mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-31 13:41:03 +00:00 
			
		
		
		
	 6e0d4e21ff
			
		
	
	
		6e0d4e21ff
		
	
	
	
	
		
			
			Applies VMA master branch patch that removes incorrect asserts:
issue: https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator/issues/102
patch: 39aeff7a43
		
	
			
		
			
				
	
	
		
			17746 lines
		
	
	
	
		
			619 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			17746 lines
		
	
	
	
		
			619 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //
 | |
| // Copyright (c) 2017-2019 Advanced Micro Devices, Inc. All rights reserved.
 | |
| //
 | |
| // Permission is hereby granted, free of charge, to any person obtaining a copy
 | |
| // of this software and associated documentation files (the "Software"), to deal
 | |
| // in the Software without restriction, including without limitation the rights
 | |
| // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | |
| // copies of the Software, and to permit persons to whom the Software is
 | |
| // furnished to do so, subject to the following conditions:
 | |
| //
 | |
| // The above copyright notice and this permission notice shall be included in
 | |
| // all copies or substantial portions of the Software.
 | |
| //
 | |
| // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
| // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
| // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 | |
| // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | |
| // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | |
| // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 | |
| // THE SOFTWARE.
 | |
| //
 | |
| 
 | |
| #ifndef AMD_VULKAN_MEMORY_ALLOCATOR_H
 | |
| #define AMD_VULKAN_MEMORY_ALLOCATOR_H
 | |
| 
 | |
| #ifdef __cplusplus
 | |
| extern "C" {
 | |
| #endif
 | |
| 
 | |
| /** \mainpage Vulkan Memory Allocator
 | |
| 
 | |
| <b>Version 2.3.0</b> (2019-12-04)
 | |
| 
 | |
| Copyright (c) 2017-2019 Advanced Micro Devices, Inc. All rights reserved. \n
 | |
| License: MIT
 | |
| 
 | |
| Documentation of all members: vk_mem_alloc.h
 | |
| 
 | |
| \section main_table_of_contents Table of contents
 | |
| 
 | |
| - <b>User guide</b>
 | |
|   - \subpage quick_start
 | |
|     - [Project setup](@ref quick_start_project_setup)
 | |
|     - [Initialization](@ref quick_start_initialization)
 | |
|     - [Resource allocation](@ref quick_start_resource_allocation)
 | |
|   - \subpage choosing_memory_type
 | |
|     - [Usage](@ref choosing_memory_type_usage)
 | |
|     - [Required and preferred flags](@ref choosing_memory_type_required_preferred_flags)
 | |
|     - [Explicit memory types](@ref choosing_memory_type_explicit_memory_types)
 | |
|     - [Custom memory pools](@ref choosing_memory_type_custom_memory_pools)
 | |
|     - [Dedicated allocations](@ref choosing_memory_type_dedicated_allocations)
 | |
|   - \subpage memory_mapping
 | |
|     - [Mapping functions](@ref memory_mapping_mapping_functions)
 | |
|     - [Persistently mapped memory](@ref memory_mapping_persistently_mapped_memory)
 | |
|     - [Cache flush and invalidate](@ref memory_mapping_cache_control)
 | |
|     - [Finding out if memory is mappable](@ref memory_mapping_finding_if_memory_mappable)
 | |
|   - \subpage staying_within_budget
 | |
|     - [Querying for budget](@ref staying_within_budget_querying_for_budget)
 | |
|     - [Controlling memory usage](@ref staying_within_budget_controlling_memory_usage)
 | |
|   - \subpage custom_memory_pools
 | |
|     - [Choosing memory type index](@ref custom_memory_pools_MemTypeIndex)
 | |
|     - [Linear allocation algorithm](@ref linear_algorithm)
 | |
|       - [Free-at-once](@ref linear_algorithm_free_at_once)
 | |
|       - [Stack](@ref linear_algorithm_stack)
 | |
|       - [Double stack](@ref linear_algorithm_double_stack)
 | |
|       - [Ring buffer](@ref linear_algorithm_ring_buffer)
 | |
|     - [Buddy allocation algorithm](@ref buddy_algorithm)
 | |
|   - \subpage defragmentation
 | |
|   	- [Defragmenting CPU memory](@ref defragmentation_cpu)
 | |
|   	- [Defragmenting GPU memory](@ref defragmentation_gpu)
 | |
|   	- [Additional notes](@ref defragmentation_additional_notes)
 | |
|   	- [Writing custom allocation algorithm](@ref defragmentation_custom_algorithm)
 | |
|   - \subpage lost_allocations
 | |
|   - \subpage statistics
 | |
|     - [Numeric statistics](@ref statistics_numeric_statistics)
 | |
|     - [JSON dump](@ref statistics_json_dump)
 | |
|   - \subpage allocation_annotation
 | |
|     - [Allocation user data](@ref allocation_user_data)
 | |
|     - [Allocation names](@ref allocation_names)
 | |
|   - \subpage debugging_memory_usage
 | |
|     - [Memory initialization](@ref debugging_memory_usage_initialization)
 | |
|     - [Margins](@ref debugging_memory_usage_margins)
 | |
|     - [Corruption detection](@ref debugging_memory_usage_corruption_detection)
 | |
|   - \subpage record_and_replay
 | |
| - \subpage usage_patterns
 | |
|   - [Common mistakes](@ref usage_patterns_common_mistakes)
 | |
|   - [Simple patterns](@ref usage_patterns_simple)
 | |
|   - [Advanced patterns](@ref usage_patterns_advanced)
 | |
| - \subpage configuration
 | |
|   - [Pointers to Vulkan functions](@ref config_Vulkan_functions)
 | |
|   - [Custom host memory allocator](@ref custom_memory_allocator)
 | |
|   - [Device memory allocation callbacks](@ref allocation_callbacks)
 | |
|   - [Device heap memory limit](@ref heap_memory_limit)
 | |
|   - \subpage vk_khr_dedicated_allocation
 | |
| - \subpage general_considerations
 | |
|   - [Thread safety](@ref general_considerations_thread_safety)
 | |
|   - [Validation layer warnings](@ref general_considerations_validation_layer_warnings)
 | |
|   - [Allocation algorithm](@ref general_considerations_allocation_algorithm)
 | |
|   - [Features not supported](@ref general_considerations_features_not_supported)
 | |
| 
 | |
| \section main_see_also See also
 | |
| 
 | |
| - [Product page on GPUOpen](https://gpuopen.com/gaming-product/vulkan-memory-allocator/)
 | |
| - [Source repository on GitHub](https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator)
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| \page quick_start Quick start
 | |
| 
 | |
| \section quick_start_project_setup Project setup
 | |
| 
 | |
| Vulkan Memory Allocator comes in form of a "stb-style" single header file.
 | |
| You don't need to build it as a separate library project.
 | |
| You can add this file directly to your project and submit it to code repository next to your other source files.
 | |
| 
 | |
| "Single header" doesn't mean that everything is contained in C/C++ declarations,
 | |
| like it tends to be in case of inline functions or C++ templates.
 | |
| It means that implementation is bundled with interface in a single file and needs to be extracted using preprocessor macro.
 | |
| If you don't do it properly, you will get linker errors.
 | |
| 
 | |
| To do it properly:
 | |
| 
 | |
| -# Include "vk_mem_alloc.h" file in each CPP file where you want to use the library.
 | |
|    This includes declarations of all members of the library.
 | |
| -# In exacly one CPP file define following macro before this include.
 | |
|    It enables also internal definitions.
 | |
| 
 | |
| \code
 | |
| #define VMA_IMPLEMENTATION
 | |
| #include "vk_mem_alloc.h"
 | |
| \endcode
 | |
| 
 | |
| It may be a good idea to create dedicated CPP file just for this purpose.
 | |
| 
 | |
| Note on language: This library is written in C++, but has C-compatible interface.
 | |
| Thus you can include and use vk_mem_alloc.h in C or C++ code, but full
 | |
| implementation with `VMA_IMPLEMENTATION` macro must be compiled as C++, NOT as C.
 | |
| 
 | |
| Please note that this library includes header `<vulkan/vulkan.h>`, which in turn
 | |
| includes `<windows.h>` on Windows. If you need some specific macros defined
 | |
| before including these headers (like `WIN32_LEAN_AND_MEAN` or
 | |
| `WINVER` for Windows, `VK_USE_PLATFORM_WIN32_KHR` for Vulkan), you must define
 | |
| them before every `#include` of this library.
 | |
| 
 | |
| 
 | |
| \section quick_start_initialization Initialization
 | |
| 
 | |
| At program startup:
 | |
| 
 | |
| -# Initialize Vulkan to have `VkPhysicalDevice` and `VkDevice` object.
 | |
| -# Fill VmaAllocatorCreateInfo structure and create #VmaAllocator object by
 | |
|    calling vmaCreateAllocator().
 | |
| 
 | |
| \code
 | |
| VmaAllocatorCreateInfo allocatorInfo = {};
 | |
| allocatorInfo.physicalDevice = physicalDevice;
 | |
| allocatorInfo.device = device;
 | |
| 
 | |
| VmaAllocator allocator;
 | |
| vmaCreateAllocator(&allocatorInfo, &allocator);
 | |
| \endcode
 | |
| 
 | |
| \section quick_start_resource_allocation Resource allocation
 | |
| 
 | |
| When you want to create a buffer or image:
 | |
| 
 | |
| -# Fill `VkBufferCreateInfo` / `VkImageCreateInfo` structure.
 | |
| -# Fill VmaAllocationCreateInfo structure.
 | |
| -# Call vmaCreateBuffer() / vmaCreateImage() to get `VkBuffer`/`VkImage` with memory
 | |
|    already allocated and bound to it.
 | |
| 
 | |
| \code
 | |
| VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
 | |
| bufferInfo.size = 65536;
 | |
| bufferInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
 | |
| 
 | |
| VmaAllocationCreateInfo allocInfo = {};
 | |
| allocInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
 | |
| 
 | |
| VkBuffer buffer;
 | |
| VmaAllocation allocation;
 | |
| vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
 | |
| \endcode
 | |
| 
 | |
| Don't forget to destroy your objects when no longer needed:
 | |
| 
 | |
| \code
 | |
| vmaDestroyBuffer(allocator, buffer, allocation);
 | |
| vmaDestroyAllocator(allocator);
 | |
| \endcode
 | |
| 
 | |
| 
 | |
| \page choosing_memory_type Choosing memory type
 | |
| 
 | |
| Physical devices in Vulkan support various combinations of memory heaps and
 | |
| types. Help with choosing correct and optimal memory type for your specific
 | |
| resource is one of the key features of this library. You can use it by filling
 | |
| appropriate members of VmaAllocationCreateInfo structure, as described below.
 | |
| You can also combine multiple methods.
 | |
| 
 | |
| -# If you just want to find memory type index that meets your requirements, you
 | |
|    can use function: vmaFindMemoryTypeIndex(), vmaFindMemoryTypeIndexForBufferInfo(),
 | |
|    vmaFindMemoryTypeIndexForImageInfo().
 | |
| -# If you want to allocate a region of device memory without association with any
 | |
|    specific image or buffer, you can use function vmaAllocateMemory(). Usage of
 | |
|    this function is not recommended and usually not needed.
 | |
|    vmaAllocateMemoryPages() function is also provided for creating multiple allocations at once,
 | |
|    which may be useful for sparse binding.
 | |
| -# If you already have a buffer or an image created, you want to allocate memory
 | |
|    for it and then you will bind it yourself, you can use function
 | |
|    vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage().
 | |
|    For binding you should use functions: vmaBindBufferMemory(), vmaBindImageMemory()
 | |
|    or their extended versions: vmaBindBufferMemory2(), vmaBindImageMemory2().
 | |
| -# If you want to create a buffer or an image, allocate memory for it and bind
 | |
|    them together, all in one call, you can use function vmaCreateBuffer(),
 | |
|    vmaCreateImage(). This is the easiest and recommended way to use this library.
 | |
| 
 | |
| When using 3. or 4., the library internally queries Vulkan for memory types
 | |
| supported for that buffer or image (function `vkGetBufferMemoryRequirements()`)
 | |
| and uses only one of these types.
 | |
| 
 | |
| If no memory type can be found that meets all the requirements, these functions
 | |
| return `VK_ERROR_FEATURE_NOT_PRESENT`.
 | |
| 
 | |
| You can leave VmaAllocationCreateInfo structure completely filled with zeros.
 | |
| It means no requirements are specified for memory type.
 | |
| It is valid, although not very useful.
 | |
| 
 | |
| \section choosing_memory_type_usage Usage
 | |
| 
 | |
| The easiest way to specify memory requirements is to fill member
 | |
| VmaAllocationCreateInfo::usage using one of the values of enum #VmaMemoryUsage.
 | |
| It defines high level, common usage types.
 | |
| For more details, see description of this enum.
 | |
| 
 | |
| For example, if you want to create a uniform buffer that will be filled using
 | |
| transfer only once or infrequently and used for rendering every frame, you can
 | |
| do it using following code:
 | |
| 
 | |
| \code
 | |
| VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
 | |
| bufferInfo.size = 65536;
 | |
| bufferInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
 | |
| 
 | |
| VmaAllocationCreateInfo allocInfo = {};
 | |
| allocInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
 | |
| 
 | |
| VkBuffer buffer;
 | |
| VmaAllocation allocation;
 | |
| vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
 | |
| \endcode
 | |
| 
 | |
| \section choosing_memory_type_required_preferred_flags Required and preferred flags
 | |
| 
 | |
| You can specify more detailed requirements by filling members
 | |
| VmaAllocationCreateInfo::requiredFlags and VmaAllocationCreateInfo::preferredFlags
 | |
| with a combination of bits from enum `VkMemoryPropertyFlags`. For example,
 | |
| if you want to create a buffer that will be persistently mapped on host (so it
 | |
| must be `HOST_VISIBLE`) and preferably will also be `HOST_COHERENT` and `HOST_CACHED`,
 | |
| use following code:
 | |
| 
 | |
| \code
 | |
| VmaAllocationCreateInfo allocInfo = {};
 | |
| allocInfo.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
 | |
| allocInfo.preferredFlags = VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
 | |
| allocInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT;
 | |
| 
 | |
| VkBuffer buffer;
 | |
| VmaAllocation allocation;
 | |
| vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
 | |
| \endcode
 | |
| 
 | |
| A memory type is chosen that has all the required flags and as many preferred
 | |
| flags set as possible.
 | |
| 
 | |
| If you use VmaAllocationCreateInfo::usage, it is just internally converted to
 | |
| a set of required and preferred flags.
 | |
| 
 | |
| \section choosing_memory_type_explicit_memory_types Explicit memory types
 | |
| 
 | |
| If you inspected memory types available on the physical device and you have
 | |
| a preference for memory types that you want to use, you can fill member
 | |
| VmaAllocationCreateInfo::memoryTypeBits. It is a bit mask, where each bit set
 | |
| means that a memory type with that index is allowed to be used for the
 | |
| allocation. Special value 0, just like `UINT32_MAX`, means there are no
 | |
| restrictions to memory type index.
 | |
| 
 | |
| Please note that this member is NOT just a memory type index.
 | |
| Still you can use it to choose just one, specific memory type.
 | |
| For example, if you already determined that your buffer should be created in
 | |
| memory type 2, use following code:
 | |
| 
 | |
| \code
 | |
| uint32_t memoryTypeIndex = 2;
 | |
| 
 | |
| VmaAllocationCreateInfo allocInfo = {};
 | |
| allocInfo.memoryTypeBits = 1u << memoryTypeIndex;
 | |
| 
 | |
| VkBuffer buffer;
 | |
| VmaAllocation allocation;
 | |
| vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
 | |
| \endcode
 | |
| 
 | |
| \section choosing_memory_type_custom_memory_pools Custom memory pools
 | |
| 
 | |
| If you allocate from custom memory pool, all the ways of specifying memory
 | |
| requirements described above are not applicable and the aforementioned members
 | |
| of VmaAllocationCreateInfo structure are ignored. Memory type is selected
 | |
| explicitly when creating the pool and then used to make all the allocations from
 | |
| that pool. For further details, see \ref custom_memory_pools.
 | |
| 
 | |
| \section choosing_memory_type_dedicated_allocations Dedicated allocations
 | |
| 
 | |
| Memory for allocations is reserved out of larger block of `VkDeviceMemory`
 | |
| allocated from Vulkan internally. That's the main feature of this whole library.
 | |
| You can still request a separate memory block to be created for an allocation,
 | |
| just like you would do in a trivial solution without using any allocator.
 | |
| In that case, a buffer or image is always bound to that memory at offset 0.
 | |
| This is called a "dedicated allocation".
 | |
| You can explicitly request it by using flag #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
 | |
| The library can also internally decide to use dedicated allocation in some cases, e.g.:
 | |
| 
 | |
| - When the size of the allocation is large.
 | |
| - When [VK_KHR_dedicated_allocation](@ref vk_khr_dedicated_allocation) extension is enabled
 | |
|   and it reports that dedicated allocation is required or recommended for the resource.
 | |
| - When allocation of next big memory block fails due to not enough device memory,
 | |
|   but allocation with the exact requested size succeeds.
 | |
| 
 | |
| 
 | |
| \page memory_mapping Memory mapping
 | |
| 
 | |
| To "map memory" in Vulkan means to obtain a CPU pointer to `VkDeviceMemory`,
 | |
| to be able to read from it or write to it in CPU code.
 | |
| Mapping is possible only of memory allocated from a memory type that has
 | |
| `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` flag.
 | |
| Functions `vkMapMemory()`, `vkUnmapMemory()` are designed for this purpose.
 | |
| You can use them directly with memory allocated by this library,
 | |
| but it is not recommended because of following issue:
 | |
| Mapping the same `VkDeviceMemory` block multiple times is illegal - only one mapping at a time is allowed.
 | |
| This includes mapping disjoint regions. Mapping is not reference-counted internally by Vulkan.
 | |
| Because of this, Vulkan Memory Allocator provides following facilities:
 | |
| 
 | |
| \section memory_mapping_mapping_functions Mapping functions
 | |
| 
 | |
| The library provides following functions for mapping of a specific #VmaAllocation: vmaMapMemory(), vmaUnmapMemory().
 | |
| They are safer and more convenient to use than standard Vulkan functions.
 | |
| You can map an allocation multiple times simultaneously - mapping is reference-counted internally.
 | |
| You can also map different allocations simultaneously regardless of whether they use the same `VkDeviceMemory` block.
 | |
| The way it's implemented is that the library always maps entire memory block, not just region of the allocation.
 | |
| For further details, see description of vmaMapMemory() function.
 | |
| Example:
 | |
| 
 | |
| \code
 | |
| // Having these objects initialized:
 | |
| 
 | |
| struct ConstantBuffer
 | |
| {
 | |
|     ...
 | |
| };
 | |
| ConstantBuffer constantBufferData;
 | |
| 
 | |
| VmaAllocator allocator;
 | |
| VkBuffer constantBuffer;
 | |
| VmaAllocation constantBufferAllocation;
 | |
| 
 | |
| // You can map and fill your buffer using following code:
 | |
| 
 | |
| void* mappedData;
 | |
| vmaMapMemory(allocator, constantBufferAllocation, &mappedData);
 | |
| memcpy(mappedData, &constantBufferData, sizeof(constantBufferData));
 | |
| vmaUnmapMemory(allocator, constantBufferAllocation);
 | |
| \endcode
 | |
| 
 | |
| When mapping, you may see a warning from Vulkan validation layer similar to this one:
 | |
| 
 | |
| <i>Mapping an image with layout VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL can result in undefined behavior if this memory is used by the device. Only GENERAL or PREINITIALIZED should be used.</i>
 | |
| 
 | |
| It happens because the library maps entire `VkDeviceMemory` block, where different
 | |
| types of images and buffers may end up together, especially on GPUs with unified memory like Intel.
 | |
| You can safely ignore it if you are sure you access only memory of the intended
 | |
| object that you wanted to map.
 | |
| 
 | |
| 
 | |
| \section memory_mapping_persistently_mapped_memory Persistently mapped memory
 | |
| 
 | |
| Kepping your memory persistently mapped is generally OK in Vulkan.
 | |
| You don't need to unmap it before using its data on the GPU.
 | |
| The library provides a special feature designed for that:
 | |
| Allocations made with #VMA_ALLOCATION_CREATE_MAPPED_BIT flag set in
 | |
| VmaAllocationCreateInfo::flags stay mapped all the time,
 | |
| so you can just access CPU pointer to it any time
 | |
| without a need to call any "map" or "unmap" function.
 | |
| Example:
 | |
| 
 | |
| \code
 | |
| VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
 | |
| bufCreateInfo.size = sizeof(ConstantBuffer);
 | |
| bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
 | |
| 
 | |
| VmaAllocationCreateInfo allocCreateInfo = {};
 | |
| allocCreateInfo.usage = VMA_MEMORY_USAGE_CPU_ONLY;
 | |
| allocCreateInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT;
 | |
| 
 | |
| VkBuffer buf;
 | |
| VmaAllocation alloc;
 | |
| VmaAllocationInfo allocInfo;
 | |
| vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
 | |
| 
 | |
| // Buffer is already mapped. You can access its memory.
 | |
| memcpy(allocInfo.pMappedData, &constantBufferData, sizeof(constantBufferData));
 | |
| \endcode
 | |
| 
 | |
| There are some exceptions though, when you should consider mapping memory only for a short period of time:
 | |
| 
 | |
| - When operating system is Windows 7 or 8.x (Windows 10 is not affected because it uses WDDM2),
 | |
|   device is discrete AMD GPU,
 | |
|   and memory type is the special 256 MiB pool of `DEVICE_LOCAL + HOST_VISIBLE` memory
 | |
|   (selected when you use #VMA_MEMORY_USAGE_CPU_TO_GPU),
 | |
|   then whenever a memory block allocated from this memory type stays mapped
 | |
|   for the time of any call to `vkQueueSubmit()` or `vkQueuePresentKHR()`, this
 | |
|   block is migrated by WDDM to system RAM, which degrades performance. It doesn't
 | |
|   matter if that particular memory block is actually used by the command buffer
 | |
|   being submitted.
 | |
| - On Mac/MoltenVK there is a known bug - [Issue #175](https://github.com/KhronosGroup/MoltenVK/issues/175)
 | |
|   which requires unmapping before GPU can see updated texture.
 | |
| - Keeping many large memory blocks mapped may impact performance or stability of some debugging tools.
 | |
| 
 | |
| \section memory_mapping_cache_control Cache flush and invalidate
 | |
|   
 | |
| Memory in Vulkan doesn't need to be unmapped before using it on GPU,
 | |
| but unless a memory types has `VK_MEMORY_PROPERTY_HOST_COHERENT_BIT` flag set,
 | |
| you need to manually **invalidate** cache before reading of mapped pointer
 | |
| and **flush** cache after writing to mapped pointer.
 | |
| Map/unmap operations don't do that automatically.
 | |
| Vulkan provides following functions for this purpose `vkFlushMappedMemoryRanges()`,
 | |
| `vkInvalidateMappedMemoryRanges()`, but this library provides more convenient
 | |
| functions that refer to given allocation object: vmaFlushAllocation(),
 | |
| vmaInvalidateAllocation().
 | |
| 
 | |
| Regions of memory specified for flush/invalidate must be aligned to
 | |
| `VkPhysicalDeviceLimits::nonCoherentAtomSize`. This is automatically ensured by the library.
 | |
| In any memory type that is `HOST_VISIBLE` but not `HOST_COHERENT`, all allocations
 | |
| within blocks are aligned to this value, so their offsets are always multiply of
 | |
| `nonCoherentAtomSize` and two different allocations never share same "line" of this size.
 | |
| 
 | |
| Please note that memory allocated with #VMA_MEMORY_USAGE_CPU_ONLY is guaranteed to be `HOST_COHERENT`.
 | |
| 
 | |
| Also, Windows drivers from all 3 **PC** GPU vendors (AMD, Intel, NVIDIA)
 | |
| currently provide `HOST_COHERENT` flag on all memory types that are
 | |
| `HOST_VISIBLE`, so on this platform you may not need to bother.
 | |
| 
 | |
| \section memory_mapping_finding_if_memory_mappable Finding out if memory is mappable
 | |
| 
 | |
| It may happen that your allocation ends up in memory that is `HOST_VISIBLE` (available for mapping)
 | |
| despite it wasn't explicitly requested.
 | |
| For example, application may work on integrated graphics with unified memory (like Intel) or
 | |
| allocation from video memory might have failed, so the library chose system memory as fallback.
 | |
| 
 | |
| You can detect this case and map such allocation to access its memory on CPU directly,
 | |
| instead of launching a transfer operation.
 | |
| In order to do that: inspect `allocInfo.memoryType`, call vmaGetMemoryTypeProperties(),
 | |
| and look for `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` flag in properties of that memory type.
 | |
| 
 | |
| \code
 | |
| VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
 | |
| bufCreateInfo.size = sizeof(ConstantBuffer);
 | |
| bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
 | |
| 
 | |
| VmaAllocationCreateInfo allocCreateInfo = {};
 | |
| allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
 | |
| allocCreateInfo.preferredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
 | |
| 
 | |
| VkBuffer buf;
 | |
| VmaAllocation alloc;
 | |
| VmaAllocationInfo allocInfo;
 | |
| vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
 | |
| 
 | |
| VkMemoryPropertyFlags memFlags;
 | |
| vmaGetMemoryTypeProperties(allocator, allocInfo.memoryType, &memFlags);
 | |
| if((memFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0)
 | |
| {
 | |
|     // Allocation ended up in mappable memory. You can map it and access it directly.
 | |
|     void* mappedData;
 | |
|     vmaMapMemory(allocator, alloc, &mappedData);
 | |
|     memcpy(mappedData, &constantBufferData, sizeof(constantBufferData));
 | |
|     vmaUnmapMemory(allocator, alloc);
 | |
| }
 | |
| else
 | |
| {
 | |
|     // Allocation ended up in non-mappable memory.
 | |
|     // You need to create CPU-side buffer in VMA_MEMORY_USAGE_CPU_ONLY and make a transfer.
 | |
| }
 | |
| \endcode
 | |
| 
 | |
| You can even use #VMA_ALLOCATION_CREATE_MAPPED_BIT flag while creating allocations
 | |
| that are not necessarily `HOST_VISIBLE` (e.g. using #VMA_MEMORY_USAGE_GPU_ONLY).
 | |
| If the allocation ends up in memory type that is `HOST_VISIBLE`, it will be persistently mapped and you can use it directly.
 | |
| If not, the flag is just ignored.
 | |
| Example:
 | |
| 
 | |
| \code
 | |
| VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
 | |
| bufCreateInfo.size = sizeof(ConstantBuffer);
 | |
| bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
 | |
| 
 | |
| VmaAllocationCreateInfo allocCreateInfo = {};
 | |
| allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
 | |
| allocCreateInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT;
 | |
| 
 | |
| VkBuffer buf;
 | |
| VmaAllocation alloc;
 | |
| VmaAllocationInfo allocInfo;
 | |
| vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
 | |
| 
 | |
| if(allocInfo.pUserData != nullptr)
 | |
| {
 | |
|     // Allocation ended up in mappable memory.
 | |
|     // It's persistently mapped. You can access it directly.
 | |
|     memcpy(allocInfo.pMappedData, &constantBufferData, sizeof(constantBufferData));
 | |
| }
 | |
| else
 | |
| {
 | |
|     // Allocation ended up in non-mappable memory.
 | |
|     // You need to create CPU-side buffer in VMA_MEMORY_USAGE_CPU_ONLY and make a transfer.
 | |
| }
 | |
| \endcode
 | |
| 
 | |
| 
 | |
| \page staying_within_budget Staying within budget
 | |
| 
 | |
| When developing a graphics-intensive game or program, it is important to avoid allocating
 | |
| more GPU memory than it's physically available. When the memory is over-committed,
 | |
| various bad things can happen, depending on the specific GPU, graphics driver, and
 | |
| operating system:
 | |
| 
 | |
| - It may just work without any problems.
 | |
| - The application may slow down because some memory blocks are moved to system RAM
 | |
|   and the GPU has to access them through PCI Express bus.
 | |
| - A new allocation may take very long time to complete, even few seconds, and possibly
 | |
|   freeze entire system.
 | |
| - The new allocation may fail with `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
 | |
| - It may even result in GPU crash (TDR), observed as `VK_ERROR_DEVICE_LOST`
 | |
|   returned somewhere later.
 | |
| 
 | |
| \section staying_within_budget_querying_for_budget Querying for budget
 | |
| 
 | |
| To query for current memory usage and available budget, use function vmaGetBudget().
 | |
| Returned structure #VmaBudget contains quantities expressed in bytes, per Vulkan memory heap.
 | |
| 
 | |
| Please note that this function returns different information and works faster than
 | |
| vmaCalculateStats(). vmaGetBudget() can be called every frame or even before every
 | |
| allocation, while vmaCalculateStats() is intended to be used rarely,
 | |
| only to obtain statistical information, e.g. for debugging purposes.
 | |
| 
 | |
| It is recommended to use <b>VK_EXT_memory_budget</b> device extension to obtain information
 | |
| about the budget from Vulkan device. VMA is able to use this extension automatically.
 | |
| When not enabled, the allocator behaves same way, but then it estimates current usage
 | |
| and available budget based on its internal information and Vulkan memory heap sizes,
 | |
| which may be less precise. In order to use this extension:
 | |
| 
 | |
| 1. Make sure extensions VK_EXT_memory_budget and VK_KHR_get_physical_device_properties2
 | |
|    required by it are available and enable them. Please note that the first is a device
 | |
|    extension and the second is instance extension!
 | |
| 2. Use flag #VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT when creating #VmaAllocator object.
 | |
| 3. Make sure to call vmaSetCurrentFrameIndex() every frame. Budget is queried from
 | |
|    Vulkan inside of it to avoid overhead of querying it with every allocation.
 | |
| 
 | |
| \section staying_within_budget_controlling_memory_usage Controlling memory usage
 | |
| 
 | |
| There are many ways in which you can try to stay within the budget.
 | |
| 
 | |
| First, when making new allocation requires allocating a new memory block, the library
 | |
| tries not to exceed the budget automatically. If a block with default recommended size
 | |
| (e.g. 256 MB) would go over budget, a smaller block is allocated, possibly even
 | |
| dedicated memory for just this resource.
 | |
| 
 | |
| If the size of the requested resource plus current memory usage is more than the
 | |
| budget, by default the library still tries to create it, leaving it to the Vulkan
 | |
| implementation whether the allocation succeeds or fails. You can change this behavior
 | |
| by using #VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT flag. With it, the allocation is
 | |
| not made if it would exceed the budget or if the budget is already exceeded.
 | |
| Some other allocations become lost instead to make room for it, if the mechanism of
 | |
| [lost allocations](@ref lost_allocations) is used.
 | |
| If that is not possible, the allocation fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
 | |
| Example usage pattern may be to pass the #VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT flag
 | |
| when creating resources that are not essential for the application (e.g. the texture
 | |
| of a specific object) and not to pass it when creating critically important resources
 | |
| (e.g. render targets).
 | |
| 
 | |
| Finally, you can also use #VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT flag to make sure
 | |
| a new allocation is created only when it fits inside one of the existing memory blocks.
 | |
| If it would require to allocate a new block, if fails instead with `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
 | |
| This also ensures that the function call is very fast because it never goes to Vulkan
 | |
| to obtain a new block.
 | |
| 
 | |
| Please note that creating \ref custom_memory_pools with VmaPoolCreateInfo::minBlockCount
 | |
| set to more than 0 will try to allocate memory blocks without checking whether they
 | |
| fit within budget.
 | |
| 
 | |
| 
 | |
| \page custom_memory_pools Custom memory pools
 | |
| 
 | |
| A memory pool contains a number of `VkDeviceMemory` blocks.
 | |
| The library automatically creates and manages default pool for each memory type available on the device.
 | |
| Default memory pool automatically grows in size.
 | |
| Size of allocated blocks is also variable and managed automatically.
 | |
| 
 | |
| You can create custom pool and allocate memory out of it.
 | |
| It can be useful if you want to:
 | |
| 
 | |
| - Keep certain kind of allocations separate from others.
 | |
| - Enforce particular, fixed size of Vulkan memory blocks.
 | |
| - Limit maximum amount of Vulkan memory allocated for that pool.
 | |
| - Reserve minimum or fixed amount of Vulkan memory always preallocated for that pool.
 | |
| 
 | |
| To use custom memory pools:
 | |
| 
 | |
| -# Fill VmaPoolCreateInfo structure.
 | |
| -# Call vmaCreatePool() to obtain #VmaPool handle.
 | |
| -# When making an allocation, set VmaAllocationCreateInfo::pool to this handle.
 | |
|    You don't need to specify any other parameters of this structure, like `usage`.
 | |
| 
 | |
| Example:
 | |
| 
 | |
| \code
 | |
| // Create a pool that can have at most 2 blocks, 128 MiB each.
 | |
| VmaPoolCreateInfo poolCreateInfo = {};
 | |
| poolCreateInfo.memoryTypeIndex = ...
 | |
| poolCreateInfo.blockSize = 128ull * 1024 * 1024;
 | |
| poolCreateInfo.maxBlockCount = 2;
 | |
| 
 | |
| VmaPool pool;
 | |
| vmaCreatePool(allocator, &poolCreateInfo, &pool);
 | |
| 
 | |
| // Allocate a buffer out of it.
 | |
| VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
 | |
| bufCreateInfo.size = 1024;
 | |
| bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
 | |
| 
 | |
| VmaAllocationCreateInfo allocCreateInfo = {};
 | |
| allocCreateInfo.pool = pool;
 | |
| 
 | |
| VkBuffer buf;
 | |
| VmaAllocation alloc;
 | |
| VmaAllocationInfo allocInfo;
 | |
| vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
 | |
| \endcode
 | |
| 
 | |
| You have to free all allocations made from this pool before destroying it.
 | |
| 
 | |
| \code
 | |
| vmaDestroyBuffer(allocator, buf, alloc);
 | |
| vmaDestroyPool(allocator, pool);
 | |
| \endcode
 | |
| 
 | |
| \section custom_memory_pools_MemTypeIndex Choosing memory type index
 | |
| 
 | |
| When creating a pool, you must explicitly specify memory type index.
 | |
| To find the one suitable for your buffers or images, you can use helper functions
 | |
| vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo().
 | |
| You need to provide structures with example parameters of buffers or images
 | |
| that you are going to create in that pool.
 | |
| 
 | |
| \code
 | |
| VkBufferCreateInfo exampleBufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
 | |
| exampleBufCreateInfo.size = 1024; // Whatever.
 | |
| exampleBufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; // Change if needed.
 | |
| 
 | |
| VmaAllocationCreateInfo allocCreateInfo = {};
 | |
| allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY; // Change if needed.
 | |
| 
 | |
| uint32_t memTypeIndex;
 | |
| vmaFindMemoryTypeIndexForBufferInfo(allocator, &exampleBufCreateInfo, &allocCreateInfo, &memTypeIndex);
 | |
| 
 | |
| VmaPoolCreateInfo poolCreateInfo = {};
 | |
| poolCreateInfo.memoryTypeIndex = memTypeIndex;
 | |
| // ...
 | |
| \endcode
 | |
| 
 | |
| When creating buffers/images allocated in that pool, provide following parameters:
 | |
| 
 | |
| - `VkBufferCreateInfo`: Prefer to pass same parameters as above.
 | |
|   Otherwise you risk creating resources in a memory type that is not suitable for them, which may result in undefined behavior.
 | |
|   Using different `VK_BUFFER_USAGE_` flags may work, but you shouldn't create images in a pool intended for buffers
 | |
|   or the other way around.
 | |
| - VmaAllocationCreateInfo: You don't need to pass same parameters. Fill only `pool` member.
 | |
|   Other members are ignored anyway.
 | |
| 
 | |
| \section linear_algorithm Linear allocation algorithm
 | |
| 
 | |
| Each Vulkan memory block managed by this library has accompanying metadata that
 | |
| keeps track of used and unused regions. By default, the metadata structure and
 | |
| algorithm tries to find best place for new allocations among free regions to
 | |
| optimize memory usage. This way you can allocate and free objects in any order.
 | |
| 
 | |
| 
 | |
| 
 | |
| Sometimes there is a need to use simpler, linear allocation algorithm. You can
 | |
| create custom pool that uses such algorithm by adding flag
 | |
| #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT to VmaPoolCreateInfo::flags while creating
 | |
| #VmaPool object. Then an alternative metadata management is used. It always
 | |
| creates new allocations after last one and doesn't reuse free regions after
 | |
| allocations freed in the middle. It results in better allocation performance and
 | |
| less memory consumed by metadata.
 | |
| 
 | |
| 
 | |
| 
 | |
| With this one flag, you can create a custom pool that can be used in many ways:
 | |
| free-at-once, stack, double stack, and ring buffer. See below for details.
 | |
| 
 | |
| \subsection linear_algorithm_free_at_once Free-at-once
 | |
| 
 | |
| In a pool that uses linear algorithm, you still need to free all the allocations
 | |
| individually, e.g. by using vmaFreeMemory() or vmaDestroyBuffer(). You can free
 | |
| them in any order. New allocations are always made after last one - free space
 | |
| in the middle is not reused. However, when you release all the allocation and
 | |
| the pool becomes empty, allocation starts from the beginning again. This way you
 | |
| can use linear algorithm to speed up creation of allocations that you are going
 | |
| to release all at once.
 | |
| 
 | |
| 
 | |
| 
 | |
| This mode is also available for pools created with VmaPoolCreateInfo::maxBlockCount
 | |
| value that allows multiple memory blocks.
 | |
| 
 | |
| \subsection linear_algorithm_stack Stack
 | |
| 
 | |
| When you free an allocation that was created last, its space can be reused.
 | |
| Thanks to this, if you always release allocations in the order opposite to their
 | |
| creation (LIFO - Last In First Out), you can achieve behavior of a stack.
 | |
| 
 | |
| 
 | |
| 
 | |
| This mode is also available for pools created with VmaPoolCreateInfo::maxBlockCount
 | |
| value that allows multiple memory blocks.
 | |
| 
 | |
| \subsection linear_algorithm_double_stack Double stack
 | |
| 
 | |
| The space reserved by a custom pool with linear algorithm may be used by two
 | |
| stacks:
 | |
| 
 | |
| - First, default one, growing up from offset 0.
 | |
| - Second, "upper" one, growing down from the end towards lower offsets.
 | |
| 
 | |
| To make allocation from upper stack, add flag #VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT
 | |
| to VmaAllocationCreateInfo::flags.
 | |
| 
 | |
| 
 | |
| 
 | |
| Double stack is available only in pools with one memory block -
 | |
| VmaPoolCreateInfo::maxBlockCount must be 1. Otherwise behavior is undefined.
 | |
| 
 | |
| When the two stacks' ends meet so there is not enough space between them for a
 | |
| new allocation, such allocation fails with usual
 | |
| `VK_ERROR_OUT_OF_DEVICE_MEMORY` error.
 | |
| 
 | |
| \subsection linear_algorithm_ring_buffer Ring buffer
 | |
| 
 | |
| When you free some allocations from the beginning and there is not enough free space
 | |
| for a new one at the end of a pool, allocator's "cursor" wraps around to the
 | |
| beginning and starts allocation there. Thanks to this, if you always release
 | |
| allocations in the same order as you created them (FIFO - First In First Out),
 | |
| you can achieve behavior of a ring buffer / queue.
 | |
| 
 | |
| 
 | |
| 
 | |
| Pools with linear algorithm support [lost allocations](@ref lost_allocations) when used as ring buffer.
 | |
| If there is not enough free space for a new allocation, but existing allocations
 | |
| from the front of the queue can become lost, they become lost and the allocation
 | |
| succeeds.
 | |
| 
 | |
| 
 | |
| 
 | |
| Ring buffer is available only in pools with one memory block -
 | |
| VmaPoolCreateInfo::maxBlockCount must be 1. Otherwise behavior is undefined.
 | |
| 
 | |
| \section buddy_algorithm Buddy allocation algorithm
 | |
| 
 | |
| There is another allocation algorithm that can be used with custom pools, called
 | |
| "buddy". Its internal data structure is based on a tree of blocks, each having
 | |
| size that is a power of two and a half of its parent's size. When you want to
 | |
| allocate memory of certain size, a free node in the tree is located. If it's too
 | |
| large, it is recursively split into two halves (called "buddies"). However, if
 | |
| requested allocation size is not a power of two, the size of a tree node is
 | |
| aligned up to the nearest power of two and the remaining space is wasted. When
 | |
| two buddy nodes become free, they are merged back into one larger node.
 | |
| 
 | |
| 
 | |
| 
 | |
| The advantage of buddy allocation algorithm over default algorithm is faster
 | |
| allocation and deallocation, as well as smaller external fragmentation. The
 | |
| disadvantage is more wasted space (internal fragmentation).
 | |
| 
 | |
| For more information, please read ["Buddy memory allocation" on Wikipedia](https://en.wikipedia.org/wiki/Buddy_memory_allocation)
 | |
| or other sources that describe this concept in general.
 | |
| 
 | |
| To use buddy allocation algorithm with a custom pool, add flag
 | |
| #VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT to VmaPoolCreateInfo::flags while creating
 | |
| #VmaPool object.
 | |
| 
 | |
| Several limitations apply to pools that use buddy algorithm:
 | |
| 
 | |
| - It is recommended to use VmaPoolCreateInfo::blockSize that is a power of two.
 | |
|   Otherwise, only largest power of two smaller than the size is used for
 | |
|   allocations. The remaining space always stays unused.
 | |
| - [Margins](@ref debugging_memory_usage_margins) and
 | |
|   [corruption detection](@ref debugging_memory_usage_corruption_detection)
 | |
|   don't work in such pools.
 | |
| - [Lost allocations](@ref lost_allocations) don't work in such pools. You can
 | |
|   use them, but they never become lost. Support may be added in the future.
 | |
| - [Defragmentation](@ref defragmentation) doesn't work with allocations made from
 | |
|   such pool.
 | |
| 
 | |
| \page defragmentation Defragmentation
 | |
| 
 | |
| Interleaved allocations and deallocations of many objects of varying size can
 | |
| cause fragmentation over time, which can lead to a situation where the library is unable
 | |
| to find a continuous range of free memory for a new allocation despite there is
 | |
| enough free space, just scattered across many small free ranges between existing
 | |
| allocations.
 | |
| 
 | |
| To mitigate this problem, you can use defragmentation feature:
 | |
| structure #VmaDefragmentationInfo2, function vmaDefragmentationBegin(), vmaDefragmentationEnd().
 | |
| Given set of allocations, 
 | |
| this function can move them to compact used memory, ensure more continuous free
 | |
| space and possibly also free some `VkDeviceMemory` blocks.
 | |
| 
 | |
| What the defragmentation does is:
 | |
| 
 | |
| - Updates #VmaAllocation objects to point to new `VkDeviceMemory` and offset.
 | |
|   After allocation has been moved, its VmaAllocationInfo::deviceMemory and/or
 | |
|   VmaAllocationInfo::offset changes. You must query them again using
 | |
|   vmaGetAllocationInfo() if you need them.
 | |
| - Moves actual data in memory.
 | |
| 
 | |
| What it doesn't do, so you need to do it yourself:
 | |
| 
 | |
| - Recreate buffers and images that were bound to allocations that were defragmented and
 | |
|   bind them with their new places in memory.
 | |
|   You must use `vkDestroyBuffer()`, `vkDestroyImage()`,
 | |
|   `vkCreateBuffer()`, `vkCreateImage()`, vmaBindBufferMemory(), vmaBindImageMemory()
 | |
|   for that purpose and NOT vmaDestroyBuffer(),
 | |
|   vmaDestroyImage(), vmaCreateBuffer(), vmaCreateImage(), because you don't need to
 | |
|   destroy or create allocation objects!
 | |
| - Recreate views and update descriptors that point to these buffers and images.
 | |
| 
 | |
| \section defragmentation_cpu Defragmenting CPU memory
 | |
| 
 | |
| Following example demonstrates how you can run defragmentation on CPU.
 | |
| Only allocations created in memory types that are `HOST_VISIBLE` can be defragmented.
 | |
| Others are ignored.
 | |
| 
 | |
| The way it works is:
 | |
| 
 | |
| - It temporarily maps entire memory blocks when necessary.
 | |
| - It moves data using `memmove()` function.
 | |
| 
 | |
| \code
 | |
| // Given following variables already initialized:
 | |
| VkDevice device;
 | |
| VmaAllocator allocator;
 | |
| std::vector<VkBuffer> buffers;
 | |
| std::vector<VmaAllocation> allocations;
 | |
| 
 | |
| 
 | |
| const uint32_t allocCount = (uint32_t)allocations.size();
 | |
| std::vector<VkBool32> allocationsChanged(allocCount);
 | |
| 
 | |
| VmaDefragmentationInfo2 defragInfo = {};
 | |
| defragInfo.allocationCount = allocCount;
 | |
| defragInfo.pAllocations = allocations.data();
 | |
| defragInfo.pAllocationsChanged = allocationsChanged.data();
 | |
| defragInfo.maxCpuBytesToMove = VK_WHOLE_SIZE; // No limit.
 | |
| defragInfo.maxCpuAllocationsToMove = UINT32_MAX; // No limit.
 | |
| 
 | |
| VmaDefragmentationContext defragCtx;
 | |
| vmaDefragmentationBegin(allocator, &defragInfo, nullptr, &defragCtx);
 | |
| vmaDefragmentationEnd(allocator, defragCtx);
 | |
| 
 | |
| for(uint32_t i = 0; i < allocCount; ++i)
 | |
| {
 | |
|     if(allocationsChanged[i])
 | |
|     {
 | |
|         // Destroy buffer that is immutably bound to memory region which is no longer valid.
 | |
|         vkDestroyBuffer(device, buffers[i], nullptr);
 | |
| 
 | |
|         // Create new buffer with same parameters.
 | |
|         VkBufferCreateInfo bufferInfo = ...;
 | |
|         vkCreateBuffer(device, &bufferInfo, nullptr, &buffers[i]);
 | |
|             
 | |
|         // You can make dummy call to vkGetBufferMemoryRequirements here to silence validation layer warning.
 | |
|             
 | |
|         // Bind new buffer to new memory region. Data contained in it is already moved.
 | |
|         VmaAllocationInfo allocInfo;
 | |
|         vmaGetAllocationInfo(allocator, allocations[i], &allocInfo);
 | |
|         vmaBindBufferMemory(allocator, allocations[i], buffers[i]);
 | |
|     }
 | |
| }
 | |
| \endcode
 | |
| 
 | |
| Setting VmaDefragmentationInfo2::pAllocationsChanged is optional.
 | |
| This output array tells whether particular allocation in VmaDefragmentationInfo2::pAllocations at the same index
 | |
| has been modified during defragmentation.
 | |
| You can pass null, but you then need to query every allocation passed to defragmentation
 | |
| for new parameters using vmaGetAllocationInfo() if you might need to recreate and rebind a buffer or image associated with it.
 | |
| 
 | |
| If you use [Custom memory pools](@ref choosing_memory_type_custom_memory_pools),
 | |
| you can fill VmaDefragmentationInfo2::poolCount and VmaDefragmentationInfo2::pPools
 | |
| instead of VmaDefragmentationInfo2::allocationCount and VmaDefragmentationInfo2::pAllocations
 | |
| to defragment all allocations in given pools.
 | |
| You cannot use VmaDefragmentationInfo2::pAllocationsChanged in that case.
 | |
| You can also combine both methods.
 | |
| 
 | |
| \section defragmentation_gpu Defragmenting GPU memory
 | |
| 
 | |
| It is also possible to defragment allocations created in memory types that are not `HOST_VISIBLE`.
 | |
| To do that, you need to pass a command buffer that meets requirements as described in
 | |
| VmaDefragmentationInfo2::commandBuffer. The way it works is:
 | |
| 
 | |
| - It creates temporary buffers and binds them to entire memory blocks when necessary.
 | |
| - It issues `vkCmdCopyBuffer()` to passed command buffer.
 | |
| 
 | |
| Example:
 | |
| 
 | |
| \code
 | |
| // Given following variables already initialized:
 | |
| VkDevice device;
 | |
| VmaAllocator allocator;
 | |
| VkCommandBuffer commandBuffer;
 | |
| std::vector<VkBuffer> buffers;
 | |
| std::vector<VmaAllocation> allocations;
 | |
| 
 | |
| 
 | |
| const uint32_t allocCount = (uint32_t)allocations.size();
 | |
| std::vector<VkBool32> allocationsChanged(allocCount);
 | |
| 
 | |
| VkCommandBufferBeginInfo cmdBufBeginInfo = ...;
 | |
| vkBeginCommandBuffer(commandBuffer, &cmdBufBeginInfo);
 | |
| 
 | |
| VmaDefragmentationInfo2 defragInfo = {};
 | |
| defragInfo.allocationCount = allocCount;
 | |
| defragInfo.pAllocations = allocations.data();
 | |
| defragInfo.pAllocationsChanged = allocationsChanged.data();
 | |
| defragInfo.maxGpuBytesToMove = VK_WHOLE_SIZE; // Notice it's "GPU" this time.
 | |
| defragInfo.maxGpuAllocationsToMove = UINT32_MAX; // Notice it's "GPU" this time.
 | |
| defragInfo.commandBuffer = commandBuffer;
 | |
| 
 | |
| VmaDefragmentationContext defragCtx;
 | |
| vmaDefragmentationBegin(allocator, &defragInfo, nullptr, &defragCtx);
 | |
| 
 | |
| vkEndCommandBuffer(commandBuffer);
 | |
| 
 | |
| // Submit commandBuffer.
 | |
| // Wait for a fence that ensures commandBuffer execution finished.
 | |
| 
 | |
| vmaDefragmentationEnd(allocator, defragCtx);
 | |
| 
 | |
| for(uint32_t i = 0; i < allocCount; ++i)
 | |
| {
 | |
|     if(allocationsChanged[i])
 | |
|     {
 | |
|         // Destroy buffer that is immutably bound to memory region which is no longer valid.
 | |
|         vkDestroyBuffer(device, buffers[i], nullptr);
 | |
| 
 | |
|         // Create new buffer with same parameters.
 | |
|         VkBufferCreateInfo bufferInfo = ...;
 | |
|         vkCreateBuffer(device, &bufferInfo, nullptr, &buffers[i]);
 | |
|             
 | |
|         // You can make dummy call to vkGetBufferMemoryRequirements here to silence validation layer warning.
 | |
|             
 | |
|         // Bind new buffer to new memory region. Data contained in it is already moved.
 | |
|         VmaAllocationInfo allocInfo;
 | |
|         vmaGetAllocationInfo(allocator, allocations[i], &allocInfo);
 | |
|         vmaBindBufferMemory(allocator, allocations[i], buffers[i]);
 | |
|     }
 | |
| }
 | |
| \endcode
 | |
| 
 | |
| You can combine these two methods by specifying non-zero `maxGpu*` as well as `maxCpu*` parameters.
 | |
| The library automatically chooses best method to defragment each memory pool.
 | |
| 
 | |
| You may try not to block your entire program to wait until defragmentation finishes,
 | |
| but do it in the background, as long as you carefully fullfill requirements described
 | |
| in function vmaDefragmentationBegin().
 | |
| 
 | |
| \section defragmentation_additional_notes Additional notes
 | |
| 
 | |
| It is only legal to defragment allocations bound to:
 | |
| 
 | |
| - buffers
 | |
| - images created with `VK_IMAGE_CREATE_ALIAS_BIT`, `VK_IMAGE_TILING_LINEAR`, and
 | |
|   being currently in `VK_IMAGE_LAYOUT_GENERAL` or `VK_IMAGE_LAYOUT_PREINITIALIZED`.
 | |
| 
 | |
| Defragmentation of images created with `VK_IMAGE_TILING_OPTIMAL` or in any other
 | |
| layout may give undefined results.
 | |
| 
 | |
| If you defragment allocations bound to images, new images to be bound to new
 | |
| memory region after defragmentation should be created with `VK_IMAGE_LAYOUT_PREINITIALIZED`
 | |
| and then transitioned to their original layout from before defragmentation if
 | |
| needed using an image memory barrier.
 | |
| 
 | |
| While using defragmentation, you may experience validation layer warnings, which you just need to ignore.
 | |
| See [Validation layer warnings](@ref general_considerations_validation_layer_warnings).
 | |
| 
 | |
| Please don't expect memory to be fully compacted after defragmentation.
 | |
| Algorithms inside are based on some heuristics that try to maximize number of Vulkan
 | |
| memory blocks to make totally empty to release them, as well as to maximimze continuous
 | |
| empty space inside remaining blocks, while minimizing the number and size of allocations that
 | |
| need to be moved. Some fragmentation may still remain - this is normal.
 | |
| 
 | |
| \section defragmentation_custom_algorithm Writing custom defragmentation algorithm
 | |
| 
 | |
| If you want to implement your own, custom defragmentation algorithm,
 | |
| there is infrastructure prepared for that,
 | |
| but it is not exposed through the library API - you need to hack its source code.
 | |
| Here are steps needed to do this:
 | |
| 
 | |
| -# Main thing you need to do is to define your own class derived from base abstract
 | |
|    class `VmaDefragmentationAlgorithm` and implement your version of its pure virtual methods.
 | |
|    See definition and comments of this class for details.
 | |
| -# Your code needs to interact with device memory block metadata.
 | |
|    If you need more access to its data than it's provided by its public interface,
 | |
|    declare your new class as a friend class e.g. in class `VmaBlockMetadata_Generic`.
 | |
| -# If you want to create a flag that would enable your algorithm or pass some additional
 | |
|    flags to configure it, add them to `VmaDefragmentationFlagBits` and use them in
 | |
|    VmaDefragmentationInfo2::flags.
 | |
| -# Modify function `VmaBlockVectorDefragmentationContext::Begin` to create object
 | |
|    of your new class whenever needed.
 | |
| 
 | |
| 
 | |
| \page lost_allocations Lost allocations
 | |
| 
 | |
| If your game oversubscribes video memory, if may work OK in previous-generation
 | |
| graphics APIs (DirectX 9, 10, 11, OpenGL) because resources are automatically
 | |
| paged to system RAM. In Vulkan you can't do it because when you run out of
 | |
| memory, an allocation just fails. If you have more data (e.g. textures) that can
 | |
| fit into VRAM and you don't need it all at once, you may want to upload them to
 | |
| GPU on demand and "push out" ones that are not used for a long time to make room
 | |
| for the new ones, effectively using VRAM (or a cartain memory pool) as a form of
 | |
| cache. Vulkan Memory Allocator can help you with that by supporting a concept of
 | |
| "lost allocations".
 | |
| 
 | |
| To create an allocation that can become lost, include #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT
 | |
| flag in VmaAllocationCreateInfo::flags. Before using a buffer or image bound to
 | |
| such allocation in every new frame, you need to query it if it's not lost.
 | |
| To check it, call vmaTouchAllocation().
 | |
| If the allocation is lost, you should not use it or buffer/image bound to it.
 | |
| You mustn't forget to destroy this allocation and this buffer/image.
 | |
| vmaGetAllocationInfo() can also be used for checking status of the allocation.
 | |
| Allocation is lost when returned VmaAllocationInfo::deviceMemory == `VK_NULL_HANDLE`.
 | |
| 
 | |
| To create an allocation that can make some other allocations lost to make room
 | |
| for it, use #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flag. You will
 | |
| usually use both flags #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT and
 | |
| #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT at the same time.
 | |
| 
 | |
| Warning! Current implementation uses quite naive, brute force algorithm,
 | |
