|               image += (static_cast<size_t>(height) - 1U -
 | |
|                         (static_cast<size_t>(line_no) + v)) *
 | |
|                            static_cast<size_t>(x_stride) +
 | |
|                        u;
 | |
|             }
 | |
|             *image = val;
 | |
|           }
 | |
|         }
 | |
|       } else {
 | |
|         assert(0);
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
| #else
 | |
|     (void)attributes;
 | |
|     (void)num_attributes;
 | |
|     (void)num_channels;
 | |
|     assert(0);
 | |
|     return false;
 | |
| #endif
 | |
|   } else if (compression_type == TINYEXR_COMPRESSIONTYPE_NONE) {
 | |
|     for (size_t c = 0; c < num_channels; c++) {
 | |
|       for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) {
 | |
|         if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) {
 | |
|           const unsigned short *line_ptr =
 | |
|               reinterpret_cast<const unsigned short *>(
 | |
|                   data_ptr + v * pixel_data_size * size_t(width) +
 | |
|                   channel_offset_list[c] * static_cast<size_t>(width));
 | |
| 
 | |
|           if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_HALF) {
 | |
|             unsigned short *outLine =
 | |
|                 reinterpret_cast<unsigned short *>(out_images[c]);
 | |
|             if (line_order == 0) {
 | |
|               outLine += (size_t(y) + v) * size_t(x_stride);
 | |
|             } else {
 | |
|               outLine +=
 | |
|                   (size_t(height) - 1 - (size_t(y) + v)) * size_t(x_stride);
 | |
|             }
 | |
| 
 | |
|             for (int u = 0; u < width; u++) {
 | |
|               tinyexr::FP16 hf;
 | |
| 
 | |
|               // hf.u = line_ptr[u];
 | |
|               tinyexr::cpy2(&(hf.u), line_ptr + u);
 | |
| 
 | |
|               tinyexr::swap2(reinterpret_cast<unsigned short *>(&hf.u));
 | |
| 
 | |
|               outLine[u] = hf.u;
 | |
|             }
 | |
|           } else if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT) {
 | |
|             float *outLine = reinterpret_cast<float *>(out_images[c]);
 | |
|             if (line_order == 0) {
 | |
|               outLine += (size_t(y) + v) * size_t(x_stride);
 | |
|             } else {
 | |
|               outLine +=
 | |
|                   (size_t(height) - 1 - (size_t(y) + v)) * size_t(x_stride);
 | |
|             }
 | |
| 
 | |
|             if (reinterpret_cast<const unsigned char *>(line_ptr + width) >
 | |
|                 (data_ptr + data_len)) {
 | |
|               // Insufficient data size
 | |
|               return false;
 | |
|             }
 | |
| 
 | |
|             for (int u = 0; u < width; u++) {
 | |
|               tinyexr::FP16 hf;
 | |
| 
 | |
|               // address may not be aliged. use byte-wise copy for safety.#76
 | |
|               // hf.u = line_ptr[u];
 | |
|               tinyexr::cpy2(&(hf.u), line_ptr + u);
 | |
| 
 | |
|               tinyexr::swap2(reinterpret_cast<unsigned short *>(&hf.u));
 | |
| 
 | |
|               tinyexr::FP32 f32 = half_to_float(hf);
 | |
| 
 | |
|               outLine[u] = f32.f;
 | |
|             }
 | |
|           } else {
 | |
|             assert(0);
 | |
|             return false;
 | |
|           }
 | |
|         } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) {
 | |
|           const float *line_ptr = reinterpret_cast<const float *>(
 | |
|               data_ptr + v * pixel_data_size * size_t(width) +
 | |
|               channel_offset_list[c] * static_cast<size_t>(width));
 | |
| 
 | |
|           float *outLine = reinterpret_cast<float *>(out_images[c]);
 | |
|           if (line_order == 0) {
 | |
|             outLine += (size_t(y) + v) * size_t(x_stride);
 | |
|           } else {
 | |
|             outLine +=
 | |
|                 (size_t(height) - 1 - (size_t(y) + v)) * size_t(x_stride);
 | |
|           }
 | |
| 
 | |
|           if (reinterpret_cast<const unsigned char *>(line_ptr + width) >
 | |
|               (data_ptr + data_len)) {
 | |
|             // Insufficient data size
 | |
|             return false;
 | |
|           }
 | |
| 
 | |
|           for (int u = 0; u < width; u++) {
 | |
|             float val;
 | |
|             tinyexr::cpy4(&val, line_ptr + u);
 | |
| 
 | |
|             tinyexr::swap4(reinterpret_cast<unsigned int *>(&val));
 | |
| 
 | |
|             outLine[u] = val;
 | |
|           }
 | |
|         } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) {
 | |
|           const unsigned int *line_ptr = reinterpret_cast<const unsigned int *>(
 | |
|               data_ptr + v * pixel_data_size * size_t(width) +
 | |
|               channel_offset_list[c] * static_cast<size_t>(width));
 | |
| 
 | |
|           unsigned int *outLine =
 | |
|               reinterpret_cast<unsigned int *>(out_images[c]);
 | |
|           if (line_order == 0) {
 | |
|             outLine += (size_t(y) + v) * size_t(x_stride);
 | |
|           } else {
 | |
|             outLine +=
 | |
|                 (size_t(height) - 1 - (size_t(y) + v)) * size_t(x_stride);
 | |
|           }
 | |
| 
 | |
|           for (int u = 0; u < width; u++) {
 | |
|             if (reinterpret_cast<const unsigned char *>(line_ptr + u) >=
 | |
|                 (data_ptr + data_len)) {
 | |
|               // Corrupsed data?
 | |
|               return false;
 | |
|             }
 | |
| 
 | |
|             unsigned int val;
 | |
|             tinyexr::cpy4(&val, line_ptr + u);
 | |
| 
 | |
|             tinyexr::swap4(reinterpret_cast<unsigned int *>(&val));
 | |
| 
 | |
|             outLine[u] = val;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool DecodeTiledPixelData(
 | |
|     unsigned char **out_images, int *width, int *height,
 | |
|     const int *requested_pixel_types, const unsigned char *data_ptr,
 | |
|     size_t data_len, int compression_type, int line_order, int data_width,
 | |
|     int data_height, int tile_offset_x, int tile_offset_y, int tile_size_x,
 | |
|     int tile_size_y, size_t pixel_data_size, size_t num_attributes,
 | |
|     const EXRAttribute *attributes, size_t num_channels,
 | |
|     const EXRChannelInfo *channels,
 | |
|     const std::vector<size_t> &channel_offset_list) {
 | |
|   if (tile_size_x > data_width || tile_size_y > data_height ||
 | |
|       tile_size_x * tile_offset_x > data_width ||
 | |
|       tile_size_y * tile_offset_y > data_height) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Compute actual image size in a tile.
 | |
|   if ((tile_offset_x + 1) * tile_size_x >= data_width) {
 | |
|     (*width) = data_width - (tile_offset_x * tile_size_x);
 | |
|   } else {
 | |
|     (*width) = tile_size_x;
 | |
|   }
 | |
| 
 | |
|   if ((tile_offset_y + 1) * tile_size_y >= data_height) {
 | |
|     (*height) = data_height - (tile_offset_y * tile_size_y);
 | |
|   } else {
 | |
|     (*height) = tile_size_y;
 | |
|   }
 | |
| 
 | |
|   // Image size = tile size.
 | |
|   return DecodePixelData(out_images, requested_pixel_types, data_ptr, data_len,
 | |
|                          compression_type, line_order, (*width), tile_size_y,
 | |
|                          /* stride */ tile_size_x, /* y */ 0, /* line_no */ 0,
 | |
|                          (*height), pixel_data_size, num_attributes, attributes,
 | |
|                          num_channels, channels, channel_offset_list);
 | |
| }
 | |
| 
 | |
| static bool ComputeChannelLayout(std::vector<size_t> *channel_offset_list,
 | |
|                                  int *pixel_data_size, size_t *channel_offset,
 | |
|                                  int num_channels,
 | |
|                                  const EXRChannelInfo *channels) {
 | |
|   channel_offset_list->resize(static_cast<size_t>(num_channels));
 | |
| 
 | |
|   (*pixel_data_size) = 0;
 | |
|   (*channel_offset) = 0;
 | |
| 
 | |
|   for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) {
 | |
|     (*channel_offset_list)[c] = (*channel_offset);
 | |
|     if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) {
 | |
|       (*pixel_data_size) += sizeof(unsigned short);
 | |
|       (*channel_offset) += sizeof(unsigned short);
 | |
|     } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) {
 | |
|       (*pixel_data_size) += sizeof(float);
 | |
|       (*channel_offset) += sizeof(float);
 | |
|     } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) {
 | |
|       (*pixel_data_size) += sizeof(unsigned int);
 | |
|       (*channel_offset) += sizeof(unsigned int);
 | |
|     } else {
 | |
|       // ???
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static unsigned char **AllocateImage(int num_channels,
 | |
|                                      const EXRChannelInfo *channels,
 | |
|                                      const int *requested_pixel_types,
 | |
|                                      int data_width, int data_height) {
 | |
|   unsigned char **images =
 | |
|       reinterpret_cast<unsigned char **>(static_cast<float **>(
 | |
|           malloc(sizeof(float *) * static_cast<size_t>(num_channels))));
 | |
| 
 | |
|   for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) {
 | |
|     size_t data_len =
 | |
|         static_cast<size_t>(data_width) * static_cast<size_t>(data_height);
 | |
|     if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) {
 | |
|       // pixel_data_size += sizeof(unsigned short);
 | |
|       // channel_offset += sizeof(unsigned short);
 | |
|       // Alloc internal image for half type.
 | |
|       if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_HALF) {
 | |
|         images[c] =
 | |
|             reinterpret_cast<unsigned char *>(static_cast<unsigned short *>(
 | |
|                 malloc(sizeof(unsigned short) * data_len)));
 | |
|       } else if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT) {
 | |
|         images[c] = reinterpret_cast<unsigned char *>(
 | |
|             static_cast<float *>(malloc(sizeof(float) * data_len)));
 | |
|       } else {
 | |
|         assert(0);
 | |
|       }
 | |
|     } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) {
 | |
|       // pixel_data_size += sizeof(float);
 | |
|       // channel_offset += sizeof(float);
 | |
|       images[c] = reinterpret_cast<unsigned char *>(
 | |
|           static_cast<float *>(malloc(sizeof(float) * data_len)));
 | |
|     } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) {
 | |
|       // pixel_data_size += sizeof(unsigned int);
 | |
|       // channel_offset += sizeof(unsigned int);
 | |
|       images[c] = reinterpret_cast<unsigned char *>(
 | |
|           static_cast<unsigned int *>(malloc(sizeof(unsigned int) * data_len)));
 | |
|     } else {
 | |
|       assert(0);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return images;
 | |
| }
 | |
| 
 | |
| #ifdef _WIN32
 | |
| static inline std::wstring UTF8ToWchar(const std::string &str) {
 | |
|   int wstr_size =
 | |
|       MultiByteToWideChar(CP_UTF8, 0, str.data(), (int)str.size(), NULL, 0);
 | |
|   std::wstring wstr(wstr_size, 0);
 | |
|   MultiByteToWideChar(CP_UTF8, 0, str.data(), (int)str.size(), &wstr[0],
 | |
|                       (int)wstr.size());
 | |
|   return wstr;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int ParseEXRHeader(HeaderInfo *info, bool *empty_header,
 | |
|                           const EXRVersion *version, std::string *err,
 | |
|                           const unsigned char *buf, size_t size) {
 | |
|   const char *marker = reinterpret_cast<const char *>(&buf[0]);
 | |
| 
 | |
|   if (empty_header) {
 | |
|     (*empty_header) = false;
 | |
|   }
 | |
| 
 | |
|   if (version->multipart) {
 | |
|     if (size > 0 && marker[0] == '\0') {
 | |
|       // End of header list.
 | |
|       if (empty_header) {
 | |
|         (*empty_header) = true;
 | |
|       }
 | |
|       return TINYEXR_SUCCESS;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // According to the spec, the header of every OpenEXR file must contain at
 | |
|   // least the following attributes:
 | |
|   //
 | |
|   // channels chlist
 | |
|   // compression compression
 | |
|   // dataWindow box2i
 | |
|   // displayWindow box2i
 | |
|   // lineOrder lineOrder
 | |
|   // pixelAspectRatio float
 | |
|   // screenWindowCenter v2f
 | |
|   // screenWindowWidth float
 | |
|   bool has_channels = false;
 | |
|   bool has_compression = false;
 | |
|   bool has_data_window = false;
 | |
|   bool has_display_window = false;
 | |
|   bool has_line_order = false;
 | |
|   bool has_pixel_aspect_ratio = false;
 | |
|   bool has_screen_window_center = false;
 | |
|   bool has_screen_window_width = false;
 | |
| 
 | |
|   info->data_window.min_x = 0;
 | |
|   info->data_window.min_y = 0;
 | |
|   info->data_window.max_x = 0;
 | |
|   info->data_window.max_y = 0;
 | |
|   info->line_order = 0;  // @fixme
 | |
|   info->display_window.min_x = 0;
 | |
|   info->display_window.min_y = 0;
 | |
|   info->display_window.max_x = 0;
 | |
|   info->display_window.max_y = 0;
 | |
|   info->screen_window_center[0] = 0.0f;
 | |
|   info->screen_window_center[1] = 0.0f;
 | |
|   info->screen_window_width = -1.0f;
 | |
|   info->pixel_aspect_ratio = -1.0f;
 | |
| 
 | |
|   info->tile_size_x = -1;
 | |
|   info->tile_size_y = -1;
 | |
|   info->tile_level_mode = -1;
 | |
|   info->tile_rounding_mode = -1;
 | |
| 
 | |
|   info->attributes.clear();
 | |
| 
 | |
|   // Read attributes
 | |
|   size_t orig_size = size;
 | |
|   for (size_t nattr = 0; nattr < TINYEXR_MAX_HEADER_ATTRIBUTES; nattr++) {
 | |
|     if (0 == size) {
 | |
|       if (err) {
 | |
|         (*err) += "Insufficient data size for attributes.\n";
 | |
|       }
 | |
|       return TINYEXR_ERROR_INVALID_DATA;
 | |
|     } else if (marker[0] == '\0') {
 | |
|       size--;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     std::string attr_name;
 | |
|     std::string attr_type;
 | |
|     std::vector<unsigned char> data;
 | |
|     size_t marker_size;
 | |
|     if (!tinyexr::ReadAttribute(&attr_name, &attr_type, &data, &marker_size,
 | |
|                                 marker, size)) {
 | |
|       if (err) {
 | |
|         (*err) += "Failed to read attribute.\n";
 | |
|       }
 | |
|       return TINYEXR_ERROR_INVALID_DATA;
 | |
|     }
 | |
|     marker += marker_size;
 | |
|     size -= marker_size;
 | |
| 
 | |
|     if (version->tiled && attr_name.compare("tiles") == 0) {
 | |
|       unsigned int x_size, y_size;
 | |
|       unsigned char tile_mode;
 | |
|       assert(data.size() == 9);
 | |
|       memcpy(&x_size, &data.at(0), sizeof(int));
 | |
|       memcpy(&y_size, &data.at(4), sizeof(int));
 | |
|       tile_mode = data[8];
 | |
|       tinyexr::swap4(&x_size);
 | |
|       tinyexr::swap4(&y_size);
 | |
| 
 | |
|       if (x_size > static_cast<unsigned int>(std::numeric_limits<int>::max()) ||
 | |
|           y_size > static_cast<unsigned int>(std::numeric_limits<int>::max())) {
 | |
|         if (err) {
 | |
|           (*err) = "Tile sizes were invalid.";
 | |
|         }
 | |
|         return TINYEXR_ERROR_UNSUPPORTED_FORMAT;
 | |
|       }
 | |
| 
 | |
|       info->tile_size_x = static_cast<int>(x_size);
 | |
|       info->tile_size_y = static_cast<int>(y_size);
 | |
| 
 | |
|       // mode = levelMode + roundingMode * 16
 | |
|       info->tile_level_mode = tile_mode & 0x3;
 | |
|       info->tile_rounding_mode = (tile_mode >> 4) & 0x1;
 | |
| 
 | |
|     } else if (attr_name.compare("compression") == 0) {
 | |
|       bool ok = false;
 | |
|       if (data[0] < TINYEXR_COMPRESSIONTYPE_PIZ) {
 | |
|         ok = true;
 | |
|       }
 | |
| 
 | |
|       if (data[0] == TINYEXR_COMPRESSIONTYPE_PIZ) {
 | |
| #if TINYEXR_USE_PIZ
 | |
|         ok = true;
 | |
| #else
 | |
|         if (err) {
 | |
|           (*err) = "PIZ compression is not supported.";
 | |
|         }
 | |
|         return TINYEXR_ERROR_UNSUPPORTED_FORMAT;
 | |
| #endif
 | |
|       }
 | |
| 
 | |
|       if (data[0] == TINYEXR_COMPRESSIONTYPE_ZFP) {
 | |
| #if TINYEXR_USE_ZFP
 | |
|         ok = true;
 | |
| #else
 | |
|         if (err) {
 | |
|           (*err) = "ZFP compression is not supported.";
 | |
|         }
 | |
|         return TINYEXR_ERROR_UNSUPPORTED_FORMAT;
 | |
| #endif
 | |
|       }
 | |
| 
 | |
|       if (!ok) {
 | |
|         if (err) {
 | |
|           (*err) = "Unknown compression type.";
 | |
|         }
 | |
|         return TINYEXR_ERROR_UNSUPPORTED_FORMAT;
 | |
|       }
 | |
| 
 | |
|       info->compression_type = static_cast<int>(data[0]);
 | |
|       has_compression = true;
 | |
| 
 | |
|     } else if (attr_name.compare("channels") == 0) {
 | |
|       // name: zero-terminated string, from 1 to 255 bytes long
 | |
|       // pixel type: int, possible values are: UINT = 0 HALF = 1 FLOAT = 2
 | |
|       // pLinear: unsigned char, possible values are 0 and 1
 | |
|       // reserved: three chars, should be zero
 | |
|       // xSampling: int
 | |
|       // ySampling: int
 | |
| 
 | |
|       if (!ReadChannelInfo(info->channels, data)) {
 | |
|         if (err) {
 | |
|           (*err) += "Failed to parse channel info.\n";
 | |
|         }
 | |
|         return TINYEXR_ERROR_INVALID_DATA;
 | |
|       }
 | |
| 
 | |
|       if (info->channels.size() < 1) {
 | |
|         if (err) {
 | |
|           (*err) += "# of channels is zero.\n";
 | |
|         }
 | |
|         return TINYEXR_ERROR_INVALID_DATA;
 | |
|       }
 | |
| 
 | |
|       has_channels = true;
 | |
| 
 | |
|     } else if (attr_name.compare("dataWindow") == 0) {
 | |
|       if (data.size() >= 16) {
 | |
|         memcpy(&info->data_window.min_x, &data.at(0), sizeof(int));
 | |
|         memcpy(&info->data_window.min_y, &data.at(4), sizeof(int));
 | |
|         memcpy(&info->data_window.max_x, &data.at(8), sizeof(int));
 | |
|         memcpy(&info->data_window.max_y, &data.at(12), sizeof(int));
 | |
|         tinyexr::swap4(&info->data_window.min_x);
 | |
|         tinyexr::swap4(&info->data_window.min_y);
 | |
|         tinyexr::swap4(&info->data_window.max_x);
 | |
|         tinyexr::swap4(&info->data_window.max_y);
 | |
|         has_data_window = true;
 | |
|       }
 | |
|     } else if (attr_name.compare("displayWindow") == 0) {
 | |
|       if (data.size() >= 16) {
 | |
|         memcpy(&info->display_window.min_x, &data.at(0), sizeof(int));
 | |
|         memcpy(&info->display_window.min_y, &data.at(4), sizeof(int));
 | |
|         memcpy(&info->display_window.max_x, &data.at(8), sizeof(int));
 | |
|         memcpy(&info->display_window.max_y, &data.at(12), sizeof(int));
 | |
|         tinyexr::swap4(&info->display_window.min_x);
 | |
|         tinyexr::swap4(&info->display_window.min_y);
 | |
|         tinyexr::swap4(&info->display_window.max_x);
 | |
|         tinyexr::swap4(&info->display_window.max_y);
 | |
| 
 | |
|         has_display_window = true;
 | |
|       }
 | |
|     } else if (attr_name.compare("lineOrder") == 0) {
 | |
|       if (data.size() >= 1) {
 | |
|         info->line_order = static_cast<int>(data[0]);
 | |
|         has_line_order = true;
 | |
|       }
 | |
|     } else if (attr_name.compare("pixelAspectRatio") == 0) {
 | |
|       if (data.size() >= sizeof(float)) {
 | |
|         memcpy(&info->pixel_aspect_ratio, &data.at(0), sizeof(float));
 | |
|         tinyexr::swap4(&info->pixel_aspect_ratio);
 | |
|         has_pixel_aspect_ratio = true;
 | |
|       }
 | |
|     } else if (attr_name.compare("screenWindowCenter") == 0) {
 | |
|       if (data.size() >= 8) {
 | |
|         memcpy(&info->screen_window_center[0], &data.at(0), sizeof(float));
 | |
|         memcpy(&info->screen_window_center[1], &data.at(4), sizeof(float));
 | |
|         tinyexr::swap4(&info->screen_window_center[0]);
 | |
|         tinyexr::swap4(&info->screen_window_center[1]);
 | |
|         has_screen_window_center = true;
 | |
|       }
 | |
|     } else if (attr_name.compare("screenWindowWidth") == 0) {
 | |
|       if (data.size() >= sizeof(float)) {
 | |
|         memcpy(&info->screen_window_width, &data.at(0), sizeof(float));
 | |
|         tinyexr::swap4(&info->screen_window_width);
 | |
| 
 | |
|         has_screen_window_width = true;
 | |
|       }
 | |
|     } else if (attr_name.compare("chunkCount") == 0) {
 | |
|       if (data.size() >= sizeof(int)) {
 | |
|         memcpy(&info->chunk_count, &data.at(0), sizeof(int));
 | |
|         tinyexr::swap4(&info->chunk_count);
 | |
|       }
 | |
|     } else {
 | |
|       // Custom attribute(up to TINYEXR_MAX_CUSTOM_ATTRIBUTES)
 | |
|       if (info->attributes.size() < TINYEXR_MAX_CUSTOM_ATTRIBUTES) {
 | |
|         EXRAttribute attrib;
 | |
| #ifdef _MSC_VER
 | |
|         strncpy_s(attrib.name, attr_name.c_str(), 255);
 | |
|         strncpy_s(attrib.type, attr_type.c_str(), 255);
 | |
| #else
 | |
|         strncpy(attrib.name, attr_name.c_str(), 255);
 | |
|         strncpy(attrib.type, attr_type.c_str(), 255);
 | |
| #endif
 | |
|         attrib.name[255] = '\0';
 | |
|         attrib.type[255] = '\0';
 | |
|         attrib.size = static_cast<int>(data.size());
 | |
|         attrib.value = static_cast<unsigned char *>(malloc(data.size()));
 | |
|         memcpy(reinterpret_cast<char *>(attrib.value), &data.at(0),
 | |
|                data.size());
 | |
|         info->attributes.push_back(attrib);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check if required attributes exist
 | |
|   {
 | |
|     std::stringstream ss_err;
 | |
| 
 | |
|     if (!has_compression) {
 | |
|       ss_err << "\"compression\" attribute not found in the header."
 | |
|              << std::endl;
 | |
|     }
 | |
| 
 | |
|     if (!has_channels) {
 | |
|       ss_err << "\"channels\" attribute not found in the header." << std::endl;
 | |
|     }
 | |
| 
 | |
|     if (!has_line_order) {
 | |
|       ss_err << "\"lineOrder\" attribute not found in the header." << std::endl;
 | |
|     }
 | |
| 
 | |
|     if (!has_display_window) {
 | |
|       ss_err << "\"displayWindow\" attribute not found in the header."
 | |
|              << std::endl;
 | |
|     }
 | |
| 
 | |
|     if (!has_data_window) {
 | |
|       ss_err << "\"dataWindow\" attribute not found in the header or invalid."
 | |
|              << std::endl;
 | |
|     }
 | |
| 
 | |
|     if (!has_pixel_aspect_ratio) {
 | |
|       ss_err << "\"pixelAspectRatio\" attribute not found in the header."
 | |
|              << std::endl;
 | |
|     }
 | |
| 
 | |
|     if (!has_screen_window_width) {
 | |
|       ss_err << "\"screenWindowWidth\" attribute not found in the header."
 | |
|              << std::endl;
 | |
|     }
 | |
| 
 | |
|     if (!has_screen_window_center) {
 | |
|       ss_err << "\"screenWindowCenter\" attribute not found in the header."
 | |
|              << std::endl;
 | |
|     }
 | |
| 
 | |
|     if (!(ss_err.str().empty())) {
 | |
|       if (err) {
 | |
|         (*err) += ss_err.str();
 | |
|       }
 | |
|       return TINYEXR_ERROR_INVALID_HEADER;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   info->header_len = static_cast<unsigned int>(orig_size - size);
 | |
| 
 | |
|   return TINYEXR_SUCCESS;
 | |
| }
 | |
| 
 | |
| // C++ HeaderInfo to C EXRHeader conversion.
 | |
| static void ConvertHeader(EXRHeader *exr_header, const HeaderInfo &info) {
 | |
|   exr_header->pixel_aspect_ratio = info.pixel_aspect_ratio;
 | |
|   exr_header->screen_window_center[0] = info.screen_window_center[0];
 | |
|   exr_header->screen_window_center[1] = info.screen_window_center[1];
 | |
|   exr_header->screen_window_width = info.screen_window_width;
 | |
|   exr_header->chunk_count = info.chunk_count;
 | |
|   exr_header->display_window.min_x = info.display_window.min_x;
 | |
|   exr_header->display_window.min_y = info.display_window.min_y;
 | |
|   exr_header->display_window.max_x = info.display_window.max_x;
 | |
|   exr_header->display_window.max_y = info.display_window.max_y;
 | |
|   exr_header->data_window.min_x = info.data_window.min_x;
 | |
|   exr_header->data_window.min_y = info.data_window.min_y;
 | |
|   exr_header->data_window.max_x = info.data_window.max_x;
 | |
|   exr_header->data_window.max_y = info.data_window.max_y;
 | |
|   exr_header->line_order = info.line_order;
 | |
|   exr_header->compression_type = info.compression_type;
 | |
| 
 | |
|   exr_header->tile_size_x = info.tile_size_x;
 | |
|   exr_header->tile_size_y = info.tile_size_y;
 | |
|   exr_header->tile_level_mode = info.tile_level_mode;
 | |
|   exr_header->tile_rounding_mode = info.tile_rounding_mode;
 | |
| 
 | |
|   exr_header->num_channels = static_cast<int>(info.channels.size());
 | |
| 
 | |
|   exr_header->channels = static_cast<EXRChannelInfo *>(malloc(
 | |
|       sizeof(EXRChannelInfo) * static_cast<size_t>(exr_header->num_channels)));
 | |
|   for (size_t c = 0; c < static_cast<size_t>(exr_header->num_channels); c++) {
 | |
| #ifdef _MSC_VER
 | |
|     strncpy_s(exr_header->channels[c].name, info.channels[c].name.c_str(), 255);
 | |
| #else
 | |
|     strncpy(exr_header->channels[c].name, info.channels[c].name.c_str(), 255);
 | |
| #endif
 | |
|     // manually add '\0' for safety.
 | |
|     exr_header->channels[c].name[255] = '\0';
 | |
| 
 | |
|     exr_header->channels[c].pixel_type = info.channels[c].pixel_type;
 | |
|     exr_header->channels[c].p_linear = info.channels[c].p_linear;
 | |
|     exr_header->channels[c].x_sampling = info.channels[c].x_sampling;
 | |
|     exr_header->channels[c].y_sampling = info.channels[c].y_sampling;
 | |
|   }
 | |
| 
 | |
|   exr_header->pixel_types = static_cast<int *>(
 | |
|       malloc(sizeof(int) * static_cast<size_t>(exr_header->num_channels)));
 | |
|   for (size_t c = 0; c < static_cast<size_t>(exr_header->num_channels); c++) {
 | |
|     exr_header->pixel_types[c] = info.channels[c].pixel_type;
 | |
|   }
 | |
| 
 | |
|   // Initially fill with values of `pixel_types`
 | |
|   exr_header->requested_pixel_types = static_cast<int *>(
 | |
|       malloc(sizeof(int) * static_cast<size_t>(exr_header->num_channels)));
 | |
|   for (size_t c = 0; c < static_cast<size_t>(exr_header->num_channels); c++) {
 | |
|     exr_header->requested_pixel_types[c] = info.channels[c].pixel_type;
 | |
|   }
 | |
| 
 | |
|   exr_header->num_custom_attributes = static_cast<int>(info.attributes.size());
 | |
| 
 | |
|   if (exr_header->num_custom_attributes > 0) {
 | |
|     // TODO(syoyo): Report warning when # of attributes exceeds
 | |
|     // `TINYEXR_MAX_CUSTOM_ATTRIBUTES`
 | |
|     if (exr_header->num_custom_attributes > TINYEXR_MAX_CUSTOM_ATTRIBUTES) {
 | |
|       exr_header->num_custom_attributes = TINYEXR_MAX_CUSTOM_ATTRIBUTES;
 | |
|     }
 | |
| 
 | |
|     exr_header->custom_attributes = static_cast<EXRAttribute *>(malloc(
 | |
|         sizeof(EXRAttribute) * size_t(exr_header->num_custom_attributes)));
 | |
| 
 | |
|     for (size_t i = 0; i < info.attributes.size(); i++) {
 | |
|       memcpy(exr_header->custom_attributes[i].name, info.attributes[i].name,
 | |
|              256);
 | |
|       memcpy(exr_header->custom_attributes[i].type, info.attributes[i].type,
 | |
|              256);
 | |
|       exr_header->custom_attributes[i].size = info.attributes[i].size;
 | |
|       // Just copy pointer
 | |
|       exr_header->custom_attributes[i].value = info.attributes[i].value;
 | |
|     }
 | |
| 
 | |
|   } else {
 | |
|     exr_header->custom_attributes = NULL;
 | |
|   }
 | |
| 
 | |
|   exr_header->header_len = info.header_len;
 | |
| }
 | |
| 
 | |
| static int DecodeChunk(EXRImage *exr_image, const EXRHeader *exr_header,
 | |
|                        const std::vector<tinyexr::tinyexr_uint64> &offsets,
 | |
|                        const unsigned char *head, const size_t size,
 | |
|                        std::string *err) {
 | |
|   int num_channels = exr_header->num_channels;
 | |
| 
 | |
|   int num_scanline_blocks = 1;
 | |
|   if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZIP) {
 | |
|     num_scanline_blocks = 16;
 | |
|   } else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) {
 | |
|     num_scanline_blocks = 32;
 | |
|   } else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) {
 | |
|     num_scanline_blocks = 16;
 | |
| 
 | |
| #if TINYEXR_USE_ZFP
 | |
|     tinyexr::ZFPCompressionParam zfp_compression_param;
 | |
|     if (!FindZFPCompressionParam(&zfp_compression_param,
 | |
|                                  exr_header->custom_attributes,
 | |
|                                  int(exr_header->num_custom_attributes), err)) {
 | |
|       return TINYEXR_ERROR_INVALID_HEADER;
 | |
|     }
 | |
| #endif
 | |
|   }
 | |
| 
 | |
|   if (exr_header->data_window.max_x < exr_header->data_window.min_x ||
 | |
|       exr_header->data_window.max_y < exr_header->data_window.min_y) {
 | |
|     if (err) {
 | |
|       (*err) += "Invalid data window.\n";
 | |
|     }
 | |
|     return TINYEXR_ERROR_INVALID_DATA;
 | |
|   }
 | |
| 
 | |
|   int data_width =
 | |
|       exr_header->data_window.max_x - exr_header->data_window.min_x + 1;
 | |
|   int data_height =
 | |
|       exr_header->data_window.max_y - exr_header->data_window.min_y + 1;
 | |
| 
 | |
|   // Do not allow too large data_width and data_height. header invalid?
 | |
|   {
 | |
|     const int threshold = 1024 * 8192;  // heuristics
 | |
|     if ((data_width > threshold) || (data_height > threshold)) {
 | |
|       if (err) {
 | |
|         std::stringstream ss;
 | |
|         ss << "data_with or data_height too large. data_width: " << data_width
 | |
|            << ", "
 | |
|            << "data_height = " << data_height << std::endl;
 | |
|         (*err) += ss.str();
 | |
|       }
 | |
|       return TINYEXR_ERROR_INVALID_DATA;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   size_t num_blocks = offsets.size();
 | |
| 
 | |
|   std::vector<size_t> channel_offset_list;
 | |
|   int pixel_data_size = 0;
 | |
|   size_t channel_offset = 0;
 | |
|   if (!tinyexr::ComputeChannelLayout(&channel_offset_list, &pixel_data_size,
 | |
|                                      &channel_offset, num_channels,
 | |
|                                      exr_header->channels)) {
 | |
|     if (err) {
 | |
|       (*err) += "Failed to compute channel layout.\n";
 | |
|     }
 | |
|     return TINYEXR_ERROR_INVALID_DATA;
 | |
|   }
 | |
| 
 | |
|   bool invalid_data = false;  // TODO(LTE): Use atomic lock for MT safety.
 | |
| 
 | |
|   if (exr_header->tiled) {
 | |
|     // value check
 | |
|     if (exr_header->tile_size_x < 0) {
 | |
|       if (err) {
 | |
|         std::stringstream ss;
 | |
|         ss << "Invalid tile size x : " << exr_header->tile_size_x << "\n";
 | |
|         (*err) += ss.str();
 | |
|       }
 | |
|       return TINYEXR_ERROR_INVALID_HEADER;
 | |
|     }
 | |
| 
 | |
|     if (exr_header->tile_size_y < 0) {
 | |
|       if (err) {
 | |
|         std::stringstream ss;
 | |
|         ss << "Invalid tile size y : " << exr_header->tile_size_y << "\n";
 | |
|         (*err) += ss.str();
 | |
|       }
 | |
|       return TINYEXR_ERROR_INVALID_HEADER;
 | |
|     }
 | |
| 
 | |
|     size_t num_tiles = offsets.size();  // = # of blocks
 | |
| 
 | |
|     exr_image->tiles = static_cast<EXRTile *>(
 | |
|         calloc(sizeof(EXRTile), static_cast<size_t>(num_tiles)));
 | |
| 
 | |
|     int err_code = TINYEXR_SUCCESS;
 | |
| 
 | |
| #if (__cplusplus > 199711L) && (TINYEXR_USE_THREAD > 0)
 | |
| 
 | |
|     std::vector<std::thread> workers;
 | |
|     std::atomic<size_t> tile_count(0);
 | |
| 
 | |
|     int num_threads = std::max(1, int(std::thread::hardware_concurrency()));
 | |
|     if (num_threads > int(num_tiles)) {
 | |
|       num_threads = int(num_tiles);
 | |
|     }
 | |
| 
 | |
|     for (int t = 0; t < num_threads; t++) {
 | |
|       workers.emplace_back(std::thread([&]() {
 | |
|         size_t tile_idx = 0;
 | |
|         while ((tile_idx = tile_count++) < num_tiles) {
 | |
| 
 | |
| #else
 | |
|     for (size_t tile_idx = 0; tile_idx < num_tiles; tile_idx++) {
 | |
| #endif
 | |
|           // Allocate memory for each tile.
 | |
|           exr_image->tiles[tile_idx].images = tinyexr::AllocateImage(
 | |
|               num_channels, exr_header->channels,
 | |
|               exr_header->requested_pixel_types, exr_header->tile_size_x,
 | |
|               exr_header->tile_size_y);
 | |
| 
 | |
|           // 16 byte: tile coordinates
 | |
|           // 4 byte : data size
 | |
|           // ~      : data(uncompressed or compressed)
 | |
|           if (offsets[tile_idx] + sizeof(int) * 5 > size) {
 | |
|             // TODO(LTE): atomic
 | |
|             if (err) {
 | |
|               (*err) += "Insufficient data size.\n";
 | |
|             }
 | |
|             err_code = TINYEXR_ERROR_INVALID_DATA;
 | |
|             break;
 | |
|           }
 | |
| 
 | |
|           size_t data_size =
 | |
|               size_t(size - (offsets[tile_idx] + sizeof(int) * 5));
 | |
|           const unsigned char *data_ptr =
 | |
|               reinterpret_cast<const unsigned char *>(head + offsets[tile_idx]);
 | |
| 
 | |
|           int tile_coordinates[4];
 | |
|           memcpy(tile_coordinates, data_ptr, sizeof(int) * 4);
 | |
|           tinyexr::swap4(&tile_coordinates[0]);
 | |
|           tinyexr::swap4(&tile_coordinates[1]);
 | |
|           tinyexr::swap4(&tile_coordinates[2]);
 | |
|           tinyexr::swap4(&tile_coordinates[3]);
 | |
| 
 | |
|           // @todo{ LoD }
 | |
|           if (tile_coordinates[2] != 0) {
 | |
|             err_code = TINYEXR_ERROR_UNSUPPORTED_FEATURE;
 | |
|             break;
 | |
|           }
 | |
|           if (tile_coordinates[3] != 0) {
 | |
|             err_code = TINYEXR_ERROR_UNSUPPORTED_FEATURE;
 | |
|             break;
 | |
|           }
 | |
| 
 | |
|           int data_len;
 | |
|           memcpy(&data_len, data_ptr + 16,
 | |
|                  sizeof(int));  // 16 = sizeof(tile_coordinates)
 | |
|           tinyexr::swap4(&data_len);
 | |
| 
 | |
|           if (data_len < 4 || size_t(data_len) > data_size) {
 | |
|             // TODO(LTE): atomic
 | |
|             if (err) {
 | |
|               (*err) += "Insufficient data length.\n";
 | |
|             }
 | |
|             err_code = TINYEXR_ERROR_INVALID_DATA;
 | |
|             break;
 | |
|           }
 | |
| 
 | |
|           // Move to data addr: 20 = 16 + 4;
 | |
|           data_ptr += 20;
 | |
| 
 | |
|           bool ret = tinyexr::DecodeTiledPixelData(
 | |
|               exr_image->tiles[tile_idx].images,
 | |
|               &(exr_image->tiles[tile_idx].width),
 | |
|               &(exr_image->tiles[tile_idx].height),
 | |
|               exr_header->requested_pixel_types, data_ptr,
 | |
|               static_cast<size_t>(data_len), exr_header->compression_type,
 | |
|               exr_header->line_order, data_width, data_height,
 | |
|               tile_coordinates[0], tile_coordinates[1], exr_header->tile_size_x,
 | |
|               exr_header->tile_size_y, static_cast<size_t>(pixel_data_size),
 | |
|               static_cast<size_t>(exr_header->num_custom_attributes),
 | |
|               exr_header->custom_attributes,
 | |
|               static_cast<size_t>(exr_header->num_channels),
 | |
|               exr_header->channels, channel_offset_list);
 | |
| 
 | |
|           if (!ret) {
 | |
|             // TODO(LTE): atomic
 | |
|             if (err) {
 | |
|               (*err) += "Failed to decode tile data.\n";
 | |
|             }
 | |
|             err_code = TINYEXR_ERROR_INVALID_DATA;
 | |
|           }
 | |
| 
 | |
|           exr_image->tiles[tile_idx].offset_x = tile_coordinates[0];
 | |
|           exr_image->tiles[tile_idx].offset_y = tile_coordinates[1];
 | |
|           exr_image->tiles[tile_idx].level_x = tile_coordinates[2];
 | |
|           exr_image->tiles[tile_idx].level_y = tile_coordinates[3];
 | |
| 
 | |
| #if (__cplusplus > 199711L) && (TINYEXR_USE_THREAD > 0)
 | |
|         }
 | |
|       }));
 | |
|     }  // num_thread loop
 | |
| 
 | |
|     for (auto &t : workers) {
 | |
|       t.join();
 | |
|     }
 | |
| 
 | |
| #else
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     if (err_code != TINYEXR_SUCCESS) {
 | |
|       return err_code;
 | |
|     }
 | |
| 
 | |
|     exr_image->num_tiles = static_cast<int>(num_tiles);
 | |
|   } else {  // scanline format
 | |
| 
 | |
|     // Don't allow too large image(256GB * pixel_data_size or more). Workaround
 | |
|     // for #104.