| which can make allocation calls that use #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT
 | |
| flag quite slow. A new, more optimal algorithm and data structure to speed this
 | |
| up is planned for the future.
 | |
| 
 | |
| <b>Q: When interleaving creation of new allocations with usage of existing ones,
 | |
| how do you make sure that an allocation won't become lost while it's used in the
 | |
| current frame?</b>
 | |
| 
 | |
| It is ensured because vmaTouchAllocation() / vmaGetAllocationInfo() not only returns allocation
 | |
| status/parameters and checks whether it's not lost, but when it's not, it also
 | |
| atomically marks it as used in the current frame, which makes it impossible to
 | |
| become lost in that frame. It uses lockless algorithm, so it works fast and
 | |
| doesn't involve locking any internal mutex.
 | |
| 
 | |
| <b>Q: What if my allocation may still be in use by the GPU when it's rendering a
 | |
| previous frame while I already submit new frame on the CPU?</b>
 | |
| 
 | |
| You can make sure that allocations "touched" by vmaTouchAllocation() / vmaGetAllocationInfo() will not
 | |
| become lost for a number of additional frames back from the current one by
 | |
| specifying this number as VmaAllocatorCreateInfo::frameInUseCount (for default
 | |
| memory pool) and VmaPoolCreateInfo::frameInUseCount (for custom pool).
 | |
| 
 | |
| <b>Q: How do you inform the library when new frame starts?</b>
 | |
| 
 | |
| You need to call function vmaSetCurrentFrameIndex().
 | |
| 
 | |
| Example code:
 | |
| 
 | |
| \code
 | |
| struct MyBuffer
 | |
| {
 | |
|     VkBuffer m_Buf = nullptr;
 | |
|     VmaAllocation m_Alloc = nullptr;
 | |
| 
 | |
|     // Called when the buffer is really needed in the current frame.
 | |
|     void EnsureBuffer();
 | |
| };
 | |
| 
 | |
| void MyBuffer::EnsureBuffer()
 | |
| {
 | |
|     // Buffer has been created.
 | |
|     if(m_Buf != VK_NULL_HANDLE)
 | |
|     {
 | |
|         // Check if its allocation is not lost + mark it as used in current frame.
 | |
|         if(vmaTouchAllocation(allocator, m_Alloc))
 | |
|         {
 | |
|             // It's all OK - safe to use m_Buf.
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Buffer not yet exists or lost - destroy and recreate it.
 | |
| 
 | |
|     vmaDestroyBuffer(allocator, m_Buf, m_Alloc);
 | |
| 
 | |
|     VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
 | |
|     bufCreateInfo.size = 1024;
 | |
|     bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
 | |
| 
 | |
|     VmaAllocationCreateInfo allocCreateInfo = {};
 | |
|     allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
 | |
|     allocCreateInfo.flags = VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT |
 | |
|         VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT;
 | |
| 
 | |
|     vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &m_Buf, &m_Alloc, nullptr);
 | |
| }
 | |
| \endcode
 | |
| 
 | |
| When using lost allocations, you may see some Vulkan validation layer warnings
 | |
| about overlapping regions of memory bound to different kinds of buffers and
 | |
| images. This is still valid as long as you implement proper handling of lost
 | |
| allocations (like in the example above) and don't use them.
 | |
| 
 | |
| You can create an allocation that is already in lost state from the beginning using function
 | |
| vmaCreateLostAllocation(). It may be useful if you need a "dummy" allocation that is not null.
 | |
| 
 | |
| You can call function vmaMakePoolAllocationsLost() to set all eligible allocations
 | |
| in a specified custom pool to lost state.
 | |
| Allocations that have been "touched" in current frame or VmaPoolCreateInfo::frameInUseCount frames back
 | |
| cannot become lost.
 | |
| 
 | |
| <b>Q: Can I touch allocation that cannot become lost?</b>
 | |
| 
 | |
| Yes, although it has no visible effect.
 | |
| Calls to vmaGetAllocationInfo() and vmaTouchAllocation() update last use frame index
 | |
| also for allocations that cannot become lost, but the only way to observe it is to dump
 | |
| internal allocator state using vmaBuildStatsString().
 | |
| You can use this feature for debugging purposes to explicitly mark allocations that you use
 | |
| in current frame and then analyze JSON dump to see for how long each allocation stays unused.
 | |
| 
 | |
| 
 | |
| \page statistics Statistics
 | |
| 
 | |
| This library contains functions that return information about its internal state,
 | |
| especially the amount of memory allocated from Vulkan.
 | |
| Please keep in mind that these functions need to traverse all internal data structures
 | |
| to gather these information, so they may be quite time-consuming.
 | |
| Don't call them too often.
 | |
| 
 | |
| \section statistics_numeric_statistics Numeric statistics
 | |
| 
 | |
| You can query for overall statistics of the allocator using function vmaCalculateStats().
 | |
| Information are returned using structure #VmaStats.
 | |
| It contains #VmaStatInfo - number of allocated blocks, number of allocations
 | |
| (occupied ranges in these blocks), number of unused (free) ranges in these blocks,
 | |
| number of bytes used and unused (but still allocated from Vulkan) and other information.
 | |
| They are summed across memory heaps, memory types and total for whole allocator.
 | |
| 
 | |
| You can query for statistics of a custom pool using function vmaGetPoolStats().
 | |
| Information are returned using structure #VmaPoolStats.
 | |
| 
 | |
| You can query for information about specific allocation using function vmaGetAllocationInfo().
 | |
| It fill structure #VmaAllocationInfo.
 | |
| 
 | |
| \section statistics_json_dump JSON dump
 | |
| 
 | |
| You can dump internal state of the allocator to a string in JSON format using function vmaBuildStatsString().
 | |
| The result is guaranteed to be correct JSON.
 | |
| It uses ANSI encoding.
 | |
| Any strings provided by user (see [Allocation names](@ref allocation_names))
 | |
| are copied as-is and properly escaped for JSON, so if they use UTF-8, ISO-8859-2 or any other encoding,
 | |
| this JSON string can be treated as using this encoding.
 | |
| It must be freed using function vmaFreeStatsString().
 | |
| 
 | |
| The format of this JSON string is not part of official documentation of the library,
 | |
| but it will not change in backward-incompatible way without increasing library major version number
 | |
| and appropriate mention in changelog.
 | |
| 
 | |
| The JSON string contains all the data that can be obtained using vmaCalculateStats().
 | |
| It can also contain detailed map of allocated memory blocks and their regions -
 | |
| free and occupied by allocations.
 | |
| This allows e.g. to visualize the memory or assess fragmentation.
 | |
| 
 | |
| 
 | |
| \page allocation_annotation Allocation names and user data
 | |
| 
 | |
| \section allocation_user_data Allocation user data
 | |
| 
 | |
| You can annotate allocations with your own information, e.g. for debugging purposes.
 | |
| To do that, fill VmaAllocationCreateInfo::pUserData field when creating
 | |
| an allocation. It's an opaque `void*` pointer. You can use it e.g. as a pointer,
 | |
| some handle, index, key, ordinal number or any other value that would associate
 | |
| the allocation with your custom metadata.
 | |
| 
 | |
| \code
 | |
| VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
 | |
| // Fill bufferInfo...
 | |
| 
 | |
| MyBufferMetadata* pMetadata = CreateBufferMetadata();
 | |
| 
 | |
| VmaAllocationCreateInfo allocCreateInfo = {};
 | |
| allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
 | |
| allocCreateInfo.pUserData = pMetadata;
 | |
| 
 | |
| VkBuffer buffer;
 | |
| VmaAllocation allocation;
 | |
| vmaCreateBuffer(allocator, &bufferInfo, &allocCreateInfo, &buffer, &allocation, nullptr);
 | |
| \endcode
 | |
| 
 | |
| The pointer may be later retrieved as VmaAllocationInfo::pUserData:
 | |
| 
 | |
| \code
 | |
| VmaAllocationInfo allocInfo;
 | |
| vmaGetAllocationInfo(allocator, allocation, &allocInfo);
 | |
| MyBufferMetadata* pMetadata = (MyBufferMetadata*)allocInfo.pUserData;
 | |
| \endcode
 | |
| 
 | |
| It can also be changed using function vmaSetAllocationUserData().
 | |
| 
 | |
| Values of (non-zero) allocations' `pUserData` are printed in JSON report created by
 | |
| vmaBuildStatsString(), in hexadecimal form.
 | |
| 
 | |
| \section allocation_names Allocation names
 | |
| 
 | |
| There is alternative mode available where `pUserData` pointer is used to point to
 | |
| a null-terminated string, giving a name to the allocation. To use this mode,
 | |
| set #VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT flag in VmaAllocationCreateInfo::flags.
 | |
| Then `pUserData` passed as VmaAllocationCreateInfo::pUserData or argument to
 | |
| vmaSetAllocationUserData() must be either null or pointer to a null-terminated string.
 | |
| The library creates internal copy of the string, so the pointer you pass doesn't need
 | |
| to be valid for whole lifetime of the allocation. You can free it after the call.
 | |
| 
 | |
| \code
 | |
| VkImageCreateInfo imageInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO };
 | |
| // Fill imageInfo...
 | |
| 
 | |
| std::string imageName = "Texture: ";
 | |
| imageName += fileName;
 | |
| 
 | |
| VmaAllocationCreateInfo allocCreateInfo = {};
 | |
| allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
 | |
| allocCreateInfo.flags = VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT;
 | |
| allocCreateInfo.pUserData = imageName.c_str();
 | |
| 
 | |
| VkImage image;
 | |
| VmaAllocation allocation;
 | |
| vmaCreateImage(allocator, &imageInfo, &allocCreateInfo, &image, &allocation, nullptr);
 | |
| \endcode
 | |
| 
 | |
| The value of `pUserData` pointer of the allocation will be different than the one
 | |
| you passed when setting allocation's name - pointing to a buffer managed
 | |
| internally that holds copy of the string.
 | |
| 
 | |
| \code
 | |
| VmaAllocationInfo allocInfo;
 | |
| vmaGetAllocationInfo(allocator, allocation, &allocInfo);
 | |
| const char* imageName = (const char*)allocInfo.pUserData;
 | |
| printf("Image name: %s\n", imageName);
 | |
| \endcode
 | |
| 
 | |
| That string is also printed in JSON report created by vmaBuildStatsString().
 | |
| 
 | |
| 
 | |
| \page debugging_memory_usage Debugging incorrect memory usage
 | |
| 
 | |
| If you suspect a bug with memory usage, like usage of uninitialized memory or
 | |
| memory being overwritten out of bounds of an allocation,
 | |
| you can use debug features of this library to verify this.
 | |
| 
 | |
| \section debugging_memory_usage_initialization Memory initialization
 | |
| 
 | |
| If you experience a bug with incorrect and nondeterministic data in your program and you suspect uninitialized memory to be used,
 | |
| you can enable automatic memory initialization to verify this.
 | |
| To do it, define macro `VMA_DEBUG_INITIALIZE_ALLOCATIONS` to 1.
 | |
| 
 | |
| \code
 | |
| #define VMA_DEBUG_INITIALIZE_ALLOCATIONS 1
 | |
| #include "vk_mem_alloc.h"
 | |
| \endcode
 | |
| 
 | |
| It makes memory of all new allocations initialized to bit pattern `0xDCDCDCDC`.
 | |
| Before an allocation is destroyed, its memory is filled with bit pattern `0xEFEFEFEF`.
 | |
| Memory is automatically mapped and unmapped if necessary.
 | |
| 
 | |
| If you find these values while debugging your program, good chances are that you incorrectly
 | |
| read Vulkan memory that is allocated but not initialized, or already freed, respectively.
 | |
| 
 | |
| Memory initialization works only with memory types that are `HOST_VISIBLE`.
 | |
| It works also with dedicated allocations.
 | |
| It doesn't work with allocations created with #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag,
 | |
| as they cannot be mapped.
 | |
| 
 | |
| \section debugging_memory_usage_margins Margins
 | |
| 
 | |
| By default, allocations are laid out in memory blocks next to each other if possible
 | |
| (considering required alignment, `bufferImageGranularity`, and `nonCoherentAtomSize`).
 | |
| 
 | |
| 
 | |
| 
 | |
| Define macro `VMA_DEBUG_MARGIN` to some non-zero value (e.g. 16) to enforce specified
 | |
| number of bytes as a margin before and after every allocation.
 | |
| 
 | |
| \code
 | |
| #define VMA_DEBUG_MARGIN 16
 | |
| #include "vk_mem_alloc.h"
 | |
| \endcode
 | |
| 
 | |
| 
 | |
| 
 | |
| If your bug goes away after enabling margins, it means it may be caused by memory
 | |
| being overwritten outside of allocation boundaries. It is not 100% certain though.
 | |
| Change in application behavior may also be caused by different order and distribution
 | |
| of allocations across memory blocks after margins are applied.
 | |
| 
 | |
| The margin is applied also before first and after last allocation in a block.
 | |
| It may occur only once between two adjacent allocations.
 | |
| 
 | |
| Margins work with all types of memory.
 | |
| 
 | |
| Margin is applied only to allocations made out of memory blocks and not to dedicated
 | |
| allocations, which have their own memory block of specific size.
 | |
| It is thus not applied to allocations made using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT flag
 | |
| or those automatically decided to put into dedicated allocations, e.g. due to its
 | |
| large size or recommended by VK_KHR_dedicated_allocation extension.
 | |
| Margins are also not active in custom pools created with #VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT flag.
 | |
| 
 | |
| Margins appear in [JSON dump](@ref statistics_json_dump) as part of free space.
 | |
| 
 | |
| Note that enabling margins increases memory usage and fragmentation.
 | |
| 
 | |
| \section debugging_memory_usage_corruption_detection Corruption detection
 | |
| 
 | |
| You can additionally define macro `VMA_DEBUG_DETECT_CORRUPTION` to 1 to enable validation
 | |
| of contents of the margins.
 | |
| 
 | |
| \code
 | |
| #define VMA_DEBUG_MARGIN 16
 | |
| #define VMA_DEBUG_DETECT_CORRUPTION 1
 | |
| #include "vk_mem_alloc.h"
 | |
| \endcode
 | |
| 
 | |
| When this feature is enabled, number of bytes specified as `VMA_DEBUG_MARGIN`
 | |
| (it must be multiply of 4) before and after every allocation is filled with a magic number.
 | |
| This idea is also know as "canary".
 | |
| Memory is automatically mapped and unmapped if necessary.
 | |
| 
 | |
| This number is validated automatically when the allocation is destroyed.
 | |
| If it's not equal to the expected value, `VMA_ASSERT()` is executed.
 | |
| It clearly means that either CPU or GPU overwritten the memory outside of boundaries of the allocation,
 | |
| which indicates a serious bug.
 | |
| 
 | |
| You can also explicitly request checking margins of all allocations in all memory blocks
 | |
| that belong to specified memory types by using function vmaCheckCorruption(),
 | |
| or in memory blocks that belong to specified custom pool, by using function 
 | |
| vmaCheckPoolCorruption().
 | |
| 
 | |
| Margin validation (corruption detection) works only for memory types that are
 | |
| `HOST_VISIBLE` and `HOST_COHERENT`.
 | |
| 
 | |
| 
 | |
| \page record_and_replay Record and replay
 | |
| 
 | |
| \section record_and_replay_introduction Introduction
 | |
| 
 | |
| While using the library, sequence of calls to its functions together with their
 | |
| parameters can be recorded to a file and later replayed using standalone player
 | |
| application. It can be useful to:
 | |
| 
 | |
| - Test correctness - check if same sequence of calls will not cause crash or
 | |
|   failures on a target platform.
 | |
| - Gather statistics - see number of allocations, peak memory usage, number of
 | |
|   calls etc.
 | |
| - Benchmark performance - see how much time it takes to replay the whole
 | |
|   sequence.
 | |
| 
 | |
| \section record_and_replay_usage Usage
 | |
| 
 | |
| Recording functionality is disabled by default.
 | |
| To enable it, define following macro before every include of this library:
 | |
| 
 | |
| \code
 | |
| #define VMA_RECORDING_ENABLED 1
 | |
| \endcode
 | |
| 
 | |
| <b>To record sequence of calls to a file:</b> Fill in
 | |
| VmaAllocatorCreateInfo::pRecordSettings member while creating #VmaAllocator
 | |
| object. File is opened and written during whole lifetime of the allocator.
 | |
| 
 | |
| <b>To replay file:</b> Use VmaReplay - standalone command-line program.
 | |
| Precompiled binary can be found in "bin" directory.
 | |
| Its source can be found in "src/VmaReplay" directory.
 | |
| Its project is generated by Premake.
 | |
| Command line syntax is printed when the program is launched without parameters.
 | |
| Basic usage:
 | |
| 
 | |
|     VmaReplay.exe MyRecording.csv
 | |
| 
 | |
| <b>Documentation of file format</b> can be found in file: "docs/Recording file format.md".
 | |
| It's a human-readable, text file in CSV format (Comma Separated Values).
 | |
| 
 | |
| \section record_and_replay_additional_considerations Additional considerations
 | |
| 
 | |
| - Replaying file that was recorded on a different GPU (with different parameters
 | |
|   like `bufferImageGranularity`, `nonCoherentAtomSize`, and especially different
 | |
|   set of memory heaps and types) may give different performance and memory usage
 | |
|   results, as well as issue some warnings and errors.
 | |
| - Current implementation of recording in VMA, as well as VmaReplay application, is
 | |
|   coded and tested only on Windows. Inclusion of recording code is driven by
 | |
|   `VMA_RECORDING_ENABLED` macro. Support for other platforms should be easy to
 | |
|   add. Contributions are welcomed.
 | |
| 
 | |
| 
 | |
| \page usage_patterns Recommended usage patterns
 | |
| 
 | |
| See also slides from talk:
 | |
| [Sawicki, Adam. Advanced Graphics Techniques Tutorial: Memory management in Vulkan and DX12. Game Developers Conference, 2018](https://www.gdcvault.com/play/1025458/Advanced-Graphics-Techniques-Tutorial-New)
 | |
| 
 | |
| 
 | |
| \section usage_patterns_common_mistakes Common mistakes
 | |
| 
 | |
| <b>Use of CPU_TO_GPU instead of CPU_ONLY memory</b>
 | |
| 
 | |
| #VMA_MEMORY_USAGE_CPU_TO_GPU is recommended only for resources that will be
 | |
| mapped and written by the CPU, as well as read directly by the GPU - like some
 | |
| buffers or textures updated every frame (dynamic). If you create a staging copy
 | |
| of a resource to be written by CPU and then used as a source of transfer to
 | |
| another resource placed in the GPU memory, that staging resource should be
 | |
| created with #VMA_MEMORY_USAGE_CPU_ONLY. Please read the descriptions of these
 | |
| enums carefully for details.
 | |
| 
 | |
| <b>Unnecessary use of custom pools</b>
 | |
| 
 | |
| \ref custom_memory_pools may be useful for special purposes - when you want to
 | |
| keep certain type of resources separate e.g. to reserve minimum amount of memory
 | |
| for them, limit maximum amount of memory they can occupy, or make some of them
 | |
| push out the other through the mechanism of \ref lost_allocations. For most
 | |
| resources this is not needed and so it is not recommended to create #VmaPool
 | |
| objects and allocations out of them. Allocating from the default pool is sufficient.
 | |
| 
 | |
| \section usage_patterns_simple Simple patterns
 | |
| 
 | |
| \subsection usage_patterns_simple_render_targets Render targets
 | |
| 
 | |
| <b>When:</b>
 | |
| Any resources that you frequently write and read on GPU,
 | |
| e.g. images used as color attachments (aka "render targets"), depth-stencil attachments,
 | |
| images/buffers used as storage image/buffer (aka "Unordered Access View (UAV)").
 | |
| 
 | |
| <b>What to do:</b>
 | |
| Create them in video memory that is fastest to access from GPU using
 | |
| #VMA_MEMORY_USAGE_GPU_ONLY.
 | |
| 
 | |
| Consider using [VK_KHR_dedicated_allocation](@ref vk_khr_dedicated_allocation) extension
 | |
| and/or manually creating them as dedicated allocations using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT,
 | |
| especially if they are large or if you plan to destroy and recreate them e.g. when
 | |
| display resolution changes.
 | |
| Prefer to create such resources first and all other GPU resources (like textures and vertex buffers) later.
 | |
| 
 | |
| \subsection usage_patterns_simple_immutable_resources Immutable resources
 | |
| 
 | |
| <b>When:</b>
 | |
| Any resources that you fill on CPU only once (aka "immutable") or infrequently
 | |
| and then read frequently on GPU,
 | |
| e.g. textures, vertex and index buffers, constant buffers that don't change often.
 | |
| 
 | |
| <b>What to do:</b>
 | |
| Create them in video memory that is fastest to access from GPU using
 | |
| #VMA_MEMORY_USAGE_GPU_ONLY.
 | |
| 
 | |
| To initialize content of such resource, create a CPU-side (aka "staging") copy of it
 | |
| in system memory - #VMA_MEMORY_USAGE_CPU_ONLY, map it, fill it,
 | |
| and submit a transfer from it to the GPU resource.
 | |
| You can keep the staging copy if you need it for another upload transfer in the future.
 | |
| If you don't, you can destroy it or reuse this buffer for uploading different resource
 | |
| after the transfer finishes.
 | |
| 
 | |
| Prefer to create just buffers in system memory rather than images, even for uploading textures.
 | |
| Use `vkCmdCopyBufferToImage()`.
 | |
| Dont use images with `VK_IMAGE_TILING_LINEAR`.
 | |
| 
 | |
| \subsection usage_patterns_dynamic_resources Dynamic resources
 | |
| 
 | |
| <b>When:</b>
 | |
| Any resources that change frequently (aka "dynamic"), e.g. every frame or every draw call,
 | |
| written on CPU, read on GPU.
 | |
| 
 | |
| <b>What to do:</b>
 | |
| Create them using #VMA_MEMORY_USAGE_CPU_TO_GPU.
 | |
| You can map it and write to it directly on CPU, as well as read from it on GPU.
 | |
| 
 | |
| This is a more complex situation. Different solutions are possible,
 | |
| and the best one depends on specific GPU type, but you can use this simple approach for the start.
 | |
| Prefer to write to such resource sequentially (e.g. using `memcpy`).
 | |
| Don't perform random access or any reads from it on CPU, as it may be very slow.
 | |
| 
 | |
| \subsection usage_patterns_readback Readback
 | |
| 
 | |
| <b>When:</b>
 | |
| Resources that contain data written by GPU that you want to read back on CPU,
 | |
| e.g. results of some computations.
 | |
| 
 | |
| <b>What to do:</b>
 | |
| Create them using #VMA_MEMORY_USAGE_GPU_TO_CPU.
 | |
| You can write to them directly on GPU, as well as map and read them on CPU.
 | |
| 
 | |
| \section usage_patterns_advanced Advanced patterns
 | |
| 
 | |
| \subsection usage_patterns_integrated_graphics Detecting integrated graphics
 | |
| 
 | |
| You can support integrated graphics (like Intel HD Graphics, AMD APU) better
 | |
| by detecting it in Vulkan.
 | |
| To do it, call `vkGetPhysicalDeviceProperties()`, inspect
 | |
| `VkPhysicalDeviceProperties::deviceType` and look for `VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU`.
 | |
| When you find it, you can assume that memory is unified and all memory types are comparably fast
 | |
| to access from GPU, regardless of `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`.
 | |
| 
 | |
| You can then sum up sizes of all available memory heaps and treat them as useful for
 | |
| your GPU resources, instead of only `DEVICE_LOCAL` ones.
 | |
| You can also prefer to create your resources in memory types that are `HOST_VISIBLE` to map them
 | |
| directly instead of submitting explicit transfer (see below).
 | |
| 
 | |
| \subsection usage_patterns_direct_vs_transfer Direct access versus transfer
 | |
| 
 | |
| For resources that you frequently write on CPU and read on GPU, many solutions are possible:
 | |
| 
 | |
| -# Create one copy in video memory using #VMA_MEMORY_USAGE_GPU_ONLY,
 | |
|    second copy in system memory using #VMA_MEMORY_USAGE_CPU_ONLY and submit explicit tranfer each time.
 | |
| -# Create just single copy using #VMA_MEMORY_USAGE_CPU_TO_GPU, map it and fill it on CPU,
 | |
|    read it directly on GPU.
 | |
| -# Create just single copy using #VMA_MEMORY_USAGE_CPU_ONLY, map it and fill it on CPU,
 | |
|    read it directly on GPU.
 | |
| 
 | |
| Which solution is the most efficient depends on your resource and especially on the GPU.
 | |
| It is best to measure it and then make the decision.
 | |
| Some general recommendations:
 | |
| 
 | |
| - On integrated graphics use (2) or (3) to avoid unnecesary time and memory overhead
 | |
|   related to using a second copy and making transfer.
 | |
| - For small resources (e.g. constant buffers) use (2).
 | |
|   Discrete AMD cards have special 256 MiB pool of video memory that is directly mappable.
 | |
|   Even if the resource ends up in system memory, its data may be cached on GPU after first
 | |
|   fetch over PCIe bus.
 | |
| - For larger resources (e.g. textures), decide between (1) and (2).
 | |
|   You may want to differentiate NVIDIA and AMD, e.g. by looking for memory type that is
 | |
|   both `DEVICE_LOCAL` and `HOST_VISIBLE`. When you find it, use (2), otherwise use (1).
 | |
| 
 | |
| Similarly, for resources that you frequently write on GPU and read on CPU, multiple
 | |
| solutions are possible:
 | |
| 
 | |
| -# Create one copy in video memory using #VMA_MEMORY_USAGE_GPU_ONLY,
 | |
|    second copy in system memory using #VMA_MEMORY_USAGE_GPU_TO_CPU and submit explicit tranfer each time.
 | |
| -# Create just single copy using #VMA_MEMORY_USAGE_GPU_TO_CPU, write to it directly on GPU,
 | |
|    map it and read it on CPU.
 | |
| 
 | |
| You should take some measurements to decide which option is faster in case of your specific
 | |
| resource.
 | |
| 
 | |
| If you don't want to specialize your code for specific types of GPUs, you can still make
 | |
| an simple optimization for cases when your resource ends up in mappable memory to use it
 | |
| directly in this case instead of creating CPU-side staging copy.
 | |
| For details see [Finding out if memory is mappable](@ref memory_mapping_finding_if_memory_mappable).
 | |
| 
 | |
| 
 | |
| \page configuration Configuration
 | |
| 
 | |
| Please check "CONFIGURATION SECTION" in the code to find macros that you can define
 | |
| before each include of this file or change directly in this file to provide
 | |
| your own implementation of basic facilities like assert, `min()` and `max()` functions,
 | |
| mutex, atomic etc.
 | |
| The library uses its own implementation of containers by default, but you can switch to using
 | |
| STL containers instead.
 | |
| 
 | |
| For example, define `VMA_ASSERT(expr)` before including the library to provide
 | |
| custom implementation of the assertion, compatible with your project.
 | |
| By default it is defined to standard C `assert(expr)` in `_DEBUG` configuration
 | |
| and empty otherwise.
 | |
| 
 | |
| \section config_Vulkan_functions Pointers to Vulkan functions
 | |
| 
 | |
| The library uses Vulkan functions straight from the `vulkan.h` header by default.
 | |
| If you want to provide your own pointers to these functions, e.g. fetched using
 | |
| `vkGetInstanceProcAddr()` and `vkGetDeviceProcAddr()`:
 | |
| 
 | |
| -# Define `VMA_STATIC_VULKAN_FUNCTIONS 0`.
 | |
| -# Provide valid pointers through VmaAllocatorCreateInfo::pVulkanFunctions.
 | |
| 
 | |
| \section custom_memory_allocator Custom host memory allocator
 | |
| 
 | |
| If you use custom allocator for CPU memory rather than default operator `new`
 | |
| and `delete` from C++, you can make this library using your allocator as well
 | |
| by filling optional member VmaAllocatorCreateInfo::pAllocationCallbacks. These
 | |
| functions will be passed to Vulkan, as well as used by the library itself to
 | |
| make any CPU-side allocations.
 | |
| 
 | |
| \section allocation_callbacks Device memory allocation callbacks
 | |
| 
 | |
| The library makes calls to `vkAllocateMemory()` and `vkFreeMemory()` internally.
 | |
| You can setup callbacks to be informed about these calls, e.g. for the purpose
 | |
| of gathering some statistics. To do it, fill optional member
 | |
| VmaAllocatorCreateInfo::pDeviceMemoryCallbacks.
 | |
| 
 | |
| \section heap_memory_limit Device heap memory limit
 | |
| 
 | |
| When device memory of certain heap runs out of free space, new allocations may
 | |
| fail (returning error code) or they may succeed, silently pushing some existing
 | |
| memory blocks from GPU VRAM to system RAM (which degrades performance). This
 | |
| behavior is implementation-dependant - it depends on GPU vendor and graphics
 | |
| driver.
 | |
| 
 | |
| On AMD cards it can be controlled while creating Vulkan device object by using
 | |
| VK_AMD_memory_overallocation_behavior extension, if available.
 | |
| 
 | |
| Alternatively, if you want to test how your program behaves with limited amount of Vulkan device
 | |
| memory available without switching your graphics card to one that really has
 | |
| smaller VRAM, you can use a feature of this library intended for this purpose.
 | |
| To do it, fill optional member VmaAllocatorCreateInfo::pHeapSizeLimit.
 | |
| 
 | |
| 
 | |
| 
 | |
| \page vk_khr_dedicated_allocation VK_KHR_dedicated_allocation
 | |
| 
 | |
| VK_KHR_dedicated_allocation is a Vulkan extension which can be used to improve
 | |
| performance on some GPUs. It augments Vulkan API with possibility to query
 | |
| driver whether it prefers particular buffer or image to have its own, dedicated
 | |
| allocation (separate `VkDeviceMemory` block) for better efficiency - to be able
 | |
| to do some internal optimizations.
 | |
| 
 | |
| The extension is supported by this library. It will be used automatically when
 | |
| enabled. To enable it:
 | |
| 
 | |
| 1 . When creating Vulkan device, check if following 2 device extensions are
 | |
| supported (call `vkEnumerateDeviceExtensionProperties()`).
 | |
| If yes, enable them (fill `VkDeviceCreateInfo::ppEnabledExtensionNames`).
 | |
| 
 | |
| - VK_KHR_get_memory_requirements2
 | |
| - VK_KHR_dedicated_allocation
 | |
| 
 | |
| If you enabled these extensions:
 | |
| 
 | |
| 2 . Use #VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag when creating
 | |
| your #VmaAllocator`to inform the library that you enabled required extensions
 | |
| and you want the library to use them.
 | |
| 
 | |
| \code
 | |
| allocatorInfo.flags |= VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT;
 | |
| 
 | |
| vmaCreateAllocator(&allocatorInfo, &allocator);
 | |
| \endcode
 | |
| 
 | |
| That's all. The extension will be automatically used whenever you create a
 | |
| buffer using vmaCreateBuffer() or image using vmaCreateImage().
 | |
| 
 | |
| When using the extension together with Vulkan Validation Layer, you will receive
 | |
| warnings like this:
 | |
| 
 | |
|     vkBindBufferMemory(): Binding memory to buffer 0x33 but vkGetBufferMemoryRequirements() has not been called on that buffer.
 | |
| 
 | |
| It is OK, you should just ignore it. It happens because you use function
 | |
| `vkGetBufferMemoryRequirements2KHR()` instead of standard
 | |
| `vkGetBufferMemoryRequirements()`, while the validation layer seems to be
 | |
| unaware of it.
 | |
| 
 | |
| To learn more about this extension, see:
 | |
| 
 | |
| - [VK_KHR_dedicated_allocation in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.0-extensions/html/vkspec.html#VK_KHR_dedicated_allocation)
 | |
| - [VK_KHR_dedicated_allocation unofficial manual](http://asawicki.info/articles/VK_KHR_dedicated_allocation.php5)
 | |
| 
 | |
| 
 | |
| 
 | |
| \page general_considerations General considerations
 | |
| 
 | |
| \section general_considerations_thread_safety Thread safety
 | |
| 
 | |
| - The library has no global state, so separate #VmaAllocator objects can be used
 | |
|   independently.
 | |
|   There should be no need to create multiple such objects though - one per `VkDevice` is enough.
 | |
| - By default, all calls to functions that take #VmaAllocator as first parameter
 | |
|   are safe to call from multiple threads simultaneously because they are
 | |
|   synchronized internally when needed.
 | |
| - When the allocator is created with #VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT
 | |
|   flag, calls to functions that take such #VmaAllocator object must be
 | |
|   synchronized externally.
 | |
| - Access to a #VmaAllocation object must be externally synchronized. For example,
 | |
|   you must not call vmaGetAllocationInfo() and vmaMapMemory() from different
 | |
|   threads at the same time if you pass the same #VmaAllocation object to these
 | |
|   functions.
 | |
| 
 | |
| \section general_considerations_validation_layer_warnings Validation layer warnings
 | |
| 
 | |
| When using this library, you can meet following types of warnings issued by
 | |
| Vulkan validation layer. They don't necessarily indicate a bug, so you may need
 | |
| to just ignore them.
 | |
| 
 | |
| - *vkBindBufferMemory(): Binding memory to buffer 0xeb8e4 but vkGetBufferMemoryRequirements() has not been called on that buffer.*
 | |
|   - It happens when VK_KHR_dedicated_allocation extension is enabled.
 | |
|     `vkGetBufferMemoryRequirements2KHR` function is used instead, while validation layer seems to be unaware of it.
 | |
| - *Mapping an image with layout VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL can result in undefined behavior if this memory is used by the device. Only GENERAL or PREINITIALIZED should be used.*
 | |
|   - It happens when you map a buffer or image, because the library maps entire
 | |
|     `VkDeviceMemory` block, where different types of images and buffers may end
 | |
|     up together, especially on GPUs with unified memory like Intel.
 | |
| - *Non-linear image 0xebc91 is aliased with linear buffer 0xeb8e4 which may indicate a bug.*
 | |
|   - It happens when you use lost allocations, and a new image or buffer is
 | |
|     created in place of an existing object that bacame lost.
 | |
|   - It may happen also when you use [defragmentation](@ref defragmentation).
 | |
| 
 | |
| \section general_considerations_allocation_algorithm Allocation algorithm
 | |
| 
 | |
| The library uses following algorithm for allocation, in order:
 | |
| 
 | |
| -# Try to find free range of memory in existing blocks.
 | |
| -# If failed, try to create a new block of `VkDeviceMemory`, with preferred block size.
 | |
| -# If failed, try to create such block with size/2, size/4, size/8.
 | |
| -# If failed and #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flag was
 | |
|    specified, try to find space in existing blocks, possilby making some other
 | |
|    allocations lost.
 | |
| -# If failed, try to allocate separate `VkDeviceMemory` for this allocation,
 | |
|    just like when you use #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
 | |
| -# If failed, choose other memory type that meets the requirements specified in
 | |
|    VmaAllocationCreateInfo and go to point 1.
 | |
| -# If failed, return `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
 | |
| 
 | |
| \section general_considerations_features_not_supported Features not supported
 | |
| 
 | |
| Features deliberately excluded from the scope of this library:
 | |
| 
 | |
| - Data transfer. Uploading (straming) and downloading data of buffers and images
 | |
|   between CPU and GPU memory and related synchronization is responsibility of the user.
 | |
|   Defining some "texture" object that would automatically stream its data from a
 | |
|   staging copy in CPU memory to GPU memory would rather be a feature of another,
 | |
|   higher-level library implemented on top of VMA.
 | |
| - Allocations for imported/exported external memory. They tend to require
 | |
|   explicit memory type index and dedicated allocation anyway, so they don't
 | |
|   interact with main features of this library. Such special purpose allocations
 | |
|   should be made manually, using `vkCreateBuffer()` and `vkAllocateMemory()`.
 | |
| - Recreation of buffers and images. Although the library has functions for
 | |
|   buffer and image creation (vmaCreateBuffer(), vmaCreateImage()), you need to
 | |
|   recreate these objects yourself after defragmentation. That's because the big
 | |
|   structures `VkBufferCreateInfo`, `VkImageCreateInfo` are not stored in
 | |
|   #VmaAllocation object.
 | |
| - Handling CPU memory allocation failures. When dynamically creating small C++
 | |
|   objects in CPU memory (not Vulkan memory), allocation failures are not checked
 | |
|   and handled gracefully, because that would complicate code significantly and
 | |
|   is usually not needed in desktop PC applications anyway.
 | |
| - Code free of any compiler warnings. Maintaining the library to compile and
 | |
|   work correctly on so many different platforms is hard enough. Being free of 
 | |
|   any warnings, on any version of any compiler, is simply not feasible.
 | |
| - This is a C++ library with C interface.
 | |
|   Bindings or ports to any other programming languages are welcomed as external projects and
 | |
|   are not going to be included into this repository.
 | |
| 
 | |
| */
 | |
| 
 | |
| /*
 | |
| Define this macro to 0/1 to disable/enable support for recording functionality,
 | |
| available through VmaAllocatorCreateInfo::pRecordSettings.
 | |
| */
 | |
| #ifndef VMA_RECORDING_ENABLED
 | |
|     #define VMA_RECORDING_ENABLED 0
 | |
| #endif
 | |
| 
 | |
| #ifndef NOMINMAX
 | |
|     #define NOMINMAX // For windows.h
 | |
| #endif
 | |
| 
 | |
| #ifndef VULKAN_H_
 | |
|     #include <vulkan/vulkan.h>
 | |
| #endif
 | |
| 
 | |
| #if VMA_RECORDING_ENABLED
 | |
|     #include <windows.h>
 | |
| #endif
 | |
| 
 | |
| // Define this macro to declare maximum supported Vulkan version in format AAABBBCCC,
 | |
| // where AAA = major, BBB = minor, CCC = patch.
 | |
| // If you want to use version > 1.0, it still needs to be enabled via VmaAllocatorCreateInfo::vulkanApiVersion.
 | |
| #if !defined(VMA_VULKAN_VERSION)
 | |
|     #if defined(VK_VERSION_1_1)
 | |
|         #define VMA_VULKAN_VERSION 1001000
 | |
|     #else
 | |
|         #define VMA_VULKAN_VERSION 1000000
 | |
|     #endif
 | |
| #endif
 | |
| 
 | |
| #if !defined(VMA_DEDICATED_ALLOCATION)
 | |
|     #if VK_KHR_get_memory_requirements2 && VK_KHR_dedicated_allocation
 | |
|         #define VMA_DEDICATED_ALLOCATION 1
 | |
|     #else
 | |
|         #define VMA_DEDICATED_ALLOCATION 0
 | |
|     #endif
 | |
| #endif
 | |
| 
 | |
| #if !defined(VMA_BIND_MEMORY2)
 | |
|     #if VK_KHR_bind_memory2
 | |
|         #define VMA_BIND_MEMORY2 1
 | |
|     #else
 | |
|         #define VMA_BIND_MEMORY2 0
 | |
|     #endif
 | |
| #endif
 | |
| 
 | |
| #if !defined(VMA_MEMORY_BUDGET)
 | |
|     #if VK_EXT_memory_budget && (VK_KHR_get_physical_device_properties2 || VMA_VULKAN_VERSION >= 1001000)
 | |
|         #define VMA_MEMORY_BUDGET 1
 | |
|     #else
 | |
|         #define VMA_MEMORY_BUDGET 0
 | |
|     #endif
 | |
| #endif
 | |
| 
 | |
| // Define these macros to decorate all public functions with additional code,
 | |
| // before and after returned type, appropriately. This may be useful for
 | |
| // exporing the functions when compiling VMA as a separate library. Example:
 | |
| // #define VMA_CALL_PRE  __declspec(dllexport)
 | |
| // #define VMA_CALL_POST __cdecl
 | |
| #ifndef VMA_CALL_PRE
 | |
|     #define VMA_CALL_PRE
 | |
| #endif
 | |
| #ifndef VMA_CALL_POST
 | |
|     #define VMA_CALL_POST
 | |
| #endif
 | |
| 
 | |
| /** \struct VmaAllocator
 | |
| \brief Represents main object of this library initialized.
 | |
| 
 | |
| Fill structure #VmaAllocatorCreateInfo and call function vmaCreateAllocator() to create it.
 | |
| Call function vmaDestroyAllocator() to destroy it.
 | |
| 
 | |
| It is recommended to create just one object of this type per `VkDevice` object,
 | |
| right after Vulkan is initialized and keep it alive until before Vulkan device is destroyed.
 | |
| */
 | |
| VK_DEFINE_HANDLE(VmaAllocator)
 | |
| 
 | |
| /// Callback function called after successful vkAllocateMemory.
 | |
| typedef void (VKAPI_PTR *PFN_vmaAllocateDeviceMemoryFunction)(
 | |
|     VmaAllocator      allocator,
 | |
|     uint32_t          memoryType,
 | |
|     VkDeviceMemory    memory,
 | |
|     VkDeviceSize      size);
 | |
| /// Callback function called before vkFreeMemory.
 | |
| typedef void (VKAPI_PTR *PFN_vmaFreeDeviceMemoryFunction)(
 | |
|     VmaAllocator      allocator,
 | |
|     uint32_t          memoryType,
 | |
|     VkDeviceMemory    memory,
 | |
|     VkDeviceSize      size);
 | |
| 
 | |
| /** \brief Set of callbacks that the library will call for `vkAllocateMemory` and `vkFreeMemory`.
 | |
| 
 | |
| Provided for informative purpose, e.g. to gather statistics about number of
 | |
| allocations or total amount of memory allocated in Vulkan.
 | |
| 
 | |
| Used in VmaAllocatorCreateInfo::pDeviceMemoryCallbacks.
 | |
| */
 | |
| typedef struct VmaDeviceMemoryCallbacks {
 | |
|     /// Optional, can be null.
 | |
|     PFN_vmaAllocateDeviceMemoryFunction pfnAllocate;
 | |
|     /// Optional, can be null.
 | |
|     PFN_vmaFreeDeviceMemoryFunction pfnFree;
 | |
| } VmaDeviceMemoryCallbacks;
 | |
| 
 | |
| /// Flags for created #VmaAllocator.
 | |
| typedef enum VmaAllocatorCreateFlagBits {
 | |
|     /** \brief Allocator and all objects created from it will not be synchronized internally, so you must guarantee they are used from only one thread at a time or synchronized externally by you.
 | |
| 
 | |
|     Using this flag may increase performance because internal mutexes are not used.
 | |
|     */
 | |
|     VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT = 0x00000001,
 | |
|     /** \brief Enables usage of VK_KHR_dedicated_allocation extension.
 | |
| 
 | |
|     The flag works only if VmaAllocatorCreateInfo::vulkanApiVersion `== VK_API_VERSION_1_0`.
 | |
|     When it's `VK_API_VERSION_1_1`, the flag is ignored because the extension has been promoted to Vulkan 1.1.
 | |
| 
 | |
|     Using this extenion will automatically allocate dedicated blocks of memory for
 | |
|     some buffers and images instead of suballocating place for them out of bigger
 | |
|     memory blocks (as if you explicitly used #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT
 | |
|     flag) when it is recommended by the driver. It may improve performance on some
 | |
|     GPUs.
 | |
| 
 | |
|     You may set this flag only if you found out that following device extensions are
 | |
|     supported, you enabled them while creating Vulkan device passed as
 | |
|     VmaAllocatorCreateInfo::device, and you want them to be used internally by this
 | |
|     library:
 | |
| 
 | |
|     - VK_KHR_get_memory_requirements2 (device extension)
 | |
|     - VK_KHR_dedicated_allocation (device extension)
 | |
| 
 | |
|     When this flag is set, you can experience following warnings reported by Vulkan
 | |
|     validation layer. You can ignore them.
 | |
| 
 | |
|     > vkBindBufferMemory(): Binding memory to buffer 0x2d but vkGetBufferMemoryRequirements() has not been called on that buffer.
 | |
|     */
 | |
|     VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT = 0x00000002,
 | |
|     /**
 | |
|     Enables usage of VK_KHR_bind_memory2 extension.
 | |
| 
 | |
|     The flag works only if VmaAllocatorCreateInfo::vulkanApiVersion `== VK_API_VERSION_1_0`.
 | |
|     When it's `VK_API_VERSION_1_1`, the flag is ignored because the extension has been promoted to Vulkan 1.1.
 | |
| 
 | |
|     You may set this flag only if you found out that this device extension is supported,
 | |
|     you enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device,
 | |
|     and you want it to be used internally by this library.
 | |
| 
 | |
|     The extension provides functions `vkBindBufferMemory2KHR` and `vkBindImageMemory2KHR`,
 | |
|     which allow to pass a chain of `pNext` structures while binding.
 | |
|     This flag is required if you use `pNext` parameter in vmaBindBufferMemory2() or vmaBindImageMemory2().
 | |
|     */
 | |
|     VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT = 0x00000004,
 | |
|     /**
 | |
|     Enables usage of VK_EXT_memory_budget extension.
 | |
| 
 | |
|     You may set this flag only if you found out that this device extension is supported,
 | |
|     you enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device,
 | |
|     and you want it to be used internally by this library, along with another instance extension
 | |
|     VK_KHR_get_physical_device_properties2, which is required by it (or Vulkan 1.1, where this extension is promoted).
 | |
| 
 | |
|     The extension provides query for current memory usage and budget, which will probably
 | |
|     be more accurate than an estimation used by the library otherwise.
 | |
|     */
 | |
|     VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT = 0x00000008,
 | |
| 
 | |
|     VMA_ALLOCATOR_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
 | |
| } VmaAllocatorCreateFlagBits;
 | |
| typedef VkFlags VmaAllocatorCreateFlags;
 | |
| 
 | |
| /** \brief Pointers to some Vulkan functions - a subset used by the library.
 | |
| 
 | |
| Used in VmaAllocatorCreateInfo::pVulkanFunctions.
 | |
| */
 | |
| typedef struct VmaVulkanFunctions {
 | |
|     PFN_vkGetPhysicalDeviceProperties vkGetPhysicalDeviceProperties;
 | |
|     PFN_vkGetPhysicalDeviceMemoryProperties vkGetPhysicalDeviceMemoryProperties;
 | |
|     PFN_vkAllocateMemory vkAllocateMemory;
 | |
|     PFN_vkFreeMemory vkFreeMemory;
 | |
|     PFN_vkMapMemory vkMapMemory;
 | |
|     PFN_vkUnmapMemory vkUnmapMemory;
 | |
|     PFN_vkFlushMappedMemoryRanges vkFlushMappedMemoryRanges;
 | |
|     PFN_vkInvalidateMappedMemoryRanges vkInvalidateMappedMemoryRanges;
 | |
|     PFN_vkBindBufferMemory vkBindBufferMemory;
 | |
|     PFN_vkBindImageMemory vkBindImageMemory;
 | |
|     PFN_vkGetBufferMemoryRequirements vkGetBufferMemoryRequirements;
 | |
|     PFN_vkGetImageMemoryRequirements vkGetImageMemoryRequirements;
 | |
|     PFN_vkCreateBuffer vkCreateBuffer;
 | |
|     PFN_vkDestroyBuffer vkDestroyBuffer;
 | |
|     PFN_vkCreateImage vkCreateImage;
 | |
|     PFN_vkDestroyImage vkDestroyImage;
 | |
|     PFN_vkCmdCopyBuffer vkCmdCopyBuffer;
 | |
| #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
 | |
|     PFN_vkGetBufferMemoryRequirements2KHR vkGetBufferMemoryRequirements2KHR;
 | |
|     PFN_vkGetImageMemoryRequirements2KHR vkGetImageMemoryRequirements2KHR;
 | |
| #endif
 | |
| #if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000
 | |
|     PFN_vkBindBufferMemory2KHR vkBindBufferMemory2KHR;
 | |
|     PFN_vkBindImageMemory2KHR vkBindImageMemory2KHR;
 | |
| #endif
 | |
| #if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000
 | |
|     PFN_vkGetPhysicalDeviceMemoryProperties2KHR vkGetPhysicalDeviceMemoryProperties2KHR;
 | |
| #endif
 | |
| } VmaVulkanFunctions;
 | |
| 
 | |
| /// Flags to be used in VmaRecordSettings::flags.
 | |
| typedef enum VmaRecordFlagBits {
 | |
|     /** \brief Enables flush after recording every function call.
 | |
| 
 | |
|     Enable it if you expect your application to crash, which may leave recording file truncated.
 | |
|     It may degrade performance though.
 | |
|     */
 | |
|     VMA_RECORD_FLUSH_AFTER_CALL_BIT = 0x00000001,
 | |
|     
 | |
|     VMA_RECORD_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
 | |
| } VmaRecordFlagBits;
 | |
| typedef VkFlags VmaRecordFlags;
 | |
| 
 | |
| /// Parameters for recording calls to VMA functions. To be used in VmaAllocatorCreateInfo::pRecordSettings.
 | |
| typedef struct VmaRecordSettings
 | |
| {
 | |
|     /// Flags for recording. Use #VmaRecordFlagBits enum.
 | |
|     VmaRecordFlags flags;
 | |
|     /** \brief Path to the file that should be written by the recording.
 | |
| 
 | |
|     Suggested extension: "csv".
 | |
|     If the file already exists, it will be overwritten.
 | |
|     It will be opened for the whole time #VmaAllocator object is alive.
 | |
|     If opening this file fails, creation of the whole allocator object fails.
 | |
|     */
 | |
|     const char* pFilePath;
 | |
| } VmaRecordSettings;
 | |
| 
 | |
| /// Description of a Allocator to be created.
 | |
| typedef struct VmaAllocatorCreateInfo
 | |
| {
 | |
|     /// Flags for created allocator. Use #VmaAllocatorCreateFlagBits enum.
 | |
|     VmaAllocatorCreateFlags flags;
 | |
|     /// Vulkan physical device.
 | |
|     /** It must be valid throughout whole lifetime of created allocator. */
 | |
|     VkPhysicalDevice physicalDevice;
 | |
|     /// Vulkan device.
 | |
|     /** It must be valid throughout whole lifetime of created allocator. */
 | |
|     VkDevice device;
 | |
|     /// Preferred size of a single `VkDeviceMemory` block to be allocated from large heaps > 1 GiB. Optional.
 | |
|     /** Set to 0 to use default, which is currently 256 MiB. */
 | |
|     VkDeviceSize preferredLargeHeapBlockSize;
 | |
|     /// Custom CPU memory allocation callbacks. Optional.
 | |
|     /** Optional, can be null. When specified, will also be used for all CPU-side memory allocations. */
 | |
|     const VkAllocationCallbacks* pAllocationCallbacks;
 | |
|     /// Informative callbacks for `vkAllocateMemory`, `vkFreeMemory`. Optional.
 | |
|     /** Optional, can be null. */
 | |
|     const VmaDeviceMemoryCallbacks* pDeviceMemoryCallbacks;
 | |
|     /** \brief Maximum number of additional frames that are in use at the same time as current frame.
 | |
| 
 | |
|     This value is used only when you make allocations with
 | |
|     VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag. Such allocation cannot become
 | |
|     lost if allocation.lastUseFrameIndex >= allocator.currentFrameIndex - frameInUseCount.
 | |
| 
 | |
|     For example, if you double-buffer your command buffers, so resources used for
 | |
|     rendering in previous frame may still be in use by the GPU at the moment you
 | |
|     allocate resources needed for the current frame, set this value to 1.
 | |
| 
 | |
|     If you want to allow any allocations other than used in the current frame to
 | |
|     become lost, set this value to 0.
 | |
|     */
 | |
|     uint32_t frameInUseCount;
 | |
|     /** \brief Either null or a pointer to an array of limits on maximum number of bytes that can be allocated out of particular Vulkan memory heap.
 | |
| 
 | |
|     If not NULL, it must be a pointer to an array of
 | |
|     `VkPhysicalDeviceMemoryProperties::memoryHeapCount` elements, defining limit on
 | |
|     maximum number of bytes that can be allocated out of particular Vulkan memory
 | |
|     heap.
 | |
| 
 | |
|     Any of the elements may be equal to `VK_WHOLE_SIZE`, which means no limit on that
 | |
|     heap. This is also the default in case of `pHeapSizeLimit` = NULL.
 | |
| 
 | |
|     If there is a limit defined for a heap:
 | |
| 
 | |
|     - If user tries to allocate more memory from that heap using this allocator,
 | |
|       the allocation fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
 | |
|     - If the limit is smaller than heap size reported in `VkMemoryHeap::size`, the
 | |
|       value of this limit will be reported instead when using vmaGetMemoryProperties().
 | |
| 
 | |
|     Warning! Using this feature may not be equivalent to installing a GPU with
 | |
|     smaller amount of memory, because graphics driver doesn't necessary fail new
 | |
|     allocations with `VK_ERROR_OUT_OF_DEVICE_MEMORY` result when memory capacity is
 | |
|     exceeded. It may return success and just silently migrate some device memory
 | |
|     blocks to system RAM. This driver behavior can also be controlled using
 | |
|     VK_AMD_memory_overallocation_behavior extension.
 | |
|     */
 | |
|     const VkDeviceSize* pHeapSizeLimit;
 | |
|     /** \brief Pointers to Vulkan functions. Can be null if you leave define `VMA_STATIC_VULKAN_FUNCTIONS 1`.
 | |
| 
 | |
|     If you leave define `VMA_STATIC_VULKAN_FUNCTIONS 1` in configuration section,
 | |
|     you can pass null as this member, because the library will fetch pointers to
 | |
|     Vulkan functions internally in a static way, like:
 | |
| 
 | |
|         vulkanFunctions.vkAllocateMemory = &vkAllocateMemory;
 | |
| 
 | |
|     Fill this member if you want to provide your own pointers to Vulkan functions,
 | |
|     e.g. fetched using `vkGetInstanceProcAddr()` and `vkGetDeviceProcAddr()`.
 | |
|     */
 | |
|     const VmaVulkanFunctions* pVulkanFunctions;
 | |
|     /** \brief Parameters for recording of VMA calls. Can be null.
 | |
| 
 | |
|     If not null, it enables recording of calls to VMA functions to a file.
 | |
|     If support for recording is not enabled using `VMA_RECORDING_ENABLED` macro,
 | |
|     creation of the allocator object fails with `VK_ERROR_FEATURE_NOT_PRESENT`.
 | |
|     */
 | |
|     const VmaRecordSettings* pRecordSettings;
 | |
|     /** \brief Optional handle to Vulkan instance object.
 | |
| 
 | |
|     Optional, can be null. Must be set if #VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT flas is used
 | |
|     or if `vulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)`.
 | |
|     */
 | |
|     VkInstance instance;
 | |
|     /** \brief Optional. The highest version of Vulkan that the application is designed to use.
 | |
|     
 | |
|     It must be a value in the format as created by macro `VK_MAKE_VERSION` or a constant like: `VK_API_VERSION_1_1`, `VK_API_VERSION_1_0`.
 | |
|     The patch version number specified is ignored. Only the major and minor versions are considered.
 | |
|     It must be less or euqal (preferably equal) to value as passed to `vkCreateInstance` as `VkApplicationInfo::apiVersion`.
 | |
|     Only versions 1.0 and 1.1 are supported by the current implementation.
 | |
|     Leaving it initialized to zero is equivalent to `VK_API_VERSION_1_0`.
 | |
|     */
 | |
|     uint32_t vulkanApiVersion;
 | |
| } VmaAllocatorCreateInfo;
 | |
| 
 | |
| /// Creates Allocator object.
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAllocator(
 | |
|     const VmaAllocatorCreateInfo* pCreateInfo,
 | |
|     VmaAllocator* pAllocator);
 | |
| 
 | |
| /// Destroys allocator object.
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaDestroyAllocator(
 | |
|     VmaAllocator allocator);
 | |
| 
 | |
| /**
 | |
| PhysicalDeviceProperties are fetched from physicalDevice by the allocator.
 | |
| You can access it here, without fetching it again on your own.
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaGetPhysicalDeviceProperties(
 | |
|     VmaAllocator allocator,
 | |
|     const VkPhysicalDeviceProperties** ppPhysicalDeviceProperties);
 | |
| 
 | |
| /**
 | |
| PhysicalDeviceMemoryProperties are fetched from physicalDevice by the allocator.
 | |
| You can access it here, without fetching it again on your own.
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryProperties(
 | |
|     VmaAllocator allocator,
 | |
|     const VkPhysicalDeviceMemoryProperties** ppPhysicalDeviceMemoryProperties);
 | |
| 
 | |
| /**
 | |
| \brief Given Memory Type Index, returns Property Flags of this memory type.
 | |
| 
 | |
| This is just a convenience function. Same information can be obtained using
 | |
| vmaGetMemoryProperties().
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryTypeProperties(
 | |
|     VmaAllocator allocator,
 | |
|     uint32_t memoryTypeIndex,
 | |
|     VkMemoryPropertyFlags* pFlags);
 | |
| 
 | |
| /** \brief Sets index of the current frame.
 | |
| 
 | |