 | |
|     size_t total_data_len =
 | |
|         size_t(data_width) * size_t(data_height) * size_t(num_channels);
 | |
|     const bool total_data_len_overflown =
 | |
|         sizeof(void *) == 8 ? (total_data_len >= 0x4000000000) : false;
 | |
|     if ((total_data_len == 0) || total_data_len_overflown) {
 | |
|       if (err) {
 | |
|         std::stringstream ss;
 | |
|         ss << "Image data size is zero or too large: width = " << data_width
 | |
|            << ", height = " << data_height << ", channels = " << num_channels
 | |
|            << std::endl;
 | |
|         (*err) += ss.str();
 | |
|       }
 | |
|       return TINYEXR_ERROR_INVALID_DATA;
 | |
|     }
 | |
| 
 | |
|     exr_image->images = tinyexr::AllocateImage(
 | |
|         num_channels, exr_header->channels, exr_header->requested_pixel_types,
 | |
|         data_width, data_height);
 | |
| 
 | |
| #if (__cplusplus > 199711L) && (TINYEXR_USE_THREAD > 0)
 | |
|     std::vector<std::thread> workers;
 | |
|     std::atomic<int> y_count(0);
 | |
| 
 | |
|     int num_threads = std::max(1, int(std::thread::hardware_concurrency()));
 | |
|     if (num_threads > int(num_blocks)) {
 | |
|       num_threads = int(num_blocks);
 | |
|     }
 | |
| 
 | |
|     for (int t = 0; t < num_threads; t++) {
 | |
|       workers.emplace_back(std::thread([&]() {
 | |
|         int y = 0;
 | |
|         while ((y = y_count++) < int(num_blocks)) {
 | |
| 
 | |
| #else
 | |
| 
 | |
| #if TINYEXR_USE_OPENMP
 | |
| #pragma omp parallel for
 | |
| #endif
 | |
|     for (int y = 0; y < static_cast<int>(num_blocks); y++) {
 | |
| 
 | |
| #endif
 | |
|           size_t y_idx = static_cast<size_t>(y);
 | |
| 
 | |
|           if (offsets[y_idx] + sizeof(int) * 2 > size) {
 | |
|             invalid_data = true;
 | |
|           } else {
 | |
|             // 4 byte: scan line
 | |
|             // 4 byte: data size
 | |
|             // ~     : pixel data(uncompressed or compressed)
 | |
|             size_t data_size =
 | |
|                 size_t(size - (offsets[y_idx] + sizeof(int) * 2));
 | |
|             const unsigned char *data_ptr =
 | |
|                 reinterpret_cast<const unsigned char *>(head + offsets[y_idx]);
 | |
| 
 | |
|             int line_no;
 | |
|             memcpy(&line_no, data_ptr, sizeof(int));
 | |
|             int data_len;
 | |
|             memcpy(&data_len, data_ptr + 4, sizeof(int));
 | |
|             tinyexr::swap4(&line_no);
 | |
|             tinyexr::swap4(&data_len);
 | |
| 
 | |
|             if (size_t(data_len) > data_size) {
 | |
|               invalid_data = true;
 | |
| 
 | |
|             } else if ((line_no > (2 << 20)) || (line_no < -(2 << 20))) {
 | |
|               // Too large value. Assume this is invalid
 | |
|               // 2**20 = 1048576 = heuristic value.
 | |
|               invalid_data = true;
 | |
|             } else if (data_len == 0) {
 | |
|               // TODO(syoyo): May be ok to raise the threshold for example
 | |
|               // `data_len < 4`
 | |
|               invalid_data = true;
 | |
|             } else {
 | |
|               // line_no may be negative.
 | |
|               int end_line_no = (std::min)(line_no + num_scanline_blocks,
 | |
|                                            (exr_header->data_window.max_y + 1));
 | |
| 
 | |
|               int num_lines = end_line_no - line_no;
 | |
| 
 | |
|               if (num_lines <= 0) {
 | |
|                 invalid_data = true;
 | |
|               } else {
 | |
|                 // Move to data addr: 8 = 4 + 4;
 | |
|                 data_ptr += 8;
 | |
| 
 | |
|                 // Adjust line_no with data_window.bmin.y
 | |
| 
 | |
|                 // overflow check
 | |
|                 tinyexr_int64 lno =
 | |
|                     static_cast<tinyexr_int64>(line_no) -
 | |
|                     static_cast<tinyexr_int64>(exr_header->data_window.min_y);
 | |
|                 if (lno > std::numeric_limits<int>::max()) {
 | |
|                   line_no = -1;  // invalid
 | |
|                 } else if (lno < -std::numeric_limits<int>::max()) {
 | |
|                   line_no = -1;  // invalid
 | |
|                 } else {
 | |
|                   line_no -= exr_header->data_window.min_y;
 | |
|                 }
 | |
| 
 | |
|                 if (line_no < 0) {
 | |
|                   invalid_data = true;
 | |
|                 } else {
 | |
|                   if (!tinyexr::DecodePixelData(
 | |
|                           exr_image->images, exr_header->requested_pixel_types,
 | |
|                           data_ptr, static_cast<size_t>(data_len),
 | |
|                           exr_header->compression_type, exr_header->line_order,
 | |
|                           data_width, data_height, data_width, y, line_no,
 | |
|                           num_lines, static_cast<size_t>(pixel_data_size),
 | |
|                           static_cast<size_t>(
 | |
|                               exr_header->num_custom_attributes),
 | |
|                           exr_header->custom_attributes,
 | |
|                           static_cast<size_t>(exr_header->num_channels),
 | |
|                           exr_header->channels, channel_offset_list)) {
 | |
|                     invalid_data = true;
 | |
|                   }
 | |
|                 }
 | |
|               }
 | |
|             }
 | |
|           }
 | |
| 
 | |
| #if (__cplusplus > 199711L) && (TINYEXR_USE_THREAD > 0)
 | |
|         }
 | |
|       }));
 | |
|     }
 | |
| 
 | |
|     for (auto &t : workers) {
 | |
|       t.join();
 | |
|     }
 | |
| #else
 | |
|     }  // omp parallel
 | |
| #endif
 | |
|   }
 | |
| 
 | |
|   if (invalid_data) {
 | |
|     if (err) {
 | |
|       std::stringstream ss;
 | |
|       (*err) += "Invalid data found when decoding pixels.\n";
 | |
|     }
 | |
|     return TINYEXR_ERROR_INVALID_DATA;
 | |
|   }
 | |
| 
 | |
|   // Overwrite `pixel_type` with `requested_pixel_type`.
 | |
|   {
 | |
|     for (int c = 0; c < exr_header->num_channels; c++) {
 | |
|       exr_header->pixel_types[c] = exr_header->requested_pixel_types[c];
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     exr_image->num_channels = num_channels;
 | |
| 
 | |
|     exr_image->width = data_width;
 | |
|     exr_image->height = data_height;
 | |
|   }
 | |
| 
 | |
|   return TINYEXR_SUCCESS;
 | |
| }
 | |
| 
 | |
| static bool ReconstructLineOffsets(
 | |
|     std::vector<tinyexr::tinyexr_uint64> *offsets, size_t n,
 | |
|     const unsigned char *head, const unsigned char *marker, const size_t size) {
 | |
|   assert(head < marker);
 | |
|   assert(offsets->size() == n);
 | |
| 
 | |
|   for (size_t i = 0; i < n; i++) {
 | |
|     size_t offset = static_cast<size_t>(marker - head);
 | |
|     // Offset should not exceed whole EXR file/data size.
 | |
|     if ((offset + sizeof(tinyexr::tinyexr_uint64)) >= size) {
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     int y;
 | |
|     unsigned int data_len;
 | |
| 
 | |
|     memcpy(&y, marker, sizeof(int));
 | |
|     memcpy(&data_len, marker + 4, sizeof(unsigned int));
 | |
| 
 | |
|     if (data_len >= size) {
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     tinyexr::swap4(&y);
 | |
|     tinyexr::swap4(&data_len);
 | |
| 
 | |
|     (*offsets)[i] = offset;
 | |
| 
 | |
|     marker += data_len + 8;  // 8 = 4 bytes(y) + 4 bytes(data_len)
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static int DecodeEXRImage(EXRImage *exr_image, const EXRHeader *exr_header,
 | |
|                           const unsigned char *head,
 | |
|                           const unsigned char *marker, const size_t size,
 | |
|                           const char **err) {
 | |
|   if (exr_image == NULL || exr_header == NULL || head == NULL ||
 | |
|       marker == NULL || (size <= tinyexr::kEXRVersionSize)) {
 | |
|     tinyexr::SetErrorMessage("Invalid argument for DecodeEXRImage().", err);
 | |
|     return TINYEXR_ERROR_INVALID_ARGUMENT;
 | |
|   }
 | |
| 
 | |
|   int num_scanline_blocks = 1;
 | |
|   if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZIP) {
 | |
|     num_scanline_blocks = 16;
 | |
|   } else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) {
 | |
|     num_scanline_blocks = 32;
 | |
|   } else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) {
 | |
|     num_scanline_blocks = 16;
 | |
|   }
 | |
| 
 | |
|   if (exr_header->data_window.max_x < exr_header->data_window.min_x ||
 | |
|       exr_header->data_window.max_x - exr_header->data_window.min_x ==
 | |
|           std::numeric_limits<int>::max()) {
 | |
|     // Issue 63
 | |
|     tinyexr::SetErrorMessage("Invalid data width value", err);
 | |
|     return TINYEXR_ERROR_INVALID_DATA;
 | |
|   }
 | |
|   int data_width =
 | |
|       exr_header->data_window.max_x - exr_header->data_window.min_x + 1;
 | |
| 
 | |
|   if (exr_header->data_window.max_y < exr_header->data_window.min_y ||
 | |
|       exr_header->data_window.max_y - exr_header->data_window.min_y ==
 | |
|           std::numeric_limits<int>::max()) {
 | |
|     tinyexr::SetErrorMessage("Invalid data height value", err);
 | |
|     return TINYEXR_ERROR_INVALID_DATA;
 | |
|   }
 | |
|   int data_height =
 | |
|       exr_header->data_window.max_y - exr_header->data_window.min_y + 1;
 | |
| 
 | |
|   // Do not allow too large data_width and data_height. header invalid?
 | |
|   {
 | |
|     const int threshold = 1024 * 8192;  // heuristics
 | |
|     if (data_width > threshold) {
 | |
|       tinyexr::SetErrorMessage("data width too large.", err);
 | |
|       return TINYEXR_ERROR_INVALID_DATA;
 | |
|     }
 | |
|     if (data_height > threshold) {
 | |
|       tinyexr::SetErrorMessage("data height too large.", err);
 | |
|       return TINYEXR_ERROR_INVALID_DATA;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Read offset tables.
 | |
|   size_t num_blocks = 0;
 | |
| 
 | |
|   if (exr_header->chunk_count > 0) {
 | |
|     // Use `chunkCount` attribute.
 | |
|     num_blocks = static_cast<size_t>(exr_header->chunk_count);
 | |
|   } else if (exr_header->tiled) {
 | |
|     // @todo { LoD }
 | |
|     if (exr_header->tile_size_x > data_width || exr_header->tile_size_x < 1 ||
 | |
|         exr_header->tile_size_y > data_height || exr_header->tile_size_y < 1) {
 | |
|       tinyexr::SetErrorMessage("tile sizes are invalid.", err);
 | |
|       return TINYEXR_ERROR_INVALID_DATA;
 | |
|     }
 | |
| 
 | |
|     size_t num_x_tiles = static_cast<size_t>(data_width) /
 | |
|                          static_cast<size_t>(exr_header->tile_size_x);
 | |
|     if (num_x_tiles * static_cast<size_t>(exr_header->tile_size_x) <
 | |
|         static_cast<size_t>(data_width)) {
 | |
|       num_x_tiles++;
 | |
|     }
 | |
|     size_t num_y_tiles = static_cast<size_t>(data_height) /
 | |
|                          static_cast<size_t>(exr_header->tile_size_y);
 | |
|     if (num_y_tiles * static_cast<size_t>(exr_header->tile_size_y) <
 | |
|         static_cast<size_t>(data_height)) {
 | |
|       num_y_tiles++;
 | |
|     }
 | |
| 
 | |
|     num_blocks = num_x_tiles * num_y_tiles;
 | |
|   } else {
 | |
|     num_blocks = static_cast<size_t>(data_height) /
 | |
|                  static_cast<size_t>(num_scanline_blocks);
 | |
|     if (num_blocks * static_cast<size_t>(num_scanline_blocks) <
 | |
|         static_cast<size_t>(data_height)) {
 | |
|       num_blocks++;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   std::vector<tinyexr::tinyexr_uint64> offsets(num_blocks);
 | |
| 
 | |
|   for (size_t y = 0; y < num_blocks; y++) {
 | |
|     tinyexr::tinyexr_uint64 offset;
 | |
|     // Issue #81
 | |
|     if ((marker + sizeof(tinyexr_uint64)) >= (head + size)) {
 | |
|       tinyexr::SetErrorMessage("Insufficient data size in offset table.", err);
 | |
|       return TINYEXR_ERROR_INVALID_DATA;
 | |
|     }
 | |
| 
 | |
|     memcpy(&offset, marker, sizeof(tinyexr::tinyexr_uint64));
 | |
|     tinyexr::swap8(&offset);
 | |
|     if (offset >= size) {
 | |
|       tinyexr::SetErrorMessage("Invalid offset value in DecodeEXRImage.", err);
 | |
|       return TINYEXR_ERROR_INVALID_DATA;
 | |
|     }
 | |
|     marker += sizeof(tinyexr::tinyexr_uint64);  // = 8
 | |
|     offsets[y] = offset;
 | |
|   }
 | |
| 
 | |
|   // If line offsets are invalid, we try to reconstruct it.
 | |
|   // See OpenEXR/IlmImf/ImfScanLineInputFile.cpp::readLineOffsets() for details.
 | |
|   for (size_t y = 0; y < num_blocks; y++) {
 | |
|     if (offsets[y] <= 0) {
 | |
|       // TODO(syoyo) Report as warning?
 | |
|       // if (err) {
 | |
|       //  stringstream ss;
 | |
|       //  ss << "Incomplete lineOffsets." << std::endl;
 | |
|       //  (*err) += ss.str();
 | |
|       //}
 | |
|       bool ret =
 | |
|           ReconstructLineOffsets(&offsets, num_blocks, head, marker, size);
 | |
|       if (ret) {
 | |
|         // OK
 | |
|         break;
 | |
|       } else {
 | |
|         tinyexr::SetErrorMessage(
 | |
|             "Cannot reconstruct lineOffset table in DecodeEXRImage.", err);
 | |
|         return TINYEXR_ERROR_INVALID_DATA;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     std::string e;
 | |
|     int ret = DecodeChunk(exr_image, exr_header, offsets, head, size, &e);
 | |
| 
 | |
|     if (ret != TINYEXR_SUCCESS) {
 | |
|       if (!e.empty()) {
 | |
|         tinyexr::SetErrorMessage(e, err);
 | |
|       }
 | |
| 
 | |
| #if 1
 | |
|       FreeEXRImage(exr_image);
 | |
| #else
 | |
|       // release memory(if exists)
 | |
|       if ((exr_header->num_channels > 0) && exr_image && exr_image->images) {
 | |
|         for (size_t c = 0; c < size_t(exr_header->num_channels); c++) {
 | |
|           if (exr_image->images[c]) {
 | |
|             free(exr_image->images[c]);
 | |
|             exr_image->images[c] = NULL;
 | |
|           }
 | |
|         }
 | |
|         free(exr_image->images);
 | |
|         exr_image->images = NULL;
 | |
|       }
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void GetLayers(const EXRHeader &exr_header,
 | |
|                       std::vector<std::string> &layer_names) {
 | |
|   // Naive implementation
 | |
|   // Group channels by layers
 | |
|   // go over all channel names, split by periods
 | |
|   // collect unique names
 | |
|   layer_names.clear();
 | |
|   for (int c = 0; c < exr_header.num_channels; c++) {
 | |
|     std::string full_name(exr_header.channels[c].name);
 | |
|     const size_t pos = full_name.find_last_of('.');
 | |
|     if (pos != std::string::npos && pos != 0 && pos + 1 < full_name.size()) {
 | |
|       full_name.erase(pos);
 | |
|       if (std::find(layer_names.begin(), layer_names.end(), full_name) ==
 | |
|           layer_names.end())
 | |
|         layer_names.push_back(full_name);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| struct LayerChannel {
 | |
|   explicit LayerChannel(size_t i, std::string n) : index(i), name(n) {}
 | |
|   size_t index;
 | |
|   std::string name;
 | |
| };
 | |
| 
 | |
| static void ChannelsInLayer(const EXRHeader &exr_header,
 | |
|                             const std::string layer_name,
 | |
|                             std::vector<LayerChannel> &channels) {
 | |
|   channels.clear();
 | |
|   for (int c = 0; c < exr_header.num_channels; c++) {
 | |
|     std::string ch_name(exr_header.channels[c].name);
 | |
|     if (layer_name.empty()) {
 | |
|       const size_t pos = ch_name.find_last_of('.');
 | |
|       if (pos != std::string::npos && pos < ch_name.size()) {
 | |
|         ch_name = ch_name.substr(pos + 1);
 | |
|       }
 | |
|     } else {
 | |
|       const size_t pos = ch_name.find(layer_name + '.');
 | |
|       if (pos == std::string::npos) continue;
 | |
|       if (pos == 0) {
 | |
|         ch_name = ch_name.substr(layer_name.size() + 1);
 | |
|       }
 | |
|     }
 | |
|     LayerChannel ch(size_t(c), ch_name);
 | |
|     channels.push_back(ch);
 | |
|   }
 | |
| }
 | |
| 
 | |
| }  // namespace tinyexr
 | |
| 
 | |
| int EXRLayers(const char *filename, const char **layer_names[], int *num_layers,
 | |
|               const char **err) {
 | |
|   EXRVersion exr_version;
 | |
|   EXRHeader exr_header;
 | |
|   InitEXRHeader(&exr_header);
 | |
| 
 | |
|   {
 | |
|     int ret = ParseEXRVersionFromFile(&exr_version, filename);
 | |
|     if (ret != TINYEXR_SUCCESS) {
 | |
|       tinyexr::SetErrorMessage("Invalid EXR header.", err);
 | |
|       return ret;
 | |
|     }
 | |
| 
 | |
|     if (exr_version.multipart || exr_version.non_image) {
 | |
|       tinyexr::SetErrorMessage(
 | |
|           "Loading multipart or DeepImage is not supported  in LoadEXR() API",
 | |
|           err);
 | |
|       return TINYEXR_ERROR_INVALID_DATA;  // @fixme.
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   int ret = ParseEXRHeaderFromFile(&exr_header, &exr_version, filename, err);
 | |
|   if (ret != TINYEXR_SUCCESS) {
 | |
|     FreeEXRHeader(&exr_header);
 | |
|     return ret;
 | |
|   }
 | |
| 
 | |
|   std::vector<std::string> layer_vec;
 | |
|   tinyexr::GetLayers(exr_header, layer_vec);
 | |
| 
 | |
|   (*num_layers) = int(layer_vec.size());
 | |
|   (*layer_names) = static_cast<const char **>(
 | |
|       malloc(sizeof(const char *) * static_cast<size_t>(layer_vec.size())));
 | |
|   for (size_t c = 0; c < static_cast<size_t>(layer_vec.size()); c++) {
 | |
| #ifdef _MSC_VER
 | |
|     (*layer_names)[c] = _strdup(layer_vec[c].c_str());
 | |
| #else
 | |
|     (*layer_names)[c] = strdup(layer_vec[c].c_str());
 | |
| #endif
 | |
|   }
 | |
| 
 | |
|   FreeEXRHeader(&exr_header);
 | |
|   return TINYEXR_SUCCESS;
 | |
| }
 | |
| 
 | |
| int LoadEXR(float **out_rgba, int *width, int *height, const char *filename,
 | |
|             const char **err) {
 | |
|   return LoadEXRWithLayer(out_rgba, width, height, filename,
 | |
|                           /* layername */ NULL, err);
 | |
| }
 | |
| 
 | |
| int LoadEXRWithLayer(float **out_rgba, int *width, int *height,
 | |
|                      const char *filename, const char *layername,
 | |
|                      const char **err) {
 | |
|   if (out_rgba == NULL) {
 | |
|     tinyexr::SetErrorMessage("Invalid argument for LoadEXR()", err);
 | |
|     return TINYEXR_ERROR_INVALID_ARGUMENT;
 | |
|   }
 | |
| 
 | |
|   EXRVersion exr_version;
 | |
|   EXRImage exr_image;
 | |
|   EXRHeader exr_header;
 | |
|   InitEXRHeader(&exr_header);
 | |
|   InitEXRImage(&exr_image);
 | |
| 
 | |
|   {
 | |
|     int ret = ParseEXRVersionFromFile(&exr_version, filename);
 | |
|     if (ret != TINYEXR_SUCCESS) {
 | |
|       std::stringstream ss;
 | |
|       ss << "Failed to open EXR file or read version info from EXR file. code("
 | |
|          << ret << ")";
 | |
|       tinyexr::SetErrorMessage(ss.str(), err);
 | |
|       return ret;
 | |
|     }
 | |
| 
 | |
|     if (exr_version.multipart || exr_version.non_image) {
 | |
|       tinyexr::SetErrorMessage(
 | |
|           "Loading multipart or DeepImage is not supported  in LoadEXR() API",
 | |
|           err);
 | |
|       return TINYEXR_ERROR_INVALID_DATA;  // @fixme.
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     int ret = ParseEXRHeaderFromFile(&exr_header, &exr_version, filename, err);
 | |
|     if (ret != TINYEXR_SUCCESS) {
 | |
|       FreeEXRHeader(&exr_header);
 | |
|       return ret;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Read HALF channel as FLOAT.
 | |
|   for (int i = 0; i < exr_header.num_channels; i++) {
 | |
|     if (exr_header.pixel_types[i] == TINYEXR_PIXELTYPE_HALF) {
 | |
|       exr_header.requested_pixel_types[i] = TINYEXR_PIXELTYPE_FLOAT;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // TODO: Probably limit loading to layers (channels) selected by layer index
 | |
|   {
 | |
|     int ret = LoadEXRImageFromFile(&exr_image, &exr_header, filename, err);
 | |
|     if (ret != TINYEXR_SUCCESS) {
 | |
|       FreeEXRHeader(&exr_header);
 | |
|       return ret;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // RGBA
 | |
|   int idxR = -1;
 | |
|   int idxG = -1;
 | |
|   int idxB = -1;
 | |
|   int idxA = -1;
 | |
| 
 | |
|   std::vector<std::string> layer_names;
 | |
|   tinyexr::GetLayers(exr_header, layer_names);
 | |
| 
 | |
|   std::vector<tinyexr::LayerChannel> channels;
 | |
|   tinyexr::ChannelsInLayer(
 | |
|       exr_header, layername == NULL ? "" : std::string(layername), channels);
 | |
| 
 | |
|   if (channels.size() < 1) {
 | |
|     tinyexr::SetErrorMessage("Layer Not Found", err);
 | |
|     FreeEXRHeader(&exr_header);
 | |
|     FreeEXRImage(&exr_image);
 | |
|     return TINYEXR_ERROR_LAYER_NOT_FOUND;
 | |
|   }
 | |
| 
 | |
|   size_t ch_count = channels.size() < 4 ? channels.size() : 4;
 | |
|   for (size_t c = 0; c < ch_count; c++) {
 | |
|     const tinyexr::LayerChannel &ch = channels[c];
 | |
| 
 | |
|     if (ch.name == "R") {
 | |
|       idxR = int(ch.index);
 | |
|     } else if (ch.name == "G") {
 | |
|       idxG = int(ch.index);
 | |
|     } else if (ch.name == "B") {
 | |
|       idxB = int(ch.index);
 | |
|     } else if (ch.name == "A") {
 | |
|       idxA = int(ch.index);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (channels.size() == 1) {
 | |
|     int chIdx = int(channels.front().index);
 | |
|     // Grayscale channel only.
 | |
| 
 | |
|     (*out_rgba) = reinterpret_cast<float *>(
 | |
|         malloc(4 * sizeof(float) * static_cast<size_t>(exr_image.width) *
 | |
|                static_cast<size_t>(exr_image.height)));
 | |
| 
 | |
|     if (exr_header.tiled) {
 | |
|       for (int it = 0; it < exr_image.num_tiles; it++) {
 | |
|         for (int j = 0; j < exr_header.tile_size_y; j++) {
 | |
|           for (int i = 0; i < exr_header.tile_size_x; i++) {
 | |
|             const int ii = exr_image.tiles[it].offset_x *
 | |
|                                static_cast<int>(exr_header.tile_size_x) +
 | |
|                            i;
 | |
|             const int jj = exr_image.tiles[it].offset_y *
 | |
|                                static_cast<int>(exr_header.tile_size_y) +
 | |
|                            j;
 | |
|             const int idx = ii + jj * static_cast<int>(exr_image.width);
 | |
| 
 | |
|             // out of region check.
 | |
|             if (ii >= exr_image.width) {
 | |
|               continue;
 | |
|             }
 | |
|             if (jj >= exr_image.height) {
 | |
|               continue;
 | |
|             }
 | |
|             const int srcIdx = i + j * exr_header.tile_size_x;
 | |
|             unsigned char **src = exr_image.tiles[it].images;
 | |
|             (*out_rgba)[4 * idx + 0] =
 | |
|                 reinterpret_cast<float **>(src)[chIdx][srcIdx];
 | |
|             (*out_rgba)[4 * idx + 1] =
 | |
|                 reinterpret_cast<float **>(src)[chIdx][srcIdx];
 | |
|             (*out_rgba)[4 * idx + 2] =
 | |
|                 reinterpret_cast<float **>(src)[chIdx][srcIdx];
 | |
|             (*out_rgba)[4 * idx + 3] =
 | |
|                 reinterpret_cast<float **>(src)[chIdx][srcIdx];
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     } else {
 | |
|       for (int i = 0; i < exr_image.width * exr_image.height; i++) {
 | |
|         const float val =
 | |
|             reinterpret_cast<float **>(exr_image.images)[chIdx][i];
 | |
|         (*out_rgba)[4 * i + 0] = val;
 | |
|         (*out_rgba)[4 * i + 1] = val;
 | |
|         (*out_rgba)[4 * i + 2] = val;
 | |
|         (*out_rgba)[4 * i + 3] = val;
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     // Assume RGB(A)
 | |
| 
 | |
|     if (idxR == -1) {
 | |
|       tinyexr::SetErrorMessage("R channel not found", err);
 | |
| 
 | |
|       FreeEXRHeader(&exr_header);
 | |
|       FreeEXRImage(&exr_image);
 | |
|       return TINYEXR_ERROR_INVALID_DATA;
 | |
|     }
 | |
| 
 | |
|     if (idxG == -1) {
 | |
|       tinyexr::SetErrorMessage("G channel not found", err);
 | |
|       FreeEXRHeader(&exr_header);
 | |
|       FreeEXRImage(&exr_image);
 | |
|       return TINYEXR_ERROR_INVALID_DATA;
 | |
|     }
 | |
| 
 | |
|     if (idxB == -1) {
 | |
|       tinyexr::SetErrorMessage("B channel not found", err);
 | |
|       FreeEXRHeader(&exr_header);
 | |
|       FreeEXRImage(&exr_image);
 | |
|       return TINYEXR_ERROR_INVALID_DATA;
 | |
|     }
 | |
| 
 | |
|     (*out_rgba) = reinterpret_cast<float *>(
 | |
|         malloc(4 * sizeof(float) * static_cast<size_t>(exr_image.width) *
 | |
|                static_cast<size_t>(exr_image.height)));
 | |
|     if (exr_header.tiled) {
 | |
|       for (int it = 0; it < exr_image.num_tiles; it++) {
 | |
|         for (int j = 0; j < exr_header.tile_size_y; j++) {
 | |
|           for (int i = 0; i < exr_header.tile_size_x; i++) {
 | |
|             const int ii =
 | |
|                 exr_image.tiles[it].offset_x * exr_header.tile_size_x + i;
 | |
|             const int jj =
 | |
|                 exr_image.tiles[it].offset_y * exr_header.tile_size_y + j;
 | |
|             const int idx = ii + jj * exr_image.width;
 | |
| 
 | |
|             // out of region check.
 | |
|             if (ii >= exr_image.width) {
 | |
|               continue;
 | |
|             }
 | |
|             if (jj >= exr_image.height) {
 | |
|               continue;
 | |
|             }
 | |
|             const int srcIdx = i + j * exr_header.tile_size_x;
 | |
|             unsigned char **src = exr_image.tiles[it].images;
 | |
|             (*out_rgba)[4 * idx + 0] =
 | |
|                 reinterpret_cast<float **>(src)[idxR][srcIdx];
 | |
|             (*out_rgba)[4 * idx + 1] =
 | |
|                 reinterpret_cast<float **>(src)[idxG][srcIdx];
 | |
|             (*out_rgba)[4 * idx + 2] =
 | |
|                 reinterpret_cast<float **>(src)[idxB][srcIdx];
 | |
|             if (idxA != -1) {
 | |
|               (*out_rgba)[4 * idx + 3] =
 | |
|                   reinterpret_cast<float **>(src)[idxA][srcIdx];
 | |
|             } else {
 | |
|               (*out_rgba)[4 * idx + 3] = 1.0;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     } else {
 | |
|       for (int i = 0; i < exr_image.width * exr_image.height; i++) {
 | |
|         (*out_rgba)[4 * i + 0] =
 | |
|             reinterpret_cast<float **>(exr_image.images)[idxR][i];
 | |
|         (*out_rgba)[4 * i + 1] =
 | |
|             reinterpret_cast<float **>(exr_image.images)[idxG][i];
 | |
|         (*out_rgba)[4 * i + 2] =
 | |
|             reinterpret_cast<float **>(exr_image.images)[idxB][i];
 | |
|         if (idxA != -1) {
 | |
|           (*out_rgba)[4 * i + 3] =
 | |
|               reinterpret_cast<float **>(exr_image.images)[idxA][i];
 | |
|         } else {
 | |
|           (*out_rgba)[4 * i + 3] = 1.0;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   (*width) = exr_image.width;
 | |
|   (*height) = exr_image.height;
 | |
| 
 | |
|   FreeEXRHeader(&exr_header);
 | |
|   FreeEXRImage(&exr_image);
 | |
| 
 | |
|   return TINYEXR_SUCCESS;
 | |
| }
 | |
| 
 | |
| int IsEXR(const char *filename) {
 | |
|   EXRVersion exr_version;
 | |
| 
 | |
|   int ret = ParseEXRVersionFromFile(&exr_version, filename);
 | |
|   if (ret != TINYEXR_SUCCESS) {
 | |
|     return ret;
 | |
|   }
 | |
| 
 | |
|   return TINYEXR_SUCCESS;
 | |
| }
 | |
| 
 | |
| int ParseEXRHeaderFromMemory(EXRHeader *exr_header, const EXRVersion *version,
 | |
|                              const unsigned char *memory, size_t size,
 | |
|                              const char **err) {
 | |
|   if (memory == NULL || exr_header == NULL) {
 | |
|     tinyexr::SetErrorMessage(
 | |
|         "Invalid argument. `memory` or `exr_header` argument is null in "
 | |
|         "ParseEXRHeaderFromMemory()",
 | |
|         err);
 | |
| 
 | |
|     // Invalid argument
 | |
|     return TINYEXR_ERROR_INVALID_ARGUMENT;
 | |
|   }
 | |
| 
 | |
|   if (size < tinyexr::kEXRVersionSize) {
 | |
|     tinyexr::SetErrorMessage("Insufficient header/data size.\n", err);
 | |
|     return TINYEXR_ERROR_INVALID_DATA;
 | |
|   }
 | |
| 
 | |
|   const unsigned char *marker = memory + tinyexr::kEXRVersionSize;
 | |
|   size_t marker_size = size - tinyexr::kEXRVersionSize;
 | |
| 
 | |
|   tinyexr::HeaderInfo info;
 | |
|   info.clear();
 | |
| 
 | |
|   std::string err_str;
 | |
|   int ret = ParseEXRHeader(&info, NULL, version, &err_str, marker, marker_size);
 | |
| 
 | |
|   if (ret != TINYEXR_SUCCESS) {
 | |
|     if (err && !err_str.empty()) {
 | |
|       tinyexr::SetErrorMessage(err_str, err);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   ConvertHeader(exr_header, info);
 | |
| 
 | |
|   // transfoer `tiled` from version.
 | |
|   exr_header->tiled = version->tiled;
 | |
| 
 | |
|   return ret;
 | |
| }
 | |
| 
 | |
| int LoadEXRFromMemory(float **out_rgba, int *width, int *height,
 | |
|                       const unsigned char *memory, size_t size,
 | |
|                       const char **err) {
 | |
|   if (out_rgba == NULL || memory == NULL) {
 | |
|     tinyexr::SetErrorMessage("Invalid argument for LoadEXRFromMemory", err);
 | |
|     return TINYEXR_ERROR_INVALID_ARGUMENT;
 | |
|   }
 | |
| 
 | |
|   EXRVersion exr_version;
 | |
|   EXRImage exr_image;
 | |
|   EXRHeader exr_header;
 | |
| 
 | |
|   InitEXRHeader(&exr_header);
 | |
| 
 | |
|   int ret = ParseEXRVersionFromMemory(&exr_version, memory, size);
 | |
|   if (ret != TINYEXR_SUCCESS) {
 | |
|     std::stringstream ss;
 | |
|     ss << "Failed to parse EXR version. code(" << ret << ")";
 | |
|     tinyexr::SetErrorMessage(ss.str(), err);
 | |
|     return ret;
 | |
|   }
 | |
| 
 | |
|   ret = ParseEXRHeaderFromMemory(&exr_header, &exr_version, memory, size, err);
 | |
|   if (ret != TINYEXR_SUCCESS) {
 | |
|     return ret;
 | |
|   }
 | |
| 
 | |
|   // Read HALF channel as FLOAT.
 | |
|   for (int i = 0; i < exr_header.num_channels; i++) {
 | |
|     if (exr_header.pixel_types[i] == TINYEXR_PIXELTYPE_HALF) {
 | |
|       exr_header.requested_pixel_types[i] = TINYEXR_PIXELTYPE_FLOAT;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   InitEXRImage(&exr_image);
 | |
|   ret = LoadEXRImageFromMemory(&exr_image, &exr_header, memory, size, err);
 | |
|   if (ret != TINYEXR_SUCCESS) {
 | |
|     return ret;
 | |
|   }
 | |
| 
 | |
|   // RGBA
 | |
|   int idxR = -1;
 | |
|   int idxG = -1;
 | |
|   int idxB = -1;
 | |
|   int idxA = -1;
 | |
|   for (int c = 0; c < exr_header.num_channels; c++) {
 | |
|     if (strcmp(exr_header.channels[c].name, "R") == 0) {
 | |
|       idxR = c;
 | |
|     } else if (strcmp(exr_header.channels[c].name, "G") == 0) {
 | |
|       idxG = c;
 | |
|     } else if (strcmp(exr_header.channels[c].name, "B") == 0) {
 | |
|       idxB = c;
 | |
|     } else if (strcmp(exr_header.channels[c].name, "A") == 0) {
 | |
|       idxA = c;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // TODO(syoyo): Refactor removing same code as used in LoadEXR().
 | |
|   if (exr_header.num_channels == 1) {
 | |
|     // Grayscale channel only.
 | |
| 
 | |
|     (*out_rgba) = reinterpret_cast<float *>(
 | |
|         malloc(4 * sizeof(float) * static_cast<size_t>(exr_image.width) *
 | |
|                static_cast<size_t>(exr_image.height)));
 | |
| 
 | |
|     if (exr_header.tiled) {
 | |
|       for (int it = 0; it < exr_image.num_tiles; it++) {
 | |
|         for (int j = 0; j < exr_header.tile_size_y; j++) {
 | |
|           for (int i = 0; i < exr_header.tile_size_x; i++) {
 | |
|             const int ii =
 | |
|                 exr_image.tiles[it].offset_x * exr_header.tile_size_x + i;
 | |
|             const int jj =
 | |
|                 exr_image.tiles[it].offset_y * exr_header.tile_size_y + j;
 | |
|             const int idx = ii + jj * exr_image.width;
 | |
| 
 | |
|             // out of region check.
 | |
|             if (ii >= exr_image.width) {
 | |
|               continue;
 | |
|             }
 | |
|             if (jj >= exr_image.height) {
 | |
|               continue;
 | |
|             }
 | |
|             const int srcIdx = i + j * exr_header.tile_size_x;
 | |
|             unsigned char **src = exr_image.tiles[it].images;
 | |
|             (*out_rgba)[4 * idx + 0] =
 | |
|                 reinterpret_cast<float **>(src)[0][srcIdx];
 | |
|             (*out_rgba)[4 * idx + 1] =
 | |
|                 reinterpret_cast<float **>(src)[0][srcIdx];
 | |
|             (*out_rgba)[4 * idx + 2] =
 | |
|                 reinterpret_cast<float **>(src)[0][srcIdx];
 | |
|             (*out_rgba)[4 * idx + 3] =
 | |
|                 reinterpret_cast<float **>(src)[0][srcIdx];
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     } else {
 | |
|       for (int i = 0; i < exr_image.width * exr_image.height; i++) {
 | |
|         const float val = reinterpret_cast<float **>(exr_image.images)[0][i];
 | |
|         (*out_rgba)[4 * i + 0] = val;
 | |
|         (*out_rgba)[4 * i + 1] = val;
 | |
|         (*out_rgba)[4 * i + 2] = val;
 | |
|         (*out_rgba)[4 * i + 3] = val;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   } else {
 | |
|     // TODO(syoyo): Support non RGBA image.
 | |
| 
 | |
|     if (idxR == -1) {
 | |
|       tinyexr::SetErrorMessage("R channel not found", err);
 | |
| 
 | |
|       // @todo { free exr_image }
 | |
|       return TINYEXR_ERROR_INVALID_DATA;
 | |
|     }
 | |
| 
 | |
|     if (idxG == -1) {
 | |
|       tinyexr::SetErrorMessage("G channel not found", err);
 | |
|       // @todo { free exr_image }
 | |
|       return TINYEXR_ERROR_INVALID_DATA;
 | |
|     }
 | |
| 
 | |
|     if (idxB == -1) {
 | |
|       tinyexr::SetErrorMessage("B channel not found", err);
 | |
|       // @todo { free exr_image }
 | |
|       return TINYEXR_ERROR_INVALID_DATA;
 | |
|     }
 | |
| 
 | |
|     (*out_rgba) = reinterpret_cast<float *>(
 | |
|         malloc(4 * sizeof(float) * static_cast<size_t>(exr_image.width) *
 | |
|                static_cast<size_t>(exr_image.height)));
 | |
| 
 | |
|     if (exr_header.tiled) {
 | |
|       for (int it = 0; it < exr_image.num_tiles; it++) {
 | |
|         for (int j = 0; j < exr_header.tile_size_y; j++)
 | |
|           for (int i = 0; i < exr_header.tile_size_x; i++) {
 | |
|             const int ii =
 | |
|                 exr_image.tiles[it].offset_x * exr_header.tile_size_x + i;
 | |
|             const int jj =
 | |
|                 exr_image.tiles[it].offset_y * exr_header.tile_size_y + j;
 | |
|             const int idx = ii + jj * exr_image.width;
 | |
| 
 | |
|             // out of region check.