| This function must be used if you make allocations with
 | |
| #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT and
 | |
| #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flags to inform the allocator
 | |
| when a new frame begins. Allocations queried using vmaGetAllocationInfo() cannot
 | |
| become lost in the current frame.
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaSetCurrentFrameIndex(
 | |
|     VmaAllocator allocator,
 | |
|     uint32_t frameIndex);
 | |
| 
 | |
| /** \brief Calculated statistics of memory usage in entire allocator.
 | |
| */
 | |
| typedef struct VmaStatInfo
 | |
| {
 | |
|     /// Number of `VkDeviceMemory` Vulkan memory blocks allocated.
 | |
|     uint32_t blockCount;
 | |
|     /// Number of #VmaAllocation allocation objects allocated.
 | |
|     uint32_t allocationCount;
 | |
|     /// Number of free ranges of memory between allocations.
 | |
|     uint32_t unusedRangeCount;
 | |
|     /// Total number of bytes occupied by all allocations.
 | |
|     VkDeviceSize usedBytes;
 | |
|     /// Total number of bytes occupied by unused ranges.
 | |
|     VkDeviceSize unusedBytes;
 | |
|     VkDeviceSize allocationSizeMin, allocationSizeAvg, allocationSizeMax;
 | |
|     VkDeviceSize unusedRangeSizeMin, unusedRangeSizeAvg, unusedRangeSizeMax;
 | |
| } VmaStatInfo;
 | |
| 
 | |
| /// General statistics from current state of Allocator.
 | |
| typedef struct VmaStats
 | |
| {
 | |
|     VmaStatInfo memoryType[VK_MAX_MEMORY_TYPES];
 | |
|     VmaStatInfo memoryHeap[VK_MAX_MEMORY_HEAPS];
 | |
|     VmaStatInfo total;
 | |
| } VmaStats;
 | |
| 
 | |
| /** \brief Retrieves statistics from current state of the Allocator.
 | |
| 
 | |
| This function is called "calculate" not "get" because it has to traverse all
 | |
| internal data structures, so it may be quite slow. For faster but more brief statistics
 | |
| suitable to be called every frame or every allocation, use vmaGetBudget().
 | |
| 
 | |
| Note that when using allocator from multiple threads, returned information may immediately
 | |
| become outdated.
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaCalculateStats(
 | |
|     VmaAllocator allocator,
 | |
|     VmaStats* pStats);
 | |
| 
 | |
| /** \brief Statistics of current memory usage and available budget, in bytes, for specific memory heap.
 | |
| */
 | |
| typedef struct VmaBudget
 | |
| {
 | |
|     /** \brief Sum size of all `VkDeviceMemory` blocks allocated from particular heap, in bytes.
 | |
|     */
 | |
|     VkDeviceSize blockBytes;
 | |
|     
 | |
|     /** \brief Sum size of all allocations created in particular heap, in bytes.
 | |
|     
 | |
|     Usually less or equal than `blockBytes`.
 | |
|     Difference `blockBytes - allocationBytes` is the amount of memory allocated but unused -
 | |
|     available for new allocations or wasted due to fragmentation.
 | |
|     
 | |
|     It might be greater than `blockBytes` if there are some allocations in lost state, as they account
 | |
|     to this value as well.
 | |
|     */
 | |
|     VkDeviceSize allocationBytes;
 | |
|     
 | |
|     /** \brief Estimated current memory usage of the program, in bytes.
 | |
|     
 | |
|     Fetched from system using `VK_EXT_memory_budget` extension if enabled.
 | |
|     
 | |
|     It might be different than `blockBytes` (usually higher) due to additional implicit objects
 | |
|     also occupying the memory, like swapchain, pipelines, descriptor heaps, command buffers, or
 | |
|     `VkDeviceMemory` blocks allocated outside of this library, if any.
 | |
|     */
 | |
|     VkDeviceSize usage;
 | |
|     
 | |
|     /** \brief Estimated amount of memory available to the program, in bytes.
 | |
|     
 | |
|     Fetched from system using `VK_EXT_memory_budget` extension if enabled.
 | |
|     
 | |
|     It might be different (most probably smaller) than `VkMemoryHeap::size[heapIndex]` due to factors
 | |
|     external to the program, like other programs also consuming system resources.
 | |
|     Difference `budget - usage` is the amount of additional memory that can probably
 | |
|     be allocated without problems. Exceeding the budget may result in various problems.
 | |
|     */
 | |
|     VkDeviceSize budget;
 | |
| } VmaBudget;
 | |
| 
 | |
| /** \brief Retrieves information about current memory budget for all memory heaps.
 | |
| 
 | |
| \param[out] pBudget Must point to array with number of elements at least equal to number of memory heaps in physical device used.
 | |
| 
 | |
| This function is called "get" not "calculate" because it is very fast, suitable to be called
 | |
| every frame or every allocation. For more detailed statistics use vmaCalculateStats().
 | |
| 
 | |
| Note that when using allocator from multiple threads, returned information may immediately
 | |
| become outdated.
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaGetBudget(
 | |
|     VmaAllocator allocator,
 | |
|     VmaBudget* pBudget);
 | |
| 
 | |
| #ifndef VMA_STATS_STRING_ENABLED
 | |
| #define VMA_STATS_STRING_ENABLED 1
 | |
| #endif
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
| 
 | |
| /// Builds and returns statistics as string in JSON format.
 | |
| /** @param[out] ppStatsString Must be freed using vmaFreeStatsString() function.
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaBuildStatsString(
 | |
|     VmaAllocator allocator,
 | |
|     char** ppStatsString,
 | |
|     VkBool32 detailedMap);
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaFreeStatsString(
 | |
|     VmaAllocator allocator,
 | |
|     char* pStatsString);
 | |
| 
 | |
| #endif // #if VMA_STATS_STRING_ENABLED
 | |
| 
 | |
| /** \struct VmaPool
 | |
| \brief Represents custom memory pool
 | |
| 
 | |
| Fill structure VmaPoolCreateInfo and call function vmaCreatePool() to create it.
 | |
| Call function vmaDestroyPool() to destroy it.
 | |
| 
 | |
| For more information see [Custom memory pools](@ref choosing_memory_type_custom_memory_pools).
 | |
| */
 | |
| VK_DEFINE_HANDLE(VmaPool)
 | |
| 
 | |
| typedef enum VmaMemoryUsage
 | |
| {
 | |
|     /** No intended memory usage specified.
 | |
|     Use other members of VmaAllocationCreateInfo to specify your requirements.
 | |
|     */
 | |
|     VMA_MEMORY_USAGE_UNKNOWN = 0,
 | |
|     /** Memory will be used on device only, so fast access from the device is preferred.
 | |
|     It usually means device-local GPU (video) memory.
 | |
|     No need to be mappable on host.
 | |
|     It is roughly equivalent of `D3D12_HEAP_TYPE_DEFAULT`.
 | |
| 
 | |
|     Usage:
 | |
|     
 | |
|     - Resources written and read by device, e.g. images used as attachments.
 | |
|     - Resources transferred from host once (immutable) or infrequently and read by
 | |
|       device multiple times, e.g. textures to be sampled, vertex buffers, uniform
 | |
|       (constant) buffers, and majority of other types of resources used on GPU.
 | |
| 
 | |
|     Allocation may still end up in `HOST_VISIBLE` memory on some implementations.
 | |
|     In such case, you are free to map it.
 | |
|     You can use #VMA_ALLOCATION_CREATE_MAPPED_BIT with this usage type.
 | |
|     */
 | |
|     VMA_MEMORY_USAGE_GPU_ONLY = 1,
 | |
|     /** Memory will be mappable on host.
 | |
|     It usually means CPU (system) memory.
 | |
|     Guarantees to be `HOST_VISIBLE` and `HOST_COHERENT`.
 | |
|     CPU access is typically uncached. Writes may be write-combined.
 | |
|     Resources created in this pool may still be accessible to the device, but access to them can be slow.
 | |
|     It is roughly equivalent of `D3D12_HEAP_TYPE_UPLOAD`.
 | |
| 
 | |
|     Usage: Staging copy of resources used as transfer source.
 | |
|     */
 | |
|     VMA_MEMORY_USAGE_CPU_ONLY = 2,
 | |
|     /**
 | |
|     Memory that is both mappable on host (guarantees to be `HOST_VISIBLE`) and preferably fast to access by GPU.
 | |
|     CPU access is typically uncached. Writes may be write-combined.
 | |
| 
 | |
|     Usage: Resources written frequently by host (dynamic), read by device. E.g. textures, vertex buffers, uniform buffers updated every frame or every draw call.
 | |
|     */
 | |
|     VMA_MEMORY_USAGE_CPU_TO_GPU = 3,
 | |
|     /** Memory mappable on host (guarantees to be `HOST_VISIBLE`) and cached.
 | |
|     It is roughly equivalent of `D3D12_HEAP_TYPE_READBACK`.
 | |
| 
 | |
|     Usage:
 | |
| 
 | |
|     - Resources written by device, read by host - results of some computations, e.g. screen capture, average scene luminance for HDR tone mapping.
 | |
|     - Any resources read or accessed randomly on host, e.g. CPU-side copy of vertex buffer used as source of transfer, but also used for collision detection.
 | |
|     */
 | |
|     VMA_MEMORY_USAGE_GPU_TO_CPU = 4,
 | |
|     /** CPU memory - memory that is preferably not `DEVICE_LOCAL`, but also not guaranteed to be `HOST_VISIBLE`.
 | |
| 
 | |
|     Usage: Staging copy of resources moved from GPU memory to CPU memory as part
 | |
|     of custom paging/residency mechanism, to be moved back to GPU memory when needed.
 | |
|     */
 | |
|     VMA_MEMORY_USAGE_CPU_COPY = 5,
 | |
|     /** Lazily allocated GPU memory having `VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT`.
 | |
|     Exists mostly on mobile platforms. Using it on desktop PC or other GPUs with no such memory type present will fail the allocation.
 | |
|     
 | |
|     Usage: Memory for transient attachment images (color attachments, depth attachments etc.), created with `VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT`.
 | |
| 
 | |
|     Allocations with this usage are always created as dedicated - it implies #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
 | |
|     */
 | |
|     VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED = 6,
 | |
| 
 | |
|     VMA_MEMORY_USAGE_MAX_ENUM = 0x7FFFFFFF
 | |
| } VmaMemoryUsage;
 | |
| 
 | |
| /// Flags to be passed as VmaAllocationCreateInfo::flags.
 | |
| typedef enum VmaAllocationCreateFlagBits {
 | |
|     /** \brief Set this flag if the allocation should have its own memory block.
 | |
|     
 | |
|     Use it for special, big resources, like fullscreen images used as attachments.
 | |
|    
 | |
|     You should not use this flag if VmaAllocationCreateInfo::pool is not null.
 | |
|     */
 | |
|     VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT = 0x00000001,
 | |
| 
 | |
|     /** \brief Set this flag to only try to allocate from existing `VkDeviceMemory` blocks and never create new such block.
 | |
|     
 | |
|     If new allocation cannot be placed in any of the existing blocks, allocation
 | |
|     fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY` error.
 | |
|     
 | |
|     You should not use #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT and
 | |
|     #VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT at the same time. It makes no sense.
 | |
|     
 | |
|     If VmaAllocationCreateInfo::pool is not null, this flag is implied and ignored. */
 | |
|     VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT = 0x00000002,
 | |
|     /** \brief Set this flag to use a memory that will be persistently mapped and retrieve pointer to it.
 | |
|     
 | |
|     Pointer to mapped memory will be returned through VmaAllocationInfo::pMappedData.
 | |
| 
 | |
|     Is it valid to use this flag for allocation made from memory type that is not
 | |
|     `HOST_VISIBLE`. This flag is then ignored and memory is not mapped. This is
 | |
|     useful if you need an allocation that is efficient to use on GPU
 | |
|     (`DEVICE_LOCAL`) and still want to map it directly if possible on platforms that
 | |
|     support it (e.g. Intel GPU).
 | |
| 
 | |
|     You should not use this flag together with #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT.
 | |
|     */
 | |
|     VMA_ALLOCATION_CREATE_MAPPED_BIT = 0x00000004,
 | |
|     /** Allocation created with this flag can become lost as a result of another
 | |
|     allocation with #VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT flag, so you
 | |
|     must check it before use.
 | |
| 
 | |
|     To check if allocation is not lost, call vmaGetAllocationInfo() and check if
 | |
|     VmaAllocationInfo::deviceMemory is not `VK_NULL_HANDLE`.
 | |
| 
 | |
|     For details about supporting lost allocations, see Lost Allocations
 | |
|     chapter of User Guide on Main Page.
 | |
| 
 | |
|     You should not use this flag together with #VMA_ALLOCATION_CREATE_MAPPED_BIT.
 | |
|     */
 | |
|     VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT = 0x00000008,
 | |
|     /** While creating allocation using this flag, other allocations that were
 | |
|     created with flag #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT can become lost.
 | |
| 
 | |
|     For details about supporting lost allocations, see Lost Allocations
 | |
|     chapter of User Guide on Main Page.
 | |
|     */
 | |
|     VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT = 0x00000010,
 | |
|     /** Set this flag to treat VmaAllocationCreateInfo::pUserData as pointer to a
 | |
|     null-terminated string. Instead of copying pointer value, a local copy of the
 | |
|     string is made and stored in allocation's `pUserData`. The string is automatically
 | |
|     freed together with the allocation. It is also used in vmaBuildStatsString().
 | |
|     */
 | |
|     VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT = 0x00000020,
 | |
|     /** Allocation will be created from upper stack in a double stack pool.
 | |
| 
 | |
|     This flag is only allowed for custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT flag.
 | |
|     */
 | |
|     VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT = 0x00000040,
 | |
|     /** Create both buffer/image and allocation, but don't bind them together.
 | |
|     It is useful when you want to bind yourself to do some more advanced binding, e.g. using some extensions.
 | |
|     The flag is meaningful only with functions that bind by default: vmaCreateBuffer(), vmaCreateImage().
 | |
|     Otherwise it is ignored.
 | |
|     */
 | |
|     VMA_ALLOCATION_CREATE_DONT_BIND_BIT = 0x00000080,
 | |
|     /** Create allocation only if additional device memory required for it, if any, won't exceed
 | |
|     memory budget. Otherwise return `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
 | |
|     */
 | |
|     VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT = 0x00000100,
 | |
| 
 | |
|     /** Allocation strategy that chooses smallest possible free range for the
 | |
|     allocation.
 | |
|     */
 | |
|     VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT  = 0x00010000,
 | |
|     /** Allocation strategy that chooses biggest possible free range for the
 | |
|     allocation.
 | |
|     */
 | |
|     VMA_ALLOCATION_CREATE_STRATEGY_WORST_FIT_BIT = 0x00020000,
 | |
|     /** Allocation strategy that chooses first suitable free range for the
 | |
|     allocation.
 | |
| 
 | |
|     "First" doesn't necessarily means the one with smallest offset in memory,
 | |
|     but rather the one that is easiest and fastest to find.
 | |
|     */
 | |
|     VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT = 0x00040000,
 | |
| 
 | |
|     /** Allocation strategy that tries to minimize memory usage.
 | |
|     */
 | |
|     VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT = VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT,
 | |
|     /** Allocation strategy that tries to minimize allocation time.
 | |
|     */
 | |
|     VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT = VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT,
 | |
|     /** Allocation strategy that tries to minimize memory fragmentation.
 | |
|     */
 | |
|     VMA_ALLOCATION_CREATE_STRATEGY_MIN_FRAGMENTATION_BIT = VMA_ALLOCATION_CREATE_STRATEGY_WORST_FIT_BIT,
 | |
| 
 | |
|     /** A bit mask to extract only `STRATEGY` bits from entire set of flags.
 | |
|     */
 | |
|     VMA_ALLOCATION_CREATE_STRATEGY_MASK =
 | |
|         VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT |
 | |
|         VMA_ALLOCATION_CREATE_STRATEGY_WORST_FIT_BIT |
 | |
|         VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT,
 | |
| 
 | |
|     VMA_ALLOCATION_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
 | |
| } VmaAllocationCreateFlagBits;
 | |
| typedef VkFlags VmaAllocationCreateFlags;
 | |
| 
 | |
| typedef struct VmaAllocationCreateInfo
 | |
| {
 | |
|     /// Use #VmaAllocationCreateFlagBits enum.
 | |
|     VmaAllocationCreateFlags flags;
 | |
|     /** \brief Intended usage of memory.
 | |
|     
 | |
|     You can leave #VMA_MEMORY_USAGE_UNKNOWN if you specify memory requirements in other way. \n
 | |
|     If `pool` is not null, this member is ignored.
 | |
|     */
 | |
|     VmaMemoryUsage usage;
 | |
|     /** \brief Flags that must be set in a Memory Type chosen for an allocation.
 | |
|     
 | |
|     Leave 0 if you specify memory requirements in other way. \n
 | |
|     If `pool` is not null, this member is ignored.*/
 | |
|     VkMemoryPropertyFlags requiredFlags;
 | |
|     /** \brief Flags that preferably should be set in a memory type chosen for an allocation.
 | |
|     
 | |
|     Set to 0 if no additional flags are prefered. \n
 | |
|     If `pool` is not null, this member is ignored. */
 | |
|     VkMemoryPropertyFlags preferredFlags;
 | |
|     /** \brief Bitmask containing one bit set for every memory type acceptable for this allocation.
 | |
| 
 | |
|     Value 0 is equivalent to `UINT32_MAX` - it means any memory type is accepted if
 | |
|     it meets other requirements specified by this structure, with no further
 | |
|     restrictions on memory type index. \n
 | |
|     If `pool` is not null, this member is ignored.
 | |
|     */
 | |
|     uint32_t memoryTypeBits;
 | |
|     /** \brief Pool that this allocation should be created in.
 | |
| 
 | |
|     Leave `VK_NULL_HANDLE` to allocate from default pool. If not null, members:
 | |
|     `usage`, `requiredFlags`, `preferredFlags`, `memoryTypeBits` are ignored.
 | |
|     */
 | |
|     VmaPool pool;
 | |
|     /** \brief Custom general-purpose pointer that will be stored in #VmaAllocation, can be read as VmaAllocationInfo::pUserData and changed using vmaSetAllocationUserData().
 | |
|     
 | |
|     If #VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT is used, it must be either
 | |
|     null or pointer to a null-terminated string. The string will be then copied to
 | |
|     internal buffer, so it doesn't need to be valid after allocation call.
 | |
|     */
 | |
|     void* pUserData;
 | |
| } VmaAllocationCreateInfo;
 | |
| 
 | |
| /**
 | |
| \brief Helps to find memoryTypeIndex, given memoryTypeBits and VmaAllocationCreateInfo.
 | |
| 
 | |
| This algorithm tries to find a memory type that:
 | |
| 
 | |
| - Is allowed by memoryTypeBits.
 | |
| - Contains all the flags from pAllocationCreateInfo->requiredFlags.
 | |
| - Matches intended usage.
 | |
| - Has as many flags from pAllocationCreateInfo->preferredFlags as possible.
 | |
| 
 | |
| \return Returns VK_ERROR_FEATURE_NOT_PRESENT if not found. Receiving such result
 | |
| from this function or any other allocating function probably means that your
 | |
| device doesn't support any memory type with requested features for the specific
 | |
| type of resource you want to use it for. Please check parameters of your
 | |
| resource, like image layout (OPTIMAL versus LINEAR) or mip level count.
 | |
| */
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndex(
 | |
|     VmaAllocator allocator,
 | |
|     uint32_t memoryTypeBits,
 | |
|     const VmaAllocationCreateInfo* pAllocationCreateInfo,
 | |
|     uint32_t* pMemoryTypeIndex);
 | |
| 
 | |
| /**
 | |
| \brief Helps to find memoryTypeIndex, given VkBufferCreateInfo and VmaAllocationCreateInfo.
 | |
| 
 | |
| It can be useful e.g. to determine value to be used as VmaPoolCreateInfo::memoryTypeIndex.
 | |
| It internally creates a temporary, dummy buffer that never has memory bound.
 | |
| It is just a convenience function, equivalent to calling:
 | |
| 
 | |
| - `vkCreateBuffer`
 | |
| - `vkGetBufferMemoryRequirements`
 | |
| - `vmaFindMemoryTypeIndex`
 | |
| - `vkDestroyBuffer`
 | |
| */
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForBufferInfo(
 | |
|     VmaAllocator allocator,
 | |
|     const VkBufferCreateInfo* pBufferCreateInfo,
 | |
|     const VmaAllocationCreateInfo* pAllocationCreateInfo,
 | |
|     uint32_t* pMemoryTypeIndex);
 | |
| 
 | |
| /**
 | |
| \brief Helps to find memoryTypeIndex, given VkImageCreateInfo and VmaAllocationCreateInfo.
 | |
| 
 | |
| It can be useful e.g. to determine value to be used as VmaPoolCreateInfo::memoryTypeIndex.
 | |
| It internally creates a temporary, dummy image that never has memory bound.
 | |
| It is just a convenience function, equivalent to calling:
 | |
| 
 | |
| - `vkCreateImage`
 | |
| - `vkGetImageMemoryRequirements`
 | |
| - `vmaFindMemoryTypeIndex`
 | |
| - `vkDestroyImage`
 | |
| */
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForImageInfo(
 | |
|     VmaAllocator allocator,
 | |
|     const VkImageCreateInfo* pImageCreateInfo,
 | |
|     const VmaAllocationCreateInfo* pAllocationCreateInfo,
 | |
|     uint32_t* pMemoryTypeIndex);
 | |
| 
 | |
| /// Flags to be passed as VmaPoolCreateInfo::flags.
 | |
| typedef enum VmaPoolCreateFlagBits {
 | |
|     /** \brief Use this flag if you always allocate only buffers and linear images or only optimal images out of this pool and so Buffer-Image Granularity can be ignored.
 | |
| 
 | |
|     This is an optional optimization flag.
 | |
| 
 | |
|     If you always allocate using vmaCreateBuffer(), vmaCreateImage(),
 | |
|     vmaAllocateMemoryForBuffer(), then you don't need to use it because allocator
 | |
|     knows exact type of your allocations so it can handle Buffer-Image Granularity
 | |
|     in the optimal way.
 | |
| 
 | |
|     If you also allocate using vmaAllocateMemoryForImage() or vmaAllocateMemory(),
 | |
|     exact type of such allocations is not known, so allocator must be conservative
 | |
|     in handling Buffer-Image Granularity, which can lead to suboptimal allocation
 | |
|     (wasted memory). In that case, if you can make sure you always allocate only
 | |
|     buffers and linear images or only optimal images out of this pool, use this flag
 | |
|     to make allocator disregard Buffer-Image Granularity and so make allocations
 | |
|     faster and more optimal.
 | |
|     */
 | |
|     VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT = 0x00000002,
 | |
| 
 | |
|     /** \brief Enables alternative, linear allocation algorithm in this pool.
 | |
| 
 | |
|     Specify this flag to enable linear allocation algorithm, which always creates
 | |
|     new allocations after last one and doesn't reuse space from allocations freed in
 | |
|     between. It trades memory consumption for simplified algorithm and data
 | |
|     structure, which has better performance and uses less memory for metadata.
 | |
| 
 | |
|     By using this flag, you can achieve behavior of free-at-once, stack,
 | |
|     ring buffer, and double stack. For details, see documentation chapter
 | |
|     \ref linear_algorithm.
 | |
| 
 | |
|     When using this flag, you must specify VmaPoolCreateInfo::maxBlockCount == 1 (or 0 for default).
 | |
| 
 | |
|     For more details, see [Linear allocation algorithm](@ref linear_algorithm).
 | |
|     */
 | |
|     VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT = 0x00000004,
 | |
| 
 | |
|     /** \brief Enables alternative, buddy allocation algorithm in this pool.
 | |
| 
 | |
|     It operates on a tree of blocks, each having size that is a power of two and
 | |
|     a half of its parent's size. Comparing to default algorithm, this one provides
 | |
|     faster allocation and deallocation and decreased external fragmentation,
 | |
|     at the expense of more memory wasted (internal fragmentation).
 | |
| 
 | |
|     For more details, see [Buddy allocation algorithm](@ref buddy_algorithm).
 | |
|     */
 | |
|     VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT = 0x00000008,
 | |
| 
 | |
|     /** Bit mask to extract only `ALGORITHM` bits from entire set of flags.
 | |
|     */
 | |
|     VMA_POOL_CREATE_ALGORITHM_MASK =
 | |
|         VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT |
 | |
|         VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT,
 | |
| 
 | |
|     VMA_POOL_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
 | |
| } VmaPoolCreateFlagBits;
 | |
| typedef VkFlags VmaPoolCreateFlags;
 | |
| 
 | |
| /** \brief Describes parameter of created #VmaPool.
 | |
| */
 | |
| typedef struct VmaPoolCreateInfo {
 | |
|     /** \brief Vulkan memory type index to allocate this pool from.
 | |
|     */
 | |
|     uint32_t memoryTypeIndex;
 | |
|     /** \brief Use combination of #VmaPoolCreateFlagBits.
 | |
|     */
 | |
|     VmaPoolCreateFlags flags;
 | |
|     /** \brief Size of a single `VkDeviceMemory` block to be allocated as part of this pool, in bytes. Optional.
 | |
| 
 | |
|     Specify nonzero to set explicit, constant size of memory blocks used by this
 | |
|     pool.
 | |
| 
 | |
|     Leave 0 to use default and let the library manage block sizes automatically.
 | |
|     Sizes of particular blocks may vary.
 | |
|     */
 | |
|     VkDeviceSize blockSize;
 | |
|     /** \brief Minimum number of blocks to be always allocated in this pool, even if they stay empty.
 | |
| 
 | |
|     Set to 0 to have no preallocated blocks and allow the pool be completely empty.
 | |
|     */
 | |
|     size_t minBlockCount;
 | |
|     /** \brief Maximum number of blocks that can be allocated in this pool. Optional.
 | |
| 
 | |
|     Set to 0 to use default, which is `SIZE_MAX`, which means no limit.
 | |
|     
 | |
|     Set to same value as VmaPoolCreateInfo::minBlockCount to have fixed amount of memory allocated
 | |
|     throughout whole lifetime of this pool.
 | |
|     */
 | |
|     size_t maxBlockCount;
 | |
|     /** \brief Maximum number of additional frames that are in use at the same time as current frame.
 | |
| 
 | |
|     This value is used only when you make allocations with
 | |
|     #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag. Such allocation cannot become
 | |
|     lost if allocation.lastUseFrameIndex >= allocator.currentFrameIndex - frameInUseCount.
 | |
| 
 | |
|     For example, if you double-buffer your command buffers, so resources used for
 | |
|     rendering in previous frame may still be in use by the GPU at the moment you
 | |
|     allocate resources needed for the current frame, set this value to 1.
 | |
| 
 | |
|     If you want to allow any allocations other than used in the current frame to
 | |
|     become lost, set this value to 0.
 | |
|     */
 | |
|     uint32_t frameInUseCount;
 | |
| } VmaPoolCreateInfo;
 | |
| 
 | |
| /** \brief Describes parameter of existing #VmaPool.
 | |
| */
 | |
| typedef struct VmaPoolStats {
 | |
|     /** \brief Total amount of `VkDeviceMemory` allocated from Vulkan for this pool, in bytes.
 | |
|     */
 | |
|     VkDeviceSize size;
 | |
|     /** \brief Total number of bytes in the pool not used by any #VmaAllocation.
 | |
|     */
 | |
|     VkDeviceSize unusedSize;
 | |
|     /** \brief Number of #VmaAllocation objects created from this pool that were not destroyed or lost.
 | |
|     */
 | |
|     size_t allocationCount;
 | |
|     /** \brief Number of continuous memory ranges in the pool not used by any #VmaAllocation.
 | |
|     */
 | |
|     size_t unusedRangeCount;
 | |
|     /** \brief Size of the largest continuous free memory region available for new allocation.
 | |
| 
 | |
|     Making a new allocation of that size is not guaranteed to succeed because of
 | |
|     possible additional margin required to respect alignment and buffer/image
 | |
|     granularity.
 | |
|     */
 | |
|     VkDeviceSize unusedRangeSizeMax;
 | |
|     /** \brief Number of `VkDeviceMemory` blocks allocated for this pool.
 | |
|     */
 | |
|     size_t blockCount;
 | |
| } VmaPoolStats;
 | |
| 
 | |
| /** \brief Allocates Vulkan device memory and creates #VmaPool object.
 | |
| 
 | |
| @param allocator Allocator object.
 | |
| @param pCreateInfo Parameters of pool to create.
 | |
| @param[out] pPool Handle to created pool.
 | |
| */
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreatePool(
 | |
| 	VmaAllocator allocator,
 | |
| 	const VmaPoolCreateInfo* pCreateInfo,
 | |
| 	VmaPool* pPool);
 | |
| 
 | |
| /** \brief Destroys #VmaPool object and frees Vulkan device memory.
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaDestroyPool(
 | |
|     VmaAllocator allocator,
 | |
|     VmaPool pool);
 | |
| 
 | |
| /** \brief Retrieves statistics of existing #VmaPool object.
 | |
| 
 | |
| @param allocator Allocator object.
 | |
| @param pool Pool object.
 | |
| @param[out] pPoolStats Statistics of specified pool.
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolStats(
 | |
|     VmaAllocator allocator,
 | |
|     VmaPool pool,
 | |
|     VmaPoolStats* pPoolStats);
 | |
| 
 | |
| /** \brief Marks all allocations in given pool as lost if they are not used in current frame or VmaPoolCreateInfo::frameInUseCount back from now.
 | |
| 
 | |
| @param allocator Allocator object.
 | |
| @param pool Pool.
 | |
| @param[out] pLostAllocationCount Number of allocations marked as lost. Optional - pass null if you don't need this information.
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaMakePoolAllocationsLost(
 | |
|     VmaAllocator allocator,
 | |
|     VmaPool pool,
 | |
|     size_t* pLostAllocationCount);
 | |
| 
 | |
| /** \brief Checks magic number in margins around all allocations in given memory pool in search for corruptions.
 | |
| 
 | |
| Corruption detection is enabled only when `VMA_DEBUG_DETECT_CORRUPTION` macro is defined to nonzero,
 | |
| `VMA_DEBUG_MARGIN` is defined to nonzero and the pool is created in memory type that is
 | |
| `HOST_VISIBLE` and `HOST_COHERENT`. For more information, see [Corruption detection](@ref debugging_memory_usage_corruption_detection).
 | |
| 
 | |
| Possible return values:
 | |
| 
 | |
| - `VK_ERROR_FEATURE_NOT_PRESENT` - corruption detection is not enabled for specified pool.
 | |
| - `VK_SUCCESS` - corruption detection has been performed and succeeded.
 | |
| - `VK_ERROR_VALIDATION_FAILED_EXT` - corruption detection has been performed and found memory corruptions around one of the allocations.
 | |
|   `VMA_ASSERT` is also fired in that case.
 | |
| - Other value: Error returned by Vulkan, e.g. memory mapping failure.
 | |
| */
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckPoolCorruption(VmaAllocator allocator, VmaPool pool);
 | |
| 
 | |
| /** \brief Retrieves name of a custom pool.
 | |
| 
 | |
| After the call `ppName` is either null or points to an internally-owned null-terminated string
 | |
| containing name of the pool that was previously set. The pointer becomes invalid when the pool is
 | |
| destroyed or its name is changed using vmaSetPoolName().
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolName(
 | |
|     VmaAllocator allocator,
 | |
|     VmaPool pool,
 | |
|     const char** ppName);
 | |
| 
 | |
| /** \brief Sets name of a custom pool.
 | |
| 
 | |
| `pName` can be either null or pointer to a null-terminated string with new name for the pool.
 | |
| Function makes internal copy of the string, so it can be changed or freed immediately after this call.
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaSetPoolName(
 | |
|     VmaAllocator allocator,
 | |
|     VmaPool pool,
 | |
|     const char* pName);
 | |
| 
 | |
| /** \struct VmaAllocation
 | |
| \brief Represents single memory allocation.
 | |
| 
 | |
| It may be either dedicated block of `VkDeviceMemory` or a specific region of a bigger block of this type
 | |
| plus unique offset.
 | |
| 
 | |
| There are multiple ways to create such object.
 | |
| You need to fill structure VmaAllocationCreateInfo.
 | |
| For more information see [Choosing memory type](@ref choosing_memory_type).
 | |
| 
 | |
| Although the library provides convenience functions that create Vulkan buffer or image,
 | |
| allocate memory for it and bind them together,
 | |
| binding of the allocation to a buffer or an image is out of scope of the allocation itself.
 | |
| Allocation object can exist without buffer/image bound,
 | |
| binding can be done manually by the user, and destruction of it can be done
 | |
| independently of destruction of the allocation.
 | |
| 
 | |
| The object also remembers its size and some other information.
 | |
| To retrieve this information, use function vmaGetAllocationInfo() and inspect
 | |
| returned structure VmaAllocationInfo.
 | |
| 
 | |
| Some kinds allocations can be in lost state.
 | |
| For more information, see [Lost allocations](@ref lost_allocations).
 | |
| */
 | |
| VK_DEFINE_HANDLE(VmaAllocation)
 | |
| 
 | |
| /** \brief Parameters of #VmaAllocation objects, that can be retrieved using function vmaGetAllocationInfo().
 | |
| */
 | |
| typedef struct VmaAllocationInfo {
 | |
|     /** \brief Memory type index that this allocation was allocated from.
 | |
|     
 | |
|     It never changes.
 | |
|     */
 | |
|     uint32_t memoryType;
 | |
|     /** \brief Handle to Vulkan memory object.
 | |
| 
 | |
|     Same memory object can be shared by multiple allocations.
 | |
|     
 | |
|     It can change after call to vmaDefragment() if this allocation is passed to the function, or if allocation is lost.
 | |
| 
 | |
|     If the allocation is lost, it is equal to `VK_NULL_HANDLE`.
 | |
|     */
 | |
|     VkDeviceMemory deviceMemory;
 | |
|     /** \brief Offset into deviceMemory object to the beginning of this allocation, in bytes. (deviceMemory, offset) pair is unique to this allocation.
 | |
| 
 | |
|     It can change after call to vmaDefragment() if this allocation is passed to the function, or if allocation is lost.
 | |
|     */
 | |
|     VkDeviceSize offset;
 | |
|     /** \brief Size of this allocation, in bytes.
 | |
| 
 | |
|     It never changes, unless allocation is lost.
 | |
|     */
 | |
|     VkDeviceSize size;
 | |
|     /** \brief Pointer to the beginning of this allocation as mapped data.
 | |
| 
 | |
|     If the allocation hasn't been mapped using vmaMapMemory() and hasn't been
 | |
|     created with #VMA_ALLOCATION_CREATE_MAPPED_BIT flag, this value null.
 | |
| 
 | |
|     It can change after call to vmaMapMemory(), vmaUnmapMemory().
 | |
|     It can also change after call to vmaDefragment() if this allocation is passed to the function.
 | |
|     */
 | |
|     void* pMappedData;
 | |
|     /** \brief Custom general-purpose pointer that was passed as VmaAllocationCreateInfo::pUserData or set using vmaSetAllocationUserData().
 | |
| 
 | |
|     It can change after call to vmaSetAllocationUserData() for this allocation.
 | |
|     */
 | |
|     void* pUserData;
 | |
| } VmaAllocationInfo;
 | |
| 
 | |
| /** \brief General purpose memory allocation.
 | |
| 
 | |
| @param[out] pAllocation Handle to allocated memory.
 | |
| @param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().
 | |
| 
 | |
| You should free the memory using vmaFreeMemory() or vmaFreeMemoryPages().
 | |
| 
 | |
| It is recommended to use vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage(),
 | |
| vmaCreateBuffer(), vmaCreateImage() instead whenever possible.
 | |
| */
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemory(
 | |
|     VmaAllocator allocator,
 | |
|     const VkMemoryRequirements* pVkMemoryRequirements,
 | |
|     const VmaAllocationCreateInfo* pCreateInfo,
 | |
|     VmaAllocation* pAllocation,
 | |
|     VmaAllocationInfo* pAllocationInfo);
 | |
| 
 | |
| /** \brief General purpose memory allocation for multiple allocation objects at once.
 | |
| 
 | |
| @param allocator Allocator object.
 | |
| @param pVkMemoryRequirements Memory requirements for each allocation.
 | |
| @param pCreateInfo Creation parameters for each alloction.
 | |
| @param allocationCount Number of allocations to make.
 | |
| @param[out] pAllocations Pointer to array that will be filled with handles to created allocations.
 | |
| @param[out] pAllocationInfo Optional. Pointer to array that will be filled with parameters of created allocations.
 | |
| 
 | |
| You should free the memory using vmaFreeMemory() or vmaFreeMemoryPages().
 | |
| 
 | |
| Word "pages" is just a suggestion to use this function to allocate pieces of memory needed for sparse binding.
 | |
| It is just a general purpose allocation function able to make multiple allocations at once.
 | |
| It may be internally optimized to be more efficient than calling vmaAllocateMemory() `allocationCount` times.
 | |
| 
 | |
| All allocations are made using same parameters. All of them are created out of the same memory pool and type.
 | |
| If any allocation fails, all allocations already made within this function call are also freed, so that when
 | |
| returned result is not `VK_SUCCESS`, `pAllocation` array is always entirely filled with `VK_NULL_HANDLE`.
 | |
| */
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryPages(
 | |
|     VmaAllocator allocator,
 | |
|     const VkMemoryRequirements* pVkMemoryRequirements,
 | |
|     const VmaAllocationCreateInfo* pCreateInfo,
 | |
|     size_t allocationCount,
 | |
|     VmaAllocation* pAllocations,
 | |
|     VmaAllocationInfo* pAllocationInfo);
 | |
| 
 | |
| /**
 | |
| @param[out] pAllocation Handle to allocated memory.
 | |
| @param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().
 | |
| 
 | |
| You should free the memory using vmaFreeMemory().
 | |
| */
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForBuffer(
 | |
|     VmaAllocator allocator,
 | |
|     VkBuffer buffer,
 | |
|     const VmaAllocationCreateInfo* pCreateInfo,
 | |
|     VmaAllocation* pAllocation,
 | |
|     VmaAllocationInfo* pAllocationInfo);
 | |
| 
 | |
| /// Function similar to vmaAllocateMemoryForBuffer().
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForImage(
 | |
|     VmaAllocator allocator,
 | |
|     VkImage image,
 | |
|     const VmaAllocationCreateInfo* pCreateInfo,
 | |
|     VmaAllocation* pAllocation,
 | |
|     VmaAllocationInfo* pAllocationInfo);
 | |
| 
 | |
| /** \brief Frees memory previously allocated using vmaAllocateMemory(), vmaAllocateMemoryForBuffer(), or vmaAllocateMemoryForImage().
 | |
| 
 | |
| Passing `VK_NULL_HANDLE` as `allocation` is valid. Such function call is just skipped.
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemory(
 | |
|     VmaAllocator allocator,
 | |
|     VmaAllocation allocation);
 | |
| 
 | |
| /** \brief Frees memory and destroys multiple allocations.
 | |
| 
 | |
| Word "pages" is just a suggestion to use this function to free pieces of memory used for sparse binding.
 | |
| It is just a general purpose function to free memory and destroy allocations made using e.g. vmaAllocateMemory(),
 | |
| vmaAllocateMemoryPages() and other functions.
 | |
| It may be internally optimized to be more efficient than calling vmaFreeMemory() `allocationCount` times.
 | |
| 
 | |
| Allocations in `pAllocations` array can come from any memory pools and types.
 | |
| Passing `VK_NULL_HANDLE` as elements of `pAllocations` array is valid. Such entries are just skipped.
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemoryPages(
 | |
|     VmaAllocator allocator,
 | |
|     size_t allocationCount,
 | |
|     VmaAllocation* pAllocations);
 | |
| 
 | |
| /** \brief Deprecated.
 | |
| 
 | |
| In version 2.2.0 it used to try to change allocation's size without moving or reallocating it.
 | |
| In current version it returns `VK_SUCCESS` only if `newSize` equals current allocation's size.
 | |
| Otherwise returns `VK_ERROR_OUT_OF_POOL_MEMORY`, indicating that allocation's size could not be changed.
 | |
| */
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaResizeAllocation(
 | |
|     VmaAllocator allocator,
 | |
|     VmaAllocation allocation,
 | |
|     VkDeviceSize newSize);
 | |
| 
 | |
| /** \brief Returns current information about specified allocation and atomically marks it as used in current frame.
 | |
| 
 | |
| Current paramters of given allocation are returned in `pAllocationInfo`.
 | |
| 
 | |
| This function also atomically "touches" allocation - marks it as used in current frame,
 | |
| just like vmaTouchAllocation().
 | |
| If the allocation is in lost state, `pAllocationInfo->deviceMemory == VK_NULL_HANDLE`.
 | |
| 
 | |
| Although this function uses atomics and doesn't lock any mutex, so it should be quite efficient,
 | |
| you can avoid calling it too often.
 | |
| 
 | |
| - You can retrieve same VmaAllocationInfo structure while creating your resource, from function
 | |
|   vmaCreateBuffer(), vmaCreateImage(). You can remember it if you are sure parameters don't change
 | |
|   (e.g. due to defragmentation or allocation becoming lost).
 | |
| - If you just want to check if allocation is not lost, vmaTouchAllocation() will work faster.
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationInfo(
 | |
|     VmaAllocator allocator,
 | |
|     VmaAllocation allocation,
 | |
|     VmaAllocationInfo* pAllocationInfo);
 | |
| 
 | |
| /** \brief Returns `VK_TRUE` if allocation is not lost and atomically marks it as used in current frame.
 | |
| 
 | |
| If the allocation has been created with #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag,
 | |
| this function returns `VK_TRUE` if it's not in lost state, so it can still be used.
 | |
| It then also atomically "touches" the allocation - marks it as used in current frame,
 | |
| so that you can be sure it won't become lost in current frame or next `frameInUseCount` frames.
 | |
| 
 | |
| If the allocation is in lost state, the function returns `VK_FALSE`.
 | |
| Memory of such allocation, as well as buffer or image bound to it, should not be used.
 | |
| Lost allocation and the buffer/image still need to be destroyed.
 | |
| 
 | |
| If the allocation has been created without #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag,
 | |
| this function always returns `VK_TRUE`.
 | |
| */
 | |
| VMA_CALL_PRE VkBool32 VMA_CALL_POST vmaTouchAllocation(
 | |
|     VmaAllocator allocator,
 | |
|     VmaAllocation allocation);
 | |
| 
 | |
| /** \brief Sets pUserData in given allocation to new value.
 | |
| 
 | |
| If the allocation was created with VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT,
 | |
| pUserData must be either null, or pointer to a null-terminated string. The function
 | |
| makes local copy of the string and sets it as allocation's `pUserData`. String
 | |
| passed as pUserData doesn't need to be valid for whole lifetime of the allocation -
 | |
| you can free it after this call. String previously pointed by allocation's
 | |
| pUserData is freed from memory.
 | |
| 
 | |
| If the flag was not used, the value of pointer `pUserData` is just copied to
 | |
| allocation's `pUserData`. It is opaque, so you can use it however you want - e.g.
 | |
| as a pointer, ordinal number or some handle to you own data.
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationUserData(
 | |
|     VmaAllocator allocator,
 | |
|     VmaAllocation allocation,
 | |
|     void* pUserData);
 | |
| 
 | |
| /** \brief Creates new allocation that is in lost state from the beginning.
 | |
| 
 | |
| It can be useful if you need a dummy, non-null allocation.
 | |
| 
 | |
| You still need to destroy created object using vmaFreeMemory().
 | |
| 
 | |
| Returned allocation is not tied to any specific memory pool or memory type and
 | |
| not bound to any image or buffer. It has size = 0. It cannot be turned into
 | |
| a real, non-empty allocation.
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaCreateLostAllocation(
 | |
|     VmaAllocator allocator,
 | |
|     VmaAllocation* pAllocation);
 | |
| 
 | |
| /** \brief Maps memory represented by given allocation and returns pointer to it.
 | |
| 
 | |
| Maps memory represented by given allocation to make it accessible to CPU code.
 | |
| When succeeded, `*ppData` contains pointer to first byte of this memory.
 | |
| If the allocation is part of bigger `VkDeviceMemory` block, the pointer is
 | |
| correctly offseted to the beginning of region assigned to this particular
 | |
| allocation.
 | |
| 
 | |
| Mapping is internally reference-counted and synchronized, so despite raw Vulkan
 | |
| function `vkMapMemory()` cannot be used to map same block of `VkDeviceMemory`
 | |
| multiple times simultaneously, it is safe to call this function on allocations
 | |
| assigned to the same memory block. Actual Vulkan memory will be mapped on first
 | |
| mapping and unmapped on last unmapping.
 | |
| 
 | |
| If the function succeeded, you must call vmaUnmapMemory() to unmap the
 | |
| allocation when mapping is no longer needed or before freeing the allocation, at
 | |
| the latest.
 | |
| 
 | |
| It also safe to call this function multiple times on the same allocation. You
 | |
| must call vmaUnmapMemory() same number of times as you called vmaMapMemory().
 | |
| 
 | |
| It is also safe to call this function on allocation created with
 | |
| #VMA_ALLOCATION_CREATE_MAPPED_BIT flag. Its memory stays mapped all the time.
 | |
| You must still call vmaUnmapMemory() same number of times as you called
 | |
| vmaMapMemory(). You must not call vmaUnmapMemory() additional time to free the
 | |
| "0-th" mapping made automatically due to #VMA_ALLOCATION_CREATE_MAPPED_BIT flag.
 | |
| 
 | |
| This function fails when used on allocation made in memory type that is not
 | |
| `HOST_VISIBLE`.
 | |
| 
 | |
| This function always fails when called for allocation that was created with
 | |
| #VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT flag. Such allocations cannot be
 | |
| mapped.
 | |
| 
 | |
| This function doesn't automatically flush or invalidate caches.
 | |
| If the allocation is made from a memory types that is not `HOST_COHERENT`,
 | |
| you also need to use vmaInvalidateAllocation() / vmaFlushAllocation(), as required by Vulkan specification.
 | |
| */
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaMapMemory(
 | |
|     VmaAllocator allocator,
 | |
|     VmaAllocation allocation,
 | |
|     void** ppData);
 | |
| 
 | |
| /** \brief Unmaps memory represented by given allocation, mapped previously using vmaMapMemory().
 | |
| 
 | |
| For details, see description of vmaMapMemory().
 | |
| 
 | |
| This function doesn't automatically flush or invalidate caches.
 | |
| If the allocation is made from a memory types that is not `HOST_COHERENT`,
 | |
| you also need to use vmaInvalidateAllocation() / vmaFlushAllocation(), as required by Vulkan specification.
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaUnmapMemory(
 | |
|     VmaAllocator allocator,
 | |
|     VmaAllocation allocation);
 | |
| 
 | |
| /** \brief Flushes memory of given allocation.
 | |
| 
 | |
| Calls `vkFlushMappedMemoryRanges()` for memory associated with given range of given allocation.
 | |
| It needs to be called after writing to a mapped memory for memory types that are not `HOST_COHERENT`.
 | |
| Unmap operation doesn't do that automatically.
 | |
| 
 | |
| - `offset` must be relative to the beginning of allocation.
 | |
| - `size` can be `VK_WHOLE_SIZE`. It means all memory from `offset` the the end of given allocation.
 | |
| - `offset` and `size` don't have to be aligned.
 | |
|   They are internally rounded down/up to multiply of `nonCoherentAtomSize`.
 | |
| - If `size` is 0, this call is ignored.
 | |
| - If memory type that the `allocation` belongs to is not `HOST_VISIBLE` or it is `HOST_COHERENT`,
 | |
|   this call is ignored.
 | |
| 
 | |
| Warning! `offset` and `size` are relative to the contents of given `allocation`.
 | |
| If you mean whole allocation, you can pass 0 and `VK_WHOLE_SIZE`, respectively.
 | |
| Do not pass allocation's offset as `offset`!!!
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaFlushAllocation(VmaAllocator allocator, VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size);
 | |
| 
 | |
| /** \brief Invalidates memory of given allocation.
 | |
| 
 | |
| Calls `vkInvalidateMappedMemoryRanges()` for memory associated with given range of given allocation.
 | |
| It needs to be called before reading from a mapped memory for memory types that are not `HOST_COHERENT`.
 | |
| Map operation doesn't do that automatically.
 | |
| 
 | |
| - `offset` must be relative to the beginning of allocation.
 | |
| - `size` can be `VK_WHOLE_SIZE`. It means all memory from `offset` the the end of given allocation.
 | |
| - `offset` and `size` don't have to be aligned.
 | |
|   They are internally rounded down/up to multiply of `nonCoherentAtomSize`.
 | |
| - If `size` is 0, this call is ignored.
 | |
| - If memory type that the `allocation` belongs to is not `HOST_VISIBLE` or it is `HOST_COHERENT`,
 | |
|   this call is ignored.
 | |
| 
 | |
| Warning! `offset` and `size` are relative to the contents of given `allocation`.
 | |
| If you mean whole allocation, you can pass 0 and `VK_WHOLE_SIZE`, respectively.
 | |
| Do not pass allocation's offset as `offset`!!!
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaInvalidateAllocation(VmaAllocator allocator, VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size);
 | |
| 
 | |
| /** \brief Checks magic number in margins around all allocations in given memory types (in both default and custom pools) in search for corruptions.
 | |
| 
 | |
| @param memoryTypeBits Bit mask, where each bit set means that a memory type with that index should be checked.
 | |
| 
 | |
| Corruption detection is enabled only when `VMA_DEBUG_DETECT_CORRUPTION` macro is defined to nonzero,
 | |
| `VMA_DEBUG_MARGIN` is defined to nonzero and only for memory types that are
 | |
| `HOST_VISIBLE` and `HOST_COHERENT`. For more information, see [Corruption detection](@ref debugging_memory_usage_corruption_detection).
 | |
| 
 | |
| Possible return values:
 | |
| 
 | |
| - `VK_ERROR_FEATURE_NOT_PRESENT` - corruption detection is not enabled for any of specified memory types.
 | |
| - `VK_SUCCESS` - corruption detection has been performed and succeeded.
 | |
| - `VK_ERROR_VALIDATION_FAILED_EXT` - corruption detection has been performed and found memory corruptions around one of the allocations.
 | |
|   `VMA_ASSERT` is also fired in that case.
 | |
| - Other value: Error returned by Vulkan, e.g. memory mapping failure.
 | |
| */
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckCorruption(VmaAllocator allocator, uint32_t memoryTypeBits);
 | |
| 
 | |
| /** \struct VmaDefragmentationContext
 | |
| \brief Represents Opaque object that represents started defragmentation process.
 | |
| 
 | |
| Fill structure #VmaDefragmentationInfo2 and call function vmaDefragmentationBegin() to create it.
 | |
| Call function vmaDefragmentationEnd() to destroy it.
 | |
| */
 | |
| VK_DEFINE_HANDLE(VmaDefragmentationContext)
 | |
| 
 | |
| /// Flags to be used in vmaDefragmentationBegin(). None at the moment. Reserved for future use.
 | |
| typedef enum VmaDefragmentationFlagBits {
 | |
|     VMA_DEFRAGMENTATION_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
 | |
| } VmaDefragmentationFlagBits;
 | |
| typedef VkFlags VmaDefragmentationFlags;
 | |
| 
 | |
| /** \brief Parameters for defragmentation.
 | |
| 
 | |
| To be used with function vmaDefragmentationBegin().
 | |
| */
 | |
| typedef struct VmaDefragmentationInfo2 {
 | |
|     /** \brief Reserved for future use. Should be 0.
 | |
|     */
 | |
|     VmaDefragmentationFlags flags;
 | |
|     /** \brief Number of allocations in `pAllocations` array.
 | |
|     */
 | |
|     uint32_t allocationCount;
 | |
|     /** \brief Pointer to array of allocations that can be defragmented.
 | |
| 
 | |
|     The array should have `allocationCount` elements.
 | |
|     The array should not contain nulls.
 | |
|     Elements in the array should be unique - same allocation cannot occur twice.
 | |
|     It is safe to pass allocations that are in the lost state - they are ignored.
 | |
|     All allocations not present in this array are considered non-moveable during this defragmentation.
 | |
|     */
 | |
|     VmaAllocation* pAllocations;
 | |
|     /** \brief Optional, output. Pointer to array that will be filled with information whether the allocation at certain index has been changed during defragmentation.
 | |
| 
 | |
|     The array should have `allocationCount` elements.
 | |
|     You can pass null if you are not interested in this information.
 | |
|     */
 | |
|     VkBool32* pAllocationsChanged;
 | |
|     /** \brief Numer of pools in `pPools` array.
 | |
|     */
 | |
|     uint32_t poolCount;
 | |
|     /** \brief Either null or pointer to array of pools to be defragmented.
 | |
| 
 | |
|     All the allocations in the specified pools can be moved during defragmentation
 | |
|     and there is no way to check if they were really moved as in `pAllocationsChanged`,
 | |
|     so you must query all the allocations in all these pools for new `VkDeviceMemory`
 | |
|     and offset using vmaGetAllocationInfo() if you might need to recreate buffers
 | |
|     and images bound to them.
 | |
| 
 | |
|     The array should have `poolCount` elements.
 | |
|     The array should not contain nulls.
 | |
|     Elements in the array should be unique - same pool cannot occur twice.
 | |
| 
 | |
|     Using this array is equivalent to specifying all allocations from the pools in `pAllocations`.
 | |
|     It might be more efficient.
 | |
|     */
 | |
|     VmaPool* pPools;
 | |
|     /** \brief Maximum total numbers of bytes that can be copied while moving allocations to different places using transfers on CPU side, like `memcpy()`, `memmove()`.
 | |
|     
 | |
|     `VK_WHOLE_SIZE` means no limit.
 | |
|     */
 | |
|     VkDeviceSize maxCpuBytesToMove;
 | |
|     /** \brief Maximum number of allocations that can be moved to a different place using transfers on CPU side, like `memcpy()`, `memmove()`.
 | |
| 
 | |
|     `UINT32_MAX` means no limit.
 | |
|     */
 | |
|     uint32_t maxCpuAllocationsToMove;
 | |
|     /** \brief Maximum total numbers of bytes that can be copied while moving allocations to different places using transfers on GPU side, posted to `commandBuffer`.
 | |
|     
 | |
|     `VK_WHOLE_SIZE` means no limit.
 | |
|     */
 | |
|     VkDeviceSize maxGpuBytesToMove;
 | |
|     /** \brief Maximum number of allocations that can be moved to a different place using transfers on GPU side, posted to `commandBuffer`.
 | |
| 
 | |
|     `UINT32_MAX` means no limit.
 | |
|     */
 | |
|     uint32_t maxGpuAllocationsToMove;
 | |
|     /** \brief Optional. Command buffer where GPU copy commands will be posted.
 | |
| 
 | |
|     If not null, it must be a valid command buffer handle that supports Transfer queue type.
 | |
|     It must be in the recording state and outside of a render pass instance.
 | |
|     You need to submit it and make sure it finished execution before calling vmaDefragmentationEnd().
 | |
| 
 | |
|     Passing null means that only CPU defragmentation will be performed.
 | |
|     */
 | |
|     VkCommandBuffer commandBuffer;
 | |
| } VmaDefragmentationInfo2;
 | |
| 
 | |
| /** \brief Deprecated. Optional configuration parameters to be passed to function vmaDefragment().
 | |
| 
 | |