 | |
|             if (ii >= exr_image.width) {
 | |
|               continue;
 | |
|             }
 | |
|             if (jj >= exr_image.height) {
 | |
|               continue;
 | |
|             }
 | |
|             const int srcIdx = i + j * exr_header.tile_size_x;
 | |
|             unsigned char **src = exr_image.tiles[it].images;
 | |
|             (*out_rgba)[4 * idx + 0] =
 | |
|                 reinterpret_cast<float **>(src)[idxR][srcIdx];
 | |
|             (*out_rgba)[4 * idx + 1] =
 | |
|                 reinterpret_cast<float **>(src)[idxG][srcIdx];
 | |
|             (*out_rgba)[4 * idx + 2] =
 | |
|                 reinterpret_cast<float **>(src)[idxB][srcIdx];
 | |
|             if (idxA != -1) {
 | |
|               (*out_rgba)[4 * idx + 3] =
 | |
|                   reinterpret_cast<float **>(src)[idxA][srcIdx];
 | |
|             } else {
 | |
|               (*out_rgba)[4 * idx + 3] = 1.0;
 | |
|             }
 | |
|           }
 | |
|       }
 | |
|     } else {
 | |
|       for (int i = 0; i < exr_image.width * exr_image.height; i++) {
 | |
|         (*out_rgba)[4 * i + 0] =
 | |
|             reinterpret_cast<float **>(exr_image.images)[idxR][i];
 | |
|         (*out_rgba)[4 * i + 1] =
 | |
|             reinterpret_cast<float **>(exr_image.images)[idxG][i];
 | |
|         (*out_rgba)[4 * i + 2] =
 | |
|             reinterpret_cast<float **>(exr_image.images)[idxB][i];
 | |
|         if (idxA != -1) {
 | |
|           (*out_rgba)[4 * i + 3] =
 | |
|               reinterpret_cast<float **>(exr_image.images)[idxA][i];
 | |
|         } else {
 | |
|           (*out_rgba)[4 * i + 3] = 1.0;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   (*width) = exr_image.width;
 | |
|   (*height) = exr_image.height;
 | |
| 
 | |
|   FreeEXRHeader(&exr_header);
 | |
|   FreeEXRImage(&exr_image);
 | |
| 
 | |
|   return TINYEXR_SUCCESS;
 | |
| }
 | |
| 
 | |
| int LoadEXRImageFromFile(EXRImage *exr_image, const EXRHeader *exr_header,
 | |
|                          const char *filename, const char **err) {
 | |
|   if (exr_image == NULL) {
 | |
|     tinyexr::SetErrorMessage("Invalid argument for LoadEXRImageFromFile", err);
 | |
|     return TINYEXR_ERROR_INVALID_ARGUMENT;
 | |
|   }
 | |
| 
 | |
|   FILE *fp = NULL;
 | |
| #ifdef _WIN32
 | |
| #if defined(_MSC_VER) || defined(__MINGW32__)  // MSVC, MinGW gcc or clang
 | |
|   errno_t errcode =
 | |
|       _wfopen_s(&fp, tinyexr::UTF8ToWchar(filename).c_str(), L"rb");
 | |
|   if (errcode != 0) {
 | |
|     tinyexr::SetErrorMessage("Cannot read file " + std::string(filename), err);
 | |
|     // TODO(syoyo): return wfopen_s erro code
 | |
|     return TINYEXR_ERROR_CANT_OPEN_FILE;
 | |
|   }
 | |
| #else
 | |
|   // Unknown compiler
 | |
|   fp = fopen(filename, "rb");
 | |
| #endif
 | |
| #else
 | |
|   fp = fopen(filename, "rb");
 | |
| #endif
 | |
|   if (!fp) {
 | |
|     tinyexr::SetErrorMessage("Cannot read file " + std::string(filename), err);
 | |
|     return TINYEXR_ERROR_CANT_OPEN_FILE;
 | |
|   }
 | |
| 
 | |
|   size_t filesize;
 | |
|   // Compute size
 | |
|   fseek(fp, 0, SEEK_END);
 | |
|   filesize = static_cast<size_t>(ftell(fp));
 | |
|   fseek(fp, 0, SEEK_SET);
 | |
| 
 | |
|   if (filesize < 16) {
 | |
|     tinyexr::SetErrorMessage("File size too short " + std::string(filename),
 | |
|                              err);
 | |
|     return TINYEXR_ERROR_INVALID_FILE;
 | |
|   }
 | |
| 
 | |
|   std::vector<unsigned char> buf(filesize);  // @todo { use mmap }
 | |
|   {
 | |
|     size_t ret;
 | |
|     ret = fread(&buf[0], 1, filesize, fp);
 | |
|     assert(ret == filesize);
 | |
|     fclose(fp);
 | |
|     (void)ret;
 | |
|   }
 | |
| 
 | |
|   return LoadEXRImageFromMemory(exr_image, exr_header, &buf.at(0), filesize,
 | |
|                                 err);
 | |
| }
 | |
| 
 | |
| int LoadEXRImageFromMemory(EXRImage *exr_image, const EXRHeader *exr_header,
 | |
|                            const unsigned char *memory, const size_t size,
 | |
|                            const char **err) {
 | |
|   if (exr_image == NULL || memory == NULL ||
 | |
|       (size < tinyexr::kEXRVersionSize)) {
 | |
|     tinyexr::SetErrorMessage("Invalid argument for LoadEXRImageFromMemory",
 | |
|                              err);
 | |
|     return TINYEXR_ERROR_INVALID_ARGUMENT;
 | |
|   }
 | |
| 
 | |
|   if (exr_header->header_len == 0) {
 | |
|     tinyexr::SetErrorMessage("EXRHeader variable is not initialized.", err);
 | |
|     return TINYEXR_ERROR_INVALID_ARGUMENT;
 | |
|   }
 | |
| 
 | |
|   const unsigned char *head = memory;
 | |
|   const unsigned char *marker = reinterpret_cast<const unsigned char *>(
 | |
|       memory + exr_header->header_len +
 | |
|       8);  // +8 for magic number + version header.
 | |
|   return tinyexr::DecodeEXRImage(exr_image, exr_header, head, marker, size,
 | |
|                                  err);
 | |
| }
 | |
| 
 | |
| size_t SaveEXRImageToMemory(const EXRImage *exr_image,
 | |
|                             const EXRHeader *exr_header,
 | |
|                             unsigned char **memory_out, const char **err) {
 | |
|   if (exr_image == NULL || memory_out == NULL ||
 | |
|       exr_header->compression_type < 0) {
 | |
|     tinyexr::SetErrorMessage("Invalid argument for SaveEXRImageToMemory", err);
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
| #if !TINYEXR_USE_PIZ
 | |
|   if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) {
 | |
|     tinyexr::SetErrorMessage("PIZ compression is not supported in this build",
 | |
|                              err);
 | |
|     return 0;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| #if !TINYEXR_USE_ZFP
 | |
|   if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) {
 | |
|     tinyexr::SetErrorMessage("ZFP compression is not supported in this build",
 | |
|                              err);
 | |
|     return 0;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| #if TINYEXR_USE_ZFP
 | |
|   for (size_t i = 0; i < static_cast<size_t>(exr_header->num_channels); i++) {
 | |
|     if (exr_header->requested_pixel_types[i] != TINYEXR_PIXELTYPE_FLOAT) {
 | |
|       tinyexr::SetErrorMessage("Pixel type must be FLOAT for ZFP compression",
 | |
|                                err);
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   std::vector<unsigned char> memory;
 | |
| 
 | |
|   // Header
 | |
|   {
 | |
|     const char header[] = {0x76, 0x2f, 0x31, 0x01};
 | |
|     memory.insert(memory.end(), header, header + 4);
 | |
|   }
 | |
| 
 | |
|   // Version, scanline.
 | |
|   {
 | |
|     char marker[] = {2, 0, 0, 0};
 | |
|     /* @todo
 | |
|     if (exr_header->tiled) {
 | |
|       marker[1] |= 0x2;
 | |
|     }
 | |
|     if (exr_header->long_name) {
 | |
|       marker[1] |= 0x4;
 | |
|     }
 | |
|     if (exr_header->non_image) {
 | |
|       marker[1] |= 0x8;
 | |
|     }
 | |
|     if (exr_header->multipart) {
 | |
|       marker[1] |= 0x10;
 | |
|     }
 | |
|     */
 | |
|     memory.insert(memory.end(), marker, marker + 4);
 | |
|   }
 | |
| 
 | |
|   int num_scanlines = 1;
 | |
|   if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZIP) {
 | |
|     num_scanlines = 16;
 | |
|   } else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) {
 | |
|     num_scanlines = 32;
 | |
|   } else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) {
 | |
|     num_scanlines = 16;
 | |
|   }
 | |
| 
 | |
|   // Write attributes.
 | |
|   std::vector<tinyexr::ChannelInfo> channels;
 | |
|   {
 | |
|     std::vector<unsigned char> data;
 | |
| 
 | |
|     for (int c = 0; c < exr_header->num_channels; c++) {
 | |
|       tinyexr::ChannelInfo info;
 | |
|       info.p_linear = 0;
 | |
|       info.pixel_type = exr_header->requested_pixel_types[c];
 | |
|       info.x_sampling = 1;
 | |
|       info.y_sampling = 1;
 | |
|       info.name = std::string(exr_header->channels[c].name);
 | |
|       channels.push_back(info);
 | |
|     }
 | |
| 
 | |
|     tinyexr::WriteChannelInfo(data, channels);
 | |
| 
 | |
|     tinyexr::WriteAttributeToMemory(&memory, "channels", "chlist", &data.at(0),
 | |
|                                     static_cast<int>(data.size()));
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     int comp = exr_header->compression_type;
 | |
|     tinyexr::swap4(&comp);
 | |
|     tinyexr::WriteAttributeToMemory(
 | |
|         &memory, "compression", "compression",
 | |
|         reinterpret_cast<const unsigned char *>(&comp), 1);
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     int data[4] = {0, 0, exr_image->width - 1, exr_image->height - 1};
 | |
|     tinyexr::swap4(&data[0]);
 | |
|     tinyexr::swap4(&data[1]);
 | |
|     tinyexr::swap4(&data[2]);
 | |
|     tinyexr::swap4(&data[3]);
 | |
|     tinyexr::WriteAttributeToMemory(
 | |
|         &memory, "dataWindow", "box2i",
 | |
|         reinterpret_cast<const unsigned char *>(data), sizeof(int) * 4);
 | |
|     tinyexr::WriteAttributeToMemory(
 | |
|         &memory, "displayWindow", "box2i",
 | |
|         reinterpret_cast<const unsigned char *>(data), sizeof(int) * 4);
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     unsigned char line_order = 0;  // @fixme { read line_order from EXRHeader }
 | |
|     tinyexr::WriteAttributeToMemory(&memory, "lineOrder", "lineOrder",
 | |
|                                     &line_order, 1);
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     float aspectRatio = 1.0f;
 | |
|     tinyexr::swap4(&aspectRatio);
 | |
|     tinyexr::WriteAttributeToMemory(
 | |
|         &memory, "pixelAspectRatio", "float",
 | |
|         reinterpret_cast<const unsigned char *>(&aspectRatio), sizeof(float));
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     float center[2] = {0.0f, 0.0f};
 | |
|     tinyexr::swap4(¢er[0]);
 | |
|     tinyexr::swap4(¢er[1]);
 | |
|     tinyexr::WriteAttributeToMemory(
 | |
|         &memory, "screenWindowCenter", "v2f",
 | |
|         reinterpret_cast<const unsigned char *>(center), 2 * sizeof(float));
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     float w = static_cast<float>(exr_image->width);
 | |
|     tinyexr::swap4(&w);
 | |
|     tinyexr::WriteAttributeToMemory(&memory, "screenWindowWidth", "float",
 | |
|                                     reinterpret_cast<const unsigned char *>(&w),
 | |
|                                     sizeof(float));
 | |
|   }
 | |
| 
 | |
|   // Custom attributes
 | |
|   if (exr_header->num_custom_attributes > 0) {
 | |
|     for (int i = 0; i < exr_header->num_custom_attributes; i++) {
 | |
|       tinyexr::WriteAttributeToMemory(
 | |
|           &memory, exr_header->custom_attributes[i].name,
 | |
|           exr_header->custom_attributes[i].type,
 | |
|           reinterpret_cast<const unsigned char *>(
 | |
|               exr_header->custom_attributes[i].value),
 | |
|           exr_header->custom_attributes[i].size);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   {  // end of header
 | |
|     unsigned char e = 0;
 | |
|     memory.push_back(e);
 | |
|   }
 | |
| 
 | |
|   int num_blocks = exr_image->height / num_scanlines;
 | |
|   if (num_blocks * num_scanlines < exr_image->height) {
 | |
|     num_blocks++;
 | |
|   }
 | |
| 
 | |
|   std::vector<tinyexr::tinyexr_uint64> offsets(static_cast<size_t>(num_blocks));
 | |
| 
 | |
|   size_t headerSize = memory.size();
 | |
|   tinyexr::tinyexr_uint64 offset =
 | |
|       headerSize +
 | |
|       static_cast<size_t>(num_blocks) *
 | |
|           sizeof(
 | |
|               tinyexr::tinyexr_int64);  // sizeof(header) + sizeof(offsetTable)
 | |
| 
 | |
|   std::vector<std::vector<unsigned char> > data_list(
 | |
|       static_cast<size_t>(num_blocks));
 | |
|   std::vector<size_t> channel_offset_list(
 | |
|       static_cast<size_t>(exr_header->num_channels));
 | |
| 
 | |
|   int pixel_data_size = 0;
 | |
|   size_t channel_offset = 0;
 | |
|   for (size_t c = 0; c < static_cast<size_t>(exr_header->num_channels); c++) {
 | |
|     channel_offset_list[c] = channel_offset;
 | |
|     if (exr_header->requested_pixel_types[c] == TINYEXR_PIXELTYPE_HALF) {
 | |
|       pixel_data_size += sizeof(unsigned short);
 | |
|       channel_offset += sizeof(unsigned short);
 | |
|     } else if (exr_header->requested_pixel_types[c] ==
 | |
|                TINYEXR_PIXELTYPE_FLOAT) {
 | |
|       pixel_data_size += sizeof(float);
 | |
|       channel_offset += sizeof(float);
 | |
|     } else if (exr_header->requested_pixel_types[c] == TINYEXR_PIXELTYPE_UINT) {
 | |
|       pixel_data_size += sizeof(unsigned int);
 | |
|       channel_offset += sizeof(unsigned int);
 | |
|     } else {
 | |
|       assert(0);
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #if TINYEXR_USE_ZFP
 | |
|   tinyexr::ZFPCompressionParam zfp_compression_param;
 | |
| 
 | |
|   // Use ZFP compression parameter from custom attributes(if such a parameter
 | |
|   // exists)
 | |
|   {
 | |
|     std::string e;
 | |
|     bool ret = tinyexr::FindZFPCompressionParam(
 | |
|         &zfp_compression_param, exr_header->custom_attributes,
 | |
|         exr_header->num_custom_attributes, &e);
 | |
| 
 | |
|     if (!ret) {
 | |
|       // Use predefined compression parameter.
 | |
|       zfp_compression_param.type = 0;
 | |
|       zfp_compression_param.rate = 2;
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   // TODO(LTE): C++11 thread
 | |
| 
 | |
| // Use signed int since some OpenMP compiler doesn't allow unsigned type for
 | |
| // `parallel for`
 | |
| #if TINYEXR_USE_OPENMP
 | |
| #pragma omp parallel for
 | |
| #endif
 | |
|   for (int i = 0; i < num_blocks; i++) {
 | |
|     size_t ii = static_cast<size_t>(i);
 | |
|     int start_y = num_scanlines * i;
 | |
|     int endY = (std::min)(num_scanlines * (i + 1), exr_image->height);
 | |
|     int h = endY - start_y;
 | |
| 
 | |
|     std::vector<unsigned char> buf(
 | |
|         static_cast<size_t>(exr_image->width * h * pixel_data_size));
 | |
| 
 | |
|     for (size_t c = 0; c < static_cast<size_t>(exr_header->num_channels); c++) {
 | |
|       if (exr_header->pixel_types[c] == TINYEXR_PIXELTYPE_HALF) {
 | |
|         if (exr_header->requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT) {
 | |
|           for (int y = 0; y < h; y++) {
 | |
|             // Assume increasing Y
 | |
|             float *line_ptr = reinterpret_cast<float *>(&buf.at(
 | |
|                 static_cast<size_t>(pixel_data_size * y * exr_image->width) +
 | |
|                 channel_offset_list[c] *
 | |
|                     static_cast<size_t>(exr_image->width)));
 | |
|             for (int x = 0; x < exr_image->width; x++) {
 | |
|               tinyexr::FP16 h16;
 | |
|               h16.u = reinterpret_cast<unsigned short **>(
 | |
|                   exr_image->images)[c][(y + start_y) * exr_image->width + x];
 | |
| 
 | |
|               tinyexr::FP32 f32 = half_to_float(h16);
 | |
| 
 | |
|               tinyexr::swap4(&f32.f);
 | |
| 
 | |
|               // line_ptr[x] = f32.f;
 | |
|               tinyexr::cpy4(line_ptr + x, &(f32.f));
 | |
|             }
 | |
|           }
 | |
|         } else if (exr_header->requested_pixel_types[c] ==
 | |
|                    TINYEXR_PIXELTYPE_HALF) {
 | |
|           for (int y = 0; y < h; y++) {
 | |
|             // Assume increasing Y
 | |
|             unsigned short *line_ptr = reinterpret_cast<unsigned short *>(
 | |
|                 &buf.at(static_cast<size_t>(pixel_data_size * y *
 | |
|                                             exr_image->width) +
 | |
|                         channel_offset_list[c] *
 | |
|                             static_cast<size_t>(exr_image->width)));
 | |
|             for (int x = 0; x < exr_image->width; x++) {
 | |
|               unsigned short val = reinterpret_cast<unsigned short **>(
 | |
|                   exr_image->images)[c][(y + start_y) * exr_image->width + x];
 | |
| 
 | |
|               tinyexr::swap2(&val);
 | |
| 
 | |
|               // line_ptr[x] = val;
 | |
|               tinyexr::cpy2(line_ptr + x, &val);
 | |
|             }
 | |
|           }
 | |
|         } else {
 | |
|           assert(0);
 | |
|         }
 | |
| 
 | |
|       } else if (exr_header->pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT) {
 | |
|         if (exr_header->requested_pixel_types[c] == TINYEXR_PIXELTYPE_HALF) {
 | |
|           for (int y = 0; y < h; y++) {
 | |
|             // Assume increasing Y
 | |
|             unsigned short *line_ptr = reinterpret_cast<unsigned short *>(
 | |
|                 &buf.at(static_cast<size_t>(pixel_data_size * y *
 | |
|                                             exr_image->width) +
 | |
|                         channel_offset_list[c] *
 | |
|                             static_cast<size_t>(exr_image->width)));
 | |
|             for (int x = 0; x < exr_image->width; x++) {
 | |
|               tinyexr::FP32 f32;
 | |
|               f32.f = reinterpret_cast<float **>(
 | |
|                   exr_image->images)[c][(y + start_y) * exr_image->width + x];
 | |
| 
 | |
|               tinyexr::FP16 h16;
 | |
|               h16 = float_to_half_full(f32);
 | |
| 
 | |
|               tinyexr::swap2(reinterpret_cast<unsigned short *>(&h16.u));
 | |
| 
 | |
|               // line_ptr[x] = h16.u;
 | |
|               tinyexr::cpy2(line_ptr + x, &(h16.u));
 | |
|             }
 | |
|           }
 | |
|         } else if (exr_header->requested_pixel_types[c] ==
 | |
|                    TINYEXR_PIXELTYPE_FLOAT) {
 | |
|           for (int y = 0; y < h; y++) {
 | |
|             // Assume increasing Y
 | |
|             float *line_ptr = reinterpret_cast<float *>(&buf.at(
 | |
|                 static_cast<size_t>(pixel_data_size * y * exr_image->width) +
 | |
|                 channel_offset_list[c] *
 | |
|                     static_cast<size_t>(exr_image->width)));
 | |
|             for (int x = 0; x < exr_image->width; x++) {
 | |
|               float val = reinterpret_cast<float **>(
 | |
|                   exr_image->images)[c][(y + start_y) * exr_image->width + x];
 | |
| 
 | |
|               tinyexr::swap4(&val);
 | |
| 
 | |
|               // line_ptr[x] = val;
 | |
|               tinyexr::cpy4(line_ptr + x, &val);
 | |
|             }
 | |
|           }
 | |
|         } else {
 | |
|           assert(0);
 | |
|         }
 | |
|       } else if (exr_header->pixel_types[c] == TINYEXR_PIXELTYPE_UINT) {
 | |
|         for (int y = 0; y < h; y++) {
 | |
|           // Assume increasing Y
 | |
|           unsigned int *line_ptr = reinterpret_cast<unsigned int *>(&buf.at(
 | |
|               static_cast<size_t>(pixel_data_size * y * exr_image->width) +
 | |
|               channel_offset_list[c] * static_cast<size_t>(exr_image->width)));
 | |
|           for (int x = 0; x < exr_image->width; x++) {
 | |
|             unsigned int val = reinterpret_cast<unsigned int **>(
 | |
|                 exr_image->images)[c][(y + start_y) * exr_image->width + x];
 | |
| 
 | |
|             tinyexr::swap4(&val);
 | |
| 
 | |
|             // line_ptr[x] = val;
 | |
|             tinyexr::cpy4(line_ptr + x, &val);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_NONE) {
 | |
|       // 4 byte: scan line
 | |
|       // 4 byte: data size
 | |
|       // ~     : pixel data(uncompressed)
 | |
|       std::vector<unsigned char> header(8);
 | |
|       unsigned int data_len = static_cast<unsigned int>(buf.size());
 | |
|       memcpy(&header.at(0), &start_y, sizeof(int));
 | |
|       memcpy(&header.at(4), &data_len, sizeof(unsigned int));
 | |
| 
 | |
|       tinyexr::swap4(reinterpret_cast<unsigned int *>(&header.at(0)));
 | |
|       tinyexr::swap4(reinterpret_cast<unsigned int *>(&header.at(4)));
 | |
| 
 | |
|       data_list[ii].insert(data_list[ii].end(), header.begin(), header.end());
 | |
|       data_list[ii].insert(data_list[ii].end(), buf.begin(),
 | |
|                            buf.begin() + data_len);
 | |
| 
 | |
|     } else if ((exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZIPS) ||
 | |
|                (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZIP)) {
 | |
| #if TINYEXR_USE_MINIZ
 | |
|       std::vector<unsigned char> block(tinyexr::miniz::mz_compressBound(
 | |
|           static_cast<unsigned long>(buf.size())));
 | |
| #else
 | |
|       std::vector<unsigned char> block(
 | |
|           compressBound(static_cast<uLong>(buf.size())));
 | |
| #endif
 | |
|       tinyexr::tinyexr_uint64 outSize = block.size();
 | |
| 
 | |
|       tinyexr::CompressZip(&block.at(0), outSize,
 | |
|                            reinterpret_cast<const unsigned char *>(&buf.at(0)),
 | |
|                            static_cast<unsigned long>(buf.size()));
 | |
| 
 | |
|       // 4 byte: scan line
 | |
|       // 4 byte: data size
 | |
|       // ~     : pixel data(compressed)
 | |
|       std::vector<unsigned char> header(8);
 | |
|       unsigned int data_len = static_cast<unsigned int>(outSize);  // truncate
 | |
|       memcpy(&header.at(0), &start_y, sizeof(int));
 | |
|       memcpy(&header.at(4), &data_len, sizeof(unsigned int));
 | |
| 
 | |
|       tinyexr::swap4(reinterpret_cast<unsigned int *>(&header.at(0)));
 | |
|       tinyexr::swap4(reinterpret_cast<unsigned int *>(&header.at(4)));
 | |
| 
 | |
|       data_list[ii].insert(data_list[ii].end(), header.begin(), header.end());
 | |
|       data_list[ii].insert(data_list[ii].end(), block.begin(),
 | |
|                            block.begin() + data_len);
 | |
| 
 | |
|     } else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_RLE) {
 | |
|       // (buf.size() * 3) / 2 would be enough.
 | |
|       std::vector<unsigned char> block((buf.size() * 3) / 2);
 | |
| 
 | |
|       tinyexr::tinyexr_uint64 outSize = block.size();
 | |
| 
 | |
|       tinyexr::CompressRle(&block.at(0), outSize,
 | |
|                            reinterpret_cast<const unsigned char *>(&buf.at(0)),
 | |
|                            static_cast<unsigned long>(buf.size()));
 | |
| 
 | |
|       // 4 byte: scan line
 | |
|       // 4 byte: data size
 | |
|       // ~     : pixel data(compressed)
 | |
|       std::vector<unsigned char> header(8);
 | |
|       unsigned int data_len = static_cast<unsigned int>(outSize);  // truncate
 | |
|       memcpy(&header.at(0), &start_y, sizeof(int));
 | |
|       memcpy(&header.at(4), &data_len, sizeof(unsigned int));
 | |
| 
 | |
|       tinyexr::swap4(reinterpret_cast<unsigned int *>(&header.at(0)));
 | |
|       tinyexr::swap4(reinterpret_cast<unsigned int *>(&header.at(4)));
 | |
| 
 | |
|       data_list[ii].insert(data_list[ii].end(), header.begin(), header.end());
 | |
|       data_list[ii].insert(data_list[ii].end(), block.begin(),
 | |
|                            block.begin() + data_len);
 | |
| 
 | |
|     } else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) {
 | |
| #if TINYEXR_USE_PIZ
 | |
|       unsigned int bufLen =
 | |
|           8192 + static_cast<unsigned int>(
 | |
|                      2 * static_cast<unsigned int>(
 | |
|                              buf.size()));  // @fixme { compute good bound. }
 | |
|       std::vector<unsigned char> block(bufLen);
 | |
|       unsigned int outSize = static_cast<unsigned int>(block.size());
 | |
| 
 | |
|       CompressPiz(&block.at(0), &outSize,
 | |
|                   reinterpret_cast<const unsigned char *>(&buf.at(0)),
 | |
|                   buf.size(), channels, exr_image->width, h);
 | |
| 
 | |
|       // 4 byte: scan line
 | |
|       // 4 byte: data size
 | |
|       // ~     : pixel data(compressed)
 | |
|       std::vector<unsigned char> header(8);
 | |
|       unsigned int data_len = outSize;
 | |
|       memcpy(&header.at(0), &start_y, sizeof(int));
 | |
|       memcpy(&header.at(4), &data_len, sizeof(unsigned int));
 | |
| 
 | |
|       tinyexr::swap4(reinterpret_cast<unsigned int *>(&header.at(0)));
 | |
|       tinyexr::swap4(reinterpret_cast<unsigned int *>(&header.at(4)));
 | |
| 
 | |
|       data_list[ii].insert(data_list[ii].end(), header.begin(), header.end());
 | |
|       data_list[ii].insert(data_list[ii].end(), block.begin(),
 | |
|                            block.begin() + data_len);
 | |
| 
 | |
| #else
 | |
|       assert(0);
 | |
| #endif
 | |
|     } else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) {
 | |
| #if TINYEXR_USE_ZFP
 | |
|       std::vector<unsigned char> block;
 | |
|       unsigned int outSize;
 | |
| 
 | |
|       tinyexr::CompressZfp(
 | |
|           &block, &outSize, reinterpret_cast<const float *>(&buf.at(0)),
 | |
|           exr_image->width, h, exr_header->num_channels, zfp_compression_param);
 | |
| 
 | |
|       // 4 byte: scan line
 | |
|       // 4 byte: data size
 | |
|       // ~     : pixel data(compressed)
 | |
|       std::vector<unsigned char> header(8);
 | |
|       unsigned int data_len = outSize;
 | |
|       memcpy(&header.at(0), &start_y, sizeof(int));
 | |
|       memcpy(&header.at(4), &data_len, sizeof(unsigned int));
 | |
| 
 | |
|       tinyexr::swap4(reinterpret_cast<unsigned int *>(&header.at(0)));
 | |
|       tinyexr::swap4(reinterpret_cast<unsigned int *>(&header.at(4)));
 | |
| 
 | |
|       data_list[ii].insert(data_list[ii].end(), header.begin(), header.end());
 | |
|       data_list[ii].insert(data_list[ii].end(), block.begin(),
 | |
|                            block.begin() + data_len);
 | |
| 
 | |
| #else
 | |
|       assert(0);
 | |
| #endif
 | |
|     } else {
 | |
|       assert(0);
 | |
|     }
 | |
|   }  // omp parallel
 | |
| 
 | |
|   for (size_t i = 0; i < static_cast<size_t>(num_blocks); i++) {
 | |
|     offsets[i] = offset;
 | |
|     tinyexr::swap8(reinterpret_cast<tinyexr::tinyexr_uint64 *>(&offsets[i]));
 | |
|     offset += data_list[i].size();
 | |
|   }
 | |
| 
 | |
|   size_t totalSize = static_cast<size_t>(offset);
 | |
|   {
 | |
|     memory.insert(
 | |
|         memory.end(), reinterpret_cast<unsigned char *>(&offsets.at(0)),
 | |
|         reinterpret_cast<unsigned char *>(&offsets.at(0)) +
 | |
|             sizeof(tinyexr::tinyexr_uint64) * static_cast<size_t>(num_blocks));
 | |
|   }
 | |
| 
 | |
|   if (memory.size() == 0) {
 | |
|     tinyexr::SetErrorMessage("Output memory size is zero", err);
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   (*memory_out) = static_cast<unsigned char *>(malloc(totalSize));
 | |
|   memcpy((*memory_out), &memory.at(0), memory.size());
 | |
|   unsigned char *memory_ptr = *memory_out + memory.size();
 | |
| 
 | |
|   for (size_t i = 0; i < static_cast<size_t>(num_blocks); i++) {
 | |
|     memcpy(memory_ptr, &data_list[i].at(0), data_list[i].size());
 | |
|     memory_ptr += data_list[i].size();
 | |
|   }
 | |
| 
 | |
|   return totalSize;  // OK
 | |
| }
 | |
| 
 | |
| int SaveEXRImageToFile(const EXRImage *exr_image, const EXRHeader *exr_header,
 | |
|                        const char *filename, const char **err) {
 | |
|   if (exr_image == NULL || filename == NULL ||
 | |
|       exr_header->compression_type < 0) {
 | |
|     tinyexr::SetErrorMessage("Invalid argument for SaveEXRImageToFile", err);
 | |
|     return TINYEXR_ERROR_INVALID_ARGUMENT;
 | |
|   }
 | |
| 
 | |
| #if !TINYEXR_USE_PIZ
 | |
|   if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) {
 | |
|     tinyexr::SetErrorMessage("PIZ compression is not supported in this build",
 | |
|                              err);
 | |
|     return TINYEXR_ERROR_UNSUPPORTED_FEATURE;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| #if !TINYEXR_USE_ZFP
 | |
|   if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) {
 | |
|     tinyexr::SetErrorMessage("ZFP compression is not supported in this build",
 | |
|                              err);
 | |
|     return TINYEXR_ERROR_UNSUPPORTED_FEATURE;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   FILE *fp = NULL;
 | |
| #ifdef _WIN32
 | |
| #if defined(_MSC_VER) || defined(__MINGW32__)  // MSVC, MinGW gcc or clang
 | |
|   errno_t errcode =
 | |
|       _wfopen_s(&fp, tinyexr::UTF8ToWchar(filename).c_str(), L"wb");
 | |
|   if (errcode != 0) {
 | |
|     tinyexr::SetErrorMessage("Cannot write a file: " + std::string(filename),
 | |
|                              err);
 | |
|     return TINYEXR_ERROR_CANT_WRITE_FILE;
 | |
|   }
 | |
| #else
 | |
|   // Unknown compiler
 | |
|   fp = fopen(filename, "wb");
 | |
| #endif
 | |
| #else
 | |
|   fp = fopen(filename, "wb");
 | |
| #endif
 | |
|   if (!fp) {
 | |
|     tinyexr::SetErrorMessage("Cannot write a file: " + std::string(filename),
 | |
|                              err);
 | |
|     return TINYEXR_ERROR_CANT_WRITE_FILE;
 | |
|   }
 | |
| 
 | |
|   unsigned char *mem = NULL;
 | |
|   size_t mem_size = SaveEXRImageToMemory(exr_image, exr_header, &mem, err);
 | |
|   if (mem_size == 0) {
 | |
|     return TINYEXR_ERROR_SERIALZATION_FAILED;
 | |
|   }
 | |
| 
 | |
|   size_t written_size = 0;
 | |
|   if ((mem_size > 0) && mem) {
 | |
|     written_size = fwrite(mem, 1, mem_size, fp);
 | |
|   }
 | |
|   free(mem);
 | |
| 
 | |
|   fclose(fp);
 | |
| 
 | |
|   if (written_size != mem_size) {
 | |
|     tinyexr::SetErrorMessage("Cannot write a file", err);
 | |
|     return TINYEXR_ERROR_CANT_WRITE_FILE;
 | |
|   }
 | |
| 
 | |
|   return TINYEXR_SUCCESS;
 | |
| }
 | |
| 
 | |
| int LoadDeepEXR(DeepImage *deep_image, const char *filename, const char **err) {
 | |
|   if (deep_image == NULL) {
 | |
|     tinyexr::SetErrorMessage("Invalid argument for LoadDeepEXR", err);
 | |
|     return TINYEXR_ERROR_INVALID_ARGUMENT;
 | |
|   }
 | |
| 
 | |
| #ifdef _WIN32
 | |
|   FILE *fp = NULL;
 | |
| #if defined(_MSC_VER) || defined(__MINGW32__)  // MSVC, MinGW gcc or clang
 | |
|   errno_t errcode =
 | |
|       _wfopen_s(&fp, tinyexr::UTF8ToWchar(filename).c_str(), L"rb");
 | |
|   if (errcode != 0) {
 | |
|     tinyexr::SetErrorMessage("Cannot read a file " + std::string(filename),
 | |
|                              err);
 | |
|     return TINYEXR_ERROR_CANT_OPEN_FILE;
 | |
|   }
 | |
| #else
 | |
|   // Unknown compiler
 | |
|   fp = fopen(filename, "rb");
 | |
| #endif
 | |
|   if (!fp) {
 | |
|     tinyexr::SetErrorMessage("Cannot read a file " + std::string(filename),
 | |
|                              err);
 | |
|     return TINYEXR_ERROR_CANT_OPEN_FILE;
 | |
|   }
 | |
| #else
 | |
|   FILE *fp = fopen(filename, "rb");
 | |
|   if (!fp) {
 | |
|     tinyexr::SetErrorMessage("Cannot read a file " + std::string(filename),
 | |
|                              err);
 | |
|     return TINYEXR_ERROR_CANT_OPEN_FILE;
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   size_t filesize;
 | |
|   // Compute size
 | |
|   fseek(fp, 0, SEEK_END);
 | |
|   filesize = static_cast<size_t>(ftell(fp));
 | |
|   fseek(fp, 0, SEEK_SET);
 | |
| 
 | |
|   if (filesize == 0) {
 | |
|     fclose(fp);
 | |
|     tinyexr::SetErrorMessage("File size is zero : " + std::string(filename),
 | |
|                              err);
 | |
|     return TINYEXR_ERROR_INVALID_FILE;
 | |
|   }
 | |
| 
 | |
|   std::vector<char> buf(filesize);  // @todo { use mmap }
 | |
|   {
 | |
|     size_t ret;
 | |
|     ret = fread(&buf[0], 1, filesize, fp);
 | |
|     assert(ret == filesize);
 | |
|     (void)ret;
 | |
|   }
 | |
|   fclose(fp);
 | |
| 
 | |
|   const char *head = &buf[0];
 | |
|   const char *marker = &buf[0];
 | |
| 
 | |
|   // Header check.
 | |
|   {
 | |
|     const char header[] = {0x76, 0x2f, 0x31, 0x01};
 | |
| 
 | |
|     if (memcmp(marker, header, 4) != 0) {
 | |
|       tinyexr::SetErrorMessage("Invalid magic number", err);
 | |
|       return TINYEXR_ERROR_INVALID_MAGIC_NUMBER;
 | |
|     }
 | |
|     marker += 4;
 | |
|   }
 | |
| 
 | |
|   // Version, scanline.
 | |
|   {
 | |
|     // ver 2.0, scanline, deep bit on(0x800)
 | |
|     // must be [2, 0, 0, 0]
 | |
|     if (marker[0] != 2 || marker[1] != 8 || marker[2] != 0 || marker[3] != 0) {
 | |
|       tinyexr::SetErrorMessage("Unsupported version or scanline", err);
 | |
|       return TINYEXR_ERROR_UNSUPPORTED_FORMAT;
 | |
|     }
 | |
| 
 | |
|     marker += 4;
 | |
|   }
 | |
| 
 | |
|   int dx = -1;
 | |
|   int dy = -1;
 | |
|   int dw = -1;
 | |
|   int dh = -1;
 | |
|   int num_scanline_blocks = 1;  // 16 for ZIP compression.
 | |
|   int compression_type = -1;
 | |
|   int num_channels = -1;
 | |
|   std::vector<tinyexr::ChannelInfo> channels;
 | |
| 
 | |
|   // Read attributes
 | |
|   size_t size = filesize - tinyexr::kEXRVersionSize;
 | |
|   for (;;) {
 | |
|     if (0 == size) {
 | |
|       return TINYEXR_ERROR_INVALID_DATA;
 | |
|     } else if (marker[0] == '\0') {
 | |
|       marker++;
 | |
|       size--;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     std::string attr_name;
 | |
|     std::string attr_type;
 | |
|     std::vector<unsigned char> data;
 | |
|     size_t marker_size;
 | |
|     if (!tinyexr::ReadAttribute(&attr_name, &attr_type, &data, &marker_size,
 | |
|                                 marker, size)) {
 | |
|       std::stringstream ss;
 | |
|       ss << "Failed to parse attribute\n";
 | |
|       tinyexr::SetErrorMessage(ss.str(), err);
 | |
|       return TINYEXR_ERROR_INVALID_DATA;
 | |
|     }
 | |
|     marker += marker_size;
 | |
|     size -= marker_size;
 | |
| 
 | |
|     if (attr_name.compare("compression") == 0) {
 | |
|       compression_type = data[0];
 | |
|       if (compression_type > TINYEXR_COMPRESSIONTYPE_PIZ) {
 | |
|         std::stringstream ss;
 | |
|         ss << "Unsupported compression type : " << compression_type;
 | |
|         tinyexr::SetErrorMessage(ss.str(), err);
 | |
|         return TINYEXR_ERROR_UNSUPPORTED_FORMAT;
 | |
|       }
 | |
| 
 | |
|       if (compression_type == TINYEXR_COMPRESSIONTYPE_ZIP) {
 | |
|         num_scanline_blocks = 16;
 | |
|       }
 | |
| 
 | |
|     } else if (attr_name.compare("channels") == 0) {
 | |
|       // name: zero-terminated string, from 1 to 255 bytes long
 | |
|       // pixel type: int, possible values are: UINT = 0 HALF = 1 FLOAT = 2
 | |
|       // pLinear: unsigned char, possible values are 0 and 1
 | |
|       // reserved: three chars, should be zero
 | |
|       // xSampling: int
 | |
|       // ySampling: int
 | |
| 
 | |
|       if (!tinyexr::ReadChannelInfo(channels, data)) {
 | |
|         tinyexr::SetErrorMessage("Failed to parse channel info", err);
 | |
|         return TINYEXR_ERROR_INVALID_DATA;
 | |
|       }
 | |
| 
 | |
|       num_channels = static_cast<int>(channels.size());
 | |
| 
 | |
|       if (num_channels < 1) {
 | |
|         tinyexr::SetErrorMessage("Invalid channels format", err);
 | |
|         return TINYEXR_ERROR_INVALID_DATA;
 | |
|       }
 | |
| 
 | |
|     } else if (attr_name.compare("dataWindow") == 0) {
 | |
|       memcpy(&dx, &data.at(0), sizeof(int));
 | |
|       memcpy(&dy, &data.at(4), sizeof(int));
 | |
|       memcpy(&dw, &data.at(8), sizeof(int));
 | |
|       memcpy(&dh, &data.at(12), sizeof(int));
 | |
|       tinyexr::swap4(&dx);
 | |
|       tinyexr::swap4(&dy);
 | |
|       tinyexr::swap4(&dw);
 | |
|       tinyexr::swap4(&dh);
 | |
| 
 | |
|     } else if (attr_name.compare("displayWindow") == 0) {
 | |
|       int x;
 | |
|       int y;
 | |
|       int w;
 | |
|       int h;
 | |
|       memcpy(&x, &data.at(0), sizeof(int));
 | |
|       memcpy(&y, &data.at(4), sizeof(int));
 | |
|       memcpy(&w, &data.at(8), sizeof(int));
 | |
|       memcpy(&h, &data.at(12), sizeof(int));
 | |
|       tinyexr::swap4(&x);
 | |
|       tinyexr::swap4(&y);
 | |
|       tinyexr::swap4(&w);
 | |
|       tinyexr::swap4(&h);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   assert(dx >= 0);
 | |
|   assert(dy >= 0);
 | |
|   assert(dw >= 0);
 | |
|   assert(dh >= 0);
 | |
|   assert(num_channels >= 1);
 | |
| 
 | |
|   int data_width = dw - dx + 1;
 | |
|   int data_height = dh - dy + 1;
 | |
| 
 | |
|   std::vector<float> image(
 | |
|       static_cast<size_t>(data_width * data_height * 4));  // 4 = RGBA
 | |
| 
 | |
|   // Read offset tables.