| \deprecated This is a part of the old interface. It is recommended to use structure #VmaDefragmentationInfo2 and function vmaDefragmentationBegin() instead.
 | |
| */
 | |
| typedef struct VmaDefragmentationInfo {
 | |
|     /** \brief Maximum total numbers of bytes that can be copied while moving allocations to different places.
 | |
|     
 | |
|     Default is `VK_WHOLE_SIZE`, which means no limit.
 | |
|     */
 | |
|     VkDeviceSize maxBytesToMove;
 | |
|     /** \brief Maximum number of allocations that can be moved to different place.
 | |
| 
 | |
|     Default is `UINT32_MAX`, which means no limit.
 | |
|     */
 | |
|     uint32_t maxAllocationsToMove;
 | |
| } VmaDefragmentationInfo;
 | |
| 
 | |
| /** \brief Statistics returned by function vmaDefragment(). */
 | |
| typedef struct VmaDefragmentationStats {
 | |
|     /// Total number of bytes that have been copied while moving allocations to different places.
 | |
|     VkDeviceSize bytesMoved;
 | |
|     /// Total number of bytes that have been released to the system by freeing empty `VkDeviceMemory` objects.
 | |
|     VkDeviceSize bytesFreed;
 | |
|     /// Number of allocations that have been moved to different places.
 | |
|     uint32_t allocationsMoved;
 | |
|     /// Number of empty `VkDeviceMemory` objects that have been released to the system.
 | |
|     uint32_t deviceMemoryBlocksFreed;
 | |
| } VmaDefragmentationStats;
 | |
| 
 | |
| /** \brief Begins defragmentation process.
 | |
| 
 | |
| @param allocator Allocator object.
 | |
| @param pInfo Structure filled with parameters of defragmentation.
 | |
| @param[out] pStats Optional. Statistics of defragmentation. You can pass null if you are not interested in this information.
 | |
| @param[out] pContext Context object that must be passed to vmaDefragmentationEnd() to finish defragmentation.
 | |
| @return `VK_SUCCESS` and `*pContext == null` if defragmentation finished within this function call. `VK_NOT_READY` and `*pContext != null` if defragmentation has been started and you need to call vmaDefragmentationEnd() to finish it. Negative value in case of error.
 | |
| 
 | |
| Use this function instead of old, deprecated vmaDefragment().
 | |
| 
 | |
| Warning! Between the call to vmaDefragmentationBegin() and vmaDefragmentationEnd():
 | |
| 
 | |
| - You should not use any of allocations passed as `pInfo->pAllocations` or
 | |
|   any allocations that belong to pools passed as `pInfo->pPools`,
 | |
|   including calling vmaGetAllocationInfo(), vmaTouchAllocation(), or access
 | |
|   their data.
 | |
| - Some mutexes protecting internal data structures may be locked, so trying to
 | |
|   make or free any allocations, bind buffers or images, map memory, or launch
 | |
|   another simultaneous defragmentation in between may cause stall (when done on
 | |
|   another thread) or deadlock (when done on the same thread), unless you are
 | |
|   100% sure that defragmented allocations are in different pools.
 | |
| - Information returned via `pStats` and `pInfo->pAllocationsChanged` are undefined.
 | |
|   They become valid after call to vmaDefragmentationEnd().
 | |
| - If `pInfo->commandBuffer` is not null, you must submit that command buffer
 | |
|   and make sure it finished execution before calling vmaDefragmentationEnd().
 | |
| 
 | |
| For more information and important limitations regarding defragmentation, see documentation chapter:
 | |
| [Defragmentation](@ref defragmentation).
 | |
| */
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragmentationBegin(
 | |
|     VmaAllocator allocator,
 | |
|     const VmaDefragmentationInfo2* pInfo,
 | |
|     VmaDefragmentationStats* pStats,
 | |
|     VmaDefragmentationContext *pContext);
 | |
| 
 | |
| /** \brief Ends defragmentation process.
 | |
| 
 | |
| Use this function to finish defragmentation started by vmaDefragmentationBegin().
 | |
| It is safe to pass `context == null`. The function then does nothing.
 | |
| */
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragmentationEnd(
 | |
|     VmaAllocator allocator,
 | |
|     VmaDefragmentationContext context);
 | |
| 
 | |
| /** \brief Deprecated. Compacts memory by moving allocations.
 | |
| 
 | |
| @param pAllocations Array of allocations that can be moved during this compation.
 | |
| @param allocationCount Number of elements in pAllocations and pAllocationsChanged arrays.
 | |
| @param[out] pAllocationsChanged Array of boolean values that will indicate whether matching allocation in pAllocations array has been moved. This parameter is optional. Pass null if you don't need this information.
 | |
| @param pDefragmentationInfo Configuration parameters. Optional - pass null to use default values.
 | |
| @param[out] pDefragmentationStats Statistics returned by the function. Optional - pass null if you don't need this information.
 | |
| @return `VK_SUCCESS` if completed, negative error code in case of error.
 | |
| 
 | |
| \deprecated This is a part of the old interface. It is recommended to use structure #VmaDefragmentationInfo2 and function vmaDefragmentationBegin() instead.
 | |
| 
 | |
| This function works by moving allocations to different places (different
 | |
| `VkDeviceMemory` objects and/or different offsets) in order to optimize memory
 | |
| usage. Only allocations that are in `pAllocations` array can be moved. All other
 | |
| allocations are considered nonmovable in this call. Basic rules:
 | |
| 
 | |
| - Only allocations made in memory types that have
 | |
|   `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` and `VK_MEMORY_PROPERTY_HOST_COHERENT_BIT`
 | |
|   flags can be compacted. You may pass other allocations but it makes no sense -
 | |
|   these will never be moved.
 | |
| - Custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT or
 | |
|   #VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT flag are not defragmented. Allocations
 | |
|   passed to this function that come from such pools are ignored.
 | |
| - Allocations created with #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT or
 | |
|   created as dedicated allocations for any other reason are also ignored.
 | |
| - Both allocations made with or without #VMA_ALLOCATION_CREATE_MAPPED_BIT
 | |
|   flag can be compacted. If not persistently mapped, memory will be mapped
 | |
|   temporarily inside this function if needed.
 | |
| - You must not pass same #VmaAllocation object multiple times in `pAllocations` array.
 | |
| 
 | |
| The function also frees empty `VkDeviceMemory` blocks.
 | |
| 
 | |
| Warning: This function may be time-consuming, so you shouldn't call it too often
 | |
| (like after every resource creation/destruction).
 | |
| You can call it on special occasions (like when reloading a game level or
 | |
| when you just destroyed a lot of objects). Calling it every frame may be OK, but
 | |
| you should measure that on your platform.
 | |
| 
 | |
| For more information, see [Defragmentation](@ref defragmentation) chapter.
 | |
| */
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragment(
 | |
|     VmaAllocator allocator,
 | |
|     VmaAllocation* pAllocations,
 | |
|     size_t allocationCount,
 | |
|     VkBool32* pAllocationsChanged,
 | |
|     const VmaDefragmentationInfo *pDefragmentationInfo,
 | |
|     VmaDefragmentationStats* pDefragmentationStats);
 | |
| 
 | |
| /** \brief Binds buffer to allocation.
 | |
| 
 | |
| Binds specified buffer to region of memory represented by specified allocation.
 | |
| Gets `VkDeviceMemory` handle and offset from the allocation.
 | |
| If you want to create a buffer, allocate memory for it and bind them together separately,
 | |
| you should use this function for binding instead of standard `vkBindBufferMemory()`,
 | |
| because it ensures proper synchronization so that when a `VkDeviceMemory` object is used by multiple
 | |
| allocations, calls to `vkBind*Memory()` or `vkMapMemory()` won't happen from multiple threads simultaneously
 | |
| (which is illegal in Vulkan).
 | |
| 
 | |
| It is recommended to use function vmaCreateBuffer() instead of this one.
 | |
| */
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory(
 | |
|     VmaAllocator allocator,
 | |
|     VmaAllocation allocation,
 | |
|     VkBuffer buffer);
 | |
| 
 | |
| /** \brief Binds buffer to allocation with additional parameters.
 | |
| 
 | |
| @param allocationLocalOffset Additional offset to be added while binding, relative to the beginnig of the `allocation`. Normally it should be 0.
 | |
| @param pNext A chain of structures to be attached to `VkBindBufferMemoryInfoKHR` structure used internally. Normally it should be null.
 | |
| 
 | |
| This function is similar to vmaBindBufferMemory(), but it provides additional parameters.
 | |
| 
 | |
| If `pNext` is not null, #VmaAllocator object must have been created with #VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT flag
 | |
| or with VmaAllocatorCreateInfo::vulkanApiVersion `== VK_API_VERSION_1_1`. Otherwise the call fails.
 | |
| */
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory2(
 | |
|     VmaAllocator allocator,
 | |
|     VmaAllocation allocation,
 | |
|     VkDeviceSize allocationLocalOffset,
 | |
|     VkBuffer buffer,
 | |
|     const void* pNext);
 | |
| 
 | |
| /** \brief Binds image to allocation.
 | |
| 
 | |
| Binds specified image to region of memory represented by specified allocation.
 | |
| Gets `VkDeviceMemory` handle and offset from the allocation.
 | |
| If you want to create an image, allocate memory for it and bind them together separately,
 | |
| you should use this function for binding instead of standard `vkBindImageMemory()`,
 | |
| because it ensures proper synchronization so that when a `VkDeviceMemory` object is used by multiple
 | |
| allocations, calls to `vkBind*Memory()` or `vkMapMemory()` won't happen from multiple threads simultaneously
 | |
| (which is illegal in Vulkan).
 | |
| 
 | |
| It is recommended to use function vmaCreateImage() instead of this one.
 | |
| */
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory(
 | |
|     VmaAllocator allocator,
 | |
|     VmaAllocation allocation,
 | |
|     VkImage image);
 | |
| 
 | |
| /** \brief Binds image to allocation with additional parameters.
 | |
| 
 | |
| @param allocationLocalOffset Additional offset to be added while binding, relative to the beginnig of the `allocation`. Normally it should be 0.
 | |
| @param pNext A chain of structures to be attached to `VkBindImageMemoryInfoKHR` structure used internally. Normally it should be null.
 | |
| 
 | |
| This function is similar to vmaBindImageMemory(), but it provides additional parameters.
 | |
| 
 | |
| If `pNext` is not null, #VmaAllocator object must have been created with #VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT flag
 | |
| or with VmaAllocatorCreateInfo::vulkanApiVersion `== VK_API_VERSION_1_1`. Otherwise the call fails.
 | |
| */
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory2(
 | |
|     VmaAllocator allocator,
 | |
|     VmaAllocation allocation,
 | |
|     VkDeviceSize allocationLocalOffset,
 | |
|     VkImage image,
 | |
|     const void* pNext);
 | |
| 
 | |
| /**
 | |
| @param[out] pBuffer Buffer that was created.
 | |
| @param[out] pAllocation Allocation that was created.
 | |
| @param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().
 | |
| 
 | |
| This function automatically:
 | |
| 
 | |
| -# Creates buffer.
 | |
| -# Allocates appropriate memory for it.
 | |
| -# Binds the buffer with the memory.
 | |
| 
 | |
| If any of these operations fail, buffer and allocation are not created,
 | |
| returned value is negative error code, *pBuffer and *pAllocation are null.
 | |
| 
 | |
| If the function succeeded, you must destroy both buffer and allocation when you
 | |
| no longer need them using either convenience function vmaDestroyBuffer() or
 | |
| separately, using `vkDestroyBuffer()` and vmaFreeMemory().
 | |
| 
 | |
| If VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag was used,
 | |
| VK_KHR_dedicated_allocation extension is used internally to query driver whether
 | |
| it requires or prefers the new buffer to have dedicated allocation. If yes,
 | |
| and if dedicated allocation is possible (VmaAllocationCreateInfo::pool is null
 | |
| and VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT is not used), it creates dedicated
 | |
| allocation for this buffer, just like when using
 | |
| VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
 | |
| */
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBuffer(
 | |
|     VmaAllocator allocator,
 | |
|     const VkBufferCreateInfo* pBufferCreateInfo,
 | |
|     const VmaAllocationCreateInfo* pAllocationCreateInfo,
 | |
|     VkBuffer* pBuffer,
 | |
|     VmaAllocation* pAllocation,
 | |
|     VmaAllocationInfo* pAllocationInfo);
 | |
| 
 | |
| /** \brief Destroys Vulkan buffer and frees allocated memory.
 | |
| 
 | |
| This is just a convenience function equivalent to:
 | |
| 
 | |
| \code
 | |
| vkDestroyBuffer(device, buffer, allocationCallbacks);
 | |
| vmaFreeMemory(allocator, allocation);
 | |
| \endcode
 | |
| 
 | |
| It it safe to pass null as buffer and/or allocation.
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaDestroyBuffer(
 | |
|     VmaAllocator allocator,
 | |
|     VkBuffer buffer,
 | |
|     VmaAllocation allocation);
 | |
| 
 | |
| /// Function similar to vmaCreateBuffer().
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateImage(
 | |
|     VmaAllocator allocator,
 | |
|     const VkImageCreateInfo* pImageCreateInfo,
 | |
|     const VmaAllocationCreateInfo* pAllocationCreateInfo,
 | |
|     VkImage* pImage,
 | |
|     VmaAllocation* pAllocation,
 | |
|     VmaAllocationInfo* pAllocationInfo);
 | |
| 
 | |
| /** \brief Destroys Vulkan image and frees allocated memory.
 | |
| 
 | |
| This is just a convenience function equivalent to:
 | |
| 
 | |
| \code
 | |
| vkDestroyImage(device, image, allocationCallbacks);
 | |
| vmaFreeMemory(allocator, allocation);
 | |
| \endcode
 | |
| 
 | |
| It it safe to pass null as image and/or allocation.
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaDestroyImage(
 | |
|     VmaAllocator allocator,
 | |
|     VkImage image,
 | |
|     VmaAllocation allocation);
 | |
| 
 | |
| #ifdef __cplusplus
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #endif // AMD_VULKAN_MEMORY_ALLOCATOR_H
 | |
| 
 | |
| // For Visual Studio IntelliSense.
 | |
| #if defined(__cplusplus) && defined(__INTELLISENSE__)
 | |
| #define VMA_IMPLEMENTATION
 | |
| #endif
 | |
| 
 | |
| #ifdef VMA_IMPLEMENTATION
 | |
| #undef VMA_IMPLEMENTATION
 | |
| 
 | |
| #include <cstdint>
 | |
| #include <cstdlib>
 | |
| #include <cstring>
 | |
| 
 | |
| /*******************************************************************************
 | |
| CONFIGURATION SECTION
 | |
| 
 | |
| Define some of these macros before each #include of this header or change them
 | |
| here if you need other then default behavior depending on your environment.
 | |
| */
 | |
| 
 | |
| /*
 | |
| Define this macro to 1 to make the library fetch pointers to Vulkan functions
 | |
| internally, like:
 | |
| 
 | |
|     vulkanFunctions.vkAllocateMemory = &vkAllocateMemory;
 | |
| 
 | |
| Define to 0 if you are going to provide you own pointers to Vulkan functions via
 | |
| VmaAllocatorCreateInfo::pVulkanFunctions.
 | |
| */
 | |
| #if !defined(VMA_STATIC_VULKAN_FUNCTIONS) && !defined(VK_NO_PROTOTYPES)
 | |
| #define VMA_STATIC_VULKAN_FUNCTIONS 1
 | |
| #endif
 | |
| 
 | |
| // Define this macro to 1 to make the library use STL containers instead of its own implementation.
 | |
| //#define VMA_USE_STL_CONTAINERS 1
 | |
| 
 | |
| /* Set this macro to 1 to make the library including and using STL containers:
 | |
| std::pair, std::vector, std::list, std::unordered_map.
 | |
| 
 | |
| Set it to 0 or undefined to make the library using its own implementation of
 | |
| the containers.
 | |
| */
 | |
| #if VMA_USE_STL_CONTAINERS
 | |
|    #define VMA_USE_STL_VECTOR 1
 | |
|    #define VMA_USE_STL_UNORDERED_MAP 1
 | |
|    #define VMA_USE_STL_LIST 1
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_USE_STL_SHARED_MUTEX
 | |
|     // Compiler conforms to C++17.
 | |
|     #if __cplusplus >= 201703L
 | |
|         #define VMA_USE_STL_SHARED_MUTEX 1
 | |
|     // Visual studio defines __cplusplus properly only when passed additional parameter: /Zc:__cplusplus
 | |
|     // Otherwise it's always 199711L, despite shared_mutex works since Visual Studio 2015 Update 2.
 | |
|     // See: https://blogs.msdn.microsoft.com/vcblog/2018/04/09/msvc-now-correctly-reports-__cplusplus/
 | |
|     #elif defined(_MSC_FULL_VER) && _MSC_FULL_VER >= 190023918 && __cplusplus == 199711L && _MSVC_LANG >= 201703L
 | |
|         #define VMA_USE_STL_SHARED_MUTEX 1
 | |
|     #else
 | |
|         #define VMA_USE_STL_SHARED_MUTEX 0
 | |
|     #endif
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| THESE INCLUDES ARE NOT ENABLED BY DEFAULT.
 | |
| Library has its own container implementation.
 | |
| */
 | |
| #if VMA_USE_STL_VECTOR
 | |
|    #include <vector>
 | |
| #endif
 | |
| 
 | |
| #if VMA_USE_STL_UNORDERED_MAP
 | |
|    #include <unordered_map>
 | |
| #endif
 | |
| 
 | |
| #if VMA_USE_STL_LIST
 | |
|    #include <list>
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| Following headers are used in this CONFIGURATION section only, so feel free to
 | |
| remove them if not needed.
 | |
| */
 | |
| #include <cassert> // for assert
 | |
| #include <algorithm> // for min, max
 | |
| #include <mutex>
 | |
| 
 | |
| #ifndef VMA_NULL
 | |
|    // Value used as null pointer. Define it to e.g.: nullptr, NULL, 0, (void*)0.
 | |
|    #define VMA_NULL   nullptr
 | |
| #endif
 | |
| 
 | |
| #if defined(__ANDROID_API__) && (__ANDROID_API__ < 16)
 | |
| #include <cstdlib>
 | |
| void *aligned_alloc(size_t alignment, size_t size)
 | |
| {
 | |
|     // alignment must be >= sizeof(void*)
 | |
|     if(alignment < sizeof(void*))
 | |
|     {
 | |
|         alignment = sizeof(void*);
 | |
|     }
 | |
| 
 | |
|     return memalign(alignment, size);
 | |
| }
 | |
| #elif defined(__APPLE__) || defined(__ANDROID__) || (defined(__linux__) && defined(__GLIBCXX__) && !defined(_GLIBCXX_HAVE_ALIGNED_ALLOC))
 | |
| #include <cstdlib>
 | |
| void *aligned_alloc(size_t alignment, size_t size)
 | |
| {
 | |
|     // alignment must be >= sizeof(void*)
 | |
|     if(alignment < sizeof(void*))
 | |
|     {
 | |
|         alignment = sizeof(void*);
 | |
|     }
 | |
| 
 | |
|     void *pointer;
 | |
|     if(posix_memalign(&pointer, alignment, size) == 0)
 | |
|         return pointer;
 | |
|     return VMA_NULL;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| // If your compiler is not compatible with C++11 and definition of
 | |
| // aligned_alloc() function is missing, uncommeting following line may help:
 | |
| 
 | |
| //#include <malloc.h>
 | |
| 
 | |
| // Normal assert to check for programmer's errors, especially in Debug configuration.
 | |
| #ifndef VMA_ASSERT
 | |
|    #ifdef _DEBUG
 | |
|        #define VMA_ASSERT(expr)         assert(expr)
 | |
|    #else
 | |
|        #define VMA_ASSERT(expr)
 | |
|    #endif
 | |
| #endif
 | |
| 
 | |
| // Assert that will be called very often, like inside data structures e.g. operator[].
 | |
| // Making it non-empty can make program slow.
 | |
| #ifndef VMA_HEAVY_ASSERT
 | |
|    #ifdef _DEBUG
 | |
|        #define VMA_HEAVY_ASSERT(expr)   //VMA_ASSERT(expr)
 | |
|    #else
 | |
|        #define VMA_HEAVY_ASSERT(expr)
 | |
|    #endif
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_ALIGN_OF
 | |
|    #define VMA_ALIGN_OF(type)       (__alignof(type))
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_SYSTEM_ALIGNED_MALLOC
 | |
|    #if defined(_WIN32)
 | |
|        #define VMA_SYSTEM_ALIGNED_MALLOC(size, alignment)   (_aligned_malloc((size), (alignment)))
 | |
|    #else
 | |
|        #define VMA_SYSTEM_ALIGNED_MALLOC(size, alignment)   (aligned_alloc((alignment), (size) ))
 | |
|    #endif
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_SYSTEM_FREE
 | |
|    #if defined(_WIN32)
 | |
|        #define VMA_SYSTEM_FREE(ptr)   _aligned_free(ptr)
 | |
|    #else
 | |
|        #define VMA_SYSTEM_FREE(ptr)   free(ptr)
 | |
|    #endif
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_MIN
 | |
|    #define VMA_MIN(v1, v2)    (std::min((v1), (v2)))
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_MAX
 | |
|    #define VMA_MAX(v1, v2)    (std::max((v1), (v2)))
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_SWAP
 | |
|    #define VMA_SWAP(v1, v2)   std::swap((v1), (v2))
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_SORT
 | |
|    #define VMA_SORT(beg, end, cmp)  std::sort(beg, end, cmp)
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_DEBUG_LOG
 | |
|    #define VMA_DEBUG_LOG(format, ...)
 | |
|    /*
 | |
|    #define VMA_DEBUG_LOG(format, ...) do { \
 | |
|        printf(format, __VA_ARGS__); \
 | |
|        printf("\n"); \
 | |
|    } while(false)
 | |
|    */
 | |
| #endif
 | |
| 
 | |
| // Define this macro to 1 to enable functions: vmaBuildStatsString, vmaFreeStatsString.
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
|     static inline void VmaUint32ToStr(char* outStr, size_t strLen, uint32_t num)
 | |
|     {
 | |
|         snprintf(outStr, strLen, "%u", static_cast<unsigned int>(num));
 | |
|     }
 | |
|     static inline void VmaUint64ToStr(char* outStr, size_t strLen, uint64_t num)
 | |
|     {
 | |
|         snprintf(outStr, strLen, "%llu", static_cast<unsigned long long>(num));
 | |
|     }
 | |
|     static inline void VmaPtrToStr(char* outStr, size_t strLen, const void* ptr)
 | |
|     {
 | |
|         snprintf(outStr, strLen, "%p", ptr);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_MUTEX
 | |
|     class VmaMutex
 | |
|     {
 | |
|     public:
 | |
|         void Lock() { m_Mutex.lock(); }
 | |
|         void Unlock() { m_Mutex.unlock(); }
 | |
|     private:
 | |
|         std::mutex m_Mutex;
 | |
|     };
 | |
|     #define VMA_MUTEX VmaMutex
 | |
| #endif
 | |
| 
 | |
| // Read-write mutex, where "read" is shared access, "write" is exclusive access.
 | |
| #ifndef VMA_RW_MUTEX
 | |
|     #if VMA_USE_STL_SHARED_MUTEX
 | |
|         // Use std::shared_mutex from C++17.
 | |
|         #include <shared_mutex>
 | |
|         class VmaRWMutex
 | |
|         {
 | |
|         public:
 | |
|             void LockRead() { m_Mutex.lock_shared(); }
 | |
|             void UnlockRead() { m_Mutex.unlock_shared(); }
 | |
|             void LockWrite() { m_Mutex.lock(); }
 | |
|             void UnlockWrite() { m_Mutex.unlock(); }
 | |
|         private:
 | |
|             std::shared_mutex m_Mutex;
 | |
|         };
 | |
|         #define VMA_RW_MUTEX VmaRWMutex
 | |
|     #elif defined(_WIN32) && defined(WINVER) && WINVER >= 0x0600
 | |
|         // Use SRWLOCK from WinAPI.
 | |
|         // Minimum supported client = Windows Vista, server = Windows Server 2008.
 | |
|         class VmaRWMutex
 | |
|         {
 | |
|         public:
 | |
|             VmaRWMutex() { InitializeSRWLock(&m_Lock); }
 | |
|             void LockRead() { AcquireSRWLockShared(&m_Lock); }
 | |
|             void UnlockRead() { ReleaseSRWLockShared(&m_Lock); }
 | |
|             void LockWrite() { AcquireSRWLockExclusive(&m_Lock); }
 | |
|             void UnlockWrite() { ReleaseSRWLockExclusive(&m_Lock); }
 | |
|         private:
 | |
|             SRWLOCK m_Lock;
 | |
|         };
 | |
|         #define VMA_RW_MUTEX VmaRWMutex
 | |
|     #else
 | |
|         // Less efficient fallback: Use normal mutex.
 | |
|         class VmaRWMutex
 | |
|         {
 | |
|         public:
 | |
|             void LockRead() { m_Mutex.Lock(); }
 | |
|             void UnlockRead() { m_Mutex.Unlock(); }
 | |
|             void LockWrite() { m_Mutex.Lock(); }
 | |
|             void UnlockWrite() { m_Mutex.Unlock(); }
 | |
|         private:
 | |
|             VMA_MUTEX m_Mutex;
 | |
|         };
 | |
|         #define VMA_RW_MUTEX VmaRWMutex
 | |
|     #endif // #if VMA_USE_STL_SHARED_MUTEX
 | |
| #endif // #ifndef VMA_RW_MUTEX
 | |
| 
 | |
| /*
 | |
| If providing your own implementation, you need to implement a subset of std::atomic.
 | |
| */
 | |
| #ifndef VMA_ATOMIC_UINT32
 | |
|     #include <atomic>
 | |
|     #define VMA_ATOMIC_UINT32 std::atomic<uint32_t>
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_ATOMIC_UINT64
 | |
|     #include <atomic>
 | |
|     #define VMA_ATOMIC_UINT64 std::atomic<uint64_t>
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_DEBUG_ALWAYS_DEDICATED_MEMORY
 | |
|     /**
 | |
|     Every allocation will have its own memory block.
 | |
|     Define to 1 for debugging purposes only.
 | |
|     */
 | |
|     #define VMA_DEBUG_ALWAYS_DEDICATED_MEMORY (0)
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_DEBUG_ALIGNMENT
 | |
|     /**
 | |
|     Minimum alignment of all allocations, in bytes.
 | |
|     Set to more than 1 for debugging purposes only. Must be power of two.
 | |
|     */
 | |
|     #define VMA_DEBUG_ALIGNMENT (1)
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_DEBUG_MARGIN
 | |
|     /**
 | |
|     Minimum margin before and after every allocation, in bytes.
 | |
|     Set nonzero for debugging purposes only.
 | |
|     */
 | |
|     #define VMA_DEBUG_MARGIN (0)
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_DEBUG_INITIALIZE_ALLOCATIONS
 | |
|     /**
 | |
|     Define this macro to 1 to automatically fill new allocations and destroyed
 | |
|     allocations with some bit pattern.
 | |
|     */
 | |
|     #define VMA_DEBUG_INITIALIZE_ALLOCATIONS (0)
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_DEBUG_DETECT_CORRUPTION
 | |
|     /**
 | |
|     Define this macro to 1 together with non-zero value of VMA_DEBUG_MARGIN to
 | |
|     enable writing magic value to the margin before and after every allocation and
 | |
|     validating it, so that memory corruptions (out-of-bounds writes) are detected.
 | |
|     */
 | |
|     #define VMA_DEBUG_DETECT_CORRUPTION (0)
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_DEBUG_GLOBAL_MUTEX
 | |
|     /**
 | |
|     Set this to 1 for debugging purposes only, to enable single mutex protecting all
 | |
|     entry calls to the library. Can be useful for debugging multithreading issues.
 | |
|     */
 | |
|     #define VMA_DEBUG_GLOBAL_MUTEX (0)
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY
 | |
|     /**
 | |
|     Minimum value for VkPhysicalDeviceLimits::bufferImageGranularity.
 | |
|     Set to more than 1 for debugging purposes only. Must be power of two.
 | |
|     */
 | |
|     #define VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY (1)
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_SMALL_HEAP_MAX_SIZE
 | |
|    /// Maximum size of a memory heap in Vulkan to consider it "small".
 | |
|    #define VMA_SMALL_HEAP_MAX_SIZE (1024ull * 1024 * 1024)
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE
 | |
|    /// Default size of a block allocated as single VkDeviceMemory from a "large" heap.
 | |
|    #define VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE (256ull * 1024 * 1024)
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_CLASS_NO_COPY
 | |
|     #define VMA_CLASS_NO_COPY(className) \
 | |
|         private: \
 | |
|             className(const className&) = delete; \
 | |
|             className& operator=(const className&) = delete;
 | |
| #endif
 | |
| 
 | |
| static const uint32_t VMA_FRAME_INDEX_LOST = UINT32_MAX;
 | |
| 
 | |
| // Decimal 2139416166, float NaN, little-endian binary 66 E6 84 7F.
 | |
| static const uint32_t VMA_CORRUPTION_DETECTION_MAGIC_VALUE = 0x7F84E666;
 | |
| 
 | |
| static const uint8_t VMA_ALLOCATION_FILL_PATTERN_CREATED   = 0xDC;
 | |
| static const uint8_t VMA_ALLOCATION_FILL_PATTERN_DESTROYED = 0xEF;
 | |
| 
 | |
| /*******************************************************************************
 | |
| END OF CONFIGURATION
 | |
| */
 | |
| 
 | |
| static const uint32_t VMA_ALLOCATION_INTERNAL_STRATEGY_MIN_OFFSET = 0x10000000u;
 | |
| 
 | |
| static VkAllocationCallbacks VmaEmptyAllocationCallbacks = {
 | |
|     VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL };
 | |
| 
 | |
| // Returns number of bits set to 1 in (v).
 | |
| static inline uint32_t VmaCountBitsSet(uint32_t v)
 | |
| {
 | |
| 	uint32_t c = v - ((v >> 1) & 0x55555555);
 | |
| 	c = ((c >>  2) & 0x33333333) + (c & 0x33333333);
 | |
| 	c = ((c >>  4) + c) & 0x0F0F0F0F;
 | |
| 	c = ((c >>  8) + c) & 0x00FF00FF;
 | |
| 	c = ((c >> 16) + c) & 0x0000FFFF;
 | |
| 	return c;
 | |
| }
 | |
| 
 | |
| // Aligns given value up to nearest multiply of align value. For example: VmaAlignUp(11, 8) = 16.
 | |
| // Use types like uint32_t, uint64_t as T.
 | |
| template <typename T>
 | |
| static inline T VmaAlignUp(T val, T align)
 | |
| {
 | |
| 	return (val + align - 1) / align * align;
 | |
| }
 | |
| // Aligns given value down to nearest multiply of align value. For example: VmaAlignUp(11, 8) = 8.
 | |
| // Use types like uint32_t, uint64_t as T.
 | |
| template <typename T>
 | |
| static inline T VmaAlignDown(T val, T align)
 | |
| {
 | |
|     return val / align * align;
 | |
| }
 | |
| 
 | |
| // Division with mathematical rounding to nearest number.
 | |
| template <typename T>
 | |
| static inline T VmaRoundDiv(T x, T y)
 | |
| {
 | |
| 	return (x + (y / (T)2)) / y;
 | |
| }
 | |
| 
 | |
| /*
 | |
| Returns true if given number is a power of two.
 | |
| T must be unsigned integer number or signed integer but always nonnegative.
 | |
| For 0 returns true.
 | |
| */
 | |
| template <typename T>
 | |
| inline bool VmaIsPow2(T x)
 | |
| {
 | |
|     return (x & (x-1)) == 0;
 | |
| }
 | |
| 
 | |
| // Returns smallest power of 2 greater or equal to v.
 | |
| static inline uint32_t VmaNextPow2(uint32_t v)
 | |
| {
 | |
| 	v--;
 | |
|     v |= v >> 1;
 | |
|     v |= v >> 2;
 | |
|     v |= v >> 4;
 | |
|     v |= v >> 8;
 | |
|     v |= v >> 16;
 | |
|     v++;
 | |
|     return v;
 | |
| }
 | |
| static inline uint64_t VmaNextPow2(uint64_t v)
 | |
| {
 | |
| 	v--;
 | |
|     v |= v >> 1;
 | |
|     v |= v >> 2;
 | |
|     v |= v >> 4;
 | |
|     v |= v >> 8;
 | |
|     v |= v >> 16;
 | |
|     v |= v >> 32;
 | |
|     v++;
 | |
|     return v;
 | |
| }
 | |
| 
 | |
| // Returns largest power of 2 less or equal to v.
 | |
| static inline uint32_t VmaPrevPow2(uint32_t v)
 | |
| {
 | |
|     v |= v >> 1;
 | |
|     v |= v >> 2;
 | |
|     v |= v >> 4;
 | |
|     v |= v >> 8;
 | |
|     v |= v >> 16;
 | |
|     v = v ^ (v >> 1);
 | |
|     return v;
 | |
| }
 | |
| static inline uint64_t VmaPrevPow2(uint64_t v)
 | |
| {
 | |
|     v |= v >> 1;
 | |
|     v |= v >> 2;
 | |
|     v |= v >> 4;
 | |
|     v |= v >> 8;
 | |
|     v |= v >> 16;
 | |
|     v |= v >> 32;
 | |
|     v = v ^ (v >> 1);
 | |
|     return v;
 | |
| }
 | |
| 
 | |
| static inline bool VmaStrIsEmpty(const char* pStr)
 | |
| {
 | |
|     return pStr == VMA_NULL || *pStr == '\0';
 | |
| }
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
| 
 | |
| static const char* VmaAlgorithmToStr(uint32_t algorithm)
 | |
| {
 | |
|     switch(algorithm)
 | |
|     {
 | |
|     case VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT:
 | |
|         return "Linear";
 | |
|     case VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT:
 | |
|         return "Buddy";
 | |
|     case 0:
 | |
|         return "Default";
 | |
|     default:
 | |
|         VMA_ASSERT(0);
 | |
|         return "";
 | |
|     }
 | |
| }
 | |
| 
 | |
| #endif // #if VMA_STATS_STRING_ENABLED
 | |
| 
 | |
| #ifndef VMA_SORT
 | |
| 
 | |
| template<typename Iterator, typename Compare>
 | |
| Iterator VmaQuickSortPartition(Iterator beg, Iterator end, Compare cmp)
 | |
| {
 | |
|     Iterator centerValue = end; --centerValue;
 | |
|     Iterator insertIndex = beg;
 | |
|     for(Iterator memTypeIndex = beg; memTypeIndex < centerValue; ++memTypeIndex)
 | |
|     {
 | |
|         if(cmp(*memTypeIndex, *centerValue))
 | |
|         {
 | |
|             if(insertIndex != memTypeIndex)
 | |
|             {
 | |
|                 VMA_SWAP(*memTypeIndex, *insertIndex);
 | |
|             }
 | |
|             ++insertIndex;
 | |
|         }
 | |
|     }
 | |
|     if(insertIndex != centerValue)
 | |
|     {
 | |
|         VMA_SWAP(*insertIndex, *centerValue);
 | |
|     }
 | |
|     return insertIndex;
 | |
| }
 | |
| 
 | |
| template<typename Iterator, typename Compare>
 | |
| void VmaQuickSort(Iterator beg, Iterator end, Compare cmp)
 | |
| {
 | |
|     if(beg < end)
 | |
|     {
 | |
|         Iterator it = VmaQuickSortPartition<Iterator, Compare>(beg, end, cmp);
 | |
|         VmaQuickSort<Iterator, Compare>(beg, it, cmp);
 | |
|         VmaQuickSort<Iterator, Compare>(it + 1, end, cmp);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #define VMA_SORT(beg, end, cmp) VmaQuickSort(beg, end, cmp)
 | |
| 
 | |
| #endif // #ifndef VMA_SORT
 | |
| 
 | |
| /*
 | |
| Returns true if two memory blocks occupy overlapping pages.
 | |
| ResourceA must be in less memory offset than ResourceB.
 | |
| 
 | |
| Algorithm is based on "Vulkan 1.0.39 - A Specification (with all registered Vulkan extensions)"
 | |
| chapter 11.6 "Resource Memory Association", paragraph "Buffer-Image Granularity".
 | |
| */
 | |
| static inline bool VmaBlocksOnSamePage(
 | |
|     VkDeviceSize resourceAOffset,
 | |
|     VkDeviceSize resourceASize,
 | |
|     VkDeviceSize resourceBOffset,
 | |
|     VkDeviceSize pageSize)
 | |
| {
 | |
|     VMA_ASSERT(resourceAOffset + resourceASize <= resourceBOffset && resourceASize > 0 && pageSize > 0);
 | |
|     VkDeviceSize resourceAEnd = resourceAOffset + resourceASize - 1;
 | |
|     VkDeviceSize resourceAEndPage = resourceAEnd & ~(pageSize - 1);
 | |
|     VkDeviceSize resourceBStart = resourceBOffset;
 | |
|     VkDeviceSize resourceBStartPage = resourceBStart & ~(pageSize - 1);
 | |
|     return resourceAEndPage == resourceBStartPage;
 | |
| }
 | |
| 
 | |
| enum VmaSuballocationType
 | |
| {
 | |
|     VMA_SUBALLOCATION_TYPE_FREE = 0,
 | |
|     VMA_SUBALLOCATION_TYPE_UNKNOWN = 1,
 | |
|     VMA_SUBALLOCATION_TYPE_BUFFER = 2,
 | |
|     VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN = 3,
 | |
|     VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR = 4,
 | |
|     VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL = 5,
 | |
|     VMA_SUBALLOCATION_TYPE_MAX_ENUM = 0x7FFFFFFF
 | |
| };
 | |
| 
 | |
| /*
 | |
| Returns true if given suballocation types could conflict and must respect
 | |
| VkPhysicalDeviceLimits::bufferImageGranularity. They conflict if one is buffer
 | |
| or linear image and another one is optimal image. If type is unknown, behave
 | |
| conservatively.
 | |
| */
 | |
| static inline bool VmaIsBufferImageGranularityConflict(
 | |
|     VmaSuballocationType suballocType1,
 | |
|     VmaSuballocationType suballocType2)
 | |
| {
 | |
|     if(suballocType1 > suballocType2)
 | |
|     {
 | |
|         VMA_SWAP(suballocType1, suballocType2);
 | |
|     }
 | |
|     
 | |
|     switch(suballocType1)
 | |
|     {
 | |
|     case VMA_SUBALLOCATION_TYPE_FREE:
 | |
|         return false;
 | |
|     case VMA_SUBALLOCATION_TYPE_UNKNOWN:
 | |
|         return true;
 | |
|     case VMA_SUBALLOCATION_TYPE_BUFFER:
 | |
|         return
 | |
|             suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN ||
 | |
|             suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;
 | |
|     case VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN:
 | |
|         return
 | |
|             suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN ||
 | |
|             suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR ||
 | |
|             suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;
 | |
|     case VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR:
 | |
|         return
 | |
|             suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;
 | |
|     case VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL:
 | |
|         return false;
 | |
|     default:
 | |
|         VMA_ASSERT(0);
 | |
|         return true;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void VmaWriteMagicValue(void* pData, VkDeviceSize offset)
 | |
| {
 | |
| #if VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_DETECT_CORRUPTION
 | |
|     uint32_t* pDst = (uint32_t*)((char*)pData + offset);
 | |
|     const size_t numberCount = VMA_DEBUG_MARGIN / sizeof(uint32_t);
 | |
|     for(size_t i = 0; i < numberCount; ++i, ++pDst)
 | |
|     {
 | |
|         *pDst = VMA_CORRUPTION_DETECTION_MAGIC_VALUE;
 | |
|     }
 | |
| #else
 | |
|     // no-op
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static bool VmaValidateMagicValue(const void* pData, VkDeviceSize offset)
 | |
| {
 | |
| #if VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_DETECT_CORRUPTION
 | |
|     const uint32_t* pSrc = (const uint32_t*)((const char*)pData + offset);
 | |
|     const size_t numberCount = VMA_DEBUG_MARGIN / sizeof(uint32_t);
 | |
|     for(size_t i = 0; i < numberCount; ++i, ++pSrc)
 | |
|     {
 | |
|         if(*pSrc != VMA_CORRUPTION_DETECTION_MAGIC_VALUE)
 | |
|         {
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
| Fills structure with parameters of an example buffer to be used for transfers
 | |
| during GPU memory defragmentation.
 | |
| */
 | |
| static void VmaFillGpuDefragmentationBufferCreateInfo(VkBufferCreateInfo& outBufCreateInfo)
 | |
| {
 | |
|     memset(&outBufCreateInfo, 0, sizeof(outBufCreateInfo));
 | |
|     outBufCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
 | |
|     outBufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
 | |
|     outBufCreateInfo.size = (VkDeviceSize)VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE; // Example size.
 | |
| }
 | |
| 
 | |
| // Helper RAII class to lock a mutex in constructor and unlock it in destructor (at the end of scope).
 | |
| struct VmaMutexLock
 | |
| {
 | |
|     VMA_CLASS_NO_COPY(VmaMutexLock)
 | |
| public:
 | |
|     VmaMutexLock(VMA_MUTEX& mutex, bool useMutex = true) :
 | |
|         m_pMutex(useMutex ? &mutex : VMA_NULL)
 | |
|     { if(m_pMutex) { m_pMutex->Lock(); } }
 | |
|     ~VmaMutexLock()
 | |
|     { if(m_pMutex) { m_pMutex->Unlock(); } }
 | |
| private:
 | |
|     VMA_MUTEX* m_pMutex;
 | |
| };
 | |
| 
 | |
| // Helper RAII class to lock a RW mutex in constructor and unlock it in destructor (at the end of scope), for reading.
 | |
| struct VmaMutexLockRead
 | |
| {
 | |
|     VMA_CLASS_NO_COPY(VmaMutexLockRead)
 | |
| public:
 | |
|     VmaMutexLockRead(VMA_RW_MUTEX& mutex, bool useMutex) :
 | |
|         m_pMutex(useMutex ? &mutex : VMA_NULL)
 | |
|     { if(m_pMutex) { m_pMutex->LockRead(); } }
 | |
|     ~VmaMutexLockRead() { if(m_pMutex) { m_pMutex->UnlockRead(); } }
 | |
| private:
 | |
|     VMA_RW_MUTEX* m_pMutex;
 | |
| };
 | |
| 
 | |
| // Helper RAII class to lock a RW mutex in constructor and unlock it in destructor (at the end of scope), for writing.
 | |
| struct VmaMutexLockWrite
 | |
| {
 | |
|     VMA_CLASS_NO_COPY(VmaMutexLockWrite)
 | |
| public:
 | |
|     VmaMutexLockWrite(VMA_RW_MUTEX& mutex, bool useMutex) :
 | |
|         m_pMutex(useMutex ? &mutex : VMA_NULL)
 | |
|     { if(m_pMutex) { m_pMutex->LockWrite(); } }
 | |
|     ~VmaMutexLockWrite() { if(m_pMutex) { m_pMutex->UnlockWrite(); } }
 | |
| private:
 | |
|     VMA_RW_MUTEX* m_pMutex;
 | |
| };
 | |
| 
 | |
| #if VMA_DEBUG_GLOBAL_MUTEX
 | |
|     static VMA_MUTEX gDebugGlobalMutex;
 | |
|     #define VMA_DEBUG_GLOBAL_MUTEX_LOCK VmaMutexLock debugGlobalMutexLock(gDebugGlobalMutex, true);
 | |
| #else
 | |
|     #define VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| #endif
 | |
| 
 | |
| // Minimum size of a free suballocation to register it in the free suballocation collection.
 | |
| static const VkDeviceSize VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER = 16;
 | |
| 
 | |
| /*
 | |
| Performs binary search and returns iterator to first element that is greater or
 | |
| equal to (key), according to comparison (cmp).
 | |
| 
 | |
| Cmp should return true if first argument is less than second argument.
 | |
| 
 | |
| Returned value is the found element, if present in the collection or place where
 | |
| new element with value (key) should be inserted.
 | |
| */
 | |
| template <typename CmpLess, typename IterT, typename KeyT>
 | |
| static IterT VmaBinaryFindFirstNotLess(IterT beg, IterT end, const KeyT &key, const CmpLess& cmp)
 | |
| {
 | |
|     size_t down = 0, up = (end - beg);
 | |
|     while(down < up)
 | |
|     {
 | |
|         const size_t mid = (down + up) / 2;
 | |
|         if(cmp(*(beg+mid), key))
 | |
|         {
 | |
|             down = mid + 1;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             up = mid;
 | |
|         }
 | |
|     }
 | |
|     return beg + down;
 | |
| }
 | |
| 
 | |
| template<typename CmpLess, typename IterT, typename KeyT>
 | |
| IterT VmaBinaryFindSorted(const IterT& beg, const IterT& end, const KeyT& value, const CmpLess& cmp)
 | |
| {
 | |
|     IterT it = VmaBinaryFindFirstNotLess<CmpLess, IterT, KeyT>(
 | |
|         beg, end, value, cmp);
 | |
|     if(it == end ||
 | |
|         (!cmp(*it, value) && !cmp(value, *it)))
 | |
|     {
 | |
|         return it;
 | |
|     }
 | |
|     return end;
 | |
| }
 | |
| 
 | |
| /*
 | |
| Returns true if all pointers in the array are not-null and unique.
 | |
| Warning! O(n^2) complexity. Use only inside VMA_HEAVY_ASSERT.
 | |
| T must be pointer type, e.g. VmaAllocation, VmaPool.
 | |
| */
 | |
| template<typename T>
 | |
| static bool VmaValidatePointerArray(uint32_t count, const T* arr)
 | |
| {
 | |
|     for(uint32_t i = 0; i < count; ++i)
 | |
|     {
 | |
|         const T iPtr = arr[i];
 | |
|         if(iPtr == VMA_NULL)
 | |
|         {
 | |
|             return false;
 | |
|         }
 | |
|         for(uint32_t j = i + 1; j < count; ++j)
 | |
|         {
 | |
|             if(iPtr == arr[j])
 | |
|             {
 | |
|                 return false;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| // Memory allocation
 | |
| 
 | |
| static void* VmaMalloc(const VkAllocationCallbacks* pAllocationCallbacks, size_t size, size_t alignment)
 | |
| {
 | |
|     if((pAllocationCallbacks != VMA_NULL) &&
 | |
|         (pAllocationCallbacks->pfnAllocation != VMA_NULL))
 | |
|     {
 | |
|         return (*pAllocationCallbacks->pfnAllocation)(
 | |
|             pAllocationCallbacks->pUserData,
 | |
|             size,
 | |
|             alignment,
 | |
|             VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         return VMA_SYSTEM_ALIGNED_MALLOC(size, alignment);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void VmaFree(const VkAllocationCallbacks* pAllocationCallbacks, void* ptr)
 | |
| {
 | |
|     if((pAllocationCallbacks != VMA_NULL) &&
 | |
|         (pAllocationCallbacks->pfnFree != VMA_NULL))
 | |
|     {
 | |
|         (*pAllocationCallbacks->pfnFree)(pAllocationCallbacks->pUserData, ptr);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         VMA_SYSTEM_FREE(ptr);
 | |
|     }
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| static T* VmaAllocate(const VkAllocationCallbacks* pAllocationCallbacks)
 | |
| {
 | |
|     return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T), VMA_ALIGN_OF(T));
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| static T* VmaAllocateArray(const VkAllocationCallbacks* pAllocationCallbacks, size_t count)
 | |
| {
 | |
|     return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T) * count, VMA_ALIGN_OF(T));
 | |
| }
 | |
| 
 | |
| #define vma_new(allocator, type)   new(VmaAllocate<type>(allocator))(type)
 | |
| 
 | |
| #define vma_new_array(allocator, type, count)   new(VmaAllocateArray<type>((allocator), (count)))(type)
 | |
| 
 | |
| template<typename T>
 | |
| static void vma_delete(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr)
 | |
| {
 | |
|     ptr->~T();
 | |
|     VmaFree(pAllocationCallbacks, ptr);
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| static void vma_delete_array(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr, size_t count)
 | |
| {
 | |
|     if(ptr != VMA_NULL)
 | |
|     {
 | |
|         for(size_t i = count; i--; )
 | |
|         {
 | |
|             ptr[i].~T();
 | |
|         }
 | |
|         VmaFree(pAllocationCallbacks, ptr);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static char* VmaCreateStringCopy(const VkAllocationCallbacks* allocs, const char* srcStr)
 | |
| {
 | |
|     if(srcStr != VMA_NULL)
 | |
|     {
 | |
|         const size_t len = strlen(srcStr);
 | |
|         char* const result = vma_new_array(allocs, char, len + 1);
 | |
|         memcpy(result, srcStr, len + 1);
 | |
|         return result;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         return VMA_NULL;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void VmaFreeString(const VkAllocationCallbacks* allocs, char* str)
 | |
| {
 | |
|     if(str != VMA_NULL)
 | |
|     {
 | |
|         const size_t len = strlen(str);
 | |
|         vma_delete_array(allocs, str, len + 1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| // STL-compatible allocator.
 | |
| template<typename T>
 | |
| class VmaStlAllocator
 | |
| {
 | |
| public:
 | |
|     const VkAllocationCallbacks* const m_pCallbacks;
 | |
|     typedef T value_type;
 | |
|     
 | |
|     VmaStlAllocator(const VkAllocationCallbacks* pCallbacks) : m_pCallbacks(pCallbacks) { }
 | |
|     template<typename U> VmaStlAllocator(const VmaStlAllocator<U>& src) : m_pCallbacks(src.m_pCallbacks) { }
 | |
| 
 | |
|     T* allocate(size_t n) { return VmaAllocateArray<T>(m_pCallbacks, n); }
 | |
|     void deallocate(T* p, size_t n) { VmaFree(m_pCallbacks, p); }
 | |
| 
 | |
|     template<typename U>
 | |
|     bool operator==(const VmaStlAllocator<U>& rhs) const
 | |
|     {
 | |
|         return m_pCallbacks == rhs.m_pCallbacks;
 | |
|     }
 | |
|     template<typename U>
 | |
|     bool operator!=(const VmaStlAllocator<U>& rhs) const
 | |
|     {
 | |
|         return m_pCallbacks != rhs.m_pCallbacks;
 | |
|     }
 | |
| 
 | |
|     VmaStlAllocator& operator=(const VmaStlAllocator& x) = delete;
 | |
| };
 | |
| 
 | |
| #if VMA_USE_STL_VECTOR
 | |
| 
 | |
| #define VmaVector std::vector
 | |
| 
 | |
| template<typename T, typename allocatorT>
 | |
| static void VmaVectorInsert(std::vector<T, allocatorT>& vec, size_t index, const T& item)
 | |
| {
 | |
|     vec.insert(vec.begin() + index, item);
 | |
| }
 | |
| 
 | |
| template<typename T, typename allocatorT>
 | |
| static void VmaVectorRemove(std::vector<T, allocatorT>& vec, size_t index)
 | |
| {
 | |
|     vec.erase(vec.begin() + index);
 | |
| }
 | |
| 
 | |
| #else // #if VMA_USE_STL_VECTOR
 | |
| 
 | |
| /* Class with interface compatible with subset of std::vector.
 | |
| T must be POD because constructors and destructors are not called and memcpy is
 | |
| used for these objects. */
 | |
| template<typename T, typename AllocatorT>
 | |
| class VmaVector
 | |
| {
 | |
| public:
 | |
|     typedef T value_type;
 | |
| 
 | |
|     VmaVector(const AllocatorT& allocator) :
 | |
|         m_Allocator(allocator),
 | |
|         m_pArray(VMA_NULL),
 | |
|         m_Count(0),
 | |
|         m_Capacity(0)
 | |
|     {
 | |
|     }
 | |
| 
 | |
|     VmaVector(size_t count, const AllocatorT& allocator) :
 | |
|         m_Allocator(allocator),
 | |
|         m_pArray(count ? (T*)VmaAllocateArray<T>(allocator.m_pCallbacks, count) : VMA_NULL),
 | |
|         m_Count(count),
 | |
|         m_Capacity(count)
 | |
|     {
 | |
|     }
 | |
|     
 | |
|     // This version of the constructor is here for compatibility with pre-C++14 std::vector.
 | |
|     // value is unused.
 | |
|     VmaVector(size_t count, const T& value, const AllocatorT& allocator)
 | |
|         : VmaVector(count, allocator) {}
 | |
|     
 | |
|     VmaVector(const VmaVector<T, AllocatorT>& src) :
 | |
|         m_Allocator(src.m_Allocator),
 | |
|         m_pArray(src.m_Count ? (T*)VmaAllocateArray<T>(src.m_Allocator.m_pCallbacks, src.m_Count) : VMA_NULL),
 | |
|         m_Count(src.m_Count),
 | |
|         m_Capacity(src.m_Count)
 | |
|     {
 | |
|         if(m_Count != 0)
 | |
|         {
 | |
|             memcpy(m_pArray, src.m_pArray, m_Count * sizeof(T));
 | |
|         }
 | |
|     }
 | |
|     
 | |
|     ~VmaVector()
 | |
|     {
 | |
|         VmaFree(m_Allocator.m_pCallbacks, m_pArray);
 | |
|     }
 | |
| 
 | |
|     VmaVector& operator=(const VmaVector<T, AllocatorT>& rhs)
 | |
|     {
 | |
|         if(&rhs != this)
 | |
|         {
 | |
|             resize(rhs.m_Count);
 | |
|             if(m_Count != 0)
 | |
|             {
 | |
|                 memcpy(m_pArray, rhs.m_pArray, m_Count * sizeof(T));
 | |
|             }
 | |
|         }
 | |
|         return *this;
 | |
|     }
 | |
|     
 | |
|     bool empty() const { return m_Count == 0; }
 | |
|     size_t size() const { return m_Count; }
 | |
|     T* data() { return m_pArray; }
 | |
|     const T* data() const { return m_pArray; }
 | |
|     
 | |
|     T& operator[](size_t index)
 | |
|     {
 | |
|         VMA_HEAVY_ASSERT(index < m_Count);
 | |
|         return m_pArray[index];
 | |
|     }
 | |
|     const T& operator[](size_t index) const
 | |
|     {
 | |
|         VMA_HEAVY_ASSERT(index < m_Count);
 | |
|         return m_pArray[index];
 | |
|     }
 | |
| 
 | |
|     T& front()
 | |
|     {
 | |
|         VMA_HEAVY_ASSERT(m_Count > 0);
 | |
|         return m_pArray[0];
 | |
|     }
 | |
|     const T& front() const
 | |
|     {
 | |
|         VMA_HEAVY_ASSERT(m_Count > 0);
 | |
|         return m_pArray[0];
 | |
|     }
 | |
|     T& back()
 | |
|     {
 | |
|         VMA_HEAVY_ASSERT(m_Count > 0);
 | |
|         return m_pArray[m_Count - 1];
 | |
|     }
 | |
|     const T& back() const
 | |
|     {
 | |
|         VMA_HEAVY_ASSERT(m_Count > 0);
 | |
|         return m_pArray[m_Count - 1];
 | |
|     }
 | |
| 
 | |
|     void reserve(size_t newCapacity, bool freeMemory = false)
 | |
|     {
 | |
|         newCapacity = VMA_MAX(newCapacity, m_Count);
 | |
|         
 | |
|         if((newCapacity < m_Capacity) && !freeMemory)
 | |
|         {
 | |
|             newCapacity = m_Capacity;
 | |
|         }
 | |
|         
 | |
|         if(newCapacity != m_Capacity)
 | |
|         {
 | |
|             T* const newArray = newCapacity ? VmaAllocateArray<T>(m_Allocator, newCapacity) : VMA_NULL;
 | |
|             if(m_Count != 0)
 | |
|             {
 | |
|                 memcpy(newArray, m_pArray, m_Count * sizeof(T));
 | |
|             }
 | |
|             VmaFree(m_Allocator.m_pCallbacks, m_pArray);
 | |
|             m_Capacity = newCapacity;
 | |
|             m_pArray = newArray;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     void resize(size_t newCount, bool freeMemory = false)
 | |
|     {
 | |
|         size_t newCapacity = m_Capacity;
 | |
|         if(newCount > m_Capacity)
 | |
|         {
 | |
|             newCapacity = VMA_MAX(newCount, VMA_MAX(m_Capacity * 3 / 2, (size_t)8));
 | |
|         }
 | |
|         else if(freeMemory)
 | |
|         {
 | |
|             newCapacity = newCount;
 | |
|         }
 | |
| 
 | |
|         if(newCapacity != m_Capacity)
 | |
|         {
 | |
|             T* const newArray = newCapacity ? VmaAllocateArray<T>(m_Allocator.m_pCallbacks, newCapacity) : VMA_NULL;
 | |
|             const size_t elementsToCopy = VMA_MIN(m_Count, newCount);
 | |
|             if(elementsToCopy != 0)
 | |
|             {
 | |
|                 memcpy(newArray, m_pArray, elementsToCopy * sizeof(T));
 | |
|             }
 | |
|             VmaFree(m_Allocator.m_pCallbacks, m_pArray);
 | |
|             m_Capacity = newCapacity;
 | |
|             m_pArray = newArray;
 | |
|         }
 | |
| 
 | |
|         m_Count = newCount;
 | |
|     }
 | |
| 
 | |
|     void clear(bool freeMemory = false)
 | |
|     {
 | |
|         resize(0, freeMemory);
 | |
|     }
 | |
| 
 | |
|     void insert(size_t index, const T& src)
 | |
|     {
 | |
|         VMA_HEAVY_ASSERT(index <= m_Count);
 | |
|         const size_t oldCount = size();
 | |
|         resize(oldCount + 1);
 | |
|         if(index < oldCount)
 | |
|         {
 | |
|             memmove(m_pArray + (index + 1), m_pArray + index, (oldCount - index) * sizeof(T));
 | |
|         }
 | |
|         m_pArray[index] = src;
 | |
|     }
 | |
| 
 | |
|     void remove(size_t index)
 | |
|     {
 | |
|         VMA_HEAVY_ASSERT(index < m_Count);
 | |
|         const size_t oldCount = size();
 | |
|         if(index < oldCount - 1)
 | |
|         {
 | |
|             memmove(m_pArray + index, m_pArray + (index + 1), (oldCount - index - 1) * sizeof(T));
 | |
|         }
 | |
|         resize(oldCount - 1);
 | |
|     }
 | |
| 
 | |
|     void push_back(const T& src)
 | |
|     {
 | |
|         const size_t newIndex = size();
 | |
|         resize(newIndex + 1);
 | |
|         m_pArray[newIndex] = src;
 | |
|     }
 | |
| 
 | |
|     void pop_back()
 | |
|     {
 | |
|         VMA_HEAVY_ASSERT(m_Count > 0);
 | |
|         resize(size() - 1);
 | |
|     }
 | |
| 
 | |
|     void push_front(const T& src)
 | |
|     {
 | |
|         insert(0, src);
 | |
|     }
 | |
| 
 | |
|     void pop_front()
 | |
|     {
 | |
|         VMA_HEAVY_ASSERT(m_Count > 0);
 | |
|         remove(0);
 | |
|     }
 | |
| 
 | |
|     typedef T* iterator;
 | |
| 
 | |
|     iterator begin() { return m_pArray; }
 | |
|     iterator end() { return m_pArray + m_Count; }
 | |
| 
 | |
| private:
 | |
|     AllocatorT m_Allocator;
 | |
|     T* m_pArray;
 | |
|     size_t m_Count;
 | |
|     size_t m_Capacity;
 | |
| };
 | |
| 
 | |
| template<typename T, typename allocatorT>
 | |
| static void VmaVectorInsert(VmaVector<T, allocatorT>& vec, size_t index, const T& item)
 | |
| {
 | |
|     vec.insert(index, item);
 | |
| }
 | |
| 
 | |
| template<typename T, typename allocatorT>
 | |
| static void VmaVectorRemove(VmaVector<T, allocatorT>& vec, size_t index)
 | |
| {
 | |
|     vec.remove(index);
 | |
| }
 | |
| 
 | |
| #endif // #if VMA_USE_STL_VECTOR
 | |
| 
 | |
| template<typename CmpLess, typename VectorT>
 | |
| size_t VmaVectorInsertSorted(VectorT& vector, const typename VectorT::value_type& value)
 | |
| {
 | |
|     const size_t indexToInsert = VmaBinaryFindFirstNotLess(
 | |
|         vector.data(),
 | |
|         vector.data() + vector.size(),
 | |
|         value,
 | |
|         CmpLess()) - vector.data();
 | |
|     VmaVectorInsert(vector, indexToInsert, value);
 | |
|     return indexToInsert;
 | |
| }
 | |
| 
 | |
| template<typename CmpLess, typename VectorT>
 | |
| bool VmaVectorRemoveSorted(VectorT& vector, const typename VectorT::value_type& value)
 | |
| {
 | |
|     CmpLess comparator;
 | |
|     typename VectorT::iterator it = VmaBinaryFindFirstNotLess(
 | |
|         vector.begin(),
 | |
|         vector.end(),
 | |
|         value,
 | |
|         comparator);
 | |
|     if((it != vector.end()) && !comparator(*it, value) && !comparator(value, *it))
 | |
|     {
 | |
|         size_t indexToRemove = it - vector.begin();
 | |
|         VmaVectorRemove(vector, indexToRemove);
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| // class VmaPoolAllocator
 | |
| 
 | |
| /*
 | |
| Allocator for objects of type T using a list of arrays (pools) to speed up
 | |
| allocation. Number of elements that can be allocated is not bounded because
 | |
| allocator can create multiple blocks.
 | |
| */
 | |
| template<typename T>
 | |
| class VmaPoolAllocator
 | |
| {
 | |
|     VMA_CLASS_NO_COPY(VmaPoolAllocator)
 | |
| public:
 | |
|     VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, uint32_t firstBlockCapacity);
 | |
|     ~VmaPoolAllocator();
 | |
|     T* Alloc();
 | |
|     void Free(T* ptr);
 | |
| 
 | |
| private:
 | |
|     union Item
 | |
|     {
 | |
|         uint32_t NextFreeIndex;
 | |
|         alignas(T) char Value[sizeof(T)];
 | |
|     };
 | |
| 
 | |
|     struct ItemBlock
 | |
|     {
 | |
|         Item* pItems;
 | |
|         uint32_t Capacity;
 | |
|         uint32_t FirstFreeIndex;
 | |
|     };
 | |
|     
 | |
|     const VkAllocationCallbacks* m_pAllocationCallbacks;
 | |
|     const uint32_t m_FirstBlockCapacity;
 | |
|     VmaVector< ItemBlock, VmaStlAllocator<ItemBlock> > m_ItemBlocks;
 | |
| 
 | |
|     ItemBlock& CreateNewBlock();
 | |
| };
 | |
| 
 | |
| template<typename T>
 | |
| VmaPoolAllocator<T>::VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, uint32_t firstBlockCapacity) :
 | |
|     m_pAllocationCallbacks(pAllocationCallbacks),
 | |
|     m_FirstBlockCapacity(firstBlockCapacity),
 | |
|     m_ItemBlocks(VmaStlAllocator<ItemBlock>(pAllocationCallbacks))
 | |
| {
 | |
|     VMA_ASSERT(m_FirstBlockCapacity > 1);
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| VmaPoolAllocator<T>::~VmaPoolAllocator()
 | |
| {
 | |
|     for(size_t i = m_ItemBlocks.size(); i--; )
 | |
|         vma_delete_array(m_pAllocationCallbacks, m_ItemBlocks[i].pItems, m_ItemBlocks[i].Capacity);
 | |
|     m_ItemBlocks.clear();
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| T* VmaPoolAllocator<T>::Alloc()
 | |
| {
 | |
|     for(size_t i = m_ItemBlocks.size(); i--; )
 | |
|     {
 | |
|         ItemBlock& block = m_ItemBlocks[i];
 | |
|         // This block has some free items: Use first one.
 | |
|         if(block.FirstFreeIndex != UINT32_MAX)
 | |
|         {
 | |
|             Item* const pItem = &block.pItems[block.FirstFreeIndex];
 | |
|             block.FirstFreeIndex = pItem->NextFreeIndex;
 | |
|             T* result = (T*)&pItem->Value;
 | |
|             new(result)T(); // Explicit constructor call.
 | |
|             return result;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // No block has free item: Create new one and use it.
 | |
|     ItemBlock& newBlock = CreateNewBlock();
 | |
|     Item* const pItem = &newBlock.pItems[0];
 | |
|     newBlock.FirstFreeIndex = pItem->NextFreeIndex;
 | |
|     T* result = (T*)&pItem->Value;
 | |
|     new(result)T(); // Explicit constructor call.
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| void VmaPoolAllocator<T>::Free(T* ptr)
 | |
| {
 | |
|     // Search all memory blocks to find ptr.
 | |
|     for(size_t i = m_ItemBlocks.size(); i--; )
 | |
|     {
 | |
|         ItemBlock& block = m_ItemBlocks[i];
 | |
|         
 | |
|         // Casting to union.
 | |
|         Item* pItemPtr;
 | |
|         memcpy(&pItemPtr, &ptr, sizeof(pItemPtr));
 | |
|         
 | |
|         // Check if pItemPtr is in address range of this block.
 | |
|         if((pItemPtr >= block.pItems) && (pItemPtr < block.pItems + block.Capacity))
 | |
|         {
 | |
|             ptr->~T(); // Explicit destructor call.
 | |
|             const uint32_t index = static_cast<uint32_t>(pItemPtr - block.pItems);
 | |
|             pItemPtr->NextFreeIndex = block.FirstFreeIndex;
 | |
|             block.FirstFreeIndex = index;
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
|     VMA_ASSERT(0 && "Pointer doesn't belong to this memory pool.");
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| typename VmaPoolAllocator<T>::ItemBlock& VmaPoolAllocator<T>::CreateNewBlock()
 | |
| {
 | |
|     const uint32_t newBlockCapacity = m_ItemBlocks.empty() ?
 | |
|         m_FirstBlockCapacity : m_ItemBlocks.back().Capacity * 3 / 2;
 | |
| 
 | |
|     const ItemBlock newBlock = {
 | |
|         vma_new_array(m_pAllocationCallbacks, Item, newBlockCapacity),
 | |
|         newBlockCapacity,
 | |
|         0 };
 | |
| 
 | |
|     m_ItemBlocks.push_back(newBlock);
 | |
| 
 | |
|     // Setup singly-linked list of all free items in this block.
 | |
|     for(uint32_t i = 0; i < newBlockCapacity - 1; ++i)
 | |
|         newBlock.pItems[i].NextFreeIndex = i + 1;
 | |
|     newBlock.pItems[newBlockCapacity - 1].NextFreeIndex = UINT32_MAX;
 | |
|     return m_ItemBlocks.back();
 | |
| }
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| // class VmaRawList, VmaList
 | |
| 
 | |
| #if VMA_USE_STL_LIST
 | |
| 
 | |
| #define VmaList std::list
 | |
| 
 | |
| #else // #if VMA_USE_STL_LIST
 | |
| 
 | |
| template<typename T>
 | |
| struct VmaListItem
 | |
| {
 | |
|     VmaListItem* pPrev;
 | |
|     VmaListItem* pNext;
 | |
|     T Value;
 | |
| };
 | |
| 
 | |
| // Doubly linked list.
 | |
| template<typename T>
 | |
| class VmaRawList
 | |
| {
 | |
|     VMA_CLASS_NO_COPY(VmaRawList)
 | |
| public:
 | |
|     typedef VmaListItem<T> ItemType;
 | |
| 
 | |
|     VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks);
 | |
|     ~VmaRawList();
 | |
|     void Clear();
 | |
| 
 | |
|     size_t GetCount() const { return m_Count; }
 | |
|     bool IsEmpty() const { return m_Count == 0; }
 | |
| 
 | |
|     ItemType* Front() { return m_pFront; }
 | |
|     const ItemType* Front() const { return m_pFront; }
 | |
|     ItemType* Back() { return m_pBack; }
 | |
|     const ItemType* Back() const { return m_pBack; }
 | |
| 
 | |
|     ItemType* PushBack();
 | |
|     ItemType* PushFront();
 | |
|     ItemType* PushBack(const T& value);
 | |
|     ItemType* PushFront(const T& value);
 | |
|     void PopBack();
 | |
|     void PopFront();
 | |
|     
 | |
|     // Item can be null - it means PushBack.
 | |
|     ItemType* InsertBefore(ItemType* pItem);
 | |
|     // Item can be null - it means PushFront.
 | |
|     ItemType* InsertAfter(ItemType* pItem);
 | |
| 
 | |
|     ItemType* InsertBefore(ItemType* pItem, const T& value);
 | |
|     ItemType* InsertAfter(ItemType* pItem, const T& value);
 | |
| 
 | |
|     void Remove(ItemType* pItem);
 | |
| 
 | |
| private:
 | |
|     const VkAllocationCallbacks* const m_pAllocationCallbacks;
 | |
|     VmaPoolAllocator<ItemType> m_ItemAllocator;
 | |
|     ItemType* m_pFront;
 | |
|     ItemType* m_pBack;
 | |
|     size_t m_Count;
 | |
| };
 | |
| 
 | |
| template<typename T>
 | |
| VmaRawList<T>::VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks) :
 | |
|     m_pAllocationCallbacks(pAllocationCallbacks),
 | |
|     m_ItemAllocator(pAllocationCallbacks, 128),
 | |
|     m_pFront(VMA_NULL),
 | |
|     m_pBack(VMA_NULL),
 | |
|     m_Count(0)
 | |
| {
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| VmaRawList<T>::~VmaRawList()
 | |
| {
 | |
|     // Intentionally not calling Clear, because that would be unnecessary
 | |
|     // computations to return all items to m_ItemAllocator as free.
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| void VmaRawList<T>::Clear()
 | |
| {
 | |
|     if(IsEmpty() == false)
 | |
|     {
 | |
|         ItemType* pItem = m_pBack;
 | |
|         while(pItem != VMA_NULL)
 | |
|         {
 | |
|             ItemType* const pPrevItem = pItem->pPrev;
 | |
|             m_ItemAllocator.Free(pItem);
 | |
|             pItem = pPrevItem;
 | |
|         }
 | |
|         m_pFront = VMA_NULL;
 | |
|         m_pBack = VMA_NULL;
 | |
|         m_Count = 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| VmaListItem<T>* VmaRawList<T>::PushBack()
 | |
| {
 | |
|     ItemType* const pNewItem = m_ItemAllocator.Alloc();
 | |
|     pNewItem->pNext = VMA_NULL;
 | |
|     if(IsEmpty())
 | |
|     {
 | |
|         pNewItem->pPrev = VMA_NULL;
 | |
|         m_pFront = pNewItem;
 | |
|         m_pBack = pNewItem;
 | |
|         m_Count = 1;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         pNewItem->pPrev = m_pBack;
 | |
|         m_pBack->pNext = pNewItem;
 | |
|         m_pBack = pNewItem;
 | |
|         ++m_Count;
 | |
|     }
 | |
|     return pNewItem;
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| VmaListItem<T>* VmaRawList<T>::PushFront()
 | |
| {
 | |
|     ItemType* const pNewItem = m_ItemAllocator.Alloc();
 | |
|     pNewItem->pPrev = VMA_NULL;
 | |
|     if(IsEmpty())
 | |
|     {
 | |
|         pNewItem->pNext = VMA_NULL;
 | |
|         m_pFront = pNewItem;
 | |
|         m_pBack = pNewItem;
 | |
|         m_Count = 1;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         pNewItem->pNext = m_pFront;
 | |
|         m_pFront->pPrev = pNewItem;
 | |
|         m_pFront = pNewItem;
 | |
|         ++m_Count;
 | |
|     }
 | |
|     return pNewItem;
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| VmaListItem<T>* VmaRawList<T>::PushBack(const T& value)
 | |
| {
 | |
|     ItemType* const pNewItem = PushBack();
 | |
|     pNewItem->Value = value;
 | |
|     return pNewItem;
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| VmaListItem<T>* VmaRawList<T>::PushFront(const T& value)
 | |
| {
 | |
|     ItemType* const pNewItem = PushFront();
 | |
|     pNewItem->Value = value;
 | |
|     return pNewItem;
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| void VmaRawList<T>::PopBack()
 | |
| {
 | |
|     VMA_HEAVY_ASSERT(m_Count > 0);
 | |
|     ItemType* const pBackItem = m_pBack;
 | |
|     ItemType* const pPrevItem = pBackItem->pPrev;
 | |
|     if(pPrevItem != VMA_NULL)
 | |
|     {
 | |
|         pPrevItem->pNext = VMA_NULL;
 | |
|     }
 | |
|     m_pBack = pPrevItem;
 | |
|     m_ItemAllocator.Free(pBackItem);
 | |
|     --m_Count;
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| void VmaRawList<T>::PopFront()
 | |
| {
 | |
|     VMA_HEAVY_ASSERT(m_Count > 0);
 | |
|     ItemType* const pFrontItem = m_pFront;
 | |
|     ItemType* const pNextItem = pFrontItem->pNext;
 | |
|     if(pNextItem != VMA_NULL)
 | |
|     {
 | |
|         pNextItem->pPrev = VMA_NULL;
 | |
|     }
 | |
|     m_pFront = pNextItem;
 | |
|     m_ItemAllocator.Free(pFrontItem);
 | |
|     --m_Count;
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| void VmaRawList<T>::Remove(ItemType* pItem)
 | |
| {
 | |
|     VMA_HEAVY_ASSERT(pItem != VMA_NULL);
 | |
|     VMA_HEAVY_ASSERT(m_Count > 0);
 | |
| 
 | |
|     if(pItem->pPrev != VMA_NULL)
 | |
|     {
 | |
|         pItem->pPrev->pNext = pItem->pNext;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         VMA_HEAVY_ASSERT(m_pFront == pItem);
 | |
|         m_pFront = pItem->pNext;
 | |
|     }
 | |
| 
 | |
|     if(pItem->pNext != VMA_NULL)
 | |
|     {
 | |
|         pItem->pNext->pPrev = pItem->pPrev;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         VMA_HEAVY_ASSERT(m_pBack == pItem);
 | |
|         m_pBack = pItem->pPrev;
 | |
|     }
 | |
| 
 | |
|     m_ItemAllocator.Free(pItem);
 | |
|     --m_Count;
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| VmaListItem<T>* VmaRawList<T>::InsertBefore(ItemType* pItem)
 | |
| {
 | |
|     if(pItem != VMA_NULL)
 | |
|     {
 | |
|         ItemType* const prevItem = pItem->pPrev;
 | |
|         ItemType* const newItem = m_ItemAllocator.Alloc();
 | |
|         newItem->pPrev = prevItem;
 | |
|         newItem->pNext = pItem;
 | |
|         pItem->pPrev = newItem;
 | |
|         if(prevItem != VMA_NULL)
 | |
|         {
 | |
|             prevItem->pNext = newItem;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             VMA_HEAVY_ASSERT(m_pFront == pItem);
 | |
|             m_pFront = newItem;
 | |
|         }
 | |
|         ++m_Count;
 | |
|         return newItem;
 | |
|     }
 | |
|     else
 | |
|         return PushBack();
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| VmaListItem<T>* VmaRawList<T>::InsertAfter(ItemType* pItem)
 | |
| {
 | |
|     if(pItem != VMA_NULL)
 | |
|     {
 | |
|         ItemType* const nextItem = pItem->pNext;
 | |
|         ItemType* const newItem = m_ItemAllocator.Alloc();
 | |
|         newItem->pNext = nextItem;
 | |
|         newItem->pPrev = pItem;
 | |
|         pItem->pNext = newItem;
 | |
|         if(nextItem != VMA_NULL)
 | |
|         {
 | |
|             nextItem->pPrev = newItem;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             VMA_HEAVY_ASSERT(m_pBack == pItem);
 | |
|             m_pBack = newItem;
 | |
|         }
 | |
|         ++m_Count;
 | |
|         return newItem;
 | |
|     }
 | |
|     else
 | |
|         return PushFront();
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| VmaListItem<T>* VmaRawList<T>::InsertBefore(ItemType* pItem, const T& value)
 | |
| {
 | |
|     ItemType* const newItem = InsertBefore(pItem);
 | |
|     newItem->Value = value;
 | |
|     return newItem;
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| VmaListItem<T>* VmaRawList<T>::InsertAfter(ItemType* pItem, const T& value)
 | |
| {
 | |
|     ItemType* const newItem = InsertAfter(pItem);
 | |
|     newItem->Value = value;
 | |
|     return newItem;
 | |
| }
 | |
| 
 | |
| template<typename T, typename AllocatorT>
 | |
| class VmaList
 | |
| {
 | |
|     VMA_CLASS_NO_COPY(VmaList)
 | |
| public:
 | |
|     class iterator
 | |
|     {
 | |
|     public:
 | |
|         iterator() :
 | |
|             m_pList(VMA_NULL),
 | |
|             m_pItem(VMA_NULL)
 | |
|         {
 | |
|         }
 | |
| 
 | |
|         T& operator*() const
 | |
|         {
 | |
|             VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
 | |
|             return m_pItem->Value;
 | |
|         }
 | |
|         T* operator->() const
 | |
|         {
 | |
|             VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
 | |
|             return &m_pItem->Value;
 | |
|         }
 | |
| 
 | |
|         iterator& operator++()
 | |
|         {
 | |
|             VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
 | |
|             m_pItem = m_pItem->pNext;
 | |
|             return *this;
 | |
|         }
 | |
|         iterator& operator--()
 | |
|         {
 | |
|             if(m_pItem != VMA_NULL)
 | |
|             {
 | |
|                 m_pItem = m_pItem->pPrev;
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 VMA_HEAVY_ASSERT(!m_pList->IsEmpty());
 | |
|                 m_pItem = m_pList->Back();
 | |
|             }
 | |
|             return *this;
 | |
|         }
 | |
| 
 | |
|         iterator operator++(int)
 | |
|         {
 | |
|             iterator result = *this;
 | |
|             ++*this;
 | |
|             return result;
 | |
|         }
 | |
|         iterator operator--(int)
 | |
|         {
 | |
|             iterator result = *this;
 | |
|             --*this;
 | |
|             return result;
 | |
|         }
 | |
| 
 | |
|         bool operator==(const iterator& rhs) const
 | |
|         {
 | |
|             VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);
 | |
|             return m_pItem == rhs.m_pItem;
 | |
|         }
 | |
|         bool operator!=(const iterator& rhs) const
 | |
|         {
 | |
|             VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);
 | |
|             return m_pItem != rhs.m_pItem;
 | |
|         }
 | |
|         
 | |
|     private:
 | |
|         VmaRawList<T>* m_pList;
 | |
|         VmaListItem<T>* m_pItem;
 | |
| 
 | |
|         iterator(VmaRawList<T>* pList, VmaListItem<T>* pItem) :
 | |
|             m_pList(pList),
 | |
|             m_pItem(pItem)
 | |
|         {
 | |
|         }
 | |
| 
 | |
|         friend class VmaList<T, AllocatorT>;
 | |
|     };
 | |
| 
 | |
|     class const_iterator
 | |
|     {
 | |
|     public:
 | |
|         const_iterator() :
 | |
|             m_pList(VMA_NULL),
 | |
|             m_pItem(VMA_NULL)
 | |
|         {
 | |
|         }
 | |
| 
 | |
|         const_iterator(const iterator& src) :
 | |
|             m_pList(src.m_pList),
 | |
|             m_pItem(src.m_pItem)
 | |
|         {
 | |
|         }
 | |
|         
 | |
|         const T& operator*() const
 | |
|         {
 | |
|             VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
 | |
|             return m_pItem->Value;
 | |
|         }
 | |
|         const T* operator->() const
 | |
|         {
 | |
|             VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
 | |
|             return &m_pItem->Value;
 | |
|         }
 | |
| 
 | |
|         const_iterator& operator++()
 | |
|         {
 | |
|             VMA_HEAVY_ASSERT(m_pItem != VMA_NULL);
 | |
|             m_pItem = m_pItem->pNext;
 | |
|             return *this;
 | |
|         }
 | |
|         const_iterator& operator--()
 | |
|         {
 | |
|             if(m_pItem != VMA_NULL)
 | |
|             {
 | |
|                 m_pItem = m_pItem->pPrev;
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 VMA_HEAVY_ASSERT(!m_pList->IsEmpty());
 | |
|                 m_pItem = m_pList->Back();
 | |
|             }
 | |
|             return *this;
 | |
|         }
 | |
| 
 | |
|         const_iterator operator++(int)
 | |
|         {
 | |
|             const_iterator result = *this;
 | |
|             ++*this;
 | |
|             return result;
 | |
|         }
 | |
|         const_iterator operator--(int)
 | |
|         {
 | |
|             const_iterator result = *this;
 | |
|             --*this;
 | |
|             return result;
 | |
|         }
 | |
| 
 | |
|         bool operator==(const const_iterator& rhs) const
 | |
|         {
 | |
|             VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);
 | |
|             return m_pItem == rhs.m_pItem;
 | |
|         }
 | |
|         bool operator!=(const const_iterator& rhs) const
 | |
|         {
 | |
|             VMA_HEAVY_ASSERT(m_pList == rhs.m_pList);
 | |
|             return m_pItem != rhs.m_pItem;
 | |
|         }
 | |
|         
 | |
|     private:
 | |
|         const_iterator(const VmaRawList<T>* pList, const VmaListItem<T>* pItem) :
 | |
|             m_pList(pList),
 | |
|             m_pItem(pItem)
 | |
|         {
 | |
|         }
 | |
| 
 | |
|         const VmaRawList<T>* m_pList;
 | |
|         const VmaListItem<T>* m_pItem;
 | |
| 
 | |
|         friend class VmaList<T, AllocatorT>;
 | |
|     };
 | |
| 
 | |
|     VmaList(const AllocatorT& allocator) : m_RawList(allocator.m_pCallbacks) { }
 | |
| 
 | |
|     bool empty() const { return m_RawList.IsEmpty(); }
 | |
|     size_t size() const { return m_RawList.GetCount(); }
 | |
| 
 | |
|     iterator begin() { return iterator(&m_RawList, m_RawList.Front()); }
 | |
|     iterator end() { return iterator(&m_RawList, VMA_NULL); }
 | |
| 
 | |
|     const_iterator cbegin() const { return const_iterator(&m_RawList, m_RawList.Front()); }
 | |
|     const_iterator cend() const { return const_iterator(&m_RawList, VMA_NULL); }
 | |
| 
 | |
|     void clear() { m_RawList.Clear(); }
 | |
|     void push_back(const T& value) { m_RawList.PushBack(value); }
 | |
|     void erase(iterator it) { m_RawList.Remove(it.m_pItem); }
 | |
|     iterator insert(iterator it, const T& value) { return iterator(&m_RawList, m_RawList.InsertBefore(it.m_pItem, value)); }
 | |
| 
 | |
| private:
 | |
|     VmaRawList<T> m_RawList;
 | |
| };
 | |
| 
 | |
| #endif // #if VMA_USE_STL_LIST
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| // class VmaMap
 | |
| 
 | |
| // Unused in this version.
 | |
| #if 0
 | |
| 
 | |
| #if VMA_USE_STL_UNORDERED_MAP
 | |
| 
 | |
| #define VmaPair std::pair
 | |
| 
 | |
| #define VMA_MAP_TYPE(KeyT, ValueT) \
 | |
|     std::unordered_map< KeyT, ValueT, std::hash<KeyT>, std::equal_to<KeyT>, VmaStlAllocator< std::pair<KeyT, ValueT> > >
 | |
| 
 | |
| #else // #if VMA_USE_STL_UNORDERED_MAP
 | |
| 
 | |
| template<typename T1, typename T2>
 | |
| struct VmaPair
 | |
| {
 | |
|     T1 first;
 | |
|     T2 second;
 | |
| 
 | |
|     VmaPair() : first(), second() { }
 | |
|     VmaPair(const T1& firstSrc, const T2& secondSrc) : first(firstSrc), second(secondSrc) { }
 | |
| };
 | |
| 
 | |
| /* Class compatible with subset of interface of std::unordered_map.
 | |
| KeyT, ValueT must be POD because they will be stored in VmaVector.
 | |
| */
 | |
| template<typename KeyT, typename ValueT>
 | |
| class VmaMap
 | |
| {
 | |
| public:
 | |
|     typedef VmaPair<KeyT, ValueT> PairType;
 | |
|     typedef PairType* iterator;
 | |
| 
 | |
|     VmaMap(const VmaStlAllocator<PairType>& allocator) : m_Vector(allocator) { }
 | |
| 
 | |
|     iterator begin() { return m_Vector.begin(); }
 | |
|     iterator end() { return m_Vector.end(); }
 | |
| 
 | |
|     void insert(const PairType& pair);
 | |
|     iterator find(const KeyT& key);
 | |
|     void erase(iterator it);
 | |
|     
 | |
| private:
 | |
|     VmaVector< PairType, VmaStlAllocator<PairType> > m_Vector;
 | |
| };
 | |
| 
 | |
| #define VMA_MAP_TYPE(KeyT, ValueT) VmaMap<KeyT, ValueT>
 | |
| 
 | |
| template<typename FirstT, typename SecondT>
 | |
| struct VmaPairFirstLess
 | |
| {
 | |
|     bool operator()(const VmaPair<FirstT, SecondT>& lhs, const VmaPair<FirstT, SecondT>& rhs) const
 | |
|     {
 | |
|         return lhs.first < rhs.first;
 | |
|     }
 | |
|     bool operator()(const VmaPair<FirstT, SecondT>& lhs, const FirstT& rhsFirst) const
 | |
|     {
 | |
|         return lhs.first < rhsFirst;
 | |
|     }
 | |
| };
 | |
| 
 | |
| template<typename KeyT, typename ValueT>
 | |
| void VmaMap<KeyT, ValueT>::insert(const PairType& pair)
 | |
| {
 | |
|     const size_t indexToInsert = VmaBinaryFindFirstNotLess(
 | |
|         m_Vector.data(),
 | |
|         m_Vector.data() + m_Vector.size(),
 | |
|         pair,
 | |
|         VmaPairFirstLess<KeyT, ValueT>()) - m_Vector.data();
 | |
|     VmaVectorInsert(m_Vector, indexToInsert, pair);
 | |
| }
 | |
| 
 | |
| template<typename KeyT, typename ValueT>
 | |
| VmaPair<KeyT, ValueT>* VmaMap<KeyT, ValueT>::find(const KeyT& key)
 | |
| {
 | |
|     PairType* it = VmaBinaryFindFirstNotLess(
 | |
|         m_Vector.data(),
 | |
|         m_Vector.data() + m_Vector.size(),
 | |
|         key,
 | |
|         VmaPairFirstLess<KeyT, ValueT>());
 | |
|     if((it != m_Vector.end()) && (it->first == key))
 | |
|     {
 | |
|         return it;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         return m_Vector.end();
 | |
|     }
 | |
| }
 | |
| 
 | |
| template<typename KeyT, typename ValueT>
 | |
| void VmaMap<KeyT, ValueT>::erase(iterator it)
 | |
| {
 | |
|     VmaVectorRemove(m_Vector, it - m_Vector.begin());
 | |
| }
 | |
| 
 | |
| #endif // #if VMA_USE_STL_UNORDERED_MAP
 | |
| 
 | |
| #endif // #if 0
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| class VmaDeviceMemoryBlock;
 | |
| 
 | |
| enum VMA_CACHE_OPERATION { VMA_CACHE_FLUSH, VMA_CACHE_INVALIDATE };
 | |
| 
 | |
| struct VmaAllocation_T
 | |
| {
 | |
| private:
 | |
|     static const uint8_t MAP_COUNT_FLAG_PERSISTENT_MAP = 0x80;
 | |
| 
 | |
|     enum FLAGS
 | |
|     {
 | |
|         FLAG_USER_DATA_STRING = 0x01,
 | |
|     };
 | |
| 
 | |
| public:
 | |
|     enum ALLOCATION_TYPE
 | |
|     {
 | |
|         ALLOCATION_TYPE_NONE,
 | |
|         ALLOCATION_TYPE_BLOCK,
 | |
|         ALLOCATION_TYPE_DEDICATED,
 | |
|     };
 | |
| 
 | |
|     /*
 | |
|     This struct is allocated using VmaPoolAllocator.
 | |
|     */
 | |
| 
 | |
|     void Ctor(uint32_t currentFrameIndex, bool userDataString)
 | |
|     {
 | |
|         m_Alignment = 1;
 | |
|         m_Size = 0;
 | |
|         m_MemoryTypeIndex = 0;
 | |
|         m_pUserData = VMA_NULL;
 | |
|         m_LastUseFrameIndex = currentFrameIndex;
 | |
|         m_Type = (uint8_t)ALLOCATION_TYPE_NONE;
 | |
|         m_SuballocationType = (uint8_t)VMA_SUBALLOCATION_TYPE_UNKNOWN;
 | |
|         m_MapCount = 0;
 | |
|         m_Flags = userDataString ? (uint8_t)FLAG_USER_DATA_STRING : 0;
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
|         m_CreationFrameIndex = currentFrameIndex;
 | |
|         m_BufferImageUsage = 0;
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     void Dtor()
 | |
|     {
 | |
|         VMA_ASSERT((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) == 0 && "Allocation was not unmapped before destruction.");
 | |
| 
 | |
|         // Check if owned string was freed.
 | |
|         VMA_ASSERT(m_pUserData == VMA_NULL);
 | |
|     }
 | |
| 
 | |
|     void InitBlockAllocation(
 | |
|         VmaDeviceMemoryBlock* block,
 | |
|         VkDeviceSize offset,
 | |
|         VkDeviceSize alignment,
 | |
|         VkDeviceSize size,
 | |
|         uint32_t memoryTypeIndex,
 | |
|         VmaSuballocationType suballocationType,
 | |
|         bool mapped,
 | |
|         bool canBecomeLost)
 | |
|     {
 | |
|         VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE);
 | |
|         VMA_ASSERT(block != VMA_NULL);
 | |
|         m_Type = (uint8_t)ALLOCATION_TYPE_BLOCK;
 | |
|         m_Alignment = alignment;
 | |
|         m_Size = size;
 | |
|         m_MemoryTypeIndex = memoryTypeIndex;
 | |
|         m_MapCount = mapped ? MAP_COUNT_FLAG_PERSISTENT_MAP : 0;
 | |
|         m_SuballocationType = (uint8_t)suballocationType;
 | |
|         m_BlockAllocation.m_Block = block;
 | |
|         m_BlockAllocation.m_Offset = offset;
 | |
|         m_BlockAllocation.m_CanBecomeLost = canBecomeLost;
 | |
|     }
 | |
| 
 | |
|     void InitLost()
 | |
|     {
 | |
|         VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE);
 | |
|         VMA_ASSERT(m_LastUseFrameIndex.load() == VMA_FRAME_INDEX_LOST);
 | |
|         m_Type = (uint8_t)ALLOCATION_TYPE_BLOCK;
 | |
|         m_MemoryTypeIndex = 0;
 | |
|         m_BlockAllocation.m_Block = VMA_NULL;
 | |
|         m_BlockAllocation.m_Offset = 0;
 | |
|         m_BlockAllocation.m_CanBecomeLost = true;
 | |
|     }
 | |
| 
 | |
|     void ChangeBlockAllocation(
 | |
|         VmaAllocator hAllocator,
 | |
|         VmaDeviceMemoryBlock* block,
 | |
|         VkDeviceSize offset); 
 | |
| 
 | |
|     void ChangeOffset(VkDeviceSize newOffset);
 | |
| 
 | |
|     // pMappedData not null means allocation is created with MAPPED flag.
 | |
|     void InitDedicatedAllocation(
 | |
|         uint32_t memoryTypeIndex,
 | |
|         VkDeviceMemory hMemory,
 | |
|         VmaSuballocationType suballocationType,
 | |
|         void* pMappedData,
 | |
|         VkDeviceSize size)
 | |
|     {
 | |
|         VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE);
 | |
|         VMA_ASSERT(hMemory != VK_NULL_HANDLE);
 | |
|         m_Type = (uint8_t)ALLOCATION_TYPE_DEDICATED;
 | |
|         m_Alignment = 0;
 | |
|         m_Size = size;
 | |
|         m_MemoryTypeIndex = memoryTypeIndex;
 | |
|         m_SuballocationType = (uint8_t)suballocationType;
 | |
|         m_MapCount = (pMappedData != VMA_NULL) ? MAP_COUNT_FLAG_PERSISTENT_MAP : 0;
 | |
|         m_DedicatedAllocation.m_hMemory = hMemory;
 | |
|         m_DedicatedAllocation.m_pMappedData = pMappedData;
 | |
|     }
 | |
| 
 | |
|     ALLOCATION_TYPE GetType() const { return (ALLOCATION_TYPE)m_Type; }
 | |
|     VkDeviceSize GetAlignment() const { return m_Alignment; }
 | |
|     VkDeviceSize GetSize() const { return m_Size; }
 | |
|     bool IsUserDataString() const { return (m_Flags & FLAG_USER_DATA_STRING) != 0; }
 | |
|     void* GetUserData() const { return m_pUserData; }
 | |
|     void SetUserData(VmaAllocator hAllocator, void* pUserData);
 | |
|     VmaSuballocationType GetSuballocationType() const { return (VmaSuballocationType)m_SuballocationType; }
 | |
| 
 | |
|     VmaDeviceMemoryBlock* GetBlock() const
 | |
|     {
 | |
|         VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK);
 | |
|         return m_BlockAllocation.m_Block;
 | |
|     }
 | |
|     VkDeviceSize GetOffset() const;
 | |
|     VkDeviceMemory GetMemory() const;
 | |
|     uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; }
 | |
|     bool IsPersistentMap() const { return (m_MapCount & MAP_COUNT_FLAG_PERSISTENT_MAP) != 0; }
 | |
|     void* GetMappedData() const;
 | |
|     bool CanBecomeLost() const;
 | |
|     
 | |
|     uint32_t GetLastUseFrameIndex() const
 | |
|     {
 | |
|         return m_LastUseFrameIndex.load();
 | |
|     }
 | |
|     bool CompareExchangeLastUseFrameIndex(uint32_t& expected, uint32_t desired)
 | |
|     {
 | |
|         return m_LastUseFrameIndex.compare_exchange_weak(expected, desired);
 | |
|     }
 | |
|     /*
 | |
|     - If hAllocation.LastUseFrameIndex + frameInUseCount < allocator.CurrentFrameIndex,
 | |
|       makes it lost by setting LastUseFrameIndex = VMA_FRAME_INDEX_LOST and returns true.
 | |
|     - Else, returns false.
 | |
|     
 | |
|     If hAllocation is already lost, assert - you should not call it then.
 | |
|     If hAllocation was not created with CAN_BECOME_LOST_BIT, assert.
 | |
|     */
 | |
|     bool MakeLost(uint32_t currentFrameIndex, uint32_t frameInUseCount);
 | |
| 
 | |
|     void DedicatedAllocCalcStatsInfo(VmaStatInfo& outInfo)
 | |
|     {
 | |
|         VMA_ASSERT(m_Type == ALLOCATION_TYPE_DEDICATED);
 | |
|         outInfo.blockCount = 1;
 | |
|         outInfo.allocationCount = 1;
 | |
|         outInfo.unusedRangeCount = 0;
 | |
|         outInfo.usedBytes = m_Size;
 | |
|         outInfo.unusedBytes = 0;
 | |
|         outInfo.allocationSizeMin = outInfo.allocationSizeMax = m_Size;
 | |
|         outInfo.unusedRangeSizeMin = UINT64_MAX;
 | |
|         outInfo.unusedRangeSizeMax = 0;
 | |
|     }
 | |
| 
 | |
|     void BlockAllocMap();
 | |
|     void BlockAllocUnmap();
 | |
|     VkResult DedicatedAllocMap(VmaAllocator hAllocator, void** ppData);
 | |
|     void DedicatedAllocUnmap(VmaAllocator hAllocator);
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
|     uint32_t GetCreationFrameIndex() const { return m_CreationFrameIndex; }
 | |
|     uint32_t GetBufferImageUsage() const { return m_BufferImageUsage; }
 | |
| 
 | |
|     void InitBufferImageUsage(uint32_t bufferImageUsage)
 | |
|     {
 | |
|         VMA_ASSERT(m_BufferImageUsage == 0);
 | |
|         m_BufferImageUsage = bufferImageUsage;
 | |
|     }
 | |
| 
 | |
|     void PrintParameters(class VmaJsonWriter& json) const;
 | |
| #endif
 | |
| 
 | |
| private:
 | |
|     VkDeviceSize m_Alignment;
 | |
|     VkDeviceSize m_Size;
 | |
|     void* m_pUserData;
 | |
|     VMA_ATOMIC_UINT32 m_LastUseFrameIndex;
 | |
|     uint32_t m_MemoryTypeIndex;
 | |
|     uint8_t m_Type; // ALLOCATION_TYPE
 | |
|     uint8_t m_SuballocationType; // VmaSuballocationType
 | |
|     // Bit 0x80 is set when allocation was created with VMA_ALLOCATION_CREATE_MAPPED_BIT.
 | |
|     // Bits with mask 0x7F are reference counter for vmaMapMemory()/vmaUnmapMemory().
 | |
|     uint8_t m_MapCount;
 | |
|     uint8_t m_Flags; // enum FLAGS
 | |
| 
 | |
|     // Allocation out of VmaDeviceMemoryBlock.
 | |
|     struct BlockAllocation
 | |
|     {
 | |
|         VmaDeviceMemoryBlock* m_Block;
 | |
|         VkDeviceSize m_Offset;
 | |
|         bool m_CanBecomeLost;
 | |
|     };
 | |
| 
 | |
|     // Allocation for an object that has its own private VkDeviceMemory.
 | |
|     struct DedicatedAllocation
 | |
|     {
 | |
|         VkDeviceMemory m_hMemory;
 | |
|         void* m_pMappedData; // Not null means memory is mapped.
 | |
|     };
 | |
| 
 | |
|     union
 | |
|     {
 | |
|         // Allocation out of VmaDeviceMemoryBlock.
 | |
|         BlockAllocation m_BlockAllocation;
 | |
|         // Allocation for an object that has its own private VkDeviceMemory.
 | |
|         DedicatedAllocation m_DedicatedAllocation;
 | |
|     };
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
|     uint32_t m_CreationFrameIndex;
 | |
|     uint32_t m_BufferImageUsage; // 0 if unknown.
 | |
| #endif
 | |
| 
 | |
|     void FreeUserDataString(VmaAllocator hAllocator);
 | |
| };
 | |
| 
 | |
| /*
 | |
| Represents a region of VmaDeviceMemoryBlock that is either assigned and returned as
 | |
| allocated memory block or free.
 | |
| */
 | |
| struct VmaSuballocation
 | |
| {
 | |
|     VkDeviceSize offset;
 | |
|     VkDeviceSize size;
 | |
|     VmaAllocation hAllocation;
 | |
|     VmaSuballocationType type;
 | |
| };
 | |
| 
 | |
| // Comparator for offsets.
 | |
| struct VmaSuballocationOffsetLess
 | |
| {
 | |
|     bool operator()(const VmaSuballocation& lhs, const VmaSuballocation& rhs) const
 | |
|     {
 | |
|         return lhs.offset < rhs.offset;
 | |
|     }
 | |
| };
 | |
| struct VmaSuballocationOffsetGreater
 | |
| {
 | |
|     bool operator()(const VmaSuballocation& lhs, const VmaSuballocation& rhs) const
 | |
|     {
 | |
|         return lhs.offset > rhs.offset;
 | |
|     }
 | |
| };
 | |
| 
 | |
| typedef VmaList< VmaSuballocation, VmaStlAllocator<VmaSuballocation> > VmaSuballocationList;
 | |
| 
 | |
| // Cost of one additional allocation lost, as equivalent in bytes.
 | |
| static const VkDeviceSize VMA_LOST_ALLOCATION_COST = 1048576;
 | |
| 
 | |
| enum class VmaAllocationRequestType
 | |
| {
 | |
|     Normal,
 | |
|     // Used by "Linear" algorithm.
 | |
|     UpperAddress,
 | |
|     EndOf1st,
 | |
|     EndOf2nd,
 | |
| };
 | |
| 
 | |
| /*
 | |
| Parameters of planned allocation inside a VmaDeviceMemoryBlock.
 | |
| 
 | |
| If canMakeOtherLost was false:
 | |
| - item points to a FREE suballocation.
 | |
| - itemsToMakeLostCount is 0.
 | |
| 
 | |
| If canMakeOtherLost was true:
 | |
| - item points to first of sequence of suballocations, which are either FREE,
 | |
|   or point to VmaAllocations that can become lost.
 | |
| - itemsToMakeLostCount is the number of VmaAllocations that need to be made lost for
 | |
|   the requested allocation to succeed.
 | |
| */
 | |
| struct VmaAllocationRequest
 | |
| {
 | |
|     VkDeviceSize offset;
 | |
|     VkDeviceSize sumFreeSize; // Sum size of free items that overlap with proposed allocation.
 | |
|     VkDeviceSize sumItemSize; // Sum size of items to make lost that overlap with proposed allocation.
 | |
|     VmaSuballocationList::iterator item;
 | |
|     size_t itemsToMakeLostCount;
 | |
|     void* customData;
 | |
|     VmaAllocationRequestType type;
 | |
| 
 | |
|     VkDeviceSize CalcCost() const
 | |
|     {
 | |
|         return sumItemSize + itemsToMakeLostCount * VMA_LOST_ALLOCATION_COST;
 | |
|     }
 | |
| };
 | |
| 
 | |
| /*
 | |
| Data structure used for bookkeeping of allocations and unused ranges of memory
 | |
| in a single VkDeviceMemory block.
 | |
| */
 | |
| class VmaBlockMetadata
 | |
| {
 | |
| public:
 | |
|     VmaBlockMetadata(VmaAllocator hAllocator);
 | |
|     virtual ~VmaBlockMetadata() { }
 | |
|     virtual void Init(VkDeviceSize size) { m_Size = size; }
 | |
| 
 | |
|     // Validates all data structures inside this object. If not valid, returns false.
 | |
|     virtual bool Validate() const = 0;
 | |
|     VkDeviceSize GetSize() const { return m_Size; }
 | |
|     virtual size_t GetAllocationCount() const = 0;
 | |
|     virtual VkDeviceSize GetSumFreeSize() const = 0;
 | |
|     virtual VkDeviceSize GetUnusedRangeSizeMax() const = 0;
 | |
|     // Returns true if this block is empty - contains only single free suballocation.
 | |
|     virtual bool IsEmpty() const = 0;
 | |
| 
 | |
|     virtual void CalcAllocationStatInfo(VmaStatInfo& outInfo) const = 0;
 | |
|     // Shouldn't modify blockCount.
 | |
|     virtual void AddPoolStats(VmaPoolStats& inoutStats) const = 0;
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
|     virtual void PrintDetailedMap(class VmaJsonWriter& json) const = 0;
 | |
| #endif
 | |
| 
 | |
|     // Tries to find a place for suballocation with given parameters inside this block.
 | |
|     // If succeeded, fills pAllocationRequest and returns true.
 | |
|     // If failed, returns false.
 | |
|     virtual bool CreateAllocationRequest(
 | |
|         uint32_t currentFrameIndex,
 | |
|         uint32_t frameInUseCount,
 | |
|         VkDeviceSize bufferImageGranularity,
 | |
|         VkDeviceSize allocSize,
 | |
|         VkDeviceSize allocAlignment,
 | |
|         bool upperAddress,
 | |
|         VmaSuballocationType allocType,
 | |
|         bool canMakeOtherLost,
 | |
|         // Always one of VMA_ALLOCATION_CREATE_STRATEGY_* or VMA_ALLOCATION_INTERNAL_STRATEGY_* flags.
 | |
|         uint32_t strategy,
 | |
|         VmaAllocationRequest* pAllocationRequest) = 0;
 | |
| 
 | |
|     virtual bool MakeRequestedAllocationsLost(
 | |
|         uint32_t currentFrameIndex,
 | |
|         uint32_t frameInUseCount,
 | |
|         VmaAllocationRequest* pAllocationRequest) = 0;
 | |
| 
 | |
|     virtual uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount) = 0;
 | |
| 
 | |
|     virtual VkResult CheckCorruption(const void* pBlockData) = 0;
 | |
| 
 | |
|     // Makes actual allocation based on request. Request must already be checked and valid.
 | |
|     virtual void Alloc(
 | |
|         const VmaAllocationRequest& request,
 | |
|         VmaSuballocationType type,
 | |
|         VkDeviceSize allocSize,
 | |
|         VmaAllocation hAllocation) = 0;
 | |
| 
 | |
|     // Frees suballocation assigned to given memory region.
 | |
|     virtual void Free(const VmaAllocation allocation) = 0;
 | |
|     virtual void FreeAtOffset(VkDeviceSize offset) = 0;
 | |
| 
 | |
| protected:
 | |
|     const VkAllocationCallbacks* GetAllocationCallbacks() const { return m_pAllocationCallbacks; }
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
|     void PrintDetailedMap_Begin(class VmaJsonWriter& json,
 | |
|         VkDeviceSize unusedBytes,
 | |
|         size_t allocationCount,
 | |
|         size_t unusedRangeCount) const;
 | |
|     void PrintDetailedMap_Allocation(class VmaJsonWriter& json,
 | |
|         VkDeviceSize offset,
 | |
|         VmaAllocation hAllocation) const;
 | |
|     void PrintDetailedMap_UnusedRange(class VmaJsonWriter& json,
 | |
|         VkDeviceSize offset,
 | |
|         VkDeviceSize size) const;
 | |
|     void PrintDetailedMap_End(class VmaJsonWriter& json) const;
 | |
| #endif
 | |
| 
 | |
| private:
 | |
|     VkDeviceSize m_Size;
 | |
|     const VkAllocationCallbacks* m_pAllocationCallbacks;
 | |
| };
 | |
| 
 | |
| #define VMA_VALIDATE(cond) do { if(!(cond)) { \
 | |
|         VMA_ASSERT(0 && "Validation failed: " #cond); \
 | |
|         return false; \
 | |
|     } } while(false)
 | |
| 
 | |
| class VmaBlockMetadata_Generic : public VmaBlockMetadata
 | |
| {
 | |
|     VMA_CLASS_NO_COPY(VmaBlockMetadata_Generic)
 | |
| public:
 | |
|     VmaBlockMetadata_Generic(VmaAllocator hAllocator);
 | |
|     virtual ~VmaBlockMetadata_Generic();
 | |
|     virtual void Init(VkDeviceSize size);
 | |
| 
 | |
|     virtual bool Validate() const;
 | |
|     virtual size_t GetAllocationCount() const { return m_Suballocations.size() - m_FreeCount; }
 | |
|     virtual VkDeviceSize GetSumFreeSize() const { return m_SumFreeSize; }
 | |
|     virtual VkDeviceSize GetUnusedRangeSizeMax() const;
 | |
|     virtual bool IsEmpty() const;
 | |
| 
 | |
|     virtual void CalcAllocationStatInfo(VmaStatInfo& outInfo) const;
 | |
|     virtual void AddPoolStats(VmaPoolStats& inoutStats) const;
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
|     virtual void PrintDetailedMap(class VmaJsonWriter& json) const;
 | |
| #endif
 | |
| 
 | |
|     virtual bool CreateAllocationRequest(
 | |
|         uint32_t currentFrameIndex,
 | |
|         uint32_t frameInUseCount,
 | |
|         VkDeviceSize bufferImageGranularity,
 | |
|         VkDeviceSize allocSize,
 | |
|         VkDeviceSize allocAlignment,
 | |
|         bool upperAddress,
 | |
|         VmaSuballocationType allocType,
 | |
|         bool canMakeOtherLost,
 | |
|         uint32_t strategy,
 | |
|         VmaAllocationRequest* pAllocationRequest);
 | |
| 
 | |
|     virtual bool MakeRequestedAllocationsLost(
 | |
|         uint32_t currentFrameIndex,
 | |
|         uint32_t frameInUseCount,
 | |
|         VmaAllocationRequest* pAllocationRequest);
 | |
| 
 | |
|     virtual uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount);
 | |
| 
 | |
|     virtual VkResult CheckCorruption(const void* pBlockData);
 | |
| 
 | |
|     virtual void Alloc(
 | |
|         const VmaAllocationRequest& request,
 | |
|         VmaSuballocationType type,
 | |
|         VkDeviceSize allocSize,
 | |
|         VmaAllocation hAllocation);
 | |
| 
 | |
|     virtual void Free(const VmaAllocation allocation);
 | |
|     virtual void FreeAtOffset(VkDeviceSize offset);
 | |
| 
 | |
|     ////////////////////////////////////////////////////////////////////////////////
 | |
|     // For defragmentation
 | |
|     
 | |
|     bool IsBufferImageGranularityConflictPossible(
 | |
|         VkDeviceSize bufferImageGranularity,
 | |
|         VmaSuballocationType& inOutPrevSuballocType) const;
 | |
| 
 | |
| private:
 | |
|     friend class VmaDefragmentationAlgorithm_Generic;
 | |
|     friend class VmaDefragmentationAlgorithm_Fast;
 | |
| 
 | |
|     uint32_t m_FreeCount;
 | |
|     VkDeviceSize m_SumFreeSize;
 | |
|     VmaSuballocationList m_Suballocations;
 | |
|     // Suballocations that are free and have size greater than certain threshold.
 | |
|     // Sorted by size, ascending.
 | |
|     VmaVector< VmaSuballocationList::iterator, VmaStlAllocator< VmaSuballocationList::iterator > > m_FreeSuballocationsBySize;
 | |
| 
 | |
|     bool ValidateFreeSuballocationList() const;
 | |
| 
 | |
|     // Checks if requested suballocation with given parameters can be placed in given pFreeSuballocItem.
 | |
|     // If yes, fills pOffset and returns true. If no, returns false.
 | |
|     bool CheckAllocation(
 | |
|         uint32_t currentFrameIndex,
 | |
|         uint32_t frameInUseCount,
 | |
|         VkDeviceSize bufferImageGranularity,
 | |
|         VkDeviceSize allocSize,
 | |
|         VkDeviceSize allocAlignment,
 | |
|         VmaSuballocationType allocType,
 | |
|         VmaSuballocationList::const_iterator suballocItem,
 | |
|         bool canMakeOtherLost,
 | |
|         VkDeviceSize* pOffset,
 | |
|         size_t* itemsToMakeLostCount,
 | |
|         VkDeviceSize* pSumFreeSize,
 | |
|         VkDeviceSize* pSumItemSize) const;
 | |
|     // Given free suballocation, it merges it with following one, which must also be free.
 | |
|     void MergeFreeWithNext(VmaSuballocationList::iterator item);
 | |
|     // Releases given suballocation, making it free.
 | |
|     // Merges it with adjacent free suballocations if applicable.
 | |
|     // Returns iterator to new free suballocation at this place.
 | |
|     VmaSuballocationList::iterator FreeSuballocation(VmaSuballocationList::iterator suballocItem);
 | |
|     // Given free suballocation, it inserts it into sorted list of
 | |
|     // m_FreeSuballocationsBySize if it's suitable.
 | |
|     void RegisterFreeSuballocation(VmaSuballocationList::iterator item);
 | |
|     // Given free suballocation, it removes it from sorted list of
 | |
|     // m_FreeSuballocationsBySize if it's suitable.
 | |
|     void UnregisterFreeSuballocation(VmaSuballocationList::iterator item);
 | |
| };
 | |
| 
 | |
| /*
 | |
| Allocations and their references in internal data structure look like this:
 | |
| 
 | |
| if(m_2ndVectorMode == SECOND_VECTOR_EMPTY):
 | |
| 
 | |
|         0 +-------+
 | |
|           |       |
 | |
|           |       |
 | |
|           |       |
 | |
|           +-------+
 | |
|           | Alloc |  1st[m_1stNullItemsBeginCount]
 | |
|           +-------+
 | |
|           | Alloc |  1st[m_1stNullItemsBeginCount + 1]
 | |
|           +-------+
 | |
|           |  ...  |
 | |
|           +-------+
 | |
|           | Alloc |  1st[1st.size() - 1]
 | |
|           +-------+
 | |
|           |       |
 | |
|           |       |
 | |
|           |       |
 | |
| GetSize() +-------+
 | |
| 
 | |
| if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER):
 | |
| 
 | |
|         0 +-------+
 | |
|           | Alloc |  2nd[0]
 | |
|           +-------+
 | |
|           | Alloc |  2nd[1]
 | |
|           +-------+
 | |
|           |  ...  |
 | |
|           +-------+
 | |
|           | Alloc |  2nd[2nd.size() - 1]
 | |
|           +-------+
 | |
|           |       |
 | |
|           |       |
 | |
|           |       |
 | |
|           +-------+
 | |
|           | Alloc |  1st[m_1stNullItemsBeginCount]
 | |
|           +-------+
 | |
|           | Alloc |  1st[m_1stNullItemsBeginCount + 1]
 | |
|           +-------+
 | |
|           |  ...  |
 | |
|           +-------+
 | |
|           | Alloc |  1st[1st.size() - 1]
 | |
|           +-------+
 | |
|           |       |
 | |
| GetSize() +-------+
 | |
| 
 | |
| if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK):
 | |
| 
 | |
|         0 +-------+
 | |
|           |       |
 | |
|           |       |
 | |
|           |       |
 | |
|           +-------+
 | |
|           | Alloc |  1st[m_1stNullItemsBeginCount]
 | |
|           +-------+
 | |
|           | Alloc |  1st[m_1stNullItemsBeginCount + 1]
 | |
|           +-------+
 | |
|           |  ...  |
 | |
|           +-------+
 | |
|           | Alloc |  1st[1st.size() - 1]
 | |
|           +-------+
 | |
|           |       |
 | |
|           |       |
 | |
|           |       |
 | |
|           +-------+
 | |
|           | Alloc |  2nd[2nd.size() - 1]
 | |
|           +-------+
 | |
|           |  ...  |
 | |
|           +-------+
 | |
|           | Alloc |  2nd[1]
 | |
|           +-------+
 | |
|           | Alloc |  2nd[0]
 | |
| GetSize() +-------+
 | |
| 
 | |
| */
 | |
| class VmaBlockMetadata_Linear : public VmaBlockMetadata
 | |
| {
 | |
|     VMA_CLASS_NO_COPY(VmaBlockMetadata_Linear)
 | |
| public:
 | |
|     VmaBlockMetadata_Linear(VmaAllocator hAllocator);
 | |
|     virtual ~VmaBlockMetadata_Linear();
 | |
|     virtual void Init(VkDeviceSize size);
 | |
| 
 | |
|     virtual bool Validate() const;
 | |
|     virtual size_t GetAllocationCount() const;
 | |
|     virtual VkDeviceSize GetSumFreeSize() const { return m_SumFreeSize; }
 | |
|     virtual VkDeviceSize GetUnusedRangeSizeMax() const;
 | |
|     virtual bool IsEmpty() const { return GetAllocationCount() == 0; }
 | |
| 
 | |
|     virtual void CalcAllocationStatInfo(VmaStatInfo& outInfo) const;
 | |
|     virtual void AddPoolStats(VmaPoolStats& inoutStats) const;
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
|     virtual void PrintDetailedMap(class VmaJsonWriter& json) const;
 | |
| #endif
 | |
| 
 | |
|     virtual bool CreateAllocationRequest(
 | |
|         uint32_t currentFrameIndex,
 | |
|         uint32_t frameInUseCount,
 | |
|         VkDeviceSize bufferImageGranularity,
 | |
|         VkDeviceSize allocSize,
 | |
|         VkDeviceSize allocAlignment,
 | |
|         bool upperAddress,
 | |
|         VmaSuballocationType allocType,
 | |
|         bool canMakeOtherLost,
 | |
|         uint32_t strategy,
 | |
|         VmaAllocationRequest* pAllocationRequest);
 | |
| 
 | |
|     virtual bool MakeRequestedAllocationsLost(
 | |
|         uint32_t currentFrameIndex,
 | |
|         uint32_t frameInUseCount,
 | |
|         VmaAllocationRequest* pAllocationRequest);
 | |
| 
 | |
|     virtual uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount);
 | |
| 
 | |
|     virtual VkResult CheckCorruption(const void* pBlockData);
 | |
| 
 | |
|     virtual void Alloc(
 | |
|         const VmaAllocationRequest& request,
 | |
|         VmaSuballocationType type,
 | |
|         VkDeviceSize allocSize,
 | |
|         VmaAllocation hAllocation);
 | |
| 
 | |
|     virtual void Free(const VmaAllocation allocation);
 | |
|     virtual void FreeAtOffset(VkDeviceSize offset);
 | |
| 
 | |
| private:
 | |
|     /*
 | |
|     There are two suballocation vectors, used in ping-pong way.
 | |
|     The one with index m_1stVectorIndex is called 1st.
 | |
|     The one with index (m_1stVectorIndex ^ 1) is called 2nd.
 | |
|     2nd can be non-empty only when 1st is not empty.
 | |
|     When 2nd is not empty, m_2ndVectorMode indicates its mode of operation.
 | |
|     */
 | |
|     typedef VmaVector< VmaSuballocation, VmaStlAllocator<VmaSuballocation> > SuballocationVectorType;
 | |
| 
 | |
|     enum SECOND_VECTOR_MODE
 | |
|     {
 | |
|         SECOND_VECTOR_EMPTY,
 | |
|         /*
 | |
|         Suballocations in 2nd vector are created later than the ones in 1st, but they
 | |
|         all have smaller offset.
 | |
|         */
 | |
|         SECOND_VECTOR_RING_BUFFER,
 | |
|         /*
 | |
|         Suballocations in 2nd vector are upper side of double stack.
 | |
|         They all have offsets higher than those in 1st vector.
 | |
|         Top of this stack means smaller offsets, but higher indices in this vector.
 | |
|         */
 | |
|         SECOND_VECTOR_DOUBLE_STACK,
 | |
|     };
 | |
| 
 | |
|     VkDeviceSize m_SumFreeSize;
 | |
|     SuballocationVectorType m_Suballocations0, m_Suballocations1;
 | |
|     uint32_t m_1stVectorIndex;
 | |
|     SECOND_VECTOR_MODE m_2ndVectorMode;
 | |
| 
 | |
|     SuballocationVectorType& AccessSuballocations1st() { return m_1stVectorIndex ? m_Suballocations1 : m_Suballocations0; }
 | |
|     SuballocationVectorType& AccessSuballocations2nd() { return m_1stVectorIndex ? m_Suballocations0 : m_Suballocations1; }
 | |
|     const SuballocationVectorType& AccessSuballocations1st() const { return m_1stVectorIndex ? m_Suballocations1 : m_Suballocations0; }
 | |
|     const SuballocationVectorType& AccessSuballocations2nd() const { return m_1stVectorIndex ? m_Suballocations0 : m_Suballocations1; }
 | |
|     
 | |
|     // Number of items in 1st vector with hAllocation = null at the beginning.
 | |
|     size_t m_1stNullItemsBeginCount;
 | |
|     // Number of other items in 1st vector with hAllocation = null somewhere in the middle.
 | |
|     size_t m_1stNullItemsMiddleCount;
 | |
|     // Number of items in 2nd vector with hAllocation = null.
 | |
|     size_t m_2ndNullItemsCount;
 | |
| 
 | |
|     bool ShouldCompact1st() const;
 | |
|     void CleanupAfterFree();
 | |
| 
 | |
|     bool CreateAllocationRequest_LowerAddress(
 | |
|         uint32_t currentFrameIndex,
 | |
|         uint32_t frameInUseCount,
 | |
|         VkDeviceSize bufferImageGranularity,
 | |
|         VkDeviceSize allocSize,
 | |
|         VkDeviceSize allocAlignment,
 | |
|         VmaSuballocationType allocType,
 | |
|         bool canMakeOtherLost,
 | |
|         uint32_t strategy,
 | |
|         VmaAllocationRequest* pAllocationRequest);
 | |
|     bool CreateAllocationRequest_UpperAddress(
 | |
|         uint32_t currentFrameIndex,
 | |
|         uint32_t frameInUseCount,
 | |
|         VkDeviceSize bufferImageGranularity,
 | |
|         VkDeviceSize allocSize,
 | |
|         VkDeviceSize allocAlignment,
 | |
|         VmaSuballocationType allocType,
 | |
|         bool canMakeOtherLost,
 | |
|         uint32_t strategy,
 | |
|         VmaAllocationRequest* pAllocationRequest);
 | |
| };
 | |
| 
 | |
| /*
 | |
| - GetSize() is the original size of allocated memory block.
 | |
| - m_UsableSize is this size aligned down to a power of two.
 | |
|   All allocations and calculations happen relative to m_UsableSize.
 | |
| - GetUnusableSize() is the difference between them.
 | |
|   It is repoted as separate, unused range, not available for allocations.
 | |
| 
 | |
| Node at level 0 has size = m_UsableSize.
 | |
| Each next level contains nodes with size 2 times smaller than current level.
 | |
| m_LevelCount is the maximum number of levels to use in the current object.
 | |
| */
 | |
| class VmaBlockMetadata_Buddy : public VmaBlockMetadata
 | |
| {
 | |
|     VMA_CLASS_NO_COPY(VmaBlockMetadata_Buddy)
 | |
| public:
 | |
|     VmaBlockMetadata_Buddy(VmaAllocator hAllocator);
 | |
|     virtual ~VmaBlockMetadata_Buddy();
 | |
|     virtual void Init(VkDeviceSize size);
 | |
| 
 | |
|     virtual bool Validate() const;
 | |
|     virtual size_t GetAllocationCount() const { return m_AllocationCount; }
 | |
|     virtual VkDeviceSize GetSumFreeSize() const { return m_SumFreeSize + GetUnusableSize(); }
 | |
|     virtual VkDeviceSize GetUnusedRangeSizeMax() const;
 | |
|     virtual bool IsEmpty() const { return m_Root->type == Node::TYPE_FREE; }
 | |
| 
 | |
|     virtual void CalcAllocationStatInfo(VmaStatInfo& outInfo) const;
 | |
|     virtual void AddPoolStats(VmaPoolStats& inoutStats) const;
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
|     virtual void PrintDetailedMap(class VmaJsonWriter& json) const;
 | |
| #endif
 | |
| 
 | |
|     virtual bool CreateAllocationRequest(
 | |
|         uint32_t currentFrameIndex,
 | |
|         uint32_t frameInUseCount,
 | |
|         VkDeviceSize bufferImageGranularity,
 | |
|         VkDeviceSize allocSize,
 | |
|         VkDeviceSize allocAlignment,
 | |
|         bool upperAddress,
 | |
|         VmaSuballocationType allocType,
 | |
|         bool canMakeOtherLost,
 | |
|         uint32_t strategy,
 | |
|         VmaAllocationRequest* pAllocationRequest);
 | |
| 
 | |
|     virtual bool MakeRequestedAllocationsLost(
 | |
|         uint32_t currentFrameIndex,
 | |
|         uint32_t frameInUseCount,
 | |
|         VmaAllocationRequest* pAllocationRequest);
 | |
| 
 | |
|     virtual uint32_t MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount);
 | |
| 
 | |
|     virtual VkResult CheckCorruption(const void* pBlockData) { return VK_ERROR_FEATURE_NOT_PRESENT; }
 | |
| 
 | |
|     virtual void Alloc(
 | |
|         const VmaAllocationRequest& request,
 | |
|         VmaSuballocationType type,
 | |
|         VkDeviceSize allocSize,
 | |
|         VmaAllocation hAllocation);
 | |
| 
 | |
|     virtual void Free(const VmaAllocation allocation) { FreeAtOffset(allocation, allocation->GetOffset()); }
 | |
|     virtual void FreeAtOffset(VkDeviceSize offset) { FreeAtOffset(VMA_NULL, offset); }
 | |
| 
 | |
| private:
 | |
|     static const VkDeviceSize MIN_NODE_SIZE = 32;
 | |
|     static const size_t MAX_LEVELS = 30;
 | |
| 
 | |
|     struct ValidationContext
 | |
|     {
 | |
|         size_t calculatedAllocationCount;
 | |
|         size_t calculatedFreeCount;
 | |
|         VkDeviceSize calculatedSumFreeSize;
 | |
| 
 | |
|         ValidationContext() :
 | |
|             calculatedAllocationCount(0),
 | |
|             calculatedFreeCount(0),
 | |
|             calculatedSumFreeSize(0) { }
 | |
|     };
 | |
| 
 | |
|     struct Node
 | |
|     {
 | |
|         VkDeviceSize offset;
 | |
|         enum TYPE
 | |
|         {
 | |
|             TYPE_FREE,
 | |
|             TYPE_ALLOCATION,
 | |
|             TYPE_SPLIT,
 | |
|             TYPE_COUNT
 | |
|         } type;
 | |
|         Node* parent;
 | |
|         Node* buddy;
 | |
| 
 | |
|         union
 | |
|         {
 | |
|             struct
 | |
|             {
 | |
|                 Node* prev;
 | |
|                 Node* next;
 | |
|             } free;
 | |
|             struct
 | |
|             {
 | |
|                 VmaAllocation alloc;
 | |
|             } allocation;
 | |
|             struct
 | |
|             {
 | |
|                 Node* leftChild;
 | |
|             } split;
 | |
|         };
 | |
|     };
 | |
| 
 | |
|     // Size of the memory block aligned down to a power of two.
 | |
|     VkDeviceSize m_UsableSize;
 | |
|     uint32_t m_LevelCount;
 | |
| 
 | |
|     Node* m_Root;
 | |
|     struct {
 | |
|         Node* front;
 | |
|         Node* back;
 | |
|     } m_FreeList[MAX_LEVELS];
 | |
|     // Number of nodes in the tree with type == TYPE_ALLOCATION.
 | |
|     size_t m_AllocationCount;
 | |
|     // Number of nodes in the tree with type == TYPE_FREE.
 | |
|     size_t m_FreeCount;
 | |
|     // This includes space wasted due to internal fragmentation. Doesn't include unusable size.
 | |
|     VkDeviceSize m_SumFreeSize;
 | |
| 
 | |
|     VkDeviceSize GetUnusableSize() const { return GetSize() - m_UsableSize; }
 | |
|     void DeleteNode(Node* node);
 | |