 | |
|   int num_blocks = data_height / num_scanline_blocks;
 | |
|   if (num_blocks * num_scanline_blocks < data_height) {
 | |
|     num_blocks++;
 | |
|   }
 | |
| 
 | |
|   std::vector<tinyexr::tinyexr_int64> offsets(static_cast<size_t>(num_blocks));
 | |
| 
 | |
|   for (size_t y = 0; y < static_cast<size_t>(num_blocks); y++) {
 | |
|     tinyexr::tinyexr_int64 offset;
 | |
|     memcpy(&offset, marker, sizeof(tinyexr::tinyexr_int64));
 | |
|     tinyexr::swap8(reinterpret_cast<tinyexr::tinyexr_uint64 *>(&offset));
 | |
|     marker += sizeof(tinyexr::tinyexr_int64);  // = 8
 | |
|     offsets[y] = offset;
 | |
|   }
 | |
| 
 | |
| #if TINYEXR_USE_PIZ
 | |
|   if ((compression_type == TINYEXR_COMPRESSIONTYPE_NONE) ||
 | |
|       (compression_type == TINYEXR_COMPRESSIONTYPE_RLE) ||
 | |
|       (compression_type == TINYEXR_COMPRESSIONTYPE_ZIPS) ||
 | |
|       (compression_type == TINYEXR_COMPRESSIONTYPE_ZIP) ||
 | |
|       (compression_type == TINYEXR_COMPRESSIONTYPE_PIZ)) {
 | |
| #else
 | |
|   if ((compression_type == TINYEXR_COMPRESSIONTYPE_NONE) ||
 | |
|       (compression_type == TINYEXR_COMPRESSIONTYPE_RLE) ||
 | |
|       (compression_type == TINYEXR_COMPRESSIONTYPE_ZIPS) ||
 | |
|       (compression_type == TINYEXR_COMPRESSIONTYPE_ZIP)) {
 | |
| #endif
 | |
|     // OK
 | |
|   } else {
 | |
|     tinyexr::SetErrorMessage("Unsupported compression format", err);
 | |
|     return TINYEXR_ERROR_UNSUPPORTED_FORMAT;
 | |
|   }
 | |
| 
 | |
|   deep_image->image = static_cast<float ***>(
 | |
|       malloc(sizeof(float **) * static_cast<size_t>(num_channels)));
 | |
|   for (int c = 0; c < num_channels; c++) {
 | |
|     deep_image->image[c] = static_cast<float **>(
 | |
|         malloc(sizeof(float *) * static_cast<size_t>(data_height)));
 | |
|     for (int y = 0; y < data_height; y++) {
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   deep_image->offset_table = static_cast<int **>(
 | |
|       malloc(sizeof(int *) * static_cast<size_t>(data_height)));
 | |
|   for (int y = 0; y < data_height; y++) {
 | |
|     deep_image->offset_table[y] = static_cast<int *>(
 | |
|         malloc(sizeof(int) * static_cast<size_t>(data_width)));
 | |
|   }
 | |
| 
 | |
|   for (size_t y = 0; y < static_cast<size_t>(num_blocks); y++) {
 | |
|     const unsigned char *data_ptr =
 | |
|         reinterpret_cast<const unsigned char *>(head + offsets[y]);
 | |
| 
 | |
|     // int: y coordinate
 | |
|     // int64: packed size of pixel offset table
 | |
|     // int64: packed size of sample data
 | |
|     // int64: unpacked size of sample data
 | |
|     // compressed pixel offset table
 | |
|     // compressed sample data
 | |
|     int line_no;
 | |
|     tinyexr::tinyexr_int64 packedOffsetTableSize;
 | |
|     tinyexr::tinyexr_int64 packedSampleDataSize;
 | |
|     tinyexr::tinyexr_int64 unpackedSampleDataSize;
 | |
|     memcpy(&line_no, data_ptr, sizeof(int));
 | |
|     memcpy(&packedOffsetTableSize, data_ptr + 4,
 | |
|            sizeof(tinyexr::tinyexr_int64));
 | |
|     memcpy(&packedSampleDataSize, data_ptr + 12,
 | |
|            sizeof(tinyexr::tinyexr_int64));
 | |
|     memcpy(&unpackedSampleDataSize, data_ptr + 20,
 | |
|            sizeof(tinyexr::tinyexr_int64));
 | |
| 
 | |
|     tinyexr::swap4(&line_no);
 | |
|     tinyexr::swap8(
 | |
|         reinterpret_cast<tinyexr::tinyexr_uint64 *>(&packedOffsetTableSize));
 | |
|     tinyexr::swap8(
 | |
|         reinterpret_cast<tinyexr::tinyexr_uint64 *>(&packedSampleDataSize));
 | |
|     tinyexr::swap8(
 | |
|         reinterpret_cast<tinyexr::tinyexr_uint64 *>(&unpackedSampleDataSize));
 | |
| 
 | |
|     std::vector<int> pixelOffsetTable(static_cast<size_t>(data_width));
 | |
| 
 | |
|     // decode pixel offset table.
 | |
|     {
 | |
|       unsigned long dstLen =
 | |
|           static_cast<unsigned long>(pixelOffsetTable.size() * sizeof(int));
 | |
|       if (!tinyexr::DecompressZip(
 | |
|               reinterpret_cast<unsigned char *>(&pixelOffsetTable.at(0)),
 | |
|               &dstLen, data_ptr + 28,
 | |
|               static_cast<unsigned long>(packedOffsetTableSize))) {
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       assert(dstLen == pixelOffsetTable.size() * sizeof(int));
 | |
|       for (size_t i = 0; i < static_cast<size_t>(data_width); i++) {
 | |
|         deep_image->offset_table[y][i] = pixelOffsetTable[i];
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     std::vector<unsigned char> sample_data(
 | |
|         static_cast<size_t>(unpackedSampleDataSize));
 | |
| 
 | |
|     // decode sample data.
 | |
|     {
 | |
|       unsigned long dstLen = static_cast<unsigned long>(unpackedSampleDataSize);
 | |
|       if (dstLen) {
 | |
|         if (!tinyexr::DecompressZip(
 | |
|                 reinterpret_cast<unsigned char *>(&sample_data.at(0)), &dstLen,
 | |
|                 data_ptr + 28 + packedOffsetTableSize,
 | |
|                 static_cast<unsigned long>(packedSampleDataSize))) {
 | |
|           return false;
 | |
|         }
 | |
|         assert(dstLen == static_cast<unsigned long>(unpackedSampleDataSize));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // decode sample
 | |
|     int sampleSize = -1;
 | |
|     std::vector<int> channel_offset_list(static_cast<size_t>(num_channels));
 | |
|     {
 | |
|       int channel_offset = 0;
 | |
|       for (size_t i = 0; i < static_cast<size_t>(num_channels); i++) {
 | |
|         channel_offset_list[i] = channel_offset;
 | |
|         if (channels[i].pixel_type == TINYEXR_PIXELTYPE_UINT) {  // UINT
 | |
|           channel_offset += 4;
 | |
|         } else if (channels[i].pixel_type == TINYEXR_PIXELTYPE_HALF) {  // half
 | |
|           channel_offset += 2;
 | |
|         } else if (channels[i].pixel_type ==
 | |
|                    TINYEXR_PIXELTYPE_FLOAT) {  // float
 | |
|           channel_offset += 4;
 | |
|         } else {
 | |
|           assert(0);
 | |
|         }
 | |
|       }
 | |
|       sampleSize = channel_offset;
 | |
|     }
 | |
|     assert(sampleSize >= 2);
 | |
| 
 | |
|     assert(static_cast<size_t>(
 | |
|                pixelOffsetTable[static_cast<size_t>(data_width - 1)] *
 | |
|                sampleSize) == sample_data.size());
 | |
|     int samples_per_line = static_cast<int>(sample_data.size()) / sampleSize;
 | |
| 
 | |
|     //
 | |
|     // Alloc memory
 | |
|     //
 | |
| 
 | |
|     //
 | |
|     // pixel data is stored as image[channels][pixel_samples]
 | |
|     //
 | |
|     {
 | |
|       tinyexr::tinyexr_uint64 data_offset = 0;
 | |
|       for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) {
 | |
|         deep_image->image[c][y] = static_cast<float *>(
 | |
|             malloc(sizeof(float) * static_cast<size_t>(samples_per_line)));
 | |
| 
 | |
|         if (channels[c].pixel_type == 0) {  // UINT
 | |
|           for (size_t x = 0; x < static_cast<size_t>(samples_per_line); x++) {
 | |
|             unsigned int ui;
 | |
|             unsigned int *src_ptr = reinterpret_cast<unsigned int *>(
 | |
|                 &sample_data.at(size_t(data_offset) + x * sizeof(int)));
 | |
|             tinyexr::cpy4(&ui, src_ptr);
 | |
|             deep_image->image[c][y][x] = static_cast<float>(ui);  // @fixme
 | |
|           }
 | |
|           data_offset +=
 | |
|               sizeof(unsigned int) * static_cast<size_t>(samples_per_line);
 | |
|         } else if (channels[c].pixel_type == 1) {  // half
 | |
|           for (size_t x = 0; x < static_cast<size_t>(samples_per_line); x++) {
 | |
|             tinyexr::FP16 f16;
 | |
|             const unsigned short *src_ptr = reinterpret_cast<unsigned short *>(
 | |
|                 &sample_data.at(size_t(data_offset) + x * sizeof(short)));
 | |
|             tinyexr::cpy2(&(f16.u), src_ptr);
 | |
|             tinyexr::FP32 f32 = half_to_float(f16);
 | |
|             deep_image->image[c][y][x] = f32.f;
 | |
|           }
 | |
|           data_offset += sizeof(short) * static_cast<size_t>(samples_per_line);
 | |
|         } else {  // float
 | |
|           for (size_t x = 0; x < static_cast<size_t>(samples_per_line); x++) {
 | |
|             float f;
 | |
|             const float *src_ptr = reinterpret_cast<float *>(
 | |
|                 &sample_data.at(size_t(data_offset) + x * sizeof(float)));
 | |
|             tinyexr::cpy4(&f, src_ptr);
 | |
|             deep_image->image[c][y][x] = f;
 | |
|           }
 | |
|           data_offset += sizeof(float) * static_cast<size_t>(samples_per_line);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }  // y
 | |
| 
 | |
|   deep_image->width = data_width;
 | |
|   deep_image->height = data_height;
 | |
| 
 | |
|   deep_image->channel_names = static_cast<const char **>(
 | |
|       malloc(sizeof(const char *) * static_cast<size_t>(num_channels)));
 | |
|   for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) {
 | |
| #ifdef _WIN32
 | |
|     deep_image->channel_names[c] = _strdup(channels[c].name.c_str());
 | |
| #else
 | |
|     deep_image->channel_names[c] = strdup(channels[c].name.c_str());
 | |
| #endif
 | |
|   }
 | |
|   deep_image->num_channels = num_channels;
 | |
| 
 | |
|   return TINYEXR_SUCCESS;
 | |
| }
 | |
| 
 | |
| void InitEXRImage(EXRImage *exr_image) {
 | |
|   if (exr_image == NULL) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   exr_image->width = 0;
 | |
|   exr_image->height = 0;
 | |
|   exr_image->num_channels = 0;
 | |
| 
 | |
|   exr_image->images = NULL;
 | |
|   exr_image->tiles = NULL;
 | |
| 
 | |
|   exr_image->num_tiles = 0;
 | |
| }
 | |
| 
 | |
| void FreeEXRErrorMessage(const char *msg) {
 | |
|   if (msg) {
 | |
|     free(reinterpret_cast<void *>(const_cast<char *>(msg)));
 | |
|   }
 | |
|   return;
 | |
| }
 | |
| 
 | |
| void InitEXRHeader(EXRHeader *exr_header) {
 | |
|   if (exr_header == NULL) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   memset(exr_header, 0, sizeof(EXRHeader));
 | |
| }
 | |
| 
 | |
| int FreeEXRHeader(EXRHeader *exr_header) {
 | |
|   if (exr_header == NULL) {
 | |
|     return TINYEXR_ERROR_INVALID_ARGUMENT;
 | |
|   }
 | |
| 
 | |
|   if (exr_header->channels) {
 | |
|     free(exr_header->channels);
 | |
|   }
 | |
| 
 | |
|   if (exr_header->pixel_types) {
 | |
|     free(exr_header->pixel_types);
 | |
|   }
 | |
| 
 | |
|   if (exr_header->requested_pixel_types) {
 | |
|     free(exr_header->requested_pixel_types);
 | |
|   }
 | |
| 
 | |
|   for (int i = 0; i < exr_header->num_custom_attributes; i++) {
 | |
|     if (exr_header->custom_attributes[i].value) {
 | |
|       free(exr_header->custom_attributes[i].value);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (exr_header->custom_attributes) {
 | |
|     free(exr_header->custom_attributes);
 | |
|   }
 | |
| 
 | |
|   return TINYEXR_SUCCESS;
 | |
| }
 | |
| 
 | |
| int FreeEXRImage(EXRImage *exr_image) {
 | |
|   if (exr_image == NULL) {
 | |
|     return TINYEXR_ERROR_INVALID_ARGUMENT;
 | |
|   }
 | |
| 
 | |
|   for (int i = 0; i < exr_image->num_channels; i++) {
 | |
|     if (exr_image->images && exr_image->images[i]) {
 | |
|       free(exr_image->images[i]);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (exr_image->images) {
 | |
|     free(exr_image->images);
 | |
|   }
 | |
| 
 | |
|   if (exr_image->tiles) {
 | |
|     for (int tid = 0; tid < exr_image->num_tiles; tid++) {
 | |
|       for (int i = 0; i < exr_image->num_channels; i++) {
 | |
|         if (exr_image->tiles[tid].images && exr_image->tiles[tid].images[i]) {
 | |
|           free(exr_image->tiles[tid].images[i]);
 | |
|         }
 | |
|       }
 | |
|       if (exr_image->tiles[tid].images) {
 | |
|         free(exr_image->tiles[tid].images);
 | |
|       }
 | |
|     }
 | |
|     free(exr_image->tiles);
 | |
|   }
 | |
| 
 | |
|   return TINYEXR_SUCCESS;
 | |
| }
 | |
| 
 | |
| int ParseEXRHeaderFromFile(EXRHeader *exr_header, const EXRVersion *exr_version,
 | |
|                            const char *filename, const char **err) {
 | |
|   if (exr_header == NULL || exr_version == NULL || filename == NULL) {
 | |
|     tinyexr::SetErrorMessage("Invalid argument for ParseEXRHeaderFromFile",
 | |
|                              err);
 | |
|     return TINYEXR_ERROR_INVALID_ARGUMENT;
 | |
|   }
 | |
| 
 | |
|   FILE *fp = NULL;
 | |
| #ifdef _WIN32
 | |
| #if defined(_MSC_VER) || defined(__MINGW32__)  // MSVC, MinGW gcc or clang
 | |
|   errno_t errcode =
 | |
|       _wfopen_s(&fp, tinyexr::UTF8ToWchar(filename).c_str(), L"rb");
 | |
|   if (errcode != 0) {
 | |
|     tinyexr::SetErrorMessage("Cannot read file " + std::string(filename), err);
 | |
|     return TINYEXR_ERROR_INVALID_FILE;
 | |
|   }
 | |
| #else
 | |
|   // Unknown compiler
 | |
|   fp = fopen(filename, "rb");
 | |
| #endif
 | |
| #else
 | |
|   fp = fopen(filename, "rb");
 | |
| #endif
 | |
|   if (!fp) {
 | |
|     tinyexr::SetErrorMessage("Cannot read file " + std::string(filename), err);
 | |
|     return TINYEXR_ERROR_CANT_OPEN_FILE;
 | |
|   }
 | |
| 
 | |
|   size_t filesize;
 | |
|   // Compute size
 | |
|   fseek(fp, 0, SEEK_END);
 | |
|   filesize = static_cast<size_t>(ftell(fp));
 | |
|   fseek(fp, 0, SEEK_SET);
 | |
| 
 | |
|   std::vector<unsigned char> buf(filesize);  // @todo { use mmap }
 | |
|   {
 | |
|     size_t ret;
 | |
|     ret = fread(&buf[0], 1, filesize, fp);
 | |
|     assert(ret == filesize);
 | |
|     fclose(fp);
 | |
| 
 | |
|     if (ret != filesize) {
 | |
|       tinyexr::SetErrorMessage("fread() error on " + std::string(filename),
 | |
|                                err);
 | |
|       return TINYEXR_ERROR_INVALID_FILE;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return ParseEXRHeaderFromMemory(exr_header, exr_version, &buf.at(0), filesize,
 | |
|                                   err);
 | |
| }
 | |
| 
 | |
| int ParseEXRMultipartHeaderFromMemory(EXRHeader ***exr_headers,
 | |
|                                       int *num_headers,
 | |
|                                       const EXRVersion *exr_version,
 | |
|                                       const unsigned char *memory, size_t size,
 | |
|                                       const char **err) {
 | |
|   if (memory == NULL || exr_headers == NULL || num_headers == NULL ||
 | |
|       exr_version == NULL) {
 | |
|     // Invalid argument
 | |
|     tinyexr::SetErrorMessage(
 | |
|         "Invalid argument for ParseEXRMultipartHeaderFromMemory", err);
 | |
|     return TINYEXR_ERROR_INVALID_ARGUMENT;
 | |
|   }
 | |
| 
 | |
|   if (size < tinyexr::kEXRVersionSize) {
 | |
|     tinyexr::SetErrorMessage("Data size too short", err);
 | |
|     return TINYEXR_ERROR_INVALID_DATA;
 | |
|   }
 | |
| 
 | |
|   const unsigned char *marker = memory + tinyexr::kEXRVersionSize;
 | |
|   size_t marker_size = size - tinyexr::kEXRVersionSize;
 | |
| 
 | |
|   std::vector<tinyexr::HeaderInfo> infos;
 | |
| 
 | |
|   for (;;) {
 | |
|     tinyexr::HeaderInfo info;
 | |
|     info.clear();
 | |
| 
 | |
|     std::string err_str;
 | |
|     bool empty_header = false;
 | |
|     int ret = ParseEXRHeader(&info, &empty_header, exr_version, &err_str,
 | |
|                              marker, marker_size);
 | |
| 
 | |
|     if (ret != TINYEXR_SUCCESS) {
 | |
|       tinyexr::SetErrorMessage(err_str, err);
 | |
|       return ret;
 | |
|     }
 | |
| 
 | |
|     if (empty_header) {
 | |
|       marker += 1;  // skip '\0'
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // `chunkCount` must exist in the header.
 | |
|     if (info.chunk_count == 0) {
 | |
|       tinyexr::SetErrorMessage(
 | |
|           "`chunkCount' attribute is not found in the header.", err);
 | |
|       return TINYEXR_ERROR_INVALID_DATA;
 | |
|     }
 | |
| 
 | |
|     infos.push_back(info);
 | |
| 
 | |
|     // move to next header.
 | |
|     marker += info.header_len;
 | |
|     size -= info.header_len;
 | |
|   }
 | |
| 
 | |
|   // allocate memory for EXRHeader and create array of EXRHeader pointers.
 | |
|   (*exr_headers) =
 | |
|       static_cast<EXRHeader **>(malloc(sizeof(EXRHeader *) * infos.size()));
 | |
|   for (size_t i = 0; i < infos.size(); i++) {
 | |
|     EXRHeader *exr_header = static_cast<EXRHeader *>(malloc(sizeof(EXRHeader)));
 | |
| 
 | |
|     ConvertHeader(exr_header, infos[i]);
 | |
| 
 | |
|     // transfoer `tiled` from version.