|     bool ValidateNode(ValidationContext& ctx, const Node* parent, const Node* curr, uint32_t level, VkDeviceSize levelNodeSize) const;
 | |
|     uint32_t AllocSizeToLevel(VkDeviceSize allocSize) const;
 | |
|     inline VkDeviceSize LevelToNodeSize(uint32_t level) const { return m_UsableSize >> level; }
 | |
|     // Alloc passed just for validation. Can be null.
 | |
|     void FreeAtOffset(VmaAllocation alloc, VkDeviceSize offset);
 | |
|     void CalcAllocationStatInfoNode(VmaStatInfo& outInfo, const Node* node, VkDeviceSize levelNodeSize) const;
 | |
|     // Adds node to the front of FreeList at given level.
 | |
|     // node->type must be FREE.
 | |
|     // node->free.prev, next can be undefined.
 | |
|     void AddToFreeListFront(uint32_t level, Node* node);
 | |
|     // Removes node from FreeList at given level.
 | |
|     // node->type must be FREE.
 | |
|     // node->free.prev, next stay untouched.
 | |
|     void RemoveFromFreeList(uint32_t level, Node* node);
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
|     void PrintDetailedMapNode(class VmaJsonWriter& json, const Node* node, VkDeviceSize levelNodeSize) const;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| /*
 | |
| Represents a single block of device memory (`VkDeviceMemory`) with all the
 | |
| data about its regions (aka suballocations, #VmaAllocation), assigned and free.
 | |
| 
 | |
| Thread-safety: This class must be externally synchronized.
 | |
| */
 | |
| class VmaDeviceMemoryBlock
 | |
| {
 | |
|     VMA_CLASS_NO_COPY(VmaDeviceMemoryBlock)
 | |
| public:
 | |
|     VmaBlockMetadata* m_pMetadata;
 | |
| 
 | |
|     VmaDeviceMemoryBlock(VmaAllocator hAllocator);
 | |
| 
 | |
|     ~VmaDeviceMemoryBlock()
 | |
|     {
 | |
|         VMA_ASSERT(m_MapCount == 0 && "VkDeviceMemory block is being destroyed while it is still mapped.");
 | |
|         VMA_ASSERT(m_hMemory == VK_NULL_HANDLE);
 | |
|     }
 | |
| 
 | |
|     // Always call after construction.
 | |
|     void Init(
 | |
|         VmaAllocator hAllocator,
 | |
|         VmaPool hParentPool,
 | |
|         uint32_t newMemoryTypeIndex,
 | |
|         VkDeviceMemory newMemory,
 | |
|         VkDeviceSize newSize,
 | |
|         uint32_t id,
 | |
|         uint32_t algorithm);
 | |
|     // Always call before destruction.
 | |
|     void Destroy(VmaAllocator allocator);
 | |
|     
 | |
|     VmaPool GetParentPool() const { return m_hParentPool; }
 | |
|     VkDeviceMemory GetDeviceMemory() const { return m_hMemory; }
 | |
|     uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; }
 | |
|     uint32_t GetId() const { return m_Id; }
 | |
|     void* GetMappedData() const { return m_pMappedData; }
 | |
| 
 | |
|     // Validates all data structures inside this object. If not valid, returns false.
 | |
|     bool Validate() const;
 | |
| 
 | |
|     VkResult CheckCorruption(VmaAllocator hAllocator);
 | |
| 
 | |
|     // ppData can be null.
 | |
|     VkResult Map(VmaAllocator hAllocator, uint32_t count, void** ppData);
 | |
|     void Unmap(VmaAllocator hAllocator, uint32_t count);
 | |
| 
 | |
|     VkResult WriteMagicValueAroundAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize);
 | |
|     VkResult ValidateMagicValueAroundAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize);
 | |
| 
 | |
|     VkResult BindBufferMemory(
 | |
|         const VmaAllocator hAllocator,
 | |
|         const VmaAllocation hAllocation,
 | |
|         VkDeviceSize allocationLocalOffset,
 | |
|         VkBuffer hBuffer,
 | |
|         const void* pNext);
 | |
|     VkResult BindImageMemory(
 | |
|         const VmaAllocator hAllocator,
 | |
|         const VmaAllocation hAllocation,
 | |
|         VkDeviceSize allocationLocalOffset,
 | |
|         VkImage hImage,
 | |
|         const void* pNext);
 | |
| 
 | |
| private:
 | |
|     VmaPool m_hParentPool; // VK_NULL_HANDLE if not belongs to custom pool.
 | |
|     uint32_t m_MemoryTypeIndex;
 | |
|     uint32_t m_Id;
 | |
|     VkDeviceMemory m_hMemory;
 | |
| 
 | |
|     /*
 | |
|     Protects access to m_hMemory so it's not used by multiple threads simultaneously, e.g. vkMapMemory, vkBindBufferMemory.
 | |
|     Also protects m_MapCount, m_pMappedData.
 | |
|     Allocations, deallocations, any change in m_pMetadata is protected by parent's VmaBlockVector::m_Mutex.
 | |
|     */
 | |
|     VMA_MUTEX m_Mutex;
 | |
|     uint32_t m_MapCount;
 | |
|     void* m_pMappedData;
 | |
| };
 | |
| 
 | |
| struct VmaPointerLess
 | |
| {
 | |
|     bool operator()(const void* lhs, const void* rhs) const
 | |
|     {
 | |
|         return lhs < rhs;
 | |
|     }
 | |
| };
 | |
| 
 | |
| struct VmaDefragmentationMove
 | |
| {
 | |
|     size_t srcBlockIndex;
 | |
|     size_t dstBlockIndex;
 | |
|     VkDeviceSize srcOffset;
 | |
|     VkDeviceSize dstOffset;
 | |
|     VkDeviceSize size;
 | |
| };
 | |
| 
 | |
| class VmaDefragmentationAlgorithm;
 | |
| 
 | |
| /*
 | |
| Sequence of VmaDeviceMemoryBlock. Represents memory blocks allocated for a specific
 | |
| Vulkan memory type.
 | |
| 
 | |
| Synchronized internally with a mutex.
 | |
| */
 | |
| struct VmaBlockVector
 | |
| {
 | |
|     VMA_CLASS_NO_COPY(VmaBlockVector)
 | |
| public:
 | |
|     VmaBlockVector(
 | |
|         VmaAllocator hAllocator,
 | |
|         VmaPool hParentPool,
 | |
|         uint32_t memoryTypeIndex,
 | |
|         VkDeviceSize preferredBlockSize,
 | |
|         size_t minBlockCount,
 | |
|         size_t maxBlockCount,
 | |
|         VkDeviceSize bufferImageGranularity,
 | |
|         uint32_t frameInUseCount,
 | |
|         bool explicitBlockSize,
 | |
|         uint32_t algorithm);
 | |
|     ~VmaBlockVector();
 | |
| 
 | |
|     VkResult CreateMinBlocks();
 | |
| 
 | |
|     VmaAllocator GetAllocator() const { return m_hAllocator; }
 | |
|     VmaPool GetParentPool() const { return m_hParentPool; }
 | |
|     bool IsCustomPool() const { return m_hParentPool != VMA_NULL; }
 | |
|     uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; }
 | |
|     VkDeviceSize GetPreferredBlockSize() const { return m_PreferredBlockSize; }
 | |
|     VkDeviceSize GetBufferImageGranularity() const { return m_BufferImageGranularity; }
 | |
|     uint32_t GetFrameInUseCount() const { return m_FrameInUseCount; }
 | |
|     uint32_t GetAlgorithm() const { return m_Algorithm; }
 | |
| 
 | |
|     void GetPoolStats(VmaPoolStats* pStats);
 | |
| 
 | |
|     bool IsEmpty();
 | |
|     bool IsCorruptionDetectionEnabled() const;
 | |
| 
 | |
|     VkResult Allocate(
 | |
|         uint32_t currentFrameIndex,
 | |
|         VkDeviceSize size,
 | |
|         VkDeviceSize alignment,
 | |
|         const VmaAllocationCreateInfo& createInfo,
 | |
|         VmaSuballocationType suballocType,
 | |
|         size_t allocationCount,
 | |
|         VmaAllocation* pAllocations);
 | |
| 
 | |
|     void Free(const VmaAllocation hAllocation);
 | |
| 
 | |
|     // Adds statistics of this BlockVector to pStats.
 | |
|     void AddStats(VmaStats* pStats);
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
|     void PrintDetailedMap(class VmaJsonWriter& json);
 | |
| #endif
 | |
| 
 | |
|     void MakePoolAllocationsLost(
 | |
|         uint32_t currentFrameIndex,
 | |
|         size_t* pLostAllocationCount);
 | |
|     VkResult CheckCorruption();
 | |
| 
 | |
|     // Saves results in pCtx->res.
 | |
|     void Defragment(
 | |
|         class VmaBlockVectorDefragmentationContext* pCtx,
 | |
|         VmaDefragmentationStats* pStats,
 | |
|         VkDeviceSize& maxCpuBytesToMove, uint32_t& maxCpuAllocationsToMove,
 | |
|         VkDeviceSize& maxGpuBytesToMove, uint32_t& maxGpuAllocationsToMove,
 | |
|         VkCommandBuffer commandBuffer);
 | |
|     void DefragmentationEnd(
 | |
|         class VmaBlockVectorDefragmentationContext* pCtx,
 | |
|         VmaDefragmentationStats* pStats);
 | |
| 
 | |
|     ////////////////////////////////////////////////////////////////////////////////
 | |
|     // To be used only while the m_Mutex is locked. Used during defragmentation.
 | |
| 
 | |
|     size_t GetBlockCount() const { return m_Blocks.size(); }
 | |
|     VmaDeviceMemoryBlock* GetBlock(size_t index) const { return m_Blocks[index]; }
 | |
|     size_t CalcAllocationCount() const;
 | |
|     bool IsBufferImageGranularityConflictPossible() const;
 | |
| 
 | |
| private:
 | |
|     friend class VmaDefragmentationAlgorithm_Generic;
 | |
| 
 | |
|     const VmaAllocator m_hAllocator;
 | |
|     const VmaPool m_hParentPool;
 | |
|     const uint32_t m_MemoryTypeIndex;
 | |
|     const VkDeviceSize m_PreferredBlockSize;
 | |
|     const size_t m_MinBlockCount;
 | |
|     const size_t m_MaxBlockCount;
 | |
|     const VkDeviceSize m_BufferImageGranularity;
 | |
|     const uint32_t m_FrameInUseCount;
 | |
|     const bool m_ExplicitBlockSize;
 | |
|     const uint32_t m_Algorithm;
 | |
|     VMA_RW_MUTEX m_Mutex;
 | |
| 
 | |
|     /* There can be at most one allocation that is completely empty (except when minBlockCount > 0) -
 | |
|     a hysteresis to avoid pessimistic case of alternating creation and destruction of a VkDeviceMemory. */
 | |
|     bool m_HasEmptyBlock;
 | |
|     // Incrementally sorted by sumFreeSize, ascending.
 | |
|     VmaVector< VmaDeviceMemoryBlock*, VmaStlAllocator<VmaDeviceMemoryBlock*> > m_Blocks;
 | |
|     uint32_t m_NextBlockId;
 | |
| 
 | |
|     VkDeviceSize CalcMaxBlockSize() const;
 | |
| 
 | |
|     // Finds and removes given block from vector.
 | |
|     void Remove(VmaDeviceMemoryBlock* pBlock);
 | |
| 
 | |
|     // Performs single step in sorting m_Blocks. They may not be fully sorted
 | |
|     // after this call.
 | |
|     void IncrementallySortBlocks();
 | |
| 
 | |
|     VkResult AllocatePage(
 | |
|         uint32_t currentFrameIndex,
 | |
|         VkDeviceSize size,
 | |
|         VkDeviceSize alignment,
 | |
|         const VmaAllocationCreateInfo& createInfo,
 | |
|         VmaSuballocationType suballocType,
 | |
|         VmaAllocation* pAllocation);
 | |
| 
 | |
|     // To be used only without CAN_MAKE_OTHER_LOST flag.
 | |
|     VkResult AllocateFromBlock(
 | |
|         VmaDeviceMemoryBlock* pBlock,
 | |
|         uint32_t currentFrameIndex,
 | |
|         VkDeviceSize size,
 | |
|         VkDeviceSize alignment,
 | |
|         VmaAllocationCreateFlags allocFlags,
 | |
|         void* pUserData,
 | |
|         VmaSuballocationType suballocType,
 | |
|         uint32_t strategy,
 | |
|         VmaAllocation* pAllocation);
 | |
| 
 | |
|     VkResult CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex);
 | |
| 
 | |
|     // Saves result to pCtx->res.
 | |
|     void ApplyDefragmentationMovesCpu(
 | |
|         class VmaBlockVectorDefragmentationContext* pDefragCtx,
 | |
|         const VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves);
 | |
|     // Saves result to pCtx->res.
 | |
|     void ApplyDefragmentationMovesGpu(
 | |
|         class VmaBlockVectorDefragmentationContext* pDefragCtx,
 | |
|         const VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves,
 | |
|         VkCommandBuffer commandBuffer);
 | |
| 
 | |
|     /*
 | |
|     Used during defragmentation. pDefragmentationStats is optional. It's in/out
 | |
|     - updated with new data.
 | |
|     */
 | |
|     void FreeEmptyBlocks(VmaDefragmentationStats* pDefragmentationStats);
 | |
| 
 | |
|     void UpdateHasEmptyBlock();
 | |
| };
 | |
| 
 | |
| struct VmaPool_T
 | |
| {
 | |
|     VMA_CLASS_NO_COPY(VmaPool_T)
 | |
| public:
 | |
|     VmaBlockVector m_BlockVector;
 | |
| 
 | |
|     VmaPool_T(
 | |
|         VmaAllocator hAllocator,
 | |
|         const VmaPoolCreateInfo& createInfo,
 | |
|         VkDeviceSize preferredBlockSize);
 | |
|     ~VmaPool_T();
 | |
| 
 | |
|     uint32_t GetId() const { return m_Id; }
 | |
|     void SetId(uint32_t id) { VMA_ASSERT(m_Id == 0); m_Id = id; }
 | |
| 
 | |
|     const char* GetName() const { return m_Name; }
 | |
|     void SetName(const char* pName);
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
|     //void PrintDetailedMap(class VmaStringBuilder& sb);
 | |
| #endif
 | |
| 
 | |
| private:
 | |
|     uint32_t m_Id;
 | |
|     char* m_Name;
 | |
| };
 | |
| 
 | |
| /*
 | |
| Performs defragmentation:
 | |
| 
 | |
| - Updates `pBlockVector->m_pMetadata`.
 | |
| - Updates allocations by calling ChangeBlockAllocation() or ChangeOffset().
 | |
| - Does not move actual data, only returns requested moves as `moves`.
 | |
| */
 | |
| class VmaDefragmentationAlgorithm
 | |
| {
 | |
|     VMA_CLASS_NO_COPY(VmaDefragmentationAlgorithm)
 | |
| public:
 | |
|     VmaDefragmentationAlgorithm(
 | |
|         VmaAllocator hAllocator,
 | |
|         VmaBlockVector* pBlockVector,
 | |
|         uint32_t currentFrameIndex) :
 | |
|         m_hAllocator(hAllocator),
 | |
|         m_pBlockVector(pBlockVector),
 | |
|         m_CurrentFrameIndex(currentFrameIndex)
 | |
|     {
 | |
|     }
 | |
|     virtual ~VmaDefragmentationAlgorithm()
 | |
|     {
 | |
|     }
 | |
| 
 | |
|     virtual void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged) = 0;
 | |
|     virtual void AddAll() = 0;
 | |
| 
 | |
|     virtual VkResult Defragment(
 | |
|         VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves,
 | |
|         VkDeviceSize maxBytesToMove,
 | |
|         uint32_t maxAllocationsToMove) = 0;
 | |
| 
 | |
|     virtual VkDeviceSize GetBytesMoved() const = 0;
 | |
|     virtual uint32_t GetAllocationsMoved() const = 0;
 | |
| 
 | |
| protected:
 | |
|     VmaAllocator const m_hAllocator;
 | |
|     VmaBlockVector* const m_pBlockVector;
 | |
|     const uint32_t m_CurrentFrameIndex;
 | |
| 
 | |
|     struct AllocationInfo
 | |
|     {
 | |
|         VmaAllocation m_hAllocation;
 | |
|         VkBool32* m_pChanged;
 | |
| 
 | |
|         AllocationInfo() :
 | |
|             m_hAllocation(VK_NULL_HANDLE),
 | |
|             m_pChanged(VMA_NULL)
 | |
|         {
 | |
|         }
 | |
|         AllocationInfo(VmaAllocation hAlloc, VkBool32* pChanged) :
 | |
|             m_hAllocation(hAlloc),
 | |
|             m_pChanged(pChanged)
 | |
|         {
 | |
|         }
 | |
|     };
 | |
| };
 | |
| 
 | |
| class VmaDefragmentationAlgorithm_Generic : public VmaDefragmentationAlgorithm
 | |
| {
 | |
|     VMA_CLASS_NO_COPY(VmaDefragmentationAlgorithm_Generic)
 | |
| public:
 | |
|     VmaDefragmentationAlgorithm_Generic(
 | |
|         VmaAllocator hAllocator,
 | |
|         VmaBlockVector* pBlockVector,
 | |
|         uint32_t currentFrameIndex,
 | |
|         bool overlappingMoveSupported);
 | |
|     virtual ~VmaDefragmentationAlgorithm_Generic();
 | |
| 
 | |
|     virtual void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged);
 | |
|     virtual void AddAll() { m_AllAllocations = true; }
 | |
| 
 | |
|     virtual VkResult Defragment(
 | |
|         VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves,
 | |
|         VkDeviceSize maxBytesToMove,
 | |
|         uint32_t maxAllocationsToMove);
 | |
| 
 | |
|     virtual VkDeviceSize GetBytesMoved() const { return m_BytesMoved; }
 | |
|     virtual uint32_t GetAllocationsMoved() const { return m_AllocationsMoved; }
 | |
| 
 | |
| private:
 | |
|     uint32_t m_AllocationCount;
 | |
|     bool m_AllAllocations;
 | |
| 
 | |
|     VkDeviceSize m_BytesMoved;
 | |
|     uint32_t m_AllocationsMoved;
 | |
| 
 | |
|     struct AllocationInfoSizeGreater
 | |
|     {
 | |
|         bool operator()(const AllocationInfo& lhs, const AllocationInfo& rhs) const
 | |
|         {
 | |
|             return lhs.m_hAllocation->GetSize() > rhs.m_hAllocation->GetSize();
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     struct AllocationInfoOffsetGreater
 | |
|     {
 | |
|         bool operator()(const AllocationInfo& lhs, const AllocationInfo& rhs) const
 | |
|         {
 | |
|             return lhs.m_hAllocation->GetOffset() > rhs.m_hAllocation->GetOffset();
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     struct BlockInfo
 | |
|     {
 | |
|         size_t m_OriginalBlockIndex;
 | |
|         VmaDeviceMemoryBlock* m_pBlock;
 | |
|         bool m_HasNonMovableAllocations;
 | |
|         VmaVector< AllocationInfo, VmaStlAllocator<AllocationInfo> > m_Allocations;
 | |
| 
 | |
|         BlockInfo(const VkAllocationCallbacks* pAllocationCallbacks) :
 | |
|             m_OriginalBlockIndex(SIZE_MAX),
 | |
|             m_pBlock(VMA_NULL),
 | |
|             m_HasNonMovableAllocations(true),
 | |
|             m_Allocations(pAllocationCallbacks)
 | |
|         {
 | |
|         }
 | |
| 
 | |
|         void CalcHasNonMovableAllocations()
 | |
|         {
 | |
|             const size_t blockAllocCount = m_pBlock->m_pMetadata->GetAllocationCount();
 | |
|             const size_t defragmentAllocCount = m_Allocations.size();
 | |
|             m_HasNonMovableAllocations = blockAllocCount != defragmentAllocCount;
 | |
|         }
 | |
| 
 | |
|         void SortAllocationsBySizeDescending()
 | |
|         {
 | |
|             VMA_SORT(m_Allocations.begin(), m_Allocations.end(), AllocationInfoSizeGreater());
 | |
|         }
 | |
| 
 | |
|         void SortAllocationsByOffsetDescending()
 | |
|         {
 | |
|             VMA_SORT(m_Allocations.begin(), m_Allocations.end(), AllocationInfoOffsetGreater());
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     struct BlockPointerLess
 | |
|     {
 | |
|         bool operator()(const BlockInfo* pLhsBlockInfo, const VmaDeviceMemoryBlock* pRhsBlock) const
 | |
|         {
 | |
|             return pLhsBlockInfo->m_pBlock < pRhsBlock;
 | |
|         }
 | |
|         bool operator()(const BlockInfo* pLhsBlockInfo, const BlockInfo* pRhsBlockInfo) const
 | |
|         {
 | |
|             return pLhsBlockInfo->m_pBlock < pRhsBlockInfo->m_pBlock;
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     // 1. Blocks with some non-movable allocations go first.
 | |
|     // 2. Blocks with smaller sumFreeSize go first.
 | |
|     struct BlockInfoCompareMoveDestination
 | |
|     {
 | |
|         bool operator()(const BlockInfo* pLhsBlockInfo, const BlockInfo* pRhsBlockInfo) const
 | |
|         {
 | |
|             if(pLhsBlockInfo->m_HasNonMovableAllocations && !pRhsBlockInfo->m_HasNonMovableAllocations)
 | |
|             {
 | |
|                 return true;
 | |
|             }
 | |
|             if(!pLhsBlockInfo->m_HasNonMovableAllocations && pRhsBlockInfo->m_HasNonMovableAllocations)
 | |
|             {
 | |
|                 return false;
 | |
|             }
 | |
|             if(pLhsBlockInfo->m_pBlock->m_pMetadata->GetSumFreeSize() < pRhsBlockInfo->m_pBlock->m_pMetadata->GetSumFreeSize())
 | |
|             {
 | |
|                 return true;
 | |
|             }
 | |
|             return false;
 | |
|         }
 | |
|     };
 | |
| 
 | |
|     typedef VmaVector< BlockInfo*, VmaStlAllocator<BlockInfo*> > BlockInfoVector;
 | |
|     BlockInfoVector m_Blocks;
 | |
| 
 | |
|     VkResult DefragmentRound(
 | |
|         VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves,
 | |
|         VkDeviceSize maxBytesToMove,
 | |
|         uint32_t maxAllocationsToMove);
 | |
| 
 | |
|     size_t CalcBlocksWithNonMovableCount() const;
 | |
| 
 | |
|     static bool MoveMakesSense(
 | |
|         size_t dstBlockIndex, VkDeviceSize dstOffset,
 | |
|         size_t srcBlockIndex, VkDeviceSize srcOffset);
 | |
| };
 | |
| 
 | |
| class VmaDefragmentationAlgorithm_Fast : public VmaDefragmentationAlgorithm
 | |
| {
 | |
|     VMA_CLASS_NO_COPY(VmaDefragmentationAlgorithm_Fast)
 | |
| public:
 | |
|     VmaDefragmentationAlgorithm_Fast(
 | |
|         VmaAllocator hAllocator,
 | |
|         VmaBlockVector* pBlockVector,
 | |
|         uint32_t currentFrameIndex,
 | |
|         bool overlappingMoveSupported);
 | |
|     virtual ~VmaDefragmentationAlgorithm_Fast();
 | |
| 
 | |
|     virtual void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged) { ++m_AllocationCount; }
 | |
|     virtual void AddAll() { m_AllAllocations = true; }
 | |
| 
 | |
|     virtual VkResult Defragment(
 | |
|         VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves,
 | |
|         VkDeviceSize maxBytesToMove,
 | |
|         uint32_t maxAllocationsToMove);
 | |
| 
 | |
|     virtual VkDeviceSize GetBytesMoved() const { return m_BytesMoved; }
 | |
|     virtual uint32_t GetAllocationsMoved() const { return m_AllocationsMoved; }
 | |
| 
 | |
| private:
 | |
|     struct BlockInfo
 | |
|     {
 | |
|         size_t origBlockIndex;
 | |
|     };
 | |
| 
 | |
|     class FreeSpaceDatabase
 | |
|     {
 | |
|     public:
 | |
|         FreeSpaceDatabase()
 | |
|         {
 | |
|             FreeSpace s = {};
 | |
|             s.blockInfoIndex = SIZE_MAX;
 | |
|             for(size_t i = 0; i < MAX_COUNT; ++i)
 | |
|             {
 | |
|                 m_FreeSpaces[i] = s;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         void Register(size_t blockInfoIndex, VkDeviceSize offset, VkDeviceSize size)
 | |
|         {
 | |
|             if(size < VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)
 | |
|             {
 | |
|                 return;
 | |
|             }
 | |
| 
 | |
|             // Find first invalid or the smallest structure.
 | |
|             size_t bestIndex = SIZE_MAX;
 | |
|             for(size_t i = 0; i < MAX_COUNT; ++i)
 | |
|             {
 | |
|                 // Empty structure.
 | |
|                 if(m_FreeSpaces[i].blockInfoIndex == SIZE_MAX)
 | |
|                 {
 | |
|                     bestIndex = i;
 | |
|                     break;
 | |
|                 }
 | |
|                 if(m_FreeSpaces[i].size < size &&
 | |
|                     (bestIndex == SIZE_MAX || m_FreeSpaces[bestIndex].size > m_FreeSpaces[i].size))
 | |
|                 {
 | |
|                     bestIndex = i;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if(bestIndex != SIZE_MAX)
 | |
|             {
 | |
|                 m_FreeSpaces[bestIndex].blockInfoIndex = blockInfoIndex;
 | |
|                 m_FreeSpaces[bestIndex].offset = offset;
 | |
|                 m_FreeSpaces[bestIndex].size = size;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         bool Fetch(VkDeviceSize alignment, VkDeviceSize size,
 | |
|             size_t& outBlockInfoIndex, VkDeviceSize& outDstOffset)
 | |
|         {
 | |
|             size_t bestIndex = SIZE_MAX;
 | |
|             VkDeviceSize bestFreeSpaceAfter = 0;
 | |
|             for(size_t i = 0; i < MAX_COUNT; ++i)
 | |
|             {
 | |
|                 // Structure is valid.
 | |
|                 if(m_FreeSpaces[i].blockInfoIndex != SIZE_MAX)
 | |
|                 {
 | |
|                     const VkDeviceSize dstOffset = VmaAlignUp(m_FreeSpaces[i].offset, alignment);
 | |
|                     // Allocation fits into this structure.
 | |
|                     if(dstOffset + size <= m_FreeSpaces[i].offset + m_FreeSpaces[i].size)
 | |
|                     {
 | |
|                         const VkDeviceSize freeSpaceAfter = (m_FreeSpaces[i].offset + m_FreeSpaces[i].size) -
 | |
|                             (dstOffset + size);
 | |
|                         if(bestIndex == SIZE_MAX || freeSpaceAfter > bestFreeSpaceAfter)
 | |
|                         {
 | |
|                             bestIndex = i;
 | |
|                             bestFreeSpaceAfter = freeSpaceAfter;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             
 | |
|             if(bestIndex != SIZE_MAX)
 | |
|             {
 | |
|                 outBlockInfoIndex = m_FreeSpaces[bestIndex].blockInfoIndex;
 | |
|                 outDstOffset = VmaAlignUp(m_FreeSpaces[bestIndex].offset, alignment);
 | |
| 
 | |
|                 if(bestFreeSpaceAfter >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)
 | |
|                 {
 | |
|                     // Leave this structure for remaining empty space.
 | |
|                     const VkDeviceSize alignmentPlusSize = (outDstOffset - m_FreeSpaces[bestIndex].offset) + size;
 | |
|                     m_FreeSpaces[bestIndex].offset += alignmentPlusSize;
 | |
|                     m_FreeSpaces[bestIndex].size -= alignmentPlusSize;
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     // This structure becomes invalid.
 | |
|                     m_FreeSpaces[bestIndex].blockInfoIndex = SIZE_MAX;
 | |
|                 }
 | |
| 
 | |
|                 return true;
 | |
|             }
 | |
| 
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|     private:
 | |
|         static const size_t MAX_COUNT = 4;
 | |
| 
 | |
|         struct FreeSpace
 | |
|         {
 | |
|             size_t blockInfoIndex; // SIZE_MAX means this structure is invalid.
 | |
|             VkDeviceSize offset;
 | |
|             VkDeviceSize size;
 | |
|         } m_FreeSpaces[MAX_COUNT];
 | |
|     };
 | |
| 
 | |
|     const bool m_OverlappingMoveSupported;
 | |
| 
 | |
|     uint32_t m_AllocationCount;
 | |
|     bool m_AllAllocations;
 | |
| 
 | |
|     VkDeviceSize m_BytesMoved;
 | |
|     uint32_t m_AllocationsMoved;
 | |
| 
 | |
|     VmaVector< BlockInfo, VmaStlAllocator<BlockInfo> > m_BlockInfos;
 | |
| 
 | |
|     void PreprocessMetadata();
 | |
|     void PostprocessMetadata();
 | |
|     void InsertSuballoc(VmaBlockMetadata_Generic* pMetadata, const VmaSuballocation& suballoc);
 | |
| };
 | |
| 
 | |
| struct VmaBlockDefragmentationContext
 | |
| {
 | |
|     enum BLOCK_FLAG
 | |
|     {
 | |
|         BLOCK_FLAG_USED = 0x00000001,
 | |
|     };
 | |
|     uint32_t flags;
 | |
|     VkBuffer hBuffer;
 | |
| };
 | |
| 
 | |
| class VmaBlockVectorDefragmentationContext
 | |
| {
 | |
|     VMA_CLASS_NO_COPY(VmaBlockVectorDefragmentationContext)
 | |
| public:
 | |
|     VkResult res;
 | |
|     bool mutexLocked;
 | |
|     VmaVector< VmaBlockDefragmentationContext, VmaStlAllocator<VmaBlockDefragmentationContext> > blockContexts;
 | |
| 
 | |
|     VmaBlockVectorDefragmentationContext(
 | |
|         VmaAllocator hAllocator,
 | |
|         VmaPool hCustomPool, // Optional.
 | |
|         VmaBlockVector* pBlockVector,
 | |
|         uint32_t currFrameIndex);
 | |
|     ~VmaBlockVectorDefragmentationContext();
 | |
| 
 | |
|     VmaPool GetCustomPool() const { return m_hCustomPool; }
 | |
|     VmaBlockVector* GetBlockVector() const { return m_pBlockVector; }
 | |
|     VmaDefragmentationAlgorithm* GetAlgorithm() const { return m_pAlgorithm; }
 | |
| 
 | |
|     void AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged);
 | |
|     void AddAll() { m_AllAllocations = true; }
 | |
| 
 | |
|     void Begin(bool overlappingMoveSupported);
 | |
| 
 | |
| private:
 | |
|     const VmaAllocator m_hAllocator;
 | |
|     // Null if not from custom pool.
 | |
|     const VmaPool m_hCustomPool;
 | |
|     // Redundant, for convenience not to fetch from m_hCustomPool->m_BlockVector or m_hAllocator->m_pBlockVectors.
 | |
|     VmaBlockVector* const m_pBlockVector;
 | |
|     const uint32_t m_CurrFrameIndex;
 | |
|     // Owner of this object.
 | |
|     VmaDefragmentationAlgorithm* m_pAlgorithm;
 | |
| 
 | |
|     struct AllocInfo
 | |
|     {
 | |
|         VmaAllocation hAlloc;
 | |
|         VkBool32* pChanged;
 | |
|     };
 | |
|     // Used between constructor and Begin.
 | |
|     VmaVector< AllocInfo, VmaStlAllocator<AllocInfo> > m_Allocations;
 | |
|     bool m_AllAllocations;
 | |
| };
 | |
| 
 | |
| struct VmaDefragmentationContext_T
 | |
| {
 | |
| private:
 | |
|     VMA_CLASS_NO_COPY(VmaDefragmentationContext_T)
 | |
| public:
 | |
|     VmaDefragmentationContext_T(
 | |
|         VmaAllocator hAllocator,
 | |
|         uint32_t currFrameIndex,
 | |
|         uint32_t flags,
 | |
|         VmaDefragmentationStats* pStats);
 | |
|     ~VmaDefragmentationContext_T();
 | |
| 
 | |
|     void AddPools(uint32_t poolCount, VmaPool* pPools);
 | |
|     void AddAllocations(
 | |
|         uint32_t allocationCount,
 | |
|         VmaAllocation* pAllocations,
 | |
|         VkBool32* pAllocationsChanged);
 | |
| 
 | |
|     /*
 | |
|     Returns:
 | |
|     - `VK_SUCCESS` if succeeded and object can be destroyed immediately.
 | |
|     - `VK_NOT_READY` if succeeded but the object must remain alive until vmaDefragmentationEnd().
 | |
|     - Negative value if error occured and object can be destroyed immediately.
 | |
|     */
 | |
|     VkResult Defragment(
 | |
|         VkDeviceSize maxCpuBytesToMove, uint32_t maxCpuAllocationsToMove,
 | |
|         VkDeviceSize maxGpuBytesToMove, uint32_t maxGpuAllocationsToMove,
 | |
|         VkCommandBuffer commandBuffer, VmaDefragmentationStats* pStats);
 | |
| 
 | |
| private:
 | |
|     const VmaAllocator m_hAllocator;
 | |
|     const uint32_t m_CurrFrameIndex;
 | |
|     const uint32_t m_Flags;
 | |
|     VmaDefragmentationStats* const m_pStats;
 | |
|     // Owner of these objects.
 | |
|     VmaBlockVectorDefragmentationContext* m_DefaultPoolContexts[VK_MAX_MEMORY_TYPES];
 | |
|     // Owner of these objects.
 | |
|     VmaVector< VmaBlockVectorDefragmentationContext*, VmaStlAllocator<VmaBlockVectorDefragmentationContext*> > m_CustomPoolContexts;
 | |
| };
 | |
| 
 | |
| #if VMA_RECORDING_ENABLED
 | |
| 
 | |
| class VmaRecorder
 | |
| {
 | |
| public:
 | |
|     VmaRecorder();
 | |
|     VkResult Init(const VmaRecordSettings& settings, bool useMutex);
 | |
|     void WriteConfiguration(
 | |
|         const VkPhysicalDeviceProperties& devProps,
 | |
|         const VkPhysicalDeviceMemoryProperties& memProps,
 | |
|         uint32_t vulkanApiVersion,
 | |
|         bool dedicatedAllocationExtensionEnabled,
 | |
|         bool bindMemory2ExtensionEnabled,
 | |
|         bool memoryBudgetExtensionEnabled);
 | |
|     ~VmaRecorder();
 | |
| 
 | |
|     void RecordCreateAllocator(uint32_t frameIndex);
 | |
|     void RecordDestroyAllocator(uint32_t frameIndex);
 | |
|     void RecordCreatePool(uint32_t frameIndex,
 | |
|         const VmaPoolCreateInfo& createInfo,
 | |
|         VmaPool pool);
 | |
|     void RecordDestroyPool(uint32_t frameIndex, VmaPool pool);
 | |
|     void RecordAllocateMemory(uint32_t frameIndex,
 | |
|         const VkMemoryRequirements& vkMemReq,
 | |
|         const VmaAllocationCreateInfo& createInfo,
 | |
|         VmaAllocation allocation);
 | |
|     void RecordAllocateMemoryPages(uint32_t frameIndex,
 | |
|         const VkMemoryRequirements& vkMemReq,
 | |
|         const VmaAllocationCreateInfo& createInfo,
 | |
|         uint64_t allocationCount,
 | |
|         const VmaAllocation* pAllocations);
 | |
|     void RecordAllocateMemoryForBuffer(uint32_t frameIndex,
 | |
|         const VkMemoryRequirements& vkMemReq,
 | |
|         bool requiresDedicatedAllocation,
 | |
|         bool prefersDedicatedAllocation,
 | |
|         const VmaAllocationCreateInfo& createInfo,
 | |
|         VmaAllocation allocation);
 | |
|     void RecordAllocateMemoryForImage(uint32_t frameIndex,
 | |
|         const VkMemoryRequirements& vkMemReq,
 | |
|         bool requiresDedicatedAllocation,
 | |
|         bool prefersDedicatedAllocation,
 | |
|         const VmaAllocationCreateInfo& createInfo,
 | |
|         VmaAllocation allocation);
 | |
|     void RecordFreeMemory(uint32_t frameIndex,
 | |
|         VmaAllocation allocation);
 | |
|     void RecordFreeMemoryPages(uint32_t frameIndex,
 | |
|         uint64_t allocationCount,
 | |
|         const VmaAllocation* pAllocations);
 | |
|     void RecordSetAllocationUserData(uint32_t frameIndex,
 | |
|         VmaAllocation allocation,
 | |
|         const void* pUserData);
 | |
|     void RecordCreateLostAllocation(uint32_t frameIndex,
 | |
|         VmaAllocation allocation);
 | |
|     void RecordMapMemory(uint32_t frameIndex,
 | |
|         VmaAllocation allocation);
 | |
|     void RecordUnmapMemory(uint32_t frameIndex,
 | |
|         VmaAllocation allocation);
 | |
|     void RecordFlushAllocation(uint32_t frameIndex,
 | |
|         VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size);
 | |
|     void RecordInvalidateAllocation(uint32_t frameIndex,
 | |
|         VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size);
 | |
|     void RecordCreateBuffer(uint32_t frameIndex,
 | |
|         const VkBufferCreateInfo& bufCreateInfo,
 | |
|         const VmaAllocationCreateInfo& allocCreateInfo,
 | |
|         VmaAllocation allocation);
 | |
|     void RecordCreateImage(uint32_t frameIndex,
 | |
|         const VkImageCreateInfo& imageCreateInfo,
 | |
|         const VmaAllocationCreateInfo& allocCreateInfo,
 | |
|         VmaAllocation allocation);
 | |
|     void RecordDestroyBuffer(uint32_t frameIndex,
 | |
|         VmaAllocation allocation);
 | |
|     void RecordDestroyImage(uint32_t frameIndex,
 | |
|         VmaAllocation allocation);
 | |
|     void RecordTouchAllocation(uint32_t frameIndex,
 | |
|         VmaAllocation allocation);
 | |
|     void RecordGetAllocationInfo(uint32_t frameIndex,
 | |
|         VmaAllocation allocation);
 | |
|     void RecordMakePoolAllocationsLost(uint32_t frameIndex,
 | |
|         VmaPool pool);
 | |
|     void RecordDefragmentationBegin(uint32_t frameIndex,
 | |
|         const VmaDefragmentationInfo2& info,
 | |
|         VmaDefragmentationContext ctx);
 | |
|     void RecordDefragmentationEnd(uint32_t frameIndex,
 | |
|         VmaDefragmentationContext ctx);
 | |
|     void RecordSetPoolName(uint32_t frameIndex,
 | |
|         VmaPool pool,
 | |
|         const char* name);
 | |
| 
 | |
| private:
 | |
|     struct CallParams
 | |
|     {
 | |
|         uint32_t threadId;
 | |
|         double time;
 | |
|     };
 | |
| 
 | |
|     class UserDataString
 | |
|     {
 | |
|     public:
 | |
|         UserDataString(VmaAllocationCreateFlags allocFlags, const void* pUserData);
 | |
|         const char* GetString() const { return m_Str; }
 | |
| 
 | |
|     private:
 | |
|         char m_PtrStr[17];
 | |
|         const char* m_Str;
 | |
|     };
 | |
| 
 | |
|     bool m_UseMutex;
 | |
|     VmaRecordFlags m_Flags;
 | |
|     FILE* m_File;
 | |
|     VMA_MUTEX m_FileMutex;
 | |
|     int64_t m_Freq;
 | |
|     int64_t m_StartCounter;
 | |
| 
 | |
|     void GetBasicParams(CallParams& outParams);
 | |
| 
 | |
|     // T must be a pointer type, e.g. VmaAllocation, VmaPool.
 | |
|     template<typename T>
 | |
|     void PrintPointerList(uint64_t count, const T* pItems)
 | |
|     {
 | |
|         if(count)
 | |
|         {
 | |
|             fprintf(m_File, "%p", pItems[0]);
 | |
|             for(uint64_t i = 1; i < count; ++i)
 | |
|             {
 | |
|                 fprintf(m_File, " %p", pItems[i]);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     void PrintPointerList(uint64_t count, const VmaAllocation* pItems);
 | |
|     void Flush();
 | |
| };
 | |
| 
 | |
| #endif // #if VMA_RECORDING_ENABLED
 | |
| 
 | |
| /*
 | |
| Thread-safe wrapper over VmaPoolAllocator free list, for allocation of VmaAllocation_T objects.
 | |
| */
 | |
| class VmaAllocationObjectAllocator
 | |
| {
 | |
|     VMA_CLASS_NO_COPY(VmaAllocationObjectAllocator)
 | |
| public:
 | |
|     VmaAllocationObjectAllocator(const VkAllocationCallbacks* pAllocationCallbacks);
 | |
| 
 | |
|     VmaAllocation Allocate();
 | |
|     void Free(VmaAllocation hAlloc);
 | |
| 
 | |
| private:
 | |
|     VMA_MUTEX m_Mutex;
 | |
|     VmaPoolAllocator<VmaAllocation_T> m_Allocator;
 | |
| };
 | |
| 
 | |
| struct VmaCurrentBudgetData
 | |
| {
 | |
|     VMA_ATOMIC_UINT64 m_BlockBytes[VK_MAX_MEMORY_HEAPS];
 | |
|     VMA_ATOMIC_UINT64 m_AllocationBytes[VK_MAX_MEMORY_HEAPS];
 | |
| 
 | |
| #if VMA_MEMORY_BUDGET
 | |
|     VMA_ATOMIC_UINT32 m_OperationsSinceBudgetFetch;
 | |
|     VMA_RW_MUTEX m_BudgetMutex;
 | |
|     uint64_t m_VulkanUsage[VK_MAX_MEMORY_HEAPS];
 | |
|     uint64_t m_VulkanBudget[VK_MAX_MEMORY_HEAPS];
 | |
|     uint64_t m_BlockBytesAtBudgetFetch[VK_MAX_MEMORY_HEAPS];
 | |
| #endif // #if VMA_MEMORY_BUDGET
 | |
| 
 | |
|     VmaCurrentBudgetData()
 | |
|     {
 | |
|         for(uint32_t heapIndex = 0; heapIndex < VK_MAX_MEMORY_HEAPS; ++heapIndex)
 | |
|         {
 | |
|             m_BlockBytes[heapIndex] = 0;
 | |
|             m_AllocationBytes[heapIndex] = 0;
 | |
| #if VMA_MEMORY_BUDGET
 | |
|             m_VulkanUsage[heapIndex] = 0;
 | |
|             m_VulkanBudget[heapIndex] = 0;
 | |
|             m_BlockBytesAtBudgetFetch[heapIndex] = 0;
 | |
| #endif
 | |
|         }
 | |
| 
 | |
| #if VMA_MEMORY_BUDGET
 | |
|         m_OperationsSinceBudgetFetch = 0;
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     void AddAllocation(uint32_t heapIndex, VkDeviceSize allocationSize)
 | |
|     {
 | |
|         m_AllocationBytes[heapIndex] += allocationSize;
 | |
| #if VMA_MEMORY_BUDGET
 | |
|         ++m_OperationsSinceBudgetFetch;
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     void RemoveAllocation(uint32_t heapIndex, VkDeviceSize allocationSize)
 | |
|     {
 | |
|         VMA_ASSERT(m_AllocationBytes[heapIndex] >= allocationSize); // DELME
 | |
|         m_AllocationBytes[heapIndex] -= allocationSize;
 | |
| #if VMA_MEMORY_BUDGET
 | |
|         ++m_OperationsSinceBudgetFetch;
 | |
| #endif
 | |
|     }
 | |
| };
 | |
| 
 | |
| // Main allocator object.
 | |
| struct VmaAllocator_T
 | |
| {
 | |
|     VMA_CLASS_NO_COPY(VmaAllocator_T)
 | |
| public:
 | |
|     bool m_UseMutex;
 | |
|     uint32_t m_VulkanApiVersion;
 | |
|     bool m_UseKhrDedicatedAllocation; // Can be set only if m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0).
 | |
|     bool m_UseKhrBindMemory2; // Can be set only if m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0).
 | |
|     bool m_UseExtMemoryBudget;
 | |
|     VkDevice m_hDevice;
 | |
|     VkInstance m_hInstance;
 | |
|     bool m_AllocationCallbacksSpecified;
 | |
|     VkAllocationCallbacks m_AllocationCallbacks;
 | |
|     VmaDeviceMemoryCallbacks m_DeviceMemoryCallbacks;
 | |
|     VmaAllocationObjectAllocator m_AllocationObjectAllocator;
 | |
|     
 | |
|     // Each bit (1 << i) is set if HeapSizeLimit is enabled for that heap, so cannot allocate more than the heap size.
 | |
|     uint32_t m_HeapSizeLimitMask;
 | |
| 
 | |
|     VkPhysicalDeviceProperties m_PhysicalDeviceProperties;
 | |
|     VkPhysicalDeviceMemoryProperties m_MemProps;
 | |
| 
 | |
|     // Default pools.
 | |
|     VmaBlockVector* m_pBlockVectors[VK_MAX_MEMORY_TYPES];
 | |
| 
 | |
|     // Each vector is sorted by memory (handle value).
 | |
|     typedef VmaVector< VmaAllocation, VmaStlAllocator<VmaAllocation> > AllocationVectorType;
 | |
|     AllocationVectorType* m_pDedicatedAllocations[VK_MAX_MEMORY_TYPES];
 | |
|     VMA_RW_MUTEX m_DedicatedAllocationsMutex[VK_MAX_MEMORY_TYPES];
 | |
| 
 | |
|     VmaCurrentBudgetData m_Budget;
 | |
| 
 | |
|     VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo);
 | |
|     VkResult Init(const VmaAllocatorCreateInfo* pCreateInfo);
 | |
|     ~VmaAllocator_T();
 | |
| 
 | |
|     const VkAllocationCallbacks* GetAllocationCallbacks() const
 | |
|     {
 | |
|         return m_AllocationCallbacksSpecified ? &m_AllocationCallbacks : 0;
 | |
|     }
 | |
|     const VmaVulkanFunctions& GetVulkanFunctions() const
 | |
|     {
 | |
|         return m_VulkanFunctions;
 | |
|     }
 | |
| 
 | |
|     VkDeviceSize GetBufferImageGranularity() const
 | |
|     {
 | |
|         return VMA_MAX(
 | |
|             static_cast<VkDeviceSize>(VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY),
 | |
|             m_PhysicalDeviceProperties.limits.bufferImageGranularity);
 | |
|     }
 | |
| 
 | |
|     uint32_t GetMemoryHeapCount() const { return m_MemProps.memoryHeapCount; }
 | |
|     uint32_t GetMemoryTypeCount() const { return m_MemProps.memoryTypeCount; }
 | |
| 
 | |
|     uint32_t MemoryTypeIndexToHeapIndex(uint32_t memTypeIndex) const
 | |
|     {
 | |
|         VMA_ASSERT(memTypeIndex < m_MemProps.memoryTypeCount);
 | |
|         return m_MemProps.memoryTypes[memTypeIndex].heapIndex;
 | |
|     }
 | |
|     // True when specific memory type is HOST_VISIBLE but not HOST_COHERENT.
 | |
|     bool IsMemoryTypeNonCoherent(uint32_t memTypeIndex) const
 | |
|     {
 | |
|         return (m_MemProps.memoryTypes[memTypeIndex].propertyFlags & (VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)) ==
 | |
|             VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
 | |
|     }
 | |
|     // Minimum alignment for all allocations in specific memory type.
 | |
|     VkDeviceSize GetMemoryTypeMinAlignment(uint32_t memTypeIndex) const
 | |
|     {
 | |
|         return IsMemoryTypeNonCoherent(memTypeIndex) ?
 | |
|             VMA_MAX((VkDeviceSize)VMA_DEBUG_ALIGNMENT, m_PhysicalDeviceProperties.limits.nonCoherentAtomSize) :
 | |
|             (VkDeviceSize)VMA_DEBUG_ALIGNMENT;
 | |
|     }
 | |
| 
 | |
|     bool IsIntegratedGpu() const
 | |
|     {
 | |
|         return m_PhysicalDeviceProperties.deviceType == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU;
 | |
|     }
 | |
| 
 | |
| #if VMA_RECORDING_ENABLED
 | |
|     VmaRecorder* GetRecorder() const { return m_pRecorder; }
 | |
| #endif
 | |
| 
 | |
|     void GetBufferMemoryRequirements(
 | |
|         VkBuffer hBuffer,
 | |
|         VkMemoryRequirements& memReq,
 | |
|         bool& requiresDedicatedAllocation,
 | |
|         bool& prefersDedicatedAllocation) const;
 | |
|     void GetImageMemoryRequirements(
 | |
|         VkImage hImage,
 | |
|         VkMemoryRequirements& memReq,
 | |
|         bool& requiresDedicatedAllocation,
 | |
|         bool& prefersDedicatedAllocation) const;
 | |
| 
 | |
|     // Main allocation function.
 | |
|     VkResult AllocateMemory(
 | |
|         const VkMemoryRequirements& vkMemReq,
 | |
|         bool requiresDedicatedAllocation,
 | |
|         bool prefersDedicatedAllocation,
 | |
|         VkBuffer dedicatedBuffer,
 | |
|         VkImage dedicatedImage,
 | |
|         const VmaAllocationCreateInfo& createInfo,
 | |
|         VmaSuballocationType suballocType,
 | |
|         size_t allocationCount,
 | |
|         VmaAllocation* pAllocations);
 | |
| 
 | |
|     // Main deallocation function.
 | |
|     void FreeMemory(
 | |
|         size_t allocationCount,
 | |
|         const VmaAllocation* pAllocations);
 | |
| 
 | |
|     VkResult ResizeAllocation(
 | |
|         const VmaAllocation alloc,
 | |
|         VkDeviceSize newSize);
 | |
| 
 | |
|     void CalculateStats(VmaStats* pStats);
 | |
| 
 | |
|     void GetBudget(
 | |
|         VmaBudget* outBudget, uint32_t firstHeap, uint32_t heapCount);
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
|     void PrintDetailedMap(class VmaJsonWriter& json);
 | |
| #endif
 | |
| 
 | |
|     VkResult DefragmentationBegin(
 | |
|         const VmaDefragmentationInfo2& info,
 | |
|         VmaDefragmentationStats* pStats,
 | |
|         VmaDefragmentationContext* pContext);
 | |
|     VkResult DefragmentationEnd(
 | |
|         VmaDefragmentationContext context);
 | |
| 
 | |
|     void GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo);
 | |
|     bool TouchAllocation(VmaAllocation hAllocation);
 | |
| 
 | |
|     VkResult CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool);
 | |
|     void DestroyPool(VmaPool pool);
 | |
|     void GetPoolStats(VmaPool pool, VmaPoolStats* pPoolStats);
 | |
| 
 | |
|     void SetCurrentFrameIndex(uint32_t frameIndex);
 | |
|     uint32_t GetCurrentFrameIndex() const { return m_CurrentFrameIndex.load(); }
 | |
| 
 | |
|     void MakePoolAllocationsLost(
 | |
|         VmaPool hPool,
 | |
|         size_t* pLostAllocationCount);
 | |
|     VkResult CheckPoolCorruption(VmaPool hPool);
 | |
|     VkResult CheckCorruption(uint32_t memoryTypeBits);
 | |
| 
 | |
|     void CreateLostAllocation(VmaAllocation* pAllocation);
 | |
| 
 | |
|     // Call to Vulkan function vkAllocateMemory with accompanying bookkeeping.
 | |
|     VkResult AllocateVulkanMemory(const VkMemoryAllocateInfo* pAllocateInfo, VkDeviceMemory* pMemory);
 | |
|     // Call to Vulkan function vkFreeMemory with accompanying bookkeeping.
 | |
|     void FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory);
 | |
|     // Call to Vulkan function vkBindBufferMemory or vkBindBufferMemory2KHR.
 | |
|     VkResult BindVulkanBuffer(
 | |
|         VkDeviceMemory memory,
 | |
|         VkDeviceSize memoryOffset,
 | |
|         VkBuffer buffer,
 | |
|         const void* pNext);
 | |
|     // Call to Vulkan function vkBindImageMemory or vkBindImageMemory2KHR.
 | |
|     VkResult BindVulkanImage(
 | |
|         VkDeviceMemory memory,
 | |
|         VkDeviceSize memoryOffset,
 | |
|         VkImage image,
 | |
|         const void* pNext);
 | |
| 
 | |
|     VkResult Map(VmaAllocation hAllocation, void** ppData);
 | |
|     void Unmap(VmaAllocation hAllocation);
 | |
| 
 | |
|     VkResult BindBufferMemory(
 | |
|         VmaAllocation hAllocation,
 | |
|         VkDeviceSize allocationLocalOffset,
 | |
|         VkBuffer hBuffer,
 | |
|         const void* pNext);
 | |
|     VkResult BindImageMemory(
 | |
|         VmaAllocation hAllocation,
 | |
|         VkDeviceSize allocationLocalOffset,
 | |
|         VkImage hImage,
 | |
|         const void* pNext);
 | |
| 
 | |
|     void FlushOrInvalidateAllocation(
 | |
|         VmaAllocation hAllocation,
 | |
|         VkDeviceSize offset, VkDeviceSize size,
 | |
|         VMA_CACHE_OPERATION op);
 | |
| 
 | |
|     void FillAllocation(const VmaAllocation hAllocation, uint8_t pattern);
 | |
| 
 | |
|     /*
 | |
|     Returns bit mask of memory types that can support defragmentation on GPU as
 | |
|     they support creation of required buffer for copy operations.
 | |
|     */
 | |
|     uint32_t GetGpuDefragmentationMemoryTypeBits();
 | |
| 
 | |
| private:
 | |
|     VkDeviceSize m_PreferredLargeHeapBlockSize;
 | |
| 
 | |
|     VkPhysicalDevice m_PhysicalDevice;
 | |
|     VMA_ATOMIC_UINT32 m_CurrentFrameIndex;
 | |
|     VMA_ATOMIC_UINT32 m_GpuDefragmentationMemoryTypeBits; // UINT32_MAX means uninitialized.
 | |
|     
 | |
|     VMA_RW_MUTEX m_PoolsMutex;
 | |
|     // Protected by m_PoolsMutex. Sorted by pointer value.
 | |
|     VmaVector<VmaPool, VmaStlAllocator<VmaPool> > m_Pools;
 | |
|     uint32_t m_NextPoolId;
 | |
| 
 | |
|     VmaVulkanFunctions m_VulkanFunctions;
 | |
| 
 | |
| #if VMA_RECORDING_ENABLED
 | |
|     VmaRecorder* m_pRecorder;
 | |
| #endif
 | |
| 
 | |
|     void ImportVulkanFunctions(const VmaVulkanFunctions* pVulkanFunctions);
 | |
| 
 | |
|     VkDeviceSize CalcPreferredBlockSize(uint32_t memTypeIndex);
 | |
| 
 | |
|     VkResult AllocateMemoryOfType(
 | |
|         VkDeviceSize size,
 | |
|         VkDeviceSize alignment,
 | |
|         bool dedicatedAllocation,
 | |
|         VkBuffer dedicatedBuffer,
 | |
|         VkImage dedicatedImage,
 | |
|         const VmaAllocationCreateInfo& createInfo,
 | |
|         uint32_t memTypeIndex,
 | |
|         VmaSuballocationType suballocType,
 | |
|         size_t allocationCount,
 | |
|         VmaAllocation* pAllocations);
 | |
| 
 | |
|     // Helper function only to be used inside AllocateDedicatedMemory.
 | |
|     VkResult AllocateDedicatedMemoryPage(
 | |
|         VkDeviceSize size,
 | |
|         VmaSuballocationType suballocType,
 | |
|         uint32_t memTypeIndex,
 | |
|         const VkMemoryAllocateInfo& allocInfo,
 | |
|         bool map,
 | |
|         bool isUserDataString,
 | |
|         void* pUserData,
 | |
|         VmaAllocation* pAllocation);
 | |
| 
 | |
|     // Allocates and registers new VkDeviceMemory specifically for dedicated allocations.
 | |
|     VkResult AllocateDedicatedMemory(
 | |
|         VkDeviceSize size,
 | |
|         VmaSuballocationType suballocType,
 | |
|         uint32_t memTypeIndex,
 | |
|         bool withinBudget,
 | |
|         bool map,
 | |
|         bool isUserDataString,
 | |
|         void* pUserData,
 | |
|         VkBuffer dedicatedBuffer,
 | |
|         VkImage dedicatedImage,
 | |
|         size_t allocationCount,
 | |
|         VmaAllocation* pAllocations);
 | |
| 
 | |
|     void FreeDedicatedMemory(const VmaAllocation allocation);
 | |
| 
 | |
|     /*
 | |
|     Calculates and returns bit mask of memory types that can support defragmentation
 | |
|     on GPU as they support creation of required buffer for copy operations.
 | |
|     */
 | |
|     uint32_t CalculateGpuDefragmentationMemoryTypeBits() const;
 | |
| 
 | |
| #if VMA_MEMORY_BUDGET
 | |
|     void UpdateVulkanBudget();
 | |
| #endif // #if VMA_MEMORY_BUDGET
 | |
| };
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| // Memory allocation #2 after VmaAllocator_T definition
 | |
| 
 | |
| static void* VmaMalloc(VmaAllocator hAllocator, size_t size, size_t alignment)
 | |
| {
 | |
|     return VmaMalloc(&hAllocator->m_AllocationCallbacks, size, alignment);
 | |
| }
 | |
| 
 | |
| static void VmaFree(VmaAllocator hAllocator, void* ptr)
 | |
| {
 | |
|     VmaFree(&hAllocator->m_AllocationCallbacks, ptr);
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| static T* VmaAllocate(VmaAllocator hAllocator)
 | |
| {
 | |
|     return (T*)VmaMalloc(hAllocator, sizeof(T), VMA_ALIGN_OF(T));
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| static T* VmaAllocateArray(VmaAllocator hAllocator, size_t count)
 | |
| {
 | |
|     return (T*)VmaMalloc(hAllocator, sizeof(T) * count, VMA_ALIGN_OF(T));
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| static void vma_delete(VmaAllocator hAllocator, T* ptr)
 | |
| {
 | |
|     if(ptr != VMA_NULL)
 | |
|     {
 | |
|         ptr->~T();
 | |
|         VmaFree(hAllocator, ptr);
 | |
|     }
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| static void vma_delete_array(VmaAllocator hAllocator, T* ptr, size_t count)
 | |
| {
 | |
|     if(ptr != VMA_NULL)
 | |
|     {
 | |
|         for(size_t i = count; i--; )
 | |
|             ptr[i].~T();
 | |
|         VmaFree(hAllocator, ptr);
 | |
|     }
 | |
| }
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| // VmaStringBuilder
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
| 
 | |
| class VmaStringBuilder
 | |
| {
 | |
| public:
 | |
|     VmaStringBuilder(VmaAllocator alloc) : m_Data(VmaStlAllocator<char>(alloc->GetAllocationCallbacks())) { }
 | |
|     size_t GetLength() const { return m_Data.size(); }
 | |
|     const char* GetData() const { return m_Data.data(); }
 | |
| 
 | |
|     void Add(char ch) { m_Data.push_back(ch); }
 | |
|     void Add(const char* pStr);
 | |
|     void AddNewLine() { Add('\n'); }
 | |
|     void AddNumber(uint32_t num);
 | |
|     void AddNumber(uint64_t num);
 | |
|     void AddPointer(const void* ptr);
 | |
| 
 | |
| private:
 | |
|     VmaVector< char, VmaStlAllocator<char> > m_Data;
 | |
| };
 | |
| 
 | |
| void VmaStringBuilder::Add(const char* pStr)
 | |
| {
 | |
|     const size_t strLen = strlen(pStr);
 | |
|     if(strLen > 0)
 | |
|     {
 | |
|         const size_t oldCount = m_Data.size();
 | |
|         m_Data.resize(oldCount + strLen);
 | |
|         memcpy(m_Data.data() + oldCount, pStr, strLen);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaStringBuilder::AddNumber(uint32_t num)
 | |
| {
 | |
|     char buf[11];
 | |
|     buf[10] = '\0';
 | |
|     char *p = &buf[10];
 | |
|     do
 | |
|     {
 | |
|         *--p = '0' + (num % 10);
 | |
|         num /= 10;
 | |
|     }
 | |
|     while(num);
 | |
|     Add(p);
 | |
| }
 | |
| 
 | |
| void VmaStringBuilder::AddNumber(uint64_t num)
 | |
| {
 | |
|     char buf[21];
 | |
|     buf[20] = '\0';
 | |
|     char *p = &buf[20];
 | |
|     do
 | |
|     {
 | |
|         *--p = '0' + (num % 10);
 | |
|         num /= 10;
 | |
|     }
 | |
|     while(num);
 | |
|     Add(p);
 | |
| }
 | |
| 
 | |
| void VmaStringBuilder::AddPointer(const void* ptr)
 | |
| {
 | |
|     char buf[21];
 | |
|     VmaPtrToStr(buf, sizeof(buf), ptr);
 | |
|     Add(buf);
 | |
| }
 | |
| 
 | |
| #endif // #if VMA_STATS_STRING_ENABLED
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| // VmaJsonWriter
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
| 
 | |
| class VmaJsonWriter
 | |
| {
 | |
|     VMA_CLASS_NO_COPY(VmaJsonWriter)
 | |
| public:
 | |
|     VmaJsonWriter(const VkAllocationCallbacks* pAllocationCallbacks, VmaStringBuilder& sb);
 | |
|     ~VmaJsonWriter();
 | |
| 
 | |
|     void BeginObject(bool singleLine = false);
 | |
|     void EndObject();
 | |
|     
 | |
|     void BeginArray(bool singleLine = false);
 | |
|     void EndArray();
 | |
|     
 | |
|     void WriteString(const char* pStr);
 | |
|     void BeginString(const char* pStr = VMA_NULL);
 | |
|     void ContinueString(const char* pStr);
 | |
|     void ContinueString(uint32_t n);
 | |
|     void ContinueString(uint64_t n);
 | |
|     void ContinueString_Pointer(const void* ptr);
 | |
|     void EndString(const char* pStr = VMA_NULL);
 | |
|     
 | |
|     void WriteNumber(uint32_t n);
 | |
|     void WriteNumber(uint64_t n);
 | |
|     void WriteBool(bool b);
 | |
|     void WriteNull();
 | |
| 
 | |
| private:
 | |
|     static const char* const INDENT;
 | |
| 
 | |
|     enum COLLECTION_TYPE
 | |
|     {
 | |
|         COLLECTION_TYPE_OBJECT,
 | |
|         COLLECTION_TYPE_ARRAY,
 | |
|     };
 | |
|     struct StackItem
 | |
|     {
 | |
|         COLLECTION_TYPE type;
 | |
|         uint32_t valueCount;
 | |
|         bool singleLineMode;
 | |
|     };
 | |
| 
 | |
|     VmaStringBuilder& m_SB;
 | |
|     VmaVector< StackItem, VmaStlAllocator<StackItem> > m_Stack;
 | |
|     bool m_InsideString;
 | |
| 
 | |
|     void BeginValue(bool isString);
 | |
|     void WriteIndent(bool oneLess = false);
 | |
| };
 | |
| 
 | |
| const char* const VmaJsonWriter::INDENT = "  ";
 | |
| 
 | |
| VmaJsonWriter::VmaJsonWriter(const VkAllocationCallbacks* pAllocationCallbacks, VmaStringBuilder& sb) :
 | |
|     m_SB(sb),
 | |
|     m_Stack(VmaStlAllocator<StackItem>(pAllocationCallbacks)),
 | |
|     m_InsideString(false)
 | |
| {
 | |
| }
 | |
| 
 | |
| VmaJsonWriter::~VmaJsonWriter()
 | |
| {
 | |
|     VMA_ASSERT(!m_InsideString);
 | |
|     VMA_ASSERT(m_Stack.empty());
 | |
| }
 | |
| 
 | |
| void VmaJsonWriter::BeginObject(bool singleLine)
 | |
| {
 | |
|     VMA_ASSERT(!m_InsideString);
 | |
| 
 | |
|     BeginValue(false);
 | |
|     m_SB.Add('{');
 | |
| 
 | |
|     StackItem item;
 | |
|     item.type = COLLECTION_TYPE_OBJECT;
 | |
|     item.valueCount = 0;
 | |
|     item.singleLineMode = singleLine;
 | |
|     m_Stack.push_back(item);
 | |
| }
 | |
| 
 | |
| void VmaJsonWriter::EndObject()
 | |
| {
 | |
|     VMA_ASSERT(!m_InsideString);
 | |
| 
 | |
|     WriteIndent(true);
 | |
|     m_SB.Add('}');
 | |
| 
 | |
|     VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_OBJECT);
 | |
|     m_Stack.pop_back();
 | |
| }
 | |
| 
 | |
| void VmaJsonWriter::BeginArray(bool singleLine)
 | |
| {
 | |
|     VMA_ASSERT(!m_InsideString);
 | |
| 
 | |
|     BeginValue(false);
 | |
|     m_SB.Add('[');
 | |
| 
 | |
|     StackItem item;
 | |
|     item.type = COLLECTION_TYPE_ARRAY;
 | |
|     item.valueCount = 0;
 | |
|     item.singleLineMode = singleLine;
 | |
|     m_Stack.push_back(item);
 | |
| }
 | |
| 
 | |
| void VmaJsonWriter::EndArray()
 | |
| {
 | |
|     VMA_ASSERT(!m_InsideString);
 | |
| 
 | |
|     WriteIndent(true);
 | |
|     m_SB.Add(']');
 | |
| 
 | |
|     VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_ARRAY);
 | |
|     m_Stack.pop_back();
 | |
| }
 | |
| 
 | |
| void VmaJsonWriter::WriteString(const char* pStr)
 | |
| {
 | |
|     BeginString(pStr);
 | |
|     EndString();
 | |
| }
 | |
| 
 | |
| void VmaJsonWriter::BeginString(const char* pStr)
 | |
| {
 | |
|     VMA_ASSERT(!m_InsideString);
 | |
| 
 | |
|     BeginValue(true);
 | |
|     m_SB.Add('"');
 | |