 | |
|     exr_header->tiled = exr_version->tiled;
 | |
| 
 | |
|     (*exr_headers)[i] = exr_header;
 | |
|   }
 | |
| 
 | |
|   (*num_headers) = static_cast<int>(infos.size());
 | |
| 
 | |
|   return TINYEXR_SUCCESS;
 | |
| }
 | |
| 
 | |
| int ParseEXRMultipartHeaderFromFile(EXRHeader ***exr_headers, int *num_headers,
 | |
|                                     const EXRVersion *exr_version,
 | |
|                                     const char *filename, const char **err) {
 | |
|   if (exr_headers == NULL || num_headers == NULL || exr_version == NULL ||
 | |
|       filename == NULL) {
 | |
|     tinyexr::SetErrorMessage(
 | |
|         "Invalid argument for ParseEXRMultipartHeaderFromFile()", err);
 | |
|     return TINYEXR_ERROR_INVALID_ARGUMENT;
 | |
|   }
 | |
| 
 | |
|   FILE *fp = NULL;
 | |
| #ifdef _WIN32
 | |
| #if defined(_MSC_VER) || defined(__MINGW32__)  // MSVC, MinGW gcc or clang
 | |
|   errno_t errcode =
 | |
|       _wfopen_s(&fp, tinyexr::UTF8ToWchar(filename).c_str(), L"rb");
 | |
|   if (errcode != 0) {
 | |
|     tinyexr::SetErrorMessage("Cannot read file " + std::string(filename), err);
 | |
|     return TINYEXR_ERROR_INVALID_FILE;
 | |
|   }
 | |
| #else
 | |
|   // Unknown compiler
 | |
|   fp = fopen(filename, "rb");
 | |
| #endif
 | |
| #else
 | |
|   fp = fopen(filename, "rb");
 | |
| #endif
 | |
|   if (!fp) {
 | |
|     tinyexr::SetErrorMessage("Cannot read file " + std::string(filename), err);
 | |
|     return TINYEXR_ERROR_CANT_OPEN_FILE;
 | |
|   }
 | |
| 
 | |
|   size_t filesize;
 | |
|   // Compute size
 | |
|   fseek(fp, 0, SEEK_END);
 | |
|   filesize = static_cast<size_t>(ftell(fp));
 | |
|   fseek(fp, 0, SEEK_SET);
 | |
| 
 | |
|   std::vector<unsigned char> buf(filesize);  // @todo { use mmap }
 | |
|   {
 | |
|     size_t ret;
 | |
|     ret = fread(&buf[0], 1, filesize, fp);
 | |
|     assert(ret == filesize);
 | |
|     fclose(fp);
 | |
| 
 | |
|     if (ret != filesize) {
 | |
|       tinyexr::SetErrorMessage("`fread' error. file may be corrupted.", err);
 | |
|       return TINYEXR_ERROR_INVALID_FILE;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return ParseEXRMultipartHeaderFromMemory(
 | |
|       exr_headers, num_headers, exr_version, &buf.at(0), filesize, err);
 | |
| }
 | |
| 
 | |
| int ParseEXRVersionFromMemory(EXRVersion *version, const unsigned char *memory,
 | |
|                               size_t size) {
 | |
|   if (version == NULL || memory == NULL) {
 | |
|     return TINYEXR_ERROR_INVALID_ARGUMENT;
 | |
|   }
 | |
| 
 | |
|   if (size < tinyexr::kEXRVersionSize) {
 | |
|     return TINYEXR_ERROR_INVALID_DATA;
 | |
|   }
 | |
| 
 | |
|   const unsigned char *marker = memory;
 | |
| 
 | |
|   // Header check.
 | |
|   {
 | |
|     const char header[] = {0x76, 0x2f, 0x31, 0x01};
 | |
| 
 | |
|     if (memcmp(marker, header, 4) != 0) {
 | |
|       return TINYEXR_ERROR_INVALID_MAGIC_NUMBER;
 | |
|     }
 | |
|     marker += 4;
 | |
|   }
 | |
| 
 | |
|   version->tiled = false;
 | |
|   version->long_name = false;
 | |
|   version->non_image = false;
 | |
|   version->multipart = false;
 | |
| 
 | |
|   // Parse version header.
 | |
|   {
 | |
|     // must be 2
 | |
|     if (marker[0] != 2) {
 | |
|       return TINYEXR_ERROR_INVALID_EXR_VERSION;
 | |
|     }
 | |
| 
 | |
|     if (version == NULL) {
 | |
|       return TINYEXR_SUCCESS;  // May OK
 | |
|     }
 | |
| 
 | |
|     version->version = 2;
 | |
| 
 | |
|     if (marker[1] & 0x2) {  // 9th bit
 | |
|       version->tiled = true;
 | |
|     }
 | |
|     if (marker[1] & 0x4) {  // 10th bit
 | |
|       version->long_name = true;
 | |
|     }
 | |
|     if (marker[1] & 0x8) {        // 11th bit
 | |
|       version->non_image = true;  // (deep image)
 | |
|     }
 | |
|     if (marker[1] & 0x10) {  // 12th bit
 | |
|       version->multipart = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return TINYEXR_SUCCESS;
 | |
| }
 | |
| 
 | |
| int ParseEXRVersionFromFile(EXRVersion *version, const char *filename) {
 | |
|   if (filename == NULL) {
 | |
|     return TINYEXR_ERROR_INVALID_ARGUMENT;
 | |
|   }
 | |
| 
 | |
|   FILE *fp = NULL;
 | |
| #ifdef _WIN32
 | |
| #if defined(_MSC_VER) || defined(__MINGW32__)  // MSVC, MinGW gcc or clang
 | |
|   errno_t err = _wfopen_s(&fp, tinyexr::UTF8ToWchar(filename).c_str(), L"rb");
 | |
|   if (err != 0) {
 | |
|     // TODO(syoyo): return wfopen_s erro code
 | |
|     return TINYEXR_ERROR_CANT_OPEN_FILE;
 | |
|   }
 | |
| #else
 | |
|   // Unknown compiler
 | |
|   fp = fopen(filename, "rb");
 | |
| #endif
 | |
| #else
 | |
|   fp = fopen(filename, "rb");
 | |
| #endif
 | |
|   if (!fp) {
 | |
|     return TINYEXR_ERROR_CANT_OPEN_FILE;
 | |
|   }
 | |
| 
 | |
|   size_t file_size;
 | |
|   // Compute size
 | |
|   fseek(fp, 0, SEEK_END);
 | |
|   file_size = static_cast<size_t>(ftell(fp));
 | |
|   fseek(fp, 0, SEEK_SET);
 | |
| 
 | |
|   if (file_size < tinyexr::kEXRVersionSize) {
 | |
|     return TINYEXR_ERROR_INVALID_FILE;
 | |
|   }
 | |
| 
 | |
|   unsigned char buf[tinyexr::kEXRVersionSize];
 | |
|   size_t ret = fread(&buf[0], 1, tinyexr::kEXRVersionSize, fp);
 | |
|   fclose(fp);
 | |
| 
 | |
|   if (ret != tinyexr::kEXRVersionSize) {
 | |
|     return TINYEXR_ERROR_INVALID_FILE;
 | |
|   }
 | |
| 
 | |
|   return ParseEXRVersionFromMemory(version, buf, tinyexr::kEXRVersionSize);
 | |
| }
 | |
| 
 | |
| int LoadEXRMultipartImageFromMemory(EXRImage *exr_images,
 | |
|                                     const EXRHeader **exr_headers,
 | |
|                                     unsigned int num_parts,
 | |
|                                     const unsigned char *memory,
 | |
|                                     const size_t size, const char **err) {
 | |
|   if (exr_images == NULL || exr_headers == NULL || num_parts == 0 ||
 | |
|       memory == NULL || (size <= tinyexr::kEXRVersionSize)) {
 | |
|     tinyexr::SetErrorMessage(
 | |
|         "Invalid argument for LoadEXRMultipartImageFromMemory()", err);
 | |
|     return TINYEXR_ERROR_INVALID_ARGUMENT;
 | |
|   }
 | |
| 
 | |
|   // compute total header size.
 | |
|   size_t total_header_size = 0;
 | |
|   for (unsigned int i = 0; i < num_parts; i++) {
 | |
|     if (exr_headers[i]->header_len == 0) {
 | |
|       tinyexr::SetErrorMessage("EXRHeader variable is not initialized.", err);
 | |
|       return TINYEXR_ERROR_INVALID_ARGUMENT;
 | |
|     }
 | |
| 
 | |
|     total_header_size += exr_headers[i]->header_len;
 | |
|   }
 | |
| 
 | |
|   const char *marker = reinterpret_cast<const char *>(
 | |
|       memory + total_header_size + 4 +
 | |
|       4);  // +8 for magic number and version header.
 | |
| 
 | |
|   marker += 1;  // Skip empty header.
 | |
| 
 | |
|   // NOTE 1:
 | |
|   //   In multipart image, There is 'part number' before chunk data.
 | |
|   //   4 byte : part number
 | |
|   //   4+     : chunk
 | |
|   //
 | |
|   // NOTE 2:
 | |
|   //   EXR spec says 'part number' is 'unsigned long' but actually this is
 | |
|   //   'unsigned int(4 bytes)' in OpenEXR implementation...
 | |
|   //   http://www.openexr.com/openexrfilelayout.pdf
 | |
| 
 | |
|   // Load chunk offset table.
 | |
|   std::vector<std::vector<tinyexr::tinyexr_uint64> > chunk_offset_table_list;
 | |
|   for (size_t i = 0; i < static_cast<size_t>(num_parts); i++) {
 | |
|     std::vector<tinyexr::tinyexr_uint64> offset_table(
 | |
|         static_cast<size_t>(exr_headers[i]->chunk_count));
 | |
| 
 | |
|     for (size_t c = 0; c < offset_table.size(); c++) {
 | |
|       tinyexr::tinyexr_uint64 offset;
 | |
|       memcpy(&offset, marker, 8);
 | |
|       tinyexr::swap8(&offset);
 | |
| 
 | |
|       if (offset >= size) {
 | |
|         tinyexr::SetErrorMessage("Invalid offset size in EXR header chunks.",
 | |
|                                  err);
 | |
|         return TINYEXR_ERROR_INVALID_DATA;
 | |
|       }
 | |
| 
 | |
|       offset_table[c] = offset + 4;  // +4 to skip 'part number'
 | |
|       marker += 8;
 | |
|     }
 | |
| 
 | |
|     chunk_offset_table_list.push_back(offset_table);
 | |
|   }
 | |
| 
 | |
|   // Decode image.
 | |
|   for (size_t i = 0; i < static_cast<size_t>(num_parts); i++) {
 | |
|     std::vector<tinyexr::tinyexr_uint64> &offset_table =
 | |
|         chunk_offset_table_list[i];
 | |
| 
 | |
|     // First check 'part number' is identitical to 'i'
 | |
|     for (size_t c = 0; c < offset_table.size(); c++) {
 | |
|       const unsigned char *part_number_addr =
 | |
|           memory + offset_table[c] - 4;  // -4 to move to 'part number' field.
 | |
|       unsigned int part_no;
 | |
|       memcpy(&part_no, part_number_addr, sizeof(unsigned int));  // 4
 | |
|       tinyexr::swap4(&part_no);
 | |
| 
 | |
|       if (part_no != i) {
 | |
|         tinyexr::SetErrorMessage("Invalid `part number' in EXR header chunks.",
 | |
|                                  err);
 | |
|         return TINYEXR_ERROR_INVALID_DATA;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     std::string e;
 | |
|     int ret = tinyexr::DecodeChunk(&exr_images[i], exr_headers[i], offset_table,
 | |
|                                    memory, size, &e);
 | |
|     if (ret != TINYEXR_SUCCESS) {
 | |
|       if (!e.empty()) {
 | |
|         tinyexr::SetErrorMessage(e, err);
 | |
|       }
 | |
|       return ret;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return TINYEXR_SUCCESS;
 | |
| }
 | |
| 
 | |
| int LoadEXRMultipartImageFromFile(EXRImage *exr_images,
 | |
|                                   const EXRHeader **exr_headers,
 | |
|                                   unsigned int num_parts, const char *filename,
 | |
|                                   const char **err) {
 | |
|   if (exr_images == NULL || exr_headers == NULL || num_parts == 0) {
 | |
|     tinyexr::SetErrorMessage(
 | |
|         "Invalid argument for LoadEXRMultipartImageFromFile", err);
 | |
|     return TINYEXR_ERROR_INVALID_ARGUMENT;
 | |
|   }
 | |
| 
 | |
|   FILE *fp = NULL;
 | |
| #ifdef _WIN32
 | |
| #if defined(_MSC_VER) || defined(__MINGW32__)  // MSVC, MinGW gcc or clang
 | |
|   errno_t errcode =
 | |
|       _wfopen_s(&fp, tinyexr::UTF8ToWchar(filename).c_str(), L"rb");
 | |
|   if (errcode != 0) {
 | |
|     tinyexr::SetErrorMessage("Cannot read file " + std::string(filename), err);
 | |
|     return TINYEXR_ERROR_CANT_OPEN_FILE;
 | |
|   }
 | |
| #else
 | |
|   // Unknown compiler
 | |
|   fp = fopen(filename, "rb");
 | |
| #endif
 | |
| #else
 | |
|   fp = fopen(filename, "rb");
 | |
| #endif
 | |
|   if (!fp) {
 | |
|     tinyexr::SetErrorMessage("Cannot read file " + std::string(filename), err);
 | |
|     return TINYEXR_ERROR_CANT_OPEN_FILE;
 | |
|   }
 | |
| 
 | |
|   size_t filesize;
 | |
|   // Compute size
 | |
|   fseek(fp, 0, SEEK_END);
 | |
|   filesize = static_cast<size_t>(ftell(fp));
 | |
|   fseek(fp, 0, SEEK_SET);
 | |
| 
 | |
|   std::vector<unsigned char> buf(filesize);  //  @todo { use mmap }
 | |
|   {
 | |
|     size_t ret;
 | |
|     ret = fread(&buf[0], 1, filesize, fp);
 | |
|     assert(ret == filesize);
 | |
|     fclose(fp);
 | |
|     (void)ret;
 | |
|   }
 | |
| 
 | |
|   return LoadEXRMultipartImageFromMemory(exr_images, exr_headers, num_parts,
 | |
|                                          &buf.at(0), filesize, err);
 | |
| }
 | |
| 
 | |
| int SaveEXR(const float *data, int width, int height, int components,
 | |
|             const int save_as_fp16, const char *outfilename, const char **err) {
 | |
|   if ((components == 1) || components == 3 || components == 4) {
 | |
|     // OK
 | |
|   } else {
 | |
|     std::stringstream ss;
 | |
|     ss << "Unsupported component value : " << components << std::endl;
 | |
| 
 | |
|     tinyexr::SetErrorMessage(ss.str(), err);
 | |
|     return TINYEXR_ERROR_INVALID_ARGUMENT;
 | |
|   }
 | |
| 
 | |
|   EXRHeader header;
 | |
|   InitEXRHeader(&header);
 | |
| 
 | |
|   if ((width < 16) && (height < 16)) {
 | |
|     // No compression for small image.
 | |
|     header.compression_type = TINYEXR_COMPRESSIONTYPE_NONE;
 | |
|   } else {
 | |
|     header.compression_type = TINYEXR_COMPRESSIONTYPE_ZIP;
 | |
|   }
 | |
| 
 | |
|   EXRImage image;
 | |
|   InitEXRImage(&image);
 | |
| 
 | |
|   image.num_channels = components;
 | |
| 
 | |
|   std::vector<float> images[4];
 | |
| 
 | |
|   if (components == 1) {
 | |
|     images[0].resize(static_cast<size_t>(width * height));
 | |
|     memcpy(images[0].data(), data, sizeof(float) * size_t(width * height));
 | |
|   } else {
 | |
|     images[0].resize(static_cast<size_t>(width * height));
 | |
|     images[1].resize(static_cast<size_t>(width * height));
 | |
|     images[2].resize(static_cast<size_t>(width * height));
 | |
|     images[3].resize(static_cast<size_t>(width * height));
 | |
| 
 | |
|     // Split RGB(A)RGB(A)RGB(A)... into R, G and B(and A) layers
 | |
|     for (size_t i = 0; i < static_cast<size_t>(width * height); i++) {
 | |
|       images[0][i] = data[static_cast<size_t>(components) * i + 0];
 | |
|       images[1][i] = data[static_cast<size_t>(components) * i + 1];
 | |
|       images[2][i] = data[static_cast<size_t>(components) * i + 2];
 | |
|       if (components == 4) {
 | |
|         images[3][i] = data[static_cast<size_t>(components) * i + 3];
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   float *image_ptr[4] = {0, 0, 0, 0};
 | |
|   if (components == 4) {
 | |
|     image_ptr[0] = &(images[3].at(0));  // A
 | |
|     image_ptr[1] = &(images[2].at(0));  // B
 | |
|     image_ptr[2] = &(images[1].at(0));  // G
 | |
|     image_ptr[3] = &(images[0].at(0));  // R
 | |
|   } else if (components == 3) {
 | |
|     image_ptr[0] = &(images[2].at(0));  // B
 | |
|     image_ptr[1] = &(images[1].at(0));  // G
 | |
|     image_ptr[2] = &(images[0].at(0));  // R
 | |
|   } else if (components == 1) {
 | |
|     image_ptr[0] = &(images[0].at(0));  // A
 | |
|   }
 | |
| 
 | |
|   image.images = reinterpret_cast<unsigned char **>(image_ptr);
 | |
|   image.width = width;
 | |
|   image.height = height;
 | |
| 
 | |
|   header.num_channels = components;
 | |
|   header.channels = static_cast<EXRChannelInfo *>(malloc(
 | |
|       sizeof(EXRChannelInfo) * static_cast<size_t>(header.num_channels)));
 | |
|   // Must be (A)BGR order, since most of EXR viewers expect this channel order.
 | |
|   if (components == 4) {
 | |
| #ifdef _MSC_VER
 | |
|     strncpy_s(header.channels[0].name, "A", 255);
 | |
|     strncpy_s(header.channels[1].name, "B", 255);
 | |
|     strncpy_s(header.channels[2].name, "G", 255);
 | |
|     strncpy_s(header.channels[3].name, "R", 255);
 | |
| #else
 | |
|     strncpy(header.channels[0].name, "A", 255);
 | |
|     strncpy(header.channels[1].name, "B", 255);
 | |
|     strncpy(header.channels[2].name, "G", 255);
 | |
|     strncpy(header.channels[3].name, "R", 255);
 | |
| #endif
 | |
|     header.channels[0].name[strlen("A")] = '\0';
 | |
|     header.channels[1].name[strlen("B")] = '\0';
 | |
|     header.channels[2].name[strlen("G")] = '\0';
 | |
|     header.channels[3].name[strlen("R")] = '\0';
 | |
|   } else if (components == 3) {
 | |
| #ifdef _MSC_VER
 | |
|     strncpy_s(header.channels[0].name, "B", 255);
 | |
|     strncpy_s(header.channels[1].name, "G", 255);
 | |
|     strncpy_s(header.channels[2].name, "R", 255);
 | |
| #else
 | |
|     strncpy(header.channels[0].name, "B", 255);
 | |
|     strncpy(header.channels[1].name, "G", 255);
 | |
|     strncpy(header.channels[2].name, "R", 255);
 | |
| #endif
 | |
|     header.channels[0].name[strlen("B")] = '\0';
 | |
|     header.channels[1].name[strlen("G")] = '\0';
 | |
|     header.channels[2].name[strlen("R")] = '\0';
 | |
|   } else {
 | |
| #ifdef _MSC_VER
 | |
|     strncpy_s(header.channels[0].name, "A", 255);
 | |
| #else
 | |
|     strncpy(header.channels[0].name, "A", 255);
 | |
| #endif
 | |
|     header.channels[0].name[strlen("A")] = '\0';
 | |
|   }
 | |
| 
 | |
|   header.pixel_types = static_cast<int *>(
 | |
|       malloc(sizeof(int) * static_cast<size_t>(header.num_channels)));
 | |
|   header.requested_pixel_types = static_cast<int *>(
 | |
|       malloc(sizeof(int) * static_cast<size_t>(header.num_channels)));
 | |
|   for (int i = 0; i < header.num_channels; i++) {
 | |
|     header.pixel_types[i] =
 | |
|         TINYEXR_PIXELTYPE_FLOAT;  // pixel type of input image
 | |
| 
 | |
|     if (save_as_fp16 > 0) {
 | |
|       header.requested_pixel_types[i] =
 | |
|           TINYEXR_PIXELTYPE_HALF;  // save with half(fp16) pixel format
 | |
|     } else {
 | |
|       header.requested_pixel_types[i] =
 | |
|           TINYEXR_PIXELTYPE_FLOAT;  // save with float(fp32) pixel format(i.e.
 | |
|                                     // no precision reduction)
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   int ret = SaveEXRImageToFile(&image, &header, outfilename, err);
 | |
|   if (ret != TINYEXR_SUCCESS) {
 | |
|     return ret;
 | |
|   }
 | |
| 
 | |
|   free(header.channels);
 | |
|   free(header.pixel_types);
 | |
|   free(header.requested_pixel_types);
 | |
| 
 | |
|   return ret;
 | |
| }
 | |
| 
 | |
| #ifdef __clang__
 | |
| // zero-as-null-ppinter-constant
 | |
| #pragma clang diagnostic pop
 | |
| #endif
 | |
| 
 | |
| #endif  // TINYEXR_IMPLEMENTATION_DEFINED
 | |
| #endif  // TINYEXR_IMPLEMENTATION
 | 