|     m_InsideString = true;
 | |
|     if(pStr != VMA_NULL && pStr[0] != '\0')
 | |
|     {
 | |
|         ContinueString(pStr);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaJsonWriter::ContinueString(const char* pStr)
 | |
| {
 | |
|     VMA_ASSERT(m_InsideString);
 | |
| 
 | |
|     const size_t strLen = strlen(pStr);
 | |
|     for(size_t i = 0; i < strLen; ++i)
 | |
|     {
 | |
|         char ch = pStr[i];
 | |
|         if(ch == '\\')
 | |
|         {
 | |
|             m_SB.Add("\\\\");
 | |
|         }
 | |
|         else if(ch == '"')
 | |
|         {
 | |
|             m_SB.Add("\\\"");
 | |
|         }
 | |
|         else if(ch >= 32)
 | |
|         {
 | |
|             m_SB.Add(ch);
 | |
|         }
 | |
|         else switch(ch)
 | |
|         {
 | |
|         case '\b':
 | |
|             m_SB.Add("\\b");
 | |
|             break;
 | |
|         case '\f':
 | |
|             m_SB.Add("\\f");
 | |
|             break;
 | |
|         case '\n':
 | |
|             m_SB.Add("\\n");
 | |
|             break;
 | |
|         case '\r':
 | |
|             m_SB.Add("\\r");
 | |
|             break;
 | |
|         case '\t':
 | |
|             m_SB.Add("\\t");
 | |
|             break;
 | |
|         default:
 | |
|             VMA_ASSERT(0 && "Character not currently supported.");
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaJsonWriter::ContinueString(uint32_t n)
 | |
| {
 | |
|     VMA_ASSERT(m_InsideString);
 | |
|     m_SB.AddNumber(n);
 | |
| }
 | |
| 
 | |
| void VmaJsonWriter::ContinueString(uint64_t n)
 | |
| {
 | |
|     VMA_ASSERT(m_InsideString);
 | |
|     m_SB.AddNumber(n);
 | |
| }
 | |
| 
 | |
| void VmaJsonWriter::ContinueString_Pointer(const void* ptr)
 | |
| {
 | |
|     VMA_ASSERT(m_InsideString);
 | |
|     m_SB.AddPointer(ptr);
 | |
| }
 | |
| 
 | |
| void VmaJsonWriter::EndString(const char* pStr)
 | |
| {
 | |
|     VMA_ASSERT(m_InsideString);
 | |
|     if(pStr != VMA_NULL && pStr[0] != '\0')
 | |
|     {
 | |
|         ContinueString(pStr);
 | |
|     }
 | |
|     m_SB.Add('"');
 | |
|     m_InsideString = false;
 | |
| }
 | |
| 
 | |
| void VmaJsonWriter::WriteNumber(uint32_t n)
 | |
| {
 | |
|     VMA_ASSERT(!m_InsideString);
 | |
|     BeginValue(false);
 | |
|     m_SB.AddNumber(n);
 | |
| }
 | |
| 
 | |
| void VmaJsonWriter::WriteNumber(uint64_t n)
 | |
| {
 | |
|     VMA_ASSERT(!m_InsideString);
 | |
|     BeginValue(false);
 | |
|     m_SB.AddNumber(n);
 | |
| }
 | |
| 
 | |
| void VmaJsonWriter::WriteBool(bool b)
 | |
| {
 | |
|     VMA_ASSERT(!m_InsideString);
 | |
|     BeginValue(false);
 | |
|     m_SB.Add(b ? "true" : "false");
 | |
| }
 | |
| 
 | |
| void VmaJsonWriter::WriteNull()
 | |
| {
 | |
|     VMA_ASSERT(!m_InsideString);
 | |
|     BeginValue(false);
 | |
|     m_SB.Add("null");
 | |
| }
 | |
| 
 | |
| void VmaJsonWriter::BeginValue(bool isString)
 | |
| {
 | |
|     if(!m_Stack.empty())
 | |
|     {
 | |
|         StackItem& currItem = m_Stack.back();
 | |
|         if(currItem.type == COLLECTION_TYPE_OBJECT &&
 | |
|             currItem.valueCount % 2 == 0)
 | |
|         {
 | |
|             VMA_ASSERT(isString);
 | |
|         }
 | |
| 
 | |
|         if(currItem.type == COLLECTION_TYPE_OBJECT &&
 | |
|             currItem.valueCount % 2 != 0)
 | |
|         {
 | |
|             m_SB.Add(": ");
 | |
|         }
 | |
|         else if(currItem.valueCount > 0)
 | |
|         {
 | |
|             m_SB.Add(", ");
 | |
|             WriteIndent();
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             WriteIndent();
 | |
|         }
 | |
|         ++currItem.valueCount;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaJsonWriter::WriteIndent(bool oneLess)
 | |
| {
 | |
|     if(!m_Stack.empty() && !m_Stack.back().singleLineMode)
 | |
|     {
 | |
|         m_SB.AddNewLine();
 | |
|         
 | |
|         size_t count = m_Stack.size();
 | |
|         if(count > 0 && oneLess)
 | |
|         {
 | |
|             --count;
 | |
|         }
 | |
|         for(size_t i = 0; i < count; ++i)
 | |
|         {
 | |
|             m_SB.Add(INDENT);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #endif // #if VMA_STATS_STRING_ENABLED
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| void VmaAllocation_T::SetUserData(VmaAllocator hAllocator, void* pUserData)
 | |
| {
 | |
|     if(IsUserDataString())
 | |
|     {
 | |
|         VMA_ASSERT(pUserData == VMA_NULL || pUserData != m_pUserData);
 | |
| 
 | |
|         FreeUserDataString(hAllocator);
 | |
| 
 | |
|         if(pUserData != VMA_NULL)
 | |
|         {
 | |
|             m_pUserData = VmaCreateStringCopy(hAllocator->GetAllocationCallbacks(), (const char*)pUserData);
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         m_pUserData = pUserData;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaAllocation_T::ChangeBlockAllocation(
 | |
|     VmaAllocator hAllocator,
 | |
|     VmaDeviceMemoryBlock* block,
 | |
|     VkDeviceSize offset)
 | |
| {
 | |
|     VMA_ASSERT(block != VMA_NULL);
 | |
|     VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK);
 | |
| 
 | |
|     // Move mapping reference counter from old block to new block.
 | |
|     if(block != m_BlockAllocation.m_Block)
 | |
|     {
 | |
|         uint32_t mapRefCount = m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP;
 | |
|         if(IsPersistentMap())
 | |
|             ++mapRefCount;
 | |
|         m_BlockAllocation.m_Block->Unmap(hAllocator, mapRefCount);
 | |
|         block->Map(hAllocator, mapRefCount, VMA_NULL);
 | |
|     }
 | |
| 
 | |
|     m_BlockAllocation.m_Block = block;
 | |
|     m_BlockAllocation.m_Offset = offset;
 | |
| }
 | |
| 
 | |
| void VmaAllocation_T::ChangeOffset(VkDeviceSize newOffset)
 | |
| {
 | |
|     VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK);
 | |
|     m_BlockAllocation.m_Offset = newOffset;
 | |
| }
 | |
| 
 | |
| VkDeviceSize VmaAllocation_T::GetOffset() const
 | |
| {
 | |
|     switch(m_Type)
 | |
|     {
 | |
|     case ALLOCATION_TYPE_BLOCK:
 | |
|         return m_BlockAllocation.m_Offset;
 | |
|     case ALLOCATION_TYPE_DEDICATED:
 | |
|         return 0;
 | |
|     default:
 | |
|         VMA_ASSERT(0);
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| VkDeviceMemory VmaAllocation_T::GetMemory() const
 | |
| {
 | |
|     switch(m_Type)
 | |
|     {
 | |
|     case ALLOCATION_TYPE_BLOCK:
 | |
|         return m_BlockAllocation.m_Block->GetDeviceMemory();
 | |
|     case ALLOCATION_TYPE_DEDICATED:
 | |
|         return m_DedicatedAllocation.m_hMemory;
 | |
|     default:
 | |
|         VMA_ASSERT(0);
 | |
|         return VK_NULL_HANDLE;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void* VmaAllocation_T::GetMappedData() const
 | |
| {
 | |
|     switch(m_Type)
 | |
|     {
 | |
|     case ALLOCATION_TYPE_BLOCK:
 | |
|         if(m_MapCount != 0)
 | |
|         {
 | |
|             void* pBlockData = m_BlockAllocation.m_Block->GetMappedData();
 | |
|             VMA_ASSERT(pBlockData != VMA_NULL);
 | |
|             return (char*)pBlockData + m_BlockAllocation.m_Offset;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             return VMA_NULL;
 | |
|         }
 | |
|         break;
 | |
|     case ALLOCATION_TYPE_DEDICATED:
 | |
|         VMA_ASSERT((m_DedicatedAllocation.m_pMappedData != VMA_NULL) == (m_MapCount != 0));
 | |
|         return m_DedicatedAllocation.m_pMappedData;
 | |
|     default:
 | |
|         VMA_ASSERT(0);
 | |
|         return VMA_NULL;
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool VmaAllocation_T::CanBecomeLost() const
 | |
| {
 | |
|     switch(m_Type)
 | |
|     {
 | |
|     case ALLOCATION_TYPE_BLOCK:
 | |
|         return m_BlockAllocation.m_CanBecomeLost;
 | |
|     case ALLOCATION_TYPE_DEDICATED:
 | |
|         return false;
 | |
|     default:
 | |
|         VMA_ASSERT(0);
 | |
|         return false;
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool VmaAllocation_T::MakeLost(uint32_t currentFrameIndex, uint32_t frameInUseCount)
 | |
| {
 | |
|     VMA_ASSERT(CanBecomeLost());
 | |
| 
 | |
|     /*
 | |
|     Warning: This is a carefully designed algorithm.
 | |
|     Do not modify unless you really know what you're doing :)
 | |
|     */
 | |
|     uint32_t localLastUseFrameIndex = GetLastUseFrameIndex();
 | |
|     for(;;)
 | |
|     {
 | |
|         if(localLastUseFrameIndex == VMA_FRAME_INDEX_LOST)
 | |
|         {
 | |
|             VMA_ASSERT(0);
 | |
|             return false;
 | |
|         }
 | |
|         else if(localLastUseFrameIndex + frameInUseCount >= currentFrameIndex)
 | |
|         {
 | |
|             return false;
 | |
|         }
 | |
|         else // Last use time earlier than current time.
 | |
|         {
 | |
|             if(CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, VMA_FRAME_INDEX_LOST))
 | |
|             {
 | |
|                 // Setting hAllocation.LastUseFrameIndex atomic to VMA_FRAME_INDEX_LOST is enough to mark it as LOST.
 | |
|                 // Calling code just needs to unregister this allocation in owning VmaDeviceMemoryBlock.
 | |
|                 return true;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
| 
 | |
| // Correspond to values of enum VmaSuballocationType.
 | |
| static const char* VMA_SUBALLOCATION_TYPE_NAMES[] = {
 | |
|     "FREE",
 | |
|     "UNKNOWN",
 | |
|     "BUFFER",
 | |
|     "IMAGE_UNKNOWN",
 | |
|     "IMAGE_LINEAR",
 | |
|     "IMAGE_OPTIMAL",
 | |
| };
 | |
| 
 | |
| void VmaAllocation_T::PrintParameters(class VmaJsonWriter& json) const
 | |
| {
 | |
|     json.WriteString("Type");
 | |
|     json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[m_SuballocationType]);
 | |
| 
 | |
|     json.WriteString("Size");
 | |
|     json.WriteNumber(m_Size);
 | |
| 
 | |
|     if(m_pUserData != VMA_NULL)
 | |
|     {
 | |
|         json.WriteString("UserData");
 | |
|         if(IsUserDataString())
 | |
|         {
 | |
|             json.WriteString((const char*)m_pUserData);
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             json.BeginString();
 | |
|             json.ContinueString_Pointer(m_pUserData);
 | |
|             json.EndString();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     json.WriteString("CreationFrameIndex");
 | |
|     json.WriteNumber(m_CreationFrameIndex);
 | |
| 
 | |
|     json.WriteString("LastUseFrameIndex");
 | |
|     json.WriteNumber(GetLastUseFrameIndex());
 | |
| 
 | |
|     if(m_BufferImageUsage != 0)
 | |
|     {
 | |
|         json.WriteString("Usage");
 | |
|         json.WriteNumber(m_BufferImageUsage);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| void VmaAllocation_T::FreeUserDataString(VmaAllocator hAllocator)
 | |
| {
 | |
|     VMA_ASSERT(IsUserDataString());
 | |
|     VmaFreeString(hAllocator->GetAllocationCallbacks(), (char*)m_pUserData);
 | |
|     m_pUserData = VMA_NULL;
 | |
| }
 | |
| 
 | |
| void VmaAllocation_T::BlockAllocMap()
 | |
| {
 | |
|     VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK);
 | |
| 
 | |
|     if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) < 0x7F)
 | |
|     {
 | |
|         ++m_MapCount;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         VMA_ASSERT(0 && "Allocation mapped too many times simultaneously.");
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaAllocation_T::BlockAllocUnmap()
 | |
| {
 | |
|     VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK);
 | |
| 
 | |
|     if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) != 0)
 | |
|     {
 | |
|         --m_MapCount;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         VMA_ASSERT(0 && "Unmapping allocation not previously mapped.");
 | |
|     }
 | |
| }
 | |
| 
 | |
| VkResult VmaAllocation_T::DedicatedAllocMap(VmaAllocator hAllocator, void** ppData)
 | |
| {
 | |
|     VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED);
 | |
| 
 | |
|     if(m_MapCount != 0)
 | |
|     {
 | |
|         if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) < 0x7F)
 | |
|         {
 | |
|             VMA_ASSERT(m_DedicatedAllocation.m_pMappedData != VMA_NULL);
 | |
|             *ppData = m_DedicatedAllocation.m_pMappedData;
 | |
|             ++m_MapCount;
 | |
|             return VK_SUCCESS;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             VMA_ASSERT(0 && "Dedicated allocation mapped too many times simultaneously.");
 | |
|             return VK_ERROR_MEMORY_MAP_FAILED;
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)(
 | |
|             hAllocator->m_hDevice,
 | |
|             m_DedicatedAllocation.m_hMemory,
 | |
|             0, // offset
 | |
|             VK_WHOLE_SIZE,
 | |
|             0, // flags
 | |
|             ppData);
 | |
|         if(result == VK_SUCCESS)
 | |
|         {
 | |
|             m_DedicatedAllocation.m_pMappedData = *ppData;
 | |
|             m_MapCount = 1;
 | |
|         }
 | |
|         return result;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaAllocation_T::DedicatedAllocUnmap(VmaAllocator hAllocator)
 | |
| {
 | |
|     VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED);
 | |
| 
 | |
|     if((m_MapCount & ~MAP_COUNT_FLAG_PERSISTENT_MAP) != 0)
 | |
|     {
 | |
|         --m_MapCount;
 | |
|         if(m_MapCount == 0)
 | |
|         {
 | |
|             m_DedicatedAllocation.m_pMappedData = VMA_NULL;
 | |
|             (*hAllocator->GetVulkanFunctions().vkUnmapMemory)(
 | |
|                 hAllocator->m_hDevice,
 | |
|                 m_DedicatedAllocation.m_hMemory);
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         VMA_ASSERT(0 && "Unmapping dedicated allocation not previously mapped.");
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
| 
 | |
| static void VmaPrintStatInfo(VmaJsonWriter& json, const VmaStatInfo& stat)
 | |
| {
 | |
|     json.BeginObject();
 | |
| 
 | |
|     json.WriteString("Blocks");
 | |
|     json.WriteNumber(stat.blockCount);
 | |
| 
 | |
|     json.WriteString("Allocations");
 | |
|     json.WriteNumber(stat.allocationCount);
 | |
| 
 | |
|     json.WriteString("UnusedRanges");
 | |
|     json.WriteNumber(stat.unusedRangeCount);
 | |
| 
 | |
|     json.WriteString("UsedBytes");
 | |
|     json.WriteNumber(stat.usedBytes);
 | |
| 
 | |
|     json.WriteString("UnusedBytes");
 | |
|     json.WriteNumber(stat.unusedBytes);
 | |
| 
 | |
|     if(stat.allocationCount > 1)
 | |
|     {
 | |
|         json.WriteString("AllocationSize");
 | |
|         json.BeginObject(true);
 | |
|         json.WriteString("Min");
 | |
|         json.WriteNumber(stat.allocationSizeMin);
 | |
|         json.WriteString("Avg");
 | |
|         json.WriteNumber(stat.allocationSizeAvg);
 | |
|         json.WriteString("Max");
 | |
|         json.WriteNumber(stat.allocationSizeMax);
 | |
|         json.EndObject();
 | |
|     }
 | |
| 
 | |
|     if(stat.unusedRangeCount > 1)
 | |
|     {
 | |
|         json.WriteString("UnusedRangeSize");
 | |
|         json.BeginObject(true);
 | |
|         json.WriteString("Min");
 | |
|         json.WriteNumber(stat.unusedRangeSizeMin);
 | |
|         json.WriteString("Avg");
 | |
|         json.WriteNumber(stat.unusedRangeSizeAvg);
 | |
|         json.WriteString("Max");
 | |
|         json.WriteNumber(stat.unusedRangeSizeMax);
 | |
|         json.EndObject();
 | |
|     }
 | |
| 
 | |
|     json.EndObject();
 | |
| }
 | |
| 
 | |
| #endif // #if VMA_STATS_STRING_ENABLED
 | |
| 
 | |
| struct VmaSuballocationItemSizeLess
 | |
| {
 | |
|     bool operator()(
 | |
|         const VmaSuballocationList::iterator lhs,
 | |
|         const VmaSuballocationList::iterator rhs) const
 | |
|     {
 | |
|         return lhs->size < rhs->size;
 | |
|     }
 | |
|     bool operator()(
 | |
|         const VmaSuballocationList::iterator lhs,
 | |
|         VkDeviceSize rhsSize) const
 | |
|     {
 | |
|         return lhs->size < rhsSize;
 | |
|     }
 | |
| };
 | |
| 
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| // class VmaBlockMetadata
 | |
| 
 | |
| VmaBlockMetadata::VmaBlockMetadata(VmaAllocator hAllocator) :
 | |
|     m_Size(0),
 | |
|     m_pAllocationCallbacks(hAllocator->GetAllocationCallbacks())
 | |
| {
 | |
| }
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
| 
 | |
| void VmaBlockMetadata::PrintDetailedMap_Begin(class VmaJsonWriter& json,
 | |
|     VkDeviceSize unusedBytes,
 | |
|     size_t allocationCount,
 | |
|     size_t unusedRangeCount) const
 | |
| {
 | |
|     json.BeginObject();
 | |
| 
 | |
|     json.WriteString("TotalBytes");
 | |
|     json.WriteNumber(GetSize());
 | |
| 
 | |
|     json.WriteString("UnusedBytes");
 | |
|     json.WriteNumber(unusedBytes);
 | |
| 
 | |
|     json.WriteString("Allocations");
 | |
|     json.WriteNumber((uint64_t)allocationCount);
 | |
| 
 | |
|     json.WriteString("UnusedRanges");
 | |
|     json.WriteNumber((uint64_t)unusedRangeCount);
 | |
| 
 | |
|     json.WriteString("Suballocations");
 | |
|     json.BeginArray();
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata::PrintDetailedMap_Allocation(class VmaJsonWriter& json,
 | |
|     VkDeviceSize offset,
 | |
|     VmaAllocation hAllocation) const
 | |
| {
 | |
|     json.BeginObject(true);
 | |
|         
 | |
|     json.WriteString("Offset");
 | |
|     json.WriteNumber(offset);
 | |
| 
 | |
|     hAllocation->PrintParameters(json);
 | |
| 
 | |
|     json.EndObject();
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata::PrintDetailedMap_UnusedRange(class VmaJsonWriter& json,
 | |
|     VkDeviceSize offset,
 | |
|     VkDeviceSize size) const
 | |
| {
 | |
|     json.BeginObject(true);
 | |
|         
 | |
|     json.WriteString("Offset");
 | |
|     json.WriteNumber(offset);
 | |
| 
 | |
|     json.WriteString("Type");
 | |
|     json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[VMA_SUBALLOCATION_TYPE_FREE]);
 | |
| 
 | |
|     json.WriteString("Size");
 | |
|     json.WriteNumber(size);
 | |
| 
 | |
|     json.EndObject();
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata::PrintDetailedMap_End(class VmaJsonWriter& json) const
 | |
| {
 | |
|     json.EndArray();
 | |
|     json.EndObject();
 | |
| }
 | |
| 
 | |
| #endif // #if VMA_STATS_STRING_ENABLED
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| // class VmaBlockMetadata_Generic
 | |
| 
 | |
| VmaBlockMetadata_Generic::VmaBlockMetadata_Generic(VmaAllocator hAllocator) :
 | |
|     VmaBlockMetadata(hAllocator),
 | |
|     m_FreeCount(0),
 | |
|     m_SumFreeSize(0),
 | |
|     m_Suballocations(VmaStlAllocator<VmaSuballocation>(hAllocator->GetAllocationCallbacks())),
 | |
|     m_FreeSuballocationsBySize(VmaStlAllocator<VmaSuballocationList::iterator>(hAllocator->GetAllocationCallbacks()))
 | |
| {
 | |
| }
 | |
| 
 | |
| VmaBlockMetadata_Generic::~VmaBlockMetadata_Generic()
 | |
| {
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Generic::Init(VkDeviceSize size)
 | |
| {
 | |
|     VmaBlockMetadata::Init(size);
 | |
| 
 | |
|     m_FreeCount = 1;
 | |
|     m_SumFreeSize = size;
 | |
| 
 | |
|     VmaSuballocation suballoc = {};
 | |
|     suballoc.offset = 0;
 | |
|     suballoc.size = size;
 | |
|     suballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
 | |
|     suballoc.hAllocation = VK_NULL_HANDLE;
 | |
| 
 | |
|     VMA_ASSERT(size > VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER);
 | |
|     m_Suballocations.push_back(suballoc);
 | |
|     VmaSuballocationList::iterator suballocItem = m_Suballocations.end();
 | |
|     --suballocItem;
 | |
|     m_FreeSuballocationsBySize.push_back(suballocItem);
 | |
| }
 | |
| 
 | |
| bool VmaBlockMetadata_Generic::Validate() const
 | |
| {
 | |
|     VMA_VALIDATE(!m_Suballocations.empty());
 | |
|     
 | |
|     // Expected offset of new suballocation as calculated from previous ones.
 | |
|     VkDeviceSize calculatedOffset = 0;
 | |
|     // Expected number of free suballocations as calculated from traversing their list.
 | |
|     uint32_t calculatedFreeCount = 0;
 | |
|     // Expected sum size of free suballocations as calculated from traversing their list.
 | |
|     VkDeviceSize calculatedSumFreeSize = 0;
 | |
|     // Expected number of free suballocations that should be registered in
 | |
|     // m_FreeSuballocationsBySize calculated from traversing their list.
 | |
|     size_t freeSuballocationsToRegister = 0;
 | |
|     // True if previous visited suballocation was free.
 | |
|     bool prevFree = false;
 | |
| 
 | |
|     for(VmaSuballocationList::const_iterator suballocItem = m_Suballocations.cbegin();
 | |
|         suballocItem != m_Suballocations.cend();
 | |
|         ++suballocItem)
 | |
|     {
 | |
|         const VmaSuballocation& subAlloc = *suballocItem;
 | |
|         
 | |
|         // Actual offset of this suballocation doesn't match expected one.
 | |
|         VMA_VALIDATE(subAlloc.offset == calculatedOffset);
 | |
| 
 | |
|         const bool currFree = (subAlloc.type == VMA_SUBALLOCATION_TYPE_FREE);
 | |
|         // Two adjacent free suballocations are invalid. They should be merged.
 | |
|         VMA_VALIDATE(!prevFree || !currFree);
 | |
| 
 | |
|         VMA_VALIDATE(currFree == (subAlloc.hAllocation == VK_NULL_HANDLE));
 | |
| 
 | |
|         if(currFree)
 | |
|         {
 | |
|             calculatedSumFreeSize += subAlloc.size;
 | |
|             ++calculatedFreeCount;
 | |
|             if(subAlloc.size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)
 | |
|             {
 | |
|                 ++freeSuballocationsToRegister;
 | |
|             }
 | |
| 
 | |
|             // Margin required between allocations - every free space must be at least that large.
 | |
|             VMA_VALIDATE(subAlloc.size >= VMA_DEBUG_MARGIN);
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             VMA_VALIDATE(subAlloc.hAllocation->GetOffset() == subAlloc.offset);
 | |
|             VMA_VALIDATE(subAlloc.hAllocation->GetSize() == subAlloc.size);
 | |
| 
 | |
|             // Margin required between allocations - previous allocation must be free.
 | |
|             VMA_VALIDATE(VMA_DEBUG_MARGIN == 0 || prevFree);
 | |
|         }
 | |
| 
 | |
|         calculatedOffset += subAlloc.size;
 | |
|         prevFree = currFree;
 | |
|     }
 | |
| 
 | |
|     // Number of free suballocations registered in m_FreeSuballocationsBySize doesn't
 | |
|     // match expected one.
 | |
|     VMA_VALIDATE(m_FreeSuballocationsBySize.size() == freeSuballocationsToRegister);
 | |
| 
 | |
|     VkDeviceSize lastSize = 0;
 | |
|     for(size_t i = 0; i < m_FreeSuballocationsBySize.size(); ++i)
 | |
|     {
 | |
|         VmaSuballocationList::iterator suballocItem = m_FreeSuballocationsBySize[i];
 | |
|         
 | |
|         // Only free suballocations can be registered in m_FreeSuballocationsBySize.
 | |
|         VMA_VALIDATE(suballocItem->type == VMA_SUBALLOCATION_TYPE_FREE);
 | |
|         // They must be sorted by size ascending.
 | |
|         VMA_VALIDATE(suballocItem->size >= lastSize);
 | |
| 
 | |
|         lastSize = suballocItem->size;
 | |
|     }
 | |
| 
 | |
|     // Check if totals match calculacted values.
 | |
|     VMA_VALIDATE(ValidateFreeSuballocationList());
 | |
|     VMA_VALIDATE(calculatedOffset == GetSize());
 | |
|     VMA_VALIDATE(calculatedSumFreeSize == m_SumFreeSize);
 | |
|     VMA_VALIDATE(calculatedFreeCount == m_FreeCount);
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| VkDeviceSize VmaBlockMetadata_Generic::GetUnusedRangeSizeMax() const
 | |
| {
 | |
|     if(!m_FreeSuballocationsBySize.empty())
 | |
|     {
 | |
|         return m_FreeSuballocationsBySize.back()->size;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool VmaBlockMetadata_Generic::IsEmpty() const
 | |
| {
 | |
|     return (m_Suballocations.size() == 1) && (m_FreeCount == 1);
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Generic::CalcAllocationStatInfo(VmaStatInfo& outInfo) const
 | |
| {
 | |
|     outInfo.blockCount = 1;
 | |
| 
 | |
|     const uint32_t rangeCount = (uint32_t)m_Suballocations.size();
 | |
|     outInfo.allocationCount = rangeCount - m_FreeCount;
 | |
|     outInfo.unusedRangeCount = m_FreeCount;
 | |
|     
 | |
|     outInfo.unusedBytes = m_SumFreeSize;
 | |
|     outInfo.usedBytes = GetSize() - outInfo.unusedBytes;
 | |
| 
 | |
|     outInfo.allocationSizeMin = UINT64_MAX;
 | |
|     outInfo.allocationSizeMax = 0;
 | |
|     outInfo.unusedRangeSizeMin = UINT64_MAX;
 | |
|     outInfo.unusedRangeSizeMax = 0;
 | |
| 
 | |
|     for(VmaSuballocationList::const_iterator suballocItem = m_Suballocations.cbegin();
 | |
|         suballocItem != m_Suballocations.cend();
 | |
|         ++suballocItem)
 | |
|     {
 | |
|         const VmaSuballocation& suballoc = *suballocItem;
 | |
|         if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE)
 | |
|         {
 | |
|             outInfo.allocationSizeMin = VMA_MIN(outInfo.allocationSizeMin, suballoc.size);
 | |
|             outInfo.allocationSizeMax = VMA_MAX(outInfo.allocationSizeMax, suballoc.size);
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, suballoc.size);
 | |
|             outInfo.unusedRangeSizeMax = VMA_MAX(outInfo.unusedRangeSizeMax, suballoc.size);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Generic::AddPoolStats(VmaPoolStats& inoutStats) const
 | |
| {
 | |
|     const uint32_t rangeCount = (uint32_t)m_Suballocations.size();
 | |
| 
 | |
|     inoutStats.size += GetSize();
 | |
|     inoutStats.unusedSize += m_SumFreeSize;
 | |
|     inoutStats.allocationCount += rangeCount - m_FreeCount;
 | |
|     inoutStats.unusedRangeCount += m_FreeCount;
 | |
|     inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, GetUnusedRangeSizeMax());
 | |
| }
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
| 
 | |
| void VmaBlockMetadata_Generic::PrintDetailedMap(class VmaJsonWriter& json) const
 | |
| {
 | |
|     PrintDetailedMap_Begin(json,
 | |
|         m_SumFreeSize, // unusedBytes
 | |
|         m_Suballocations.size() - (size_t)m_FreeCount, // allocationCount
 | |
|         m_FreeCount); // unusedRangeCount
 | |
| 
 | |
|     size_t i = 0;
 | |
|     for(VmaSuballocationList::const_iterator suballocItem = m_Suballocations.cbegin();
 | |
|         suballocItem != m_Suballocations.cend();
 | |
|         ++suballocItem, ++i)
 | |
|     {
 | |
|         if(suballocItem->type == VMA_SUBALLOCATION_TYPE_FREE)
 | |
|         {
 | |
|             PrintDetailedMap_UnusedRange(json, suballocItem->offset, suballocItem->size);
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             PrintDetailedMap_Allocation(json, suballocItem->offset, suballocItem->hAllocation);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     PrintDetailedMap_End(json);
 | |
| }
 | |
| 
 | |
| #endif // #if VMA_STATS_STRING_ENABLED
 | |
| 
 | |
| bool VmaBlockMetadata_Generic::CreateAllocationRequest(
 | |
|     uint32_t currentFrameIndex,
 | |
|     uint32_t frameInUseCount,
 | |
|     VkDeviceSize bufferImageGranularity,
 | |
|     VkDeviceSize allocSize,
 | |
|     VkDeviceSize allocAlignment,
 | |
|     bool upperAddress,
 | |
|     VmaSuballocationType allocType,
 | |
|     bool canMakeOtherLost,
 | |
|     uint32_t strategy,
 | |
|     VmaAllocationRequest* pAllocationRequest)
 | |
| {
 | |
|     VMA_ASSERT(allocSize > 0);
 | |
|     VMA_ASSERT(!upperAddress);
 | |
|     VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE);
 | |
|     VMA_ASSERT(pAllocationRequest != VMA_NULL);
 | |
|     VMA_HEAVY_ASSERT(Validate());
 | |
| 
 | |
|     pAllocationRequest->type = VmaAllocationRequestType::Normal;
 | |
| 
 | |
|     // There is not enough total free space in this block to fullfill the request: Early return.
 | |
|     if(canMakeOtherLost == false &&
 | |
|         m_SumFreeSize < allocSize + 2 * VMA_DEBUG_MARGIN)
 | |
|     {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // New algorithm, efficiently searching freeSuballocationsBySize.
 | |
|     const size_t freeSuballocCount = m_FreeSuballocationsBySize.size();
 | |
|     if(freeSuballocCount > 0)
 | |
|     {
 | |
|         if(strategy == VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT)
 | |
|         {
 | |
|             // Find first free suballocation with size not less than allocSize + 2 * VMA_DEBUG_MARGIN.
 | |
|             VmaSuballocationList::iterator* const it = VmaBinaryFindFirstNotLess(
 | |
|                 m_FreeSuballocationsBySize.data(),
 | |
|                 m_FreeSuballocationsBySize.data() + freeSuballocCount,
 | |
|                 allocSize + 2 * VMA_DEBUG_MARGIN,
 | |
|                 VmaSuballocationItemSizeLess());
 | |
|             size_t index = it - m_FreeSuballocationsBySize.data();
 | |
|             for(; index < freeSuballocCount; ++index)
 | |
|             {
 | |
|                 if(CheckAllocation(
 | |
|                     currentFrameIndex,
 | |
|                     frameInUseCount,
 | |
|                     bufferImageGranularity,
 | |
|                     allocSize,
 | |
|                     allocAlignment,
 | |
|                     allocType,
 | |
|                     m_FreeSuballocationsBySize[index],
 | |
|                     false, // canMakeOtherLost
 | |
|                     &pAllocationRequest->offset,
 | |
|                     &pAllocationRequest->itemsToMakeLostCount,
 | |
|                     &pAllocationRequest->sumFreeSize,
 | |
|                     &pAllocationRequest->sumItemSize))
 | |
|                 {
 | |
|                     pAllocationRequest->item = m_FreeSuballocationsBySize[index];
 | |
|                     return true;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         else if(strategy == VMA_ALLOCATION_INTERNAL_STRATEGY_MIN_OFFSET)
 | |
|         {
 | |
|             for(VmaSuballocationList::iterator it = m_Suballocations.begin();
 | |
|                 it != m_Suballocations.end();
 | |
|                 ++it)
 | |
|             {
 | |
|                 if(it->type == VMA_SUBALLOCATION_TYPE_FREE && CheckAllocation(
 | |
|                     currentFrameIndex,
 | |
|                     frameInUseCount,
 | |
|                     bufferImageGranularity,
 | |
|                     allocSize,
 | |
|                     allocAlignment,
 | |
|                     allocType,
 | |
|                     it,
 | |
|                     false, // canMakeOtherLost
 | |
|                     &pAllocationRequest->offset,
 | |
|                     &pAllocationRequest->itemsToMakeLostCount,
 | |
|                     &pAllocationRequest->sumFreeSize,
 | |
|                     &pAllocationRequest->sumItemSize))
 | |
|                 {
 | |
|                     pAllocationRequest->item = it;
 | |
|                     return true;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         else // WORST_FIT, FIRST_FIT
 | |
|         {
 | |
|             // Search staring from biggest suballocations.
 | |
|             for(size_t index = freeSuballocCount; index--; )
 | |
|             {
 | |
|                 if(CheckAllocation(
 | |
|                     currentFrameIndex,
 | |
|                     frameInUseCount,
 | |
|                     bufferImageGranularity,
 | |
|                     allocSize,
 | |
|                     allocAlignment,
 | |
|                     allocType,
 | |
|                     m_FreeSuballocationsBySize[index],
 | |
|                     false, // canMakeOtherLost
 | |
|                     &pAllocationRequest->offset,
 | |
|                     &pAllocationRequest->itemsToMakeLostCount,
 | |
|                     &pAllocationRequest->sumFreeSize,
 | |
|                     &pAllocationRequest->sumItemSize))
 | |
|                 {
 | |
|                     pAllocationRequest->item = m_FreeSuballocationsBySize[index];
 | |
|                     return true;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if(canMakeOtherLost)
 | |
|     {
 | |
|         // Brute-force algorithm. TODO: Come up with something better.
 | |
| 
 | |
|         bool found = false;
 | |
|         VmaAllocationRequest tmpAllocRequest = {};
 | |
|         tmpAllocRequest.type = VmaAllocationRequestType::Normal;
 | |
|         for(VmaSuballocationList::iterator suballocIt = m_Suballocations.begin();
 | |
|             suballocIt != m_Suballocations.end();
 | |
|             ++suballocIt)
 | |
|         {
 | |
|             if(suballocIt->type == VMA_SUBALLOCATION_TYPE_FREE ||
 | |
|                 suballocIt->hAllocation->CanBecomeLost())
 | |
|             {
 | |
|                 if(CheckAllocation(
 | |
|                     currentFrameIndex,
 | |
|                     frameInUseCount,
 | |
|                     bufferImageGranularity,
 | |
|                     allocSize,
 | |
|                     allocAlignment,
 | |
|                     allocType,
 | |
|                     suballocIt,
 | |
|                     canMakeOtherLost,
 | |
|                     &tmpAllocRequest.offset,
 | |
|                     &tmpAllocRequest.itemsToMakeLostCount,
 | |
|                     &tmpAllocRequest.sumFreeSize,
 | |
|                     &tmpAllocRequest.sumItemSize))
 | |
|                 {
 | |
|                     if(strategy == VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT)
 | |
|                     {
 | |
|                         *pAllocationRequest = tmpAllocRequest;
 | |
|                         pAllocationRequest->item = suballocIt;
 | |
|                         break;
 | |
|                     }
 | |
|                     if(!found || tmpAllocRequest.CalcCost() < pAllocationRequest->CalcCost())
 | |
|                     {
 | |
|                         *pAllocationRequest = tmpAllocRequest;
 | |
|                         pAllocationRequest->item = suballocIt;
 | |
|                         found = true;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         return found;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| bool VmaBlockMetadata_Generic::MakeRequestedAllocationsLost(
 | |
|     uint32_t currentFrameIndex,
 | |
|     uint32_t frameInUseCount,
 | |
|     VmaAllocationRequest* pAllocationRequest)
 | |
| {
 | |
|     VMA_ASSERT(pAllocationRequest && pAllocationRequest->type == VmaAllocationRequestType::Normal);
 | |
| 
 | |
|     while(pAllocationRequest->itemsToMakeLostCount > 0)
 | |
|     {
 | |
|         if(pAllocationRequest->item->type == VMA_SUBALLOCATION_TYPE_FREE)
 | |
|         {
 | |
|             ++pAllocationRequest->item;
 | |
|         }
 | |
|         VMA_ASSERT(pAllocationRequest->item != m_Suballocations.end());
 | |
|         VMA_ASSERT(pAllocationRequest->item->hAllocation != VK_NULL_HANDLE);
 | |
|         VMA_ASSERT(pAllocationRequest->item->hAllocation->CanBecomeLost());
 | |
|         if(pAllocationRequest->item->hAllocation->MakeLost(currentFrameIndex, frameInUseCount))
 | |
|         {
 | |
|             pAllocationRequest->item = FreeSuballocation(pAllocationRequest->item);
 | |
|             --pAllocationRequest->itemsToMakeLostCount;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     VMA_HEAVY_ASSERT(Validate());
 | |
|     VMA_ASSERT(pAllocationRequest->item != m_Suballocations.end());
 | |
|     VMA_ASSERT(pAllocationRequest->item->type == VMA_SUBALLOCATION_TYPE_FREE);
 | |
|     
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| uint32_t VmaBlockMetadata_Generic::MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount)
 | |
| {
 | |
|     uint32_t lostAllocationCount = 0;
 | |
|     for(VmaSuballocationList::iterator it = m_Suballocations.begin();
 | |
|         it != m_Suballocations.end();
 | |
|         ++it)
 | |
|     {
 | |
|         if(it->type != VMA_SUBALLOCATION_TYPE_FREE &&
 | |
|             it->hAllocation->CanBecomeLost() &&
 | |
|             it->hAllocation->MakeLost(currentFrameIndex, frameInUseCount))
 | |
|         {
 | |
|             it = FreeSuballocation(it);
 | |
|             ++lostAllocationCount;
 | |
|         }
 | |
|     }
 | |
|     return lostAllocationCount;
 | |
| }
 | |
| 
 | |
| VkResult VmaBlockMetadata_Generic::CheckCorruption(const void* pBlockData)
 | |
| {
 | |
|     for(VmaSuballocationList::iterator it = m_Suballocations.begin();
 | |
|         it != m_Suballocations.end();
 | |
|         ++it)
 | |
|     {
 | |
|         if(it->type != VMA_SUBALLOCATION_TYPE_FREE)
 | |
|         {
 | |
|             if(!VmaValidateMagicValue(pBlockData, it->offset - VMA_DEBUG_MARGIN))
 | |
|             {
 | |
|                 VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED BEFORE VALIDATED ALLOCATION!");
 | |
|                 return VK_ERROR_VALIDATION_FAILED_EXT;
 | |
|             }
 | |
|             if(!VmaValidateMagicValue(pBlockData, it->offset + it->size))
 | |
|             {
 | |
|                 VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!");
 | |
|                 return VK_ERROR_VALIDATION_FAILED_EXT;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return VK_SUCCESS;
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Generic::Alloc(
 | |
|     const VmaAllocationRequest& request,
 | |
|     VmaSuballocationType type,
 | |
|     VkDeviceSize allocSize,
 | |
|     VmaAllocation hAllocation)
 | |
| {
 | |
|     VMA_ASSERT(request.type == VmaAllocationRequestType::Normal);
 | |
|     VMA_ASSERT(request.item != m_Suballocations.end());
 | |
|     VmaSuballocation& suballoc = *request.item;
 | |
|     // Given suballocation is a free block.
 | |
|     VMA_ASSERT(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
 | |
|     // Given offset is inside this suballocation.
 | |
|     VMA_ASSERT(request.offset >= suballoc.offset);
 | |
|     const VkDeviceSize paddingBegin = request.offset - suballoc.offset;
 | |
|     VMA_ASSERT(suballoc.size >= paddingBegin + allocSize);
 | |
|     const VkDeviceSize paddingEnd = suballoc.size - paddingBegin - allocSize;
 | |
| 
 | |
|     // Unregister this free suballocation from m_FreeSuballocationsBySize and update
 | |
|     // it to become used.
 | |
|     UnregisterFreeSuballocation(request.item);
 | |
| 
 | |
|     suballoc.offset = request.offset;
 | |
|     suballoc.size = allocSize;
 | |
|     suballoc.type = type;
 | |
|     suballoc.hAllocation = hAllocation;
 | |
| 
 | |
|     // If there are any free bytes remaining at the end, insert new free suballocation after current one.
 | |
|     if(paddingEnd)
 | |
|     {
 | |
|         VmaSuballocation paddingSuballoc = {};
 | |
|         paddingSuballoc.offset = request.offset + allocSize;
 | |
|         paddingSuballoc.size = paddingEnd;
 | |
|         paddingSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
 | |
|         VmaSuballocationList::iterator next = request.item;
 | |
|         ++next;
 | |
|         const VmaSuballocationList::iterator paddingEndItem =
 | |
|             m_Suballocations.insert(next, paddingSuballoc);
 | |
|         RegisterFreeSuballocation(paddingEndItem);
 | |
|     }
 | |
| 
 | |
|     // If there are any free bytes remaining at the beginning, insert new free suballocation before current one.
 | |
|     if(paddingBegin)
 | |
|     {
 | |
|         VmaSuballocation paddingSuballoc = {};
 | |
|         paddingSuballoc.offset = request.offset - paddingBegin;
 | |
|         paddingSuballoc.size = paddingBegin;
 | |
|         paddingSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
 | |
|         const VmaSuballocationList::iterator paddingBeginItem =
 | |
|             m_Suballocations.insert(request.item, paddingSuballoc);
 | |
|         RegisterFreeSuballocation(paddingBeginItem);
 | |
|     }
 | |
| 
 | |
|     // Update totals.
 | |
|     m_FreeCount = m_FreeCount - 1;
 | |
|     if(paddingBegin > 0)
 | |
|     {
 | |
|         ++m_FreeCount;
 | |
|     }
 | |
|     if(paddingEnd > 0)
 | |
|     {
 | |
|         ++m_FreeCount;
 | |
|     }
 | |
|     m_SumFreeSize -= allocSize;
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Generic::Free(const VmaAllocation allocation)
 | |
| {
 | |
|     for(VmaSuballocationList::iterator suballocItem = m_Suballocations.begin();
 | |
|         suballocItem != m_Suballocations.end();
 | |
|         ++suballocItem)
 | |
|     {
 | |
|         VmaSuballocation& suballoc = *suballocItem;
 | |
|         if(suballoc.hAllocation == allocation)
 | |
|         {
 | |
|             FreeSuballocation(suballocItem);
 | |
|             VMA_HEAVY_ASSERT(Validate());
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
|     VMA_ASSERT(0 && "Not found!");
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Generic::FreeAtOffset(VkDeviceSize offset)
 | |
| {
 | |
|     for(VmaSuballocationList::iterator suballocItem = m_Suballocations.begin();
 | |
|         suballocItem != m_Suballocations.end();
 | |
|         ++suballocItem)
 | |
|     {
 | |
|         VmaSuballocation& suballoc = *suballocItem;
 | |
|         if(suballoc.offset == offset)
 | |
|         {
 | |
|             FreeSuballocation(suballocItem);
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
|     VMA_ASSERT(0 && "Not found!");
 | |
| }
 | |
| 
 | |
| bool VmaBlockMetadata_Generic::ValidateFreeSuballocationList() const
 | |
| {
 | |
|     VkDeviceSize lastSize = 0;
 | |
|     for(size_t i = 0, count = m_FreeSuballocationsBySize.size(); i < count; ++i)
 | |
|     {
 | |
|         const VmaSuballocationList::iterator it = m_FreeSuballocationsBySize[i];
 | |
| 
 | |
|         VMA_VALIDATE(it->type == VMA_SUBALLOCATION_TYPE_FREE);
 | |
|         VMA_VALIDATE(it->size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER);
 | |
|         VMA_VALIDATE(it->size >= lastSize);
 | |
|         lastSize = it->size;
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| bool VmaBlockMetadata_Generic::CheckAllocation(
 | |
|     uint32_t currentFrameIndex,
 | |
|     uint32_t frameInUseCount,
 | |
|     VkDeviceSize bufferImageGranularity,
 | |
|     VkDeviceSize allocSize,
 | |
|     VkDeviceSize allocAlignment,
 | |
|     VmaSuballocationType allocType,
 | |
|     VmaSuballocationList::const_iterator suballocItem,
 | |
|     bool canMakeOtherLost,
 | |
|     VkDeviceSize* pOffset,
 | |
|     size_t* itemsToMakeLostCount,
 | |
|     VkDeviceSize* pSumFreeSize,
 | |
|     VkDeviceSize* pSumItemSize) const
 | |
| {
 | |
|     VMA_ASSERT(allocSize > 0);
 | |
|     VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE);
 | |
|     VMA_ASSERT(suballocItem != m_Suballocations.cend());
 | |
|     VMA_ASSERT(pOffset != VMA_NULL);
 | |
|     
 | |
|     *itemsToMakeLostCount = 0;
 | |
|     *pSumFreeSize = 0;
 | |
|     *pSumItemSize = 0;
 | |
| 
 | |
|     if(canMakeOtherLost)
 | |
|     {
 | |
|         if(suballocItem->type == VMA_SUBALLOCATION_TYPE_FREE)
 | |
|         {
 | |
|             *pSumFreeSize = suballocItem->size;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             if(suballocItem->hAllocation->CanBecomeLost() &&
 | |
|                 suballocItem->hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex)
 | |
|             {
 | |
|                 ++*itemsToMakeLostCount;
 | |
|                 *pSumItemSize = suballocItem->size;
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 return false;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // Remaining size is too small for this request: Early return.
 | |
|         if(GetSize() - suballocItem->offset < allocSize)
 | |
|         {
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         // Start from offset equal to beginning of this suballocation.
 | |
|         *pOffset = suballocItem->offset;
 | |
|     
 | |
|         // Apply VMA_DEBUG_MARGIN at the beginning.
 | |
|         if(VMA_DEBUG_MARGIN > 0)
 | |
|         {
 | |
|             *pOffset += VMA_DEBUG_MARGIN;
 | |
|         }
 | |
|     
 | |
|         // Apply alignment.
 | |
|         *pOffset = VmaAlignUp(*pOffset, allocAlignment);
 | |
| 
 | |
|         // Check previous suballocations for BufferImageGranularity conflicts.
 | |
|         // Make bigger alignment if necessary.
 | |
|         if(bufferImageGranularity > 1)
 | |
|         {
 | |
|             bool bufferImageGranularityConflict = false;
 | |
|             VmaSuballocationList::const_iterator prevSuballocItem = suballocItem;
 | |
|             while(prevSuballocItem != m_Suballocations.cbegin())
 | |
|             {
 | |
|                 --prevSuballocItem;
 | |
|                 const VmaSuballocation& prevSuballoc = *prevSuballocItem;
 | |
|                 if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, *pOffset, bufferImageGranularity))
 | |
|                 {
 | |
|                     if(VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType))
 | |
|                     {
 | |
|                         bufferImageGranularityConflict = true;
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|                 else
 | |
|                     // Already on previous page.
 | |
|                     break;
 | |
|             }
 | |
|             if(bufferImageGranularityConflict)
 | |
|             {
 | |
|                 *pOffset = VmaAlignUp(*pOffset, bufferImageGranularity);
 | |
|             }
 | |
|         }
 | |
|     
 | |
|         // Now that we have final *pOffset, check if we are past suballocItem.
 | |
|         // If yes, return false - this function should be called for another suballocItem as starting point.
 | |
|         if(*pOffset >= suballocItem->offset + suballocItem->size)
 | |
|         {
 | |
|             return false;
 | |
|         }
 | |
|     
 | |
|         // Calculate padding at the beginning based on current offset.
 | |
|         const VkDeviceSize paddingBegin = *pOffset - suballocItem->offset;
 | |
| 
 | |
|         // Calculate required margin at the end.
 | |
|         const VkDeviceSize requiredEndMargin = VMA_DEBUG_MARGIN;
 | |
| 
 | |
|         const VkDeviceSize totalSize = paddingBegin + allocSize + requiredEndMargin;
 | |
|         // Another early return check.
 | |
|         if(suballocItem->offset + totalSize > GetSize())
 | |
|         {
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         // Advance lastSuballocItem until desired size is reached.
 | |
|         // Update itemsToMakeLostCount.
 | |
|         VmaSuballocationList::const_iterator lastSuballocItem = suballocItem;
 | |
|         if(totalSize > suballocItem->size)
 | |
|         {
 | |
|             VkDeviceSize remainingSize = totalSize - suballocItem->size;
 | |
|             while(remainingSize > 0)
 | |
|             {
 | |
|                 ++lastSuballocItem;
 | |
|                 if(lastSuballocItem == m_Suballocations.cend())
 | |
|                 {
 | |
|                     return false;
 | |
|                 }
 | |
|                 if(lastSuballocItem->type == VMA_SUBALLOCATION_TYPE_FREE)
 | |
|                 {
 | |
|                     *pSumFreeSize += lastSuballocItem->size;
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     VMA_ASSERT(lastSuballocItem->hAllocation != VK_NULL_HANDLE);
 | |
|                     if(lastSuballocItem->hAllocation->CanBecomeLost() &&
 | |
|                         lastSuballocItem->hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex)
 | |
|                     {
 | |
|                         ++*itemsToMakeLostCount;
 | |
|                         *pSumItemSize += lastSuballocItem->size;
 | |
|                     }
 | |
|                     else
 | |
|                     {
 | |
|                         return false;
 | |
|                     }
 | |
|                 }
 | |
|                 remainingSize = (lastSuballocItem->size < remainingSize) ?
 | |
|                     remainingSize - lastSuballocItem->size : 0;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // Check next suballocations for BufferImageGranularity conflicts.
 | |
|         // If conflict exists, we must mark more allocations lost or fail.
 | |
|         if(bufferImageGranularity > 1)
 | |
|         {
 | |
|             VmaSuballocationList::const_iterator nextSuballocItem = lastSuballocItem;
 | |
|             ++nextSuballocItem;
 | |
|             while(nextSuballocItem != m_Suballocations.cend())
 | |
|             {
 | |
|                 const VmaSuballocation& nextSuballoc = *nextSuballocItem;
 | |
|                 if(VmaBlocksOnSamePage(*pOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))
 | |
|                 {
 | |
|                     if(VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type))
 | |
|                     {
 | |
|                         VMA_ASSERT(nextSuballoc.hAllocation != VK_NULL_HANDLE);
 | |
|                         if(nextSuballoc.hAllocation->CanBecomeLost() &&
 | |
|                             nextSuballoc.hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex)
 | |
|                         {
 | |
|                             ++*itemsToMakeLostCount;
 | |
|                         }
 | |
|                         else
 | |
|                         {
 | |
|                             return false;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     // Already on next page.
 | |
|                     break;
 | |
|                 }
 | |
|                 ++nextSuballocItem;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         const VmaSuballocation& suballoc = *suballocItem;
 | |
|         VMA_ASSERT(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
 | |
| 
 | |
|         *pSumFreeSize = suballoc.size;
 | |
| 
 | |
|         // Size of this suballocation is too small for this request: Early return.
 | |
|         if(suballoc.size < allocSize)
 | |
|         {
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         // Start from offset equal to beginning of this suballocation.
 | |
|         *pOffset = suballoc.offset;
 | |
|     
 | |
|         // Apply VMA_DEBUG_MARGIN at the beginning.
 | |
|         if(VMA_DEBUG_MARGIN > 0)
 | |
|         {
 | |
|             *pOffset += VMA_DEBUG_MARGIN;
 | |
|         }
 | |
|     
 | |
|         // Apply alignment.
 | |
|         *pOffset = VmaAlignUp(*pOffset, allocAlignment);
 | |
|     
 | |
|         // Check previous suballocations for BufferImageGranularity conflicts.
 | |
|         // Make bigger alignment if necessary.
 | |
|         if(bufferImageGranularity > 1)
 | |
|         {
 | |
|             bool bufferImageGranularityConflict = false;
 | |
|             VmaSuballocationList::const_iterator prevSuballocItem = suballocItem;
 | |
|             while(prevSuballocItem != m_Suballocations.cbegin())
 | |
|             {
 | |
|                 --prevSuballocItem;
 | |
|                 const VmaSuballocation& prevSuballoc = *prevSuballocItem;
 | |
|                 if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, *pOffset, bufferImageGranularity))
 | |
|                 {
 | |
|                     if(VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType))
 | |
|                     {
 | |
|                         bufferImageGranularityConflict = true;
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|                 else
 | |
|                     // Already on previous page.
 | |
|                     break;
 | |
|             }
 | |
|             if(bufferImageGranularityConflict)
 | |
|             {
 | |
|                 *pOffset = VmaAlignUp(*pOffset, bufferImageGranularity);
 | |
|             }
 | |
|         }
 | |
|     
 | |
|         // Calculate padding at the beginning based on current offset.
 | |
|         const VkDeviceSize paddingBegin = *pOffset - suballoc.offset;
 | |
| 
 | |
|         // Calculate required margin at the end.
 | |
|         const VkDeviceSize requiredEndMargin = VMA_DEBUG_MARGIN;
 | |
| 
 | |
|         // Fail if requested size plus margin before and after is bigger than size of this suballocation.
 | |
|         if(paddingBegin + allocSize + requiredEndMargin > suballoc.size)
 | |
|         {
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         // Check next suballocations for BufferImageGranularity conflicts.
 | |
|         // If conflict exists, allocation cannot be made here.
 | |
|         if(bufferImageGranularity > 1)
 | |
|         {
 | |
|             VmaSuballocationList::const_iterator nextSuballocItem = suballocItem;
 | |
|             ++nextSuballocItem;
 | |
|             while(nextSuballocItem != m_Suballocations.cend())
 | |
|             {
 | |
|                 const VmaSuballocation& nextSuballoc = *nextSuballocItem;
 | |
|                 if(VmaBlocksOnSamePage(*pOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))
 | |
|                 {
 | |
|                     if(VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type))
 | |
|                     {
 | |
|                         return false;
 | |
|                     }
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     // Already on next page.
 | |
|                     break;
 | |
|                 }
 | |
|                 ++nextSuballocItem;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // All tests passed: Success. pOffset is already filled.
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Generic::MergeFreeWithNext(VmaSuballocationList::iterator item)
 | |
| {
 | |
|     VMA_ASSERT(item != m_Suballocations.end());
 | |
|     VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE);
 | |
|     
 | |
|     VmaSuballocationList::iterator nextItem = item;
 | |
|     ++nextItem;
 | |
|     VMA_ASSERT(nextItem != m_Suballocations.end());
 | |
|     VMA_ASSERT(nextItem->type == VMA_SUBALLOCATION_TYPE_FREE);
 | |
| 
 | |
|     item->size += nextItem->size;
 | |
|     --m_FreeCount;
 | |
|     m_Suballocations.erase(nextItem);
 | |
| }
 | |
| 
 | |
| VmaSuballocationList::iterator VmaBlockMetadata_Generic::FreeSuballocation(VmaSuballocationList::iterator suballocItem)
 | |
| {
 | |
|     // Change this suballocation to be marked as free.
 | |
|     VmaSuballocation& suballoc = *suballocItem;
 | |
|     suballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
 | |
|     suballoc.hAllocation = VK_NULL_HANDLE;
 | |
|     
 | |
|     // Update totals.
 | |
|     ++m_FreeCount;
 | |
|     m_SumFreeSize += suballoc.size;
 | |
| 
 | |
|     // Merge with previous and/or next suballocation if it's also free.
 | |
|     bool mergeWithNext = false;
 | |
|     bool mergeWithPrev = false;
 | |
|     
 | |
|     VmaSuballocationList::iterator nextItem = suballocItem;
 | |
|     ++nextItem;
 | |
|     if((nextItem != m_Suballocations.end()) && (nextItem->type == VMA_SUBALLOCATION_TYPE_FREE))
 | |
|     {
 | |
|         mergeWithNext = true;
 | |
|     }
 | |
| 
 | |
|     VmaSuballocationList::iterator prevItem = suballocItem;
 | |
|     if(suballocItem != m_Suballocations.begin())
 | |
|     {
 | |
|         --prevItem;
 | |
|         if(prevItem->type == VMA_SUBALLOCATION_TYPE_FREE)
 | |
|         {
 | |
|             mergeWithPrev = true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if(mergeWithNext)
 | |
|     {
 | |
|         UnregisterFreeSuballocation(nextItem);
 | |
|         MergeFreeWithNext(suballocItem);
 | |
|     }
 | |
| 
 | |
|     if(mergeWithPrev)
 | |
|     {
 | |
|         UnregisterFreeSuballocation(prevItem);
 | |
|         MergeFreeWithNext(prevItem);
 | |
|         RegisterFreeSuballocation(prevItem);
 | |
|         return prevItem;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         RegisterFreeSuballocation(suballocItem);
 | |
|         return suballocItem;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Generic::RegisterFreeSuballocation(VmaSuballocationList::iterator item)
 | |
| {
 | |
|     VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE);
 | |
|     VMA_ASSERT(item->size > 0);
 | |
| 
 | |
|     // You may want to enable this validation at the beginning or at the end of
 | |
|     // this function, depending on what do you want to check.
 | |
|     VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());
 | |
| 
 | |
|     if(item->size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)
 | |
|     {
 | |
|         if(m_FreeSuballocationsBySize.empty())
 | |
|         {
 | |
|             m_FreeSuballocationsBySize.push_back(item);
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             VmaVectorInsertSorted<VmaSuballocationItemSizeLess>(m_FreeSuballocationsBySize, item);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     //VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());
 | |
| }
 | |
| 
 | |
| 
 | |
| void VmaBlockMetadata_Generic::UnregisterFreeSuballocation(VmaSuballocationList::iterator item)
 | |
| {
 | |
|     VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE);
 | |
|     VMA_ASSERT(item->size > 0);
 | |
| 
 | |
|     // You may want to enable this validation at the beginning or at the end of
 | |
|     // this function, depending on what do you want to check.
 | |
|     VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());
 | |
| 
 | |
|     if(item->size >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)
 | |
|     {
 | |
|         VmaSuballocationList::iterator* const it = VmaBinaryFindFirstNotLess(
 | |
|             m_FreeSuballocationsBySize.data(),
 | |
|             m_FreeSuballocationsBySize.data() + m_FreeSuballocationsBySize.size(),
 | |
|             item,
 | |
|             VmaSuballocationItemSizeLess());
 | |
|         for(size_t index = it - m_FreeSuballocationsBySize.data();
 | |
|             index < m_FreeSuballocationsBySize.size();
 | |
|             ++index)
 | |
|         {
 | |
|             if(m_FreeSuballocationsBySize[index] == item)
 | |
|             {
 | |
|                 VmaVectorRemove(m_FreeSuballocationsBySize, index);
 | |
|                 return;
 | |
|             }
 | |
|             VMA_ASSERT((m_FreeSuballocationsBySize[index]->size == item->size) && "Not found.");
 | |
|         }
 | |
|         VMA_ASSERT(0 && "Not found.");
 | |
|     }
 | |
| 
 | |
|     //VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());
 | |
| }
 | |
| 
 | |
| bool VmaBlockMetadata_Generic::IsBufferImageGranularityConflictPossible(
 | |
|     VkDeviceSize bufferImageGranularity,
 | |
|     VmaSuballocationType& inOutPrevSuballocType) const
 | |
| {
 | |
|     if(bufferImageGranularity == 1 || IsEmpty())
 | |
|     {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     VkDeviceSize minAlignment = VK_WHOLE_SIZE;
 | |
|     bool typeConflictFound = false;
 | |
|     for(VmaSuballocationList::const_iterator it = m_Suballocations.cbegin();
 | |
|         it != m_Suballocations.cend();
 | |
|         ++it)
 | |
|     {
 | |
|         const VmaSuballocationType suballocType = it->type;
 | |
|         if(suballocType != VMA_SUBALLOCATION_TYPE_FREE)
 | |
|         {
 | |
|             minAlignment = VMA_MIN(minAlignment, it->hAllocation->GetAlignment());
 | |
|             if(VmaIsBufferImageGranularityConflict(inOutPrevSuballocType, suballocType))
 | |
|             {
 | |
|                 typeConflictFound = true;
 | |
|             }
 | |
|             inOutPrevSuballocType = suballocType;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return typeConflictFound || minAlignment >= bufferImageGranularity;
 | |
| }
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| // class VmaBlockMetadata_Linear
 | |
| 
 | |
| VmaBlockMetadata_Linear::VmaBlockMetadata_Linear(VmaAllocator hAllocator) :
 | |
|     VmaBlockMetadata(hAllocator),
 | |
|     m_SumFreeSize(0),
 | |
|     m_Suballocations0(VmaStlAllocator<VmaSuballocation>(hAllocator->GetAllocationCallbacks())),
 | |
|     m_Suballocations1(VmaStlAllocator<VmaSuballocation>(hAllocator->GetAllocationCallbacks())),
 | |
|     m_1stVectorIndex(0),
 | |
|     m_2ndVectorMode(SECOND_VECTOR_EMPTY),
 | |
|     m_1stNullItemsBeginCount(0),
 | |
|     m_1stNullItemsMiddleCount(0),
 | |
|     m_2ndNullItemsCount(0)
 | |
| {
 | |
| }
 | |
| 
 | |
| VmaBlockMetadata_Linear::~VmaBlockMetadata_Linear()
 | |
| {
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Linear::Init(VkDeviceSize size)
 | |
| {
 | |
|     VmaBlockMetadata::Init(size);
 | |
|     m_SumFreeSize = size;
 | |
| }
 | |
| 
 | |
| bool VmaBlockMetadata_Linear::Validate() const
 | |
| {
 | |
|     const SuballocationVectorType& suballocations1st = AccessSuballocations1st();
 | |
|     const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
 | |
| 
 | |
|     VMA_VALIDATE(suballocations2nd.empty() == (m_2ndVectorMode == SECOND_VECTOR_EMPTY));
 | |
|     VMA_VALIDATE(!suballocations1st.empty() ||
 | |
|         suballocations2nd.empty() ||
 | |
|         m_2ndVectorMode != SECOND_VECTOR_RING_BUFFER);
 | |
| 
 | |
|     if(!suballocations1st.empty())
 | |
|     {
 | |
|         // Null item at the beginning should be accounted into m_1stNullItemsBeginCount.
 | |
|         VMA_VALIDATE(suballocations1st[m_1stNullItemsBeginCount].hAllocation != VK_NULL_HANDLE);
 | |
|         // Null item at the end should be just pop_back().
 | |
|         VMA_VALIDATE(suballocations1st.back().hAllocation != VK_NULL_HANDLE);
 | |
|     }
 | |
|     if(!suballocations2nd.empty())
 | |
|     {
 | |
|         // Null item at the end should be just pop_back().
 | |
|         VMA_VALIDATE(suballocations2nd.back().hAllocation != VK_NULL_HANDLE);
 | |
|     }
 | |
| 
 | |
|     VMA_VALIDATE(m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount <= suballocations1st.size());
 | |
|     VMA_VALIDATE(m_2ndNullItemsCount <= suballocations2nd.size());
 | |
| 
 | |
|     VkDeviceSize sumUsedSize = 0;
 | |
|     const size_t suballoc1stCount = suballocations1st.size();
 | |
|     VkDeviceSize offset = VMA_DEBUG_MARGIN;
 | |
| 
 | |
|     if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
 | |
|     {
 | |
|         const size_t suballoc2ndCount = suballocations2nd.size();
 | |
|         size_t nullItem2ndCount = 0;
 | |
|         for(size_t i = 0; i < suballoc2ndCount; ++i)
 | |
|         {
 | |
|             const VmaSuballocation& suballoc = suballocations2nd[i];
 | |
|             const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
 | |
| 
 | |
|             VMA_VALIDATE(currFree == (suballoc.hAllocation == VK_NULL_HANDLE));
 | |
|             VMA_VALIDATE(suballoc.offset >= offset);
 | |
| 
 | |
|             if(!currFree)
 | |
|             {
 | |
|                 VMA_VALIDATE(suballoc.hAllocation->GetOffset() == suballoc.offset);
 | |
|                 VMA_VALIDATE(suballoc.hAllocation->GetSize() == suballoc.size);
 | |
|                 sumUsedSize += suballoc.size;
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 ++nullItem2ndCount;
 | |
|             }
 | |
| 
 | |
|             offset = suballoc.offset + suballoc.size + VMA_DEBUG_MARGIN;
 | |
|         }
 | |
| 
 | |
|         VMA_VALIDATE(nullItem2ndCount == m_2ndNullItemsCount);
 | |
|     }
 | |
| 
 | |
|     for(size_t i = 0; i < m_1stNullItemsBeginCount; ++i)
 | |
|     {
 | |
|         const VmaSuballocation& suballoc = suballocations1st[i];
 | |
|         VMA_VALIDATE(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE &&
 | |
|             suballoc.hAllocation == VK_NULL_HANDLE);
 | |
|     }
 | |
| 
 | |
|     size_t nullItem1stCount = m_1stNullItemsBeginCount;
 | |
| 
 | |
|     for(size_t i = m_1stNullItemsBeginCount; i < suballoc1stCount; ++i)
 | |
|     {
 | |
|         const VmaSuballocation& suballoc = suballocations1st[i];
 | |
|         const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
 | |
| 
 | |
|         VMA_VALIDATE(currFree == (suballoc.hAllocation == VK_NULL_HANDLE));
 | |
|         VMA_VALIDATE(suballoc.offset >= offset);
 | |
|         VMA_VALIDATE(i >= m_1stNullItemsBeginCount || currFree);
 | |
| 
 | |
|         if(!currFree)
 | |
|         {
 | |
|             VMA_VALIDATE(suballoc.hAllocation->GetOffset() == suballoc.offset);
 | |
|             VMA_VALIDATE(suballoc.hAllocation->GetSize() == suballoc.size);
 | |
|             sumUsedSize += suballoc.size;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             ++nullItem1stCount;
 | |
|         }
 | |
| 
 | |
|         offset = suballoc.offset + suballoc.size + VMA_DEBUG_MARGIN;
 | |
|     }
 | |
|     VMA_VALIDATE(nullItem1stCount == m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount);
 | |
| 
 | |
|     if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
 | |
|     {
 | |
|         const size_t suballoc2ndCount = suballocations2nd.size();
 | |
|         size_t nullItem2ndCount = 0;
 | |
|         for(size_t i = suballoc2ndCount; i--; )
 | |
|         {
 | |
|             const VmaSuballocation& suballoc = suballocations2nd[i];
 | |
|             const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
 | |
| 
 | |
|             VMA_VALIDATE(currFree == (suballoc.hAllocation == VK_NULL_HANDLE));
 | |
|             VMA_VALIDATE(suballoc.offset >= offset);
 | |
| 
 | |
|             if(!currFree)
 | |
|             {
 | |
|                 VMA_VALIDATE(suballoc.hAllocation->GetOffset() == suballoc.offset);
 | |
|                 VMA_VALIDATE(suballoc.hAllocation->GetSize() == suballoc.size);
 | |
|                 sumUsedSize += suballoc.size;
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 ++nullItem2ndCount;
 | |
|             }
 | |
| 
 | |
|             offset = suballoc.offset + suballoc.size + VMA_DEBUG_MARGIN;
 | |
|         }
 | |
| 
 | |
|         VMA_VALIDATE(nullItem2ndCount == m_2ndNullItemsCount);
 | |
|     }
 | |
| 
 | |
|     VMA_VALIDATE(offset <= GetSize());
 | |
|     VMA_VALIDATE(m_SumFreeSize == GetSize() - sumUsedSize);
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| size_t VmaBlockMetadata_Linear::GetAllocationCount() const
 | |
| {
 | |
|     return AccessSuballocations1st().size() - (m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount) +
 | |
|         AccessSuballocations2nd().size() - m_2ndNullItemsCount;
 | |
| }
 | |
| 
 | |
| VkDeviceSize VmaBlockMetadata_Linear::GetUnusedRangeSizeMax() const
 | |
| {
 | |
|     const VkDeviceSize size = GetSize();
 | |
| 
 | |
|     /*
 | |
|     We don't consider gaps inside allocation vectors with freed allocations because
 | |
|     they are not suitable for reuse in linear allocator. We consider only space that
 | |
|     is available for new allocations.
 | |
|     */
 | |
|     if(IsEmpty())
 | |
|     {
 | |
|         return size;
 | |
|     }
 | |
|     
 | |
|     const SuballocationVectorType& suballocations1st = AccessSuballocations1st();
 | |
| 
 | |
|     switch(m_2ndVectorMode)
 | |
|     {
 | |
|     case SECOND_VECTOR_EMPTY:
 | |
|         /*
 | |
|         Available space is after end of 1st, as well as before beginning of 1st (which
 | |
|         whould make it a ring buffer).
 | |
|         */
 | |
|         {
 | |
|             const size_t suballocations1stCount = suballocations1st.size();
 | |
|             VMA_ASSERT(suballocations1stCount > m_1stNullItemsBeginCount);
 | |
|             const VmaSuballocation& firstSuballoc = suballocations1st[m_1stNullItemsBeginCount];
 | |
|             const VmaSuballocation& lastSuballoc  = suballocations1st[suballocations1stCount - 1];
 | |
|             return VMA_MAX(
 | |
|                 firstSuballoc.offset,
 | |
|                 size - (lastSuballoc.offset + lastSuballoc.size));
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case SECOND_VECTOR_RING_BUFFER:
 | |
|         /*
 | |
|         Available space is only between end of 2nd and beginning of 1st.
 | |
|         */
 | |
|         {
 | |
|             const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
 | |
|             const VmaSuballocation& lastSuballoc2nd = suballocations2nd.back();
 | |
|             const VmaSuballocation& firstSuballoc1st = suballocations1st[m_1stNullItemsBeginCount];
 | |
|             return firstSuballoc1st.offset - (lastSuballoc2nd.offset + lastSuballoc2nd.size);
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case SECOND_VECTOR_DOUBLE_STACK:
 | |
|         /*
 | |
|         Available space is only between end of 1st and top of 2nd.
 | |
|         */
 | |
|         {
 | |
|             const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
 | |
|             const VmaSuballocation& topSuballoc2nd = suballocations2nd.back();
 | |
|             const VmaSuballocation& lastSuballoc1st = suballocations1st.back();
 | |
|             return topSuballoc2nd.offset - (lastSuballoc1st.offset + lastSuballoc1st.size);
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     default:
 | |
|         VMA_ASSERT(0);
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Linear::CalcAllocationStatInfo(VmaStatInfo& outInfo) const
 | |
| {
 | |
|     const VkDeviceSize size = GetSize();
 | |
|     const SuballocationVectorType& suballocations1st = AccessSuballocations1st();
 | |
|     const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
 | |
|     const size_t suballoc1stCount = suballocations1st.size();
 | |
|     const size_t suballoc2ndCount = suballocations2nd.size();
 | |
| 
 | |
|     outInfo.blockCount = 1;
 | |
|     outInfo.allocationCount = (uint32_t)GetAllocationCount();
 | |
|     outInfo.unusedRangeCount = 0;
 | |
|     outInfo.usedBytes = 0;
 | |
|     outInfo.allocationSizeMin = UINT64_MAX;
 | |
|     outInfo.allocationSizeMax = 0;
 | |
|     outInfo.unusedRangeSizeMin = UINT64_MAX;
 | |
|     outInfo.unusedRangeSizeMax = 0;
 | |
| 
 | |
|     VkDeviceSize lastOffset = 0;
 | |
| 
 | |
|     if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
 | |
|     {
 | |
|         const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset;
 | |
|         size_t nextAlloc2ndIndex = 0;
 | |
|         while(lastOffset < freeSpace2ndTo1stEnd)
 | |
|         {
 | |
|             // Find next non-null allocation or move nextAllocIndex to the end.
 | |
|             while(nextAlloc2ndIndex < suballoc2ndCount &&
 | |
|                 suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE)
 | |
|             {
 | |
|                 ++nextAlloc2ndIndex;
 | |
|             }
 | |
| 
 | |
|             // Found non-null allocation.
 | |
|             if(nextAlloc2ndIndex < suballoc2ndCount)
 | |
|             {
 | |
|                 const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
 | |
|             
 | |
|                 // 1. Process free space before this allocation.
 | |
|                 if(lastOffset < suballoc.offset)
 | |
|                 {
 | |
|                     // There is free space from lastOffset to suballoc.offset.
 | |
|                     const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
 | |
|                     ++outInfo.unusedRangeCount;
 | |
|                     outInfo.unusedBytes += unusedRangeSize;
 | |
|                     outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize);
 | |
|                     outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize);
 | |
|                 }
 | |
|             
 | |
|                 // 2. Process this allocation.
 | |
|                 // There is allocation with suballoc.offset, suballoc.size.
 | |
|                 outInfo.usedBytes += suballoc.size;
 | |
|                 outInfo.allocationSizeMin = VMA_MIN(outInfo.allocationSizeMin, suballoc.size);
 | |
|                 outInfo.allocationSizeMax = VMA_MIN(outInfo.allocationSizeMax, suballoc.size);
 | |
|             
 | |
|                 // 3. Prepare for next iteration.
 | |
|                 lastOffset = suballoc.offset + suballoc.size;
 | |
|                 ++nextAlloc2ndIndex;
 | |
|             }
 | |
|             // We are at the end.
 | |
|             else
 | |
|             {
 | |
|                 // There is free space from lastOffset to freeSpace2ndTo1stEnd.
 | |
|                 if(lastOffset < freeSpace2ndTo1stEnd)
 | |
|                 {
 | |
|                     const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset;
 | |
|                     ++outInfo.unusedRangeCount;
 | |
|                     outInfo.unusedBytes += unusedRangeSize;
 | |
|                     outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize);
 | |
|                     outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize);
 | |
|                }
 | |
| 
 | |
|                 // End of loop.
 | |
|                 lastOffset = freeSpace2ndTo1stEnd;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     size_t nextAlloc1stIndex = m_1stNullItemsBeginCount;
 | |
|     const VkDeviceSize freeSpace1stTo2ndEnd =
 | |
|         m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size;
 | |
|     while(lastOffset < freeSpace1stTo2ndEnd)
 | |
|     {
 | |
|         // Find next non-null allocation or move nextAllocIndex to the end.
 | |
|         while(nextAlloc1stIndex < suballoc1stCount &&
 | |
|             suballocations1st[nextAlloc1stIndex].hAllocation == VK_NULL_HANDLE)
 | |
|         {
 | |
|             ++nextAlloc1stIndex;
 | |
|         }
 | |
| 
 | |
|         // Found non-null allocation.
 | |
|         if(nextAlloc1stIndex < suballoc1stCount)
 | |
|         {
 | |
|             const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex];
 | |
|             
 | |
|             // 1. Process free space before this allocation.
 | |
|             if(lastOffset < suballoc.offset)
 | |
|             {
 | |
|                 // There is free space from lastOffset to suballoc.offset.
 | |
|                 const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
 | |
|                 ++outInfo.unusedRangeCount;
 | |
|                 outInfo.unusedBytes += unusedRangeSize;
 | |
|                 outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize);
 | |
|                 outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize);
 | |
|             }
 | |
|             
 | |
|             // 2. Process this allocation.
 | |
|             // There is allocation with suballoc.offset, suballoc.size.
 | |
|             outInfo.usedBytes += suballoc.size;
 | |
|             outInfo.allocationSizeMin = VMA_MIN(outInfo.allocationSizeMin, suballoc.size);
 | |
|             outInfo.allocationSizeMax = VMA_MIN(outInfo.allocationSizeMax, suballoc.size);
 | |
|             
 | |
|             // 3. Prepare for next iteration.
 | |
|             lastOffset = suballoc.offset + suballoc.size;
 | |
|             ++nextAlloc1stIndex;
 | |
|         }
 | |
|         // We are at the end.
 | |
|         else
 | |
|         {
 | |
|             // There is free space from lastOffset to freeSpace1stTo2ndEnd.
 | |
|             if(lastOffset < freeSpace1stTo2ndEnd)
 | |
|             {
 | |
|                 const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset;
 | |
|                 ++outInfo.unusedRangeCount;
 | |
|                 outInfo.unusedBytes += unusedRangeSize;
 | |
|                 outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize);
 | |
|                 outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize);
 | |
|            }
 | |
| 
 | |
|             // End of loop.
 | |
|             lastOffset = freeSpace1stTo2ndEnd;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
 | |
|     {
 | |
|         size_t nextAlloc2ndIndex = suballocations2nd.size() - 1;
 | |
|         while(lastOffset < size)
 | |
|         {
 | |
|             // Find next non-null allocation or move nextAllocIndex to the end.
 | |
|             while(nextAlloc2ndIndex != SIZE_MAX &&
 | |
|                 suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE)
 | |
|             {
 | |
|                 --nextAlloc2ndIndex;
 | |
|             }
 | |
| 
 | |
|             // Found non-null allocation.
 | |
|             if(nextAlloc2ndIndex != SIZE_MAX)
 | |
|             {
 | |
|                 const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
 | |
|             
 | |
|                 // 1. Process free space before this allocation.
 | |
|                 if(lastOffset < suballoc.offset)
 | |
|                 {
 | |
|                     // There is free space from lastOffset to suballoc.offset.
 | |
|                     const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
 | |
|                     ++outInfo.unusedRangeCount;
 | |
|                     outInfo.unusedBytes += unusedRangeSize;
 | |
|                     outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize);
 | |
|                     outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize);
 | |
|                 }
 | |
|             
 | |
|                 // 2. Process this allocation.
 | |
|                 // There is allocation with suballoc.offset, suballoc.size.
 | |
|                 outInfo.usedBytes += suballoc.size;
 | |
|                 outInfo.allocationSizeMin = VMA_MIN(outInfo.allocationSizeMin, suballoc.size);
 | |
|                 outInfo.allocationSizeMax = VMA_MIN(outInfo.allocationSizeMax, suballoc.size);
 | |
|             
 | |
|                 // 3. Prepare for next iteration.
 | |
|                 lastOffset = suballoc.offset + suballoc.size;
 | |
|                 --nextAlloc2ndIndex;
 | |
|             }
 | |
|             // We are at the end.
 | |
|             else
 | |
|             {
 | |
|                 // There is free space from lastOffset to size.
 | |
|                 if(lastOffset < size)
 | |
|                 {
 | |
|                     const VkDeviceSize unusedRangeSize = size - lastOffset;
 | |
|                     ++outInfo.unusedRangeCount;
 | |
|                     outInfo.unusedBytes += unusedRangeSize;
 | |
|                     outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusedRangeSize);
 | |
|                     outInfo.unusedRangeSizeMax = VMA_MIN(outInfo.unusedRangeSizeMax, unusedRangeSize);
 | |
|                }
 | |
| 
 | |
|                 // End of loop.
 | |
|                 lastOffset = size;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     outInfo.unusedBytes = size - outInfo.usedBytes;
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Linear::AddPoolStats(VmaPoolStats& inoutStats) const
 | |
| {
 | |
|     const SuballocationVectorType& suballocations1st = AccessSuballocations1st();
 | |
|     const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
 | |
|     const VkDeviceSize size = GetSize();
 | |
|     const size_t suballoc1stCount = suballocations1st.size();
 | |
|     const size_t suballoc2ndCount = suballocations2nd.size();
 | |
| 
 | |
|     inoutStats.size += size;
 | |
| 
 | |
|     VkDeviceSize lastOffset = 0;
 | |
| 
 | |
|     if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
 | |
|     {
 | |
|         const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset;
 | |
|         size_t nextAlloc2ndIndex = m_1stNullItemsBeginCount;
 | |
|         while(lastOffset < freeSpace2ndTo1stEnd)
 | |
|         {
 | |
|             // Find next non-null allocation or move nextAlloc2ndIndex to the end.
 | |
|             while(nextAlloc2ndIndex < suballoc2ndCount &&
 | |
|                 suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE)
 | |
|             {
 | |
|                 ++nextAlloc2ndIndex;
 | |
|             }
 | |
| 
 | |
|             // Found non-null allocation.
 | |
|             if(nextAlloc2ndIndex < suballoc2ndCount)
 | |
|             {
 | |
|                 const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
 | |
|             
 | |
|                 // 1. Process free space before this allocation.
 | |
|                 if(lastOffset < suballoc.offset)
 | |
|                 {
 | |
|                     // There is free space from lastOffset to suballoc.offset.
 | |
|                     const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
 | |
|                     inoutStats.unusedSize += unusedRangeSize;
 | |
|                     ++inoutStats.unusedRangeCount;
 | |
|                     inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize);
 | |
|                 }
 | |
|             
 | |
|                 // 2. Process this allocation.
 | |
|                 // There is allocation with suballoc.offset, suballoc.size.
 | |
|                 ++inoutStats.allocationCount;
 | |
|             
 | |
|                 // 3. Prepare for next iteration.
 | |
|                 lastOffset = suballoc.offset + suballoc.size;
 | |
|                 ++nextAlloc2ndIndex;
 | |
|             }
 | |
|             // We are at the end.
 | |
|             else
 | |
|             {
 | |
|                 if(lastOffset < freeSpace2ndTo1stEnd)
 | |
|                 {
 | |
|                     // There is free space from lastOffset to freeSpace2ndTo1stEnd.
 | |
|                     const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset;
 | |
|                     inoutStats.unusedSize += unusedRangeSize;
 | |
|                     ++inoutStats.unusedRangeCount;
 | |
|                     inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize);
 | |
|                 }
 | |
| 
 | |
|                 // End of loop.
 | |
|                 lastOffset = freeSpace2ndTo1stEnd;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     size_t nextAlloc1stIndex = m_1stNullItemsBeginCount;
 | |
|     const VkDeviceSize freeSpace1stTo2ndEnd =
 | |
|         m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size;
 | |
|     while(lastOffset < freeSpace1stTo2ndEnd)
 | |
|     {
 | |
|         // Find next non-null allocation or move nextAllocIndex to the end.
 | |
|         while(nextAlloc1stIndex < suballoc1stCount &&
 | |
|             suballocations1st[nextAlloc1stIndex].hAllocation == VK_NULL_HANDLE)
 | |
|         {
 | |
|             ++nextAlloc1stIndex;
 | |
|         }
 | |
| 
 | |
|         // Found non-null allocation.
 | |
|         if(nextAlloc1stIndex < suballoc1stCount)
 | |
|         {
 | |
|             const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex];
 | |
|             
 | |
|             // 1. Process free space before this allocation.
 | |
|             if(lastOffset < suballoc.offset)
 | |
|             {
 | |
|                 // There is free space from lastOffset to suballoc.offset.
 | |
|                 const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
 | |
|                 inoutStats.unusedSize += unusedRangeSize;
 | |
|                 ++inoutStats.unusedRangeCount;
 | |
|                 inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize);
 | |
|             }
 | |
|             
 | |
|             // 2. Process this allocation.
 | |
|             // There is allocation with suballoc.offset, suballoc.size.
 | |
|             ++inoutStats.allocationCount;
 | |
|             
 | |
|             // 3. Prepare for next iteration.
 | |
|             lastOffset = suballoc.offset + suballoc.size;
 | |
|             ++nextAlloc1stIndex;
 | |
|         }
 | |
|         // We are at the end.
 | |
|         else
 | |
|         {
 | |
|             if(lastOffset < freeSpace1stTo2ndEnd)
 | |
|             {
 | |
|                 // There is free space from lastOffset to freeSpace1stTo2ndEnd.
 | |
|                 const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset;
 | |
|                 inoutStats.unusedSize += unusedRangeSize;
 | |
|                 ++inoutStats.unusedRangeCount;
 | |
|                 inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize);
 | |
|             }
 | |
| 
 | |
|             // End of loop.
 | |
|             lastOffset = freeSpace1stTo2ndEnd;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
 | |
|     {
 | |
|         size_t nextAlloc2ndIndex = suballocations2nd.size() - 1;
 | |
|         while(lastOffset < size)
 | |
|         {
 | |
|             // Find next non-null allocation or move nextAlloc2ndIndex to the end.
 | |
|             while(nextAlloc2ndIndex != SIZE_MAX &&
 | |
|                 suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE)
 | |
|             {
 | |
|                 --nextAlloc2ndIndex;
 | |
|             }
 | |
| 
 | |
|             // Found non-null allocation.
 | |
|             if(nextAlloc2ndIndex != SIZE_MAX)
 | |
|             {
 | |
|                 const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
 | |
|             
 | |
|                 // 1. Process free space before this allocation.
 | |
|                 if(lastOffset < suballoc.offset)
 | |
|                 {
 | |
|                     // There is free space from lastOffset to suballoc.offset.
 | |
|                     const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
 | |
|                     inoutStats.unusedSize += unusedRangeSize;
 | |
|                     ++inoutStats.unusedRangeCount;
 | |
|                     inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize);
 | |
|                 }
 | |
|             
 | |
|                 // 2. Process this allocation.
 | |
|                 // There is allocation with suballoc.offset, suballoc.size.
 | |
|                 ++inoutStats.allocationCount;
 | |
|             
 | |
|                 // 3. Prepare for next iteration.
 | |
|                 lastOffset = suballoc.offset + suballoc.size;
 | |
|                 --nextAlloc2ndIndex;
 | |
|             }
 | |
|             // We are at the end.
 | |
|             else
 | |
|             {
 | |
|                 if(lastOffset < size)
 | |
|                 {
 | |
|                     // There is free space from lastOffset to size.
 | |
|                     const VkDeviceSize unusedRangeSize = size - lastOffset;
 | |
|                     inoutStats.unusedSize += unusedRangeSize;
 | |
|                     ++inoutStats.unusedRangeCount;
 | |
|                     inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, unusedRangeSize);
 | |
|                 }
 | |
| 
 | |
|                 // End of loop.
 | |
|                 lastOffset = size;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
| void VmaBlockMetadata_Linear::PrintDetailedMap(class VmaJsonWriter& json) const
 | |
| {
 | |
|     const VkDeviceSize size = GetSize();
 | |
|     const SuballocationVectorType& suballocations1st = AccessSuballocations1st();
 | |
|     const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
 | |
|     const size_t suballoc1stCount = suballocations1st.size();
 | |
|     const size_t suballoc2ndCount = suballocations2nd.size();
 | |
| 
 | |
|     // FIRST PASS
 | |
| 
 | |
|     size_t unusedRangeCount = 0;
 | |
|     VkDeviceSize usedBytes = 0;
 | |
| 
 | |
|     VkDeviceSize lastOffset = 0;
 | |
| 
 | |
|     size_t alloc2ndCount = 0;
 | |
|     if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
 | |
|     {
 | |
|         const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset;
 | |
|         size_t nextAlloc2ndIndex = 0;
 | |
|         while(lastOffset < freeSpace2ndTo1stEnd)
 | |
|         {
 | |
|             // Find next non-null allocation or move nextAlloc2ndIndex to the end.
 | |
|             while(nextAlloc2ndIndex < suballoc2ndCount &&
 | |
|                 suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE)
 | |
|             {
 | |
|                 ++nextAlloc2ndIndex;
 | |
|             }
 | |
| 
 | |
|             // Found non-null allocation.
 | |
|             if(nextAlloc2ndIndex < suballoc2ndCount)
 | |
|             {
 | |
|                 const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
 | |
|             
 | |
|                 // 1. Process free space before this allocation.
 | |
|                 if(lastOffset < suballoc.offset)
 | |
|                 {
 | |
|                     // There is free space from lastOffset to suballoc.offset.
 | |
|                     ++unusedRangeCount;
 | |
|                 }
 | |
|             
 | |
|                 // 2. Process this allocation.
 | |
|                 // There is allocation with suballoc.offset, suballoc.size.
 | |
|                 ++alloc2ndCount;
 | |
|                 usedBytes += suballoc.size;
 | |
|             
 | |
|                 // 3. Prepare for next iteration.
 | |
|                 lastOffset = suballoc.offset + suballoc.size;
 | |
|                 ++nextAlloc2ndIndex;
 | |
|             }
 | |
|             // We are at the end.
 | |
|             else
 | |
|             {
 | |
|                 if(lastOffset < freeSpace2ndTo1stEnd)
 | |
|                 {
 | |
|                     // There is free space from lastOffset to freeSpace2ndTo1stEnd.
 | |
|                     ++unusedRangeCount;
 | |
|                 }
 | |
| 
 | |
|                 // End of loop.
 | |
|                 lastOffset = freeSpace2ndTo1stEnd;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     size_t nextAlloc1stIndex = m_1stNullItemsBeginCount;
 | |
|     size_t alloc1stCount = 0;
 | |
|     const VkDeviceSize freeSpace1stTo2ndEnd =
 | |
|         m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size;
 | |
|     while(lastOffset < freeSpace1stTo2ndEnd)
 | |
|     {
 | |
|         // Find next non-null allocation or move nextAllocIndex to the end.
 | |
|         while(nextAlloc1stIndex < suballoc1stCount &&
 | |
|             suballocations1st[nextAlloc1stIndex].hAllocation == VK_NULL_HANDLE)
 | |
|         {
 | |
|             ++nextAlloc1stIndex;
 | |
|         }
 | |
| 
 | |
|         // Found non-null allocation.
 | |
|         if(nextAlloc1stIndex < suballoc1stCount)
 | |
|         {
 | |
|             const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex];
 | |
|             
 | |
|             // 1. Process free space before this allocation.
 | |
|             if(lastOffset < suballoc.offset)
 | |
|             {
 | |
|                 // There is free space from lastOffset to suballoc.offset.
 | |
|                 ++unusedRangeCount;
 | |
|             }
 | |
|             
 | |
|             // 2. Process this allocation.
 | |
|             // There is allocation with suballoc.offset, suballoc.size.
 | |
|             ++alloc1stCount;
 | |
|             usedBytes += suballoc.size;
 | |
|             
 | |
|             // 3. Prepare for next iteration.
 | |
|             lastOffset = suballoc.offset + suballoc.size;
 | |
|             ++nextAlloc1stIndex;
 | |
|         }
 | |
|         // We are at the end.
 | |
|         else
 | |
|         {
 | |
|             if(lastOffset < size)
 | |
|             {
 | |
|                 // There is free space from lastOffset to freeSpace1stTo2ndEnd.
 | |
|                 ++unusedRangeCount;
 | |
|             }
 | |
| 
 | |
|             // End of loop.
 | |
|             lastOffset = freeSpace1stTo2ndEnd;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
 | |
|     {
 | |
|         size_t nextAlloc2ndIndex = suballocations2nd.size() - 1;
 | |
|         while(lastOffset < size)
 | |
|         {
 | |
|             // Find next non-null allocation or move nextAlloc2ndIndex to the end.
 | |
|             while(nextAlloc2ndIndex != SIZE_MAX &&
 | |
|                 suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE)
 | |
|             {
 | |
|                 --nextAlloc2ndIndex;
 | |
|             }
 | |
| 
 | |
|             // Found non-null allocation.
 | |
|             if(nextAlloc2ndIndex != SIZE_MAX)
 | |
|             {
 | |
|                 const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
 | |
|             
 | |
|                 // 1. Process free space before this allocation.
 | |
|                 if(lastOffset < suballoc.offset)
 | |
|                 {
 | |
|                     // There is free space from lastOffset to suballoc.offset.
 | |
|                     ++unusedRangeCount;
 | |
|                 }
 | |
|             
 | |
|                 // 2. Process this allocation.
 | |
|                 // There is allocation with suballoc.offset, suballoc.size.
 | |
|                 ++alloc2ndCount;
 | |
|                 usedBytes += suballoc.size;
 | |
|             
 | |
|                 // 3. Prepare for next iteration.
 | |
|                 lastOffset = suballoc.offset + suballoc.size;
 | |
|                 --nextAlloc2ndIndex;
 | |
|             }
 | |
|             // We are at the end.
 | |
|             else
 | |
|             {
 | |
|                 if(lastOffset < size)
 | |
|                 {
 | |
|                     // There is free space from lastOffset to size.
 | |
|                     ++unusedRangeCount;
 | |
|                 }
 | |
| 
 | |
|                 // End of loop.
 | |
|                 lastOffset = size;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     const VkDeviceSize unusedBytes = size - usedBytes;
 | |
|     PrintDetailedMap_Begin(json, unusedBytes, alloc1stCount + alloc2ndCount, unusedRangeCount);
 | |
| 
 | |
|     // SECOND PASS
 | |
|     lastOffset = 0;
 | |
| 
 | |
|     if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
 | |
|     {
 | |
|         const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset;
 | |
|         size_t nextAlloc2ndIndex = 0;
 | |
|         while(lastOffset < freeSpace2ndTo1stEnd)
 | |
|         {
 | |
|             // Find next non-null allocation or move nextAlloc2ndIndex to the end.
 | |
|             while(nextAlloc2ndIndex < suballoc2ndCount &&
 | |
|                 suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE)
 | |
|             {
 | |
|                 ++nextAlloc2ndIndex;
 | |
|             }
 | |
| 
 | |
|             // Found non-null allocation.
 | |
|             if(nextAlloc2ndIndex < suballoc2ndCount)
 | |
|             {
 | |
|                 const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
 | |
|             
 | |
|                 // 1. Process free space before this allocation.
 | |
|                 if(lastOffset < suballoc.offset)
 | |
|                 {
 | |
|                     // There is free space from lastOffset to suballoc.offset.
 | |
|                     const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
 | |
|                     PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
 | |
|                 }
 | |
|             
 | |
|                 // 2. Process this allocation.
 | |
|                 // There is allocation with suballoc.offset, suballoc.size.
 | |
|                 PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.hAllocation);
 | |
|             
 | |
|                 // 3. Prepare for next iteration.
 | |
|                 lastOffset = suballoc.offset + suballoc.size;
 | |
|                 ++nextAlloc2ndIndex;
 | |
|             }
 | |
|             // We are at the end.
 | |
|             else
 | |
|             {
 | |
|                 if(lastOffset < freeSpace2ndTo1stEnd)
 | |
|                 {
 | |
|                     // There is free space from lastOffset to freeSpace2ndTo1stEnd.
 | |
|                     const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset;
 | |
|                     PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
 | |
|                 }
 | |
| 
 | |
|                 // End of loop.
 | |
|                 lastOffset = freeSpace2ndTo1stEnd;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     nextAlloc1stIndex = m_1stNullItemsBeginCount;
 | |
|     while(lastOffset < freeSpace1stTo2ndEnd)
 | |
|     {
 | |
|         // Find next non-null allocation or move nextAllocIndex to the end.
 | |
|         while(nextAlloc1stIndex < suballoc1stCount &&
 | |
|             suballocations1st[nextAlloc1stIndex].hAllocation == VK_NULL_HANDLE)
 | |
|         {
 | |
|             ++nextAlloc1stIndex;
 | |
|         }
 | |
| 
 | |
|         // Found non-null allocation.
 | |
|         if(nextAlloc1stIndex < suballoc1stCount)
 | |
|         {
 | |
|             const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex];
 | |
|             
 | |
|             // 1. Process free space before this allocation.
 | |
|             if(lastOffset < suballoc.offset)
 | |
|             {
 | |
|                 // There is free space from lastOffset to suballoc.offset.
 | |
|                 const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
 | |
|                 PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
 | |
|             }
 | |
|             
 | |
|             // 2. Process this allocation.
 | |
|             // There is allocation with suballoc.offset, suballoc.size.
 | |
|             PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.hAllocation);
 | |
|             
 | |
|             // 3. Prepare for next iteration.
 | |
|             lastOffset = suballoc.offset + suballoc.size;
 | |
|             ++nextAlloc1stIndex;
 | |
|         }
 | |
|         // We are at the end.
 | |
|         else
 | |
|         {
 | |
|             if(lastOffset < freeSpace1stTo2ndEnd)
 | |
|             {
 | |
|                 // There is free space from lastOffset to freeSpace1stTo2ndEnd.
 | |
|                 const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset;
 | |
|                 PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
 | |
|             }
 | |
| 
 | |
|             // End of loop.
 | |
|             lastOffset = freeSpace1stTo2ndEnd;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
 | |
|     {
 | |
|         size_t nextAlloc2ndIndex = suballocations2nd.size() - 1;
 | |
|         while(lastOffset < size)
 | |
|         {
 | |
|             // Find next non-null allocation or move nextAlloc2ndIndex to the end.
 | |
|             while(nextAlloc2ndIndex != SIZE_MAX &&
 | |
|                 suballocations2nd[nextAlloc2ndIndex].hAllocation == VK_NULL_HANDLE)
 | |
|             {
 | |
|                 --nextAlloc2ndIndex;
 | |
|             }
 | |
| 
 | |
|             // Found non-null allocation.
 | |
|             if(nextAlloc2ndIndex != SIZE_MAX)
 | |
|             {
 | |
|                 const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
 | |
|             
 | |
|                 // 1. Process free space before this allocation.
 | |
|                 if(lastOffset < suballoc.offset)
 | |
|                 {
 | |
|                     // There is free space from lastOffset to suballoc.offset.
 | |
|                     const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
 | |
|                     PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
 | |
|                 }
 | |
|             
 | |
|                 // 2. Process this allocation.
 | |
|                 // There is allocation with suballoc.offset, suballoc.size.
 | |
|                 PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.hAllocation);
 | |
|             
 | |
|                 // 3. Prepare for next iteration.
 | |
|                 lastOffset = suballoc.offset + suballoc.size;
 | |
|                 --nextAlloc2ndIndex;
 | |
|             }
 | |
|             // We are at the end.
 | |
|             else
 | |
|             {
 | |
|                 if(lastOffset < size)
 | |
|                 {
 | |
|                     // There is free space from lastOffset to size.
 | |
|                     const VkDeviceSize unusedRangeSize = size - lastOffset;
 | |
|                     PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
 | |
|                 }
 | |
| 
 | |
|                 // End of loop.
 | |
|                 lastOffset = size;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     PrintDetailedMap_End(json);
 | |
| }
 | |
| #endif // #if VMA_STATS_STRING_ENABLED
 | |
| 
 | |
| bool VmaBlockMetadata_Linear::CreateAllocationRequest(
 | |
|     uint32_t currentFrameIndex,
 | |
|     uint32_t frameInUseCount,
 | |
|     VkDeviceSize bufferImageGranularity,
 | |
|     VkDeviceSize allocSize,
 | |
|     VkDeviceSize allocAlignment,
 | |
|     bool upperAddress,
 | |
|     VmaSuballocationType allocType,
 | |
|     bool canMakeOtherLost,
 | |
|     uint32_t strategy,
 | |
|     VmaAllocationRequest* pAllocationRequest)
 | |
| {
 | |
|     VMA_ASSERT(allocSize > 0);
 | |
|     VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE);
 | |
|     VMA_ASSERT(pAllocationRequest != VMA_NULL);
 | |
|     VMA_HEAVY_ASSERT(Validate());
 | |
|     return upperAddress ?
 | |
|         CreateAllocationRequest_UpperAddress(
 | |
|             currentFrameIndex, frameInUseCount, bufferImageGranularity,
 | |
|             allocSize, allocAlignment, allocType, canMakeOtherLost, strategy, pAllocationRequest) :
 | |
|         CreateAllocationRequest_LowerAddress(
 | |
|             currentFrameIndex, frameInUseCount, bufferImageGranularity,
 | |
|             allocSize, allocAlignment, allocType, canMakeOtherLost, strategy, pAllocationRequest);
 | |
| }
 | |
| 
 | |
| bool VmaBlockMetadata_Linear::CreateAllocationRequest_UpperAddress(
 | |
|     uint32_t currentFrameIndex,
 | |
|     uint32_t frameInUseCount,
 | |
|     VkDeviceSize bufferImageGranularity,
 | |
|     VkDeviceSize allocSize,
 | |
|     VkDeviceSize allocAlignment,
 | |
|     VmaSuballocationType allocType,
 | |
|     bool canMakeOtherLost,
 | |
|     uint32_t strategy,
 | |
|     VmaAllocationRequest* pAllocationRequest)
 | |
| {
 | |
|     const VkDeviceSize size = GetSize();
 | |
|     SuballocationVectorType& suballocations1st = AccessSuballocations1st();
 | |
|     SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
 | |
| 
 | |
|     if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
 | |
|     {
 | |
|         VMA_ASSERT(0 && "Trying to use pool with linear algorithm as double stack, while it is already being used as ring buffer.");
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // Try to allocate before 2nd.back(), or end of block if 2nd.empty().
 | |
|     if(allocSize > size)
 | |
|     {
 | |
|         return false;
 | |
|     }
 | |
|     VkDeviceSize resultBaseOffset = size - allocSize;
 | |
|     if(!suballocations2nd.empty())
 | |
|     {
 | |
|         const VmaSuballocation& lastSuballoc = suballocations2nd.back();
 | |
|         resultBaseOffset = lastSuballoc.offset - allocSize;
 | |
|         if(allocSize > lastSuballoc.offset)
 | |
|         {
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Start from offset equal to end of free space.
 | |
|     VkDeviceSize resultOffset = resultBaseOffset;
 | |
| 
 | |
|     // Apply VMA_DEBUG_MARGIN at the end.
 | |
|     if(VMA_DEBUG_MARGIN > 0)
 | |
|     {
 | |
|         if(resultOffset < VMA_DEBUG_MARGIN)
 | |
|         {
 | |
|             return false;
 | |
|         }
 | |
|         resultOffset -= VMA_DEBUG_MARGIN;
 | |
|     }
 | |
| 
 | |
|     // Apply alignment.
 | |
|     resultOffset = VmaAlignDown(resultOffset, allocAlignment);
 | |
| 
 | |
|     // Check next suballocations from 2nd for BufferImageGranularity conflicts.
 | |
|     // Make bigger alignment if necessary.
 | |
|     if(bufferImageGranularity > 1 && !suballocations2nd.empty())
 | |
|     {
 | |
|         bool bufferImageGranularityConflict = false;
 | |
|         for(size_t nextSuballocIndex = suballocations2nd.size(); nextSuballocIndex--; )
 | |
|         {
 | |
|             const VmaSuballocation& nextSuballoc = suballocations2nd[nextSuballocIndex];
 | |
|             if(VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))
 | |
|             {
 | |
|                 if(VmaIsBufferImageGranularityConflict(nextSuballoc.type, allocType))
 | |
|                 {
 | |
|                     bufferImageGranularityConflict = true;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|             else
 | |
|                 // Already on previous page.
 | |
|                 break;
 | |
|         }
 | |
|         if(bufferImageGranularityConflict)
 | |
|         {
 | |
|             resultOffset = VmaAlignDown(resultOffset, bufferImageGranularity);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // There is enough free space.
 | |
|     const VkDeviceSize endOf1st = !suballocations1st.empty() ?
 | |
|         suballocations1st.back().offset + suballocations1st.back().size :
 | |
|         0;
 | |
|     if(endOf1st + VMA_DEBUG_MARGIN <= resultOffset)
 | |
|     {
 | |
|         // Check previous suballocations for BufferImageGranularity conflicts.
 | |
|         // If conflict exists, allocation cannot be made here.
 | |
|         if(bufferImageGranularity > 1)
 | |
|         {
 | |
|             for(size_t prevSuballocIndex = suballocations1st.size(); prevSuballocIndex--; )
 | |
|             {
 | |
|                 const VmaSuballocation& prevSuballoc = suballocations1st[prevSuballocIndex];
 | |
|                 if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity))
 | |
|                 {
 | |
|                     if(VmaIsBufferImageGranularityConflict(allocType, prevSuballoc.type))
 | |
|                     {
 | |
|                         return false;
 | |
|                     }
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     // Already on next page.
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // All tests passed: Success.
 | |
|         pAllocationRequest->offset = resultOffset;
 | |
|         pAllocationRequest->sumFreeSize = resultBaseOffset + allocSize - endOf1st;
 | |
|         pAllocationRequest->sumItemSize = 0;
 | |
|         // pAllocationRequest->item unused.
 | |
|         pAllocationRequest->itemsToMakeLostCount = 0;
 | |
|         pAllocationRequest->type = VmaAllocationRequestType::UpperAddress;
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| bool VmaBlockMetadata_Linear::CreateAllocationRequest_LowerAddress(
 | |
|     uint32_t currentFrameIndex,
 | |
|     uint32_t frameInUseCount,
 | |
|     VkDeviceSize bufferImageGranularity,
 | |
|     VkDeviceSize allocSize,
 | |
|     VkDeviceSize allocAlignment,
 | |
|     VmaSuballocationType allocType,
 | |
|     bool canMakeOtherLost,
 | |
|     uint32_t strategy,
 | |
|     VmaAllocationRequest* pAllocationRequest)
 | |
| {
 | |
|     const VkDeviceSize size = GetSize();
 | |
|     SuballocationVectorType& suballocations1st = AccessSuballocations1st();
 | |
|     SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
 | |
| 
 | |
|     if(m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
 | |
|     {
 | |
|         // Try to allocate at the end of 1st vector.
 | |
| 
 | |
|         VkDeviceSize resultBaseOffset = 0;
 | |
|         if(!suballocations1st.empty())
 | |
|         {
 | |
|             const VmaSuballocation& lastSuballoc = suballocations1st.back();
 | |
|             resultBaseOffset = lastSuballoc.offset + lastSuballoc.size;
 | |
|         }
 | |
| 
 | |
|         // Start from offset equal to beginning of free space.
 | |
|         VkDeviceSize resultOffset = resultBaseOffset;
 | |
| 
 | |
|         // Apply VMA_DEBUG_MARGIN at the beginning.
 | |
|         if(VMA_DEBUG_MARGIN > 0)
 | |
|         {
 | |
|             resultOffset += VMA_DEBUG_MARGIN;
 | |
|         }
 | |
| 
 | |
|         // Apply alignment.
 | |
|         resultOffset = VmaAlignUp(resultOffset, allocAlignment);
 | |
| 
 | |
|         // Check previous suballocations for BufferImageGranularity conflicts.
 | |
|         // Make bigger alignment if necessary.
 | |
|         if(bufferImageGranularity > 1 && !suballocations1st.empty())
 | |
|         {
 | |
|             bool bufferImageGranularityConflict = false;
 | |
|             for(size_t prevSuballocIndex = suballocations1st.size(); prevSuballocIndex--; )
 | |
|             {
 | |
|                 const VmaSuballocation& prevSuballoc = suballocations1st[prevSuballocIndex];
 | |
|                 if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity))
 | |
|                 {
 | |
|                     if(VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType))
 | |
|                     {
 | |
|                         bufferImageGranularityConflict = true;
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|                 else
 | |
|                     // Already on previous page.
 | |
|                     break;
 | |
|             }
 | |
|             if(bufferImageGranularityConflict)
 | |
|             {
 | |
|                 resultOffset = VmaAlignUp(resultOffset, bufferImageGranularity);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         const VkDeviceSize freeSpaceEnd = m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ?
 | |
|             suballocations2nd.back().offset : size;
 | |
| 
 | |
|         // There is enough free space at the end after alignment.
 | |
|         if(resultOffset + allocSize + VMA_DEBUG_MARGIN <= freeSpaceEnd)
 | |
|         {
 | |
|             // Check next suballocations for BufferImageGranularity conflicts.
 | |
|             // If conflict exists, allocation cannot be made here.
 | |
|             if(bufferImageGranularity > 1 && m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
 | |
|             {
 | |
|                 for(size_t nextSuballocIndex = suballocations2nd.size(); nextSuballocIndex--; )
 | |
|                 {
 | |
|                     const VmaSuballocation& nextSuballoc = suballocations2nd[nextSuballocIndex];
 | |
|                     if(VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))
 | |
|                     {
 | |
|                         if(VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type))
 | |
|                         {
 | |
|                             return false;
 | |
|                         }
 | |
|                     }
 | |
|                     else
 | |
|                     {
 | |
|                         // Already on previous page.
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // All tests passed: Success.
 | |
|             pAllocationRequest->offset = resultOffset;
 | |
|             pAllocationRequest->sumFreeSize = freeSpaceEnd - resultBaseOffset;
 | |
|             pAllocationRequest->sumItemSize = 0;
 | |
|             // pAllocationRequest->item, customData unused.
 | |
|             pAllocationRequest->type = VmaAllocationRequestType::EndOf1st;
 | |
|             pAllocationRequest->itemsToMakeLostCount = 0;
 | |
|             return true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Wrap-around to end of 2nd vector. Try to allocate there, watching for the
 | |
|     // beginning of 1st vector as the end of free space.
 | |
|     if(m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
 | |
|     {
 | |
|         VMA_ASSERT(!suballocations1st.empty());
 | |
| 
 | |
|         VkDeviceSize resultBaseOffset = 0;
 | |
|         if(!suballocations2nd.empty())
 | |
|         {
 | |
|             const VmaSuballocation& lastSuballoc = suballocations2nd.back();
 | |
|             resultBaseOffset = lastSuballoc.offset + lastSuballoc.size;
 | |
|         }
 | |
| 
 | |
|         // Start from offset equal to beginning of free space.
 | |
|         VkDeviceSize resultOffset = resultBaseOffset;
 | |
| 
 | |
|         // Apply VMA_DEBUG_MARGIN at the beginning.
 | |
|         if(VMA_DEBUG_MARGIN > 0)
 | |
|         {
 | |
|             resultOffset += VMA_DEBUG_MARGIN;
 | |
|         }
 | |
| 
 | |
|         // Apply alignment.
 | |
|         resultOffset = VmaAlignUp(resultOffset, allocAlignment);
 | |
| 
 | |
|         // Check previous suballocations for BufferImageGranularity conflicts.
 | |
|         // Make bigger alignment if necessary.
 | |
|         if(bufferImageGranularity > 1 && !suballocations2nd.empty())
 | |
|         {
 | |
|             bool bufferImageGranularityConflict = false;
 | |
|             for(size_t prevSuballocIndex = suballocations2nd.size(); prevSuballocIndex--; )
 | |
|             {
 | |
|                 const VmaSuballocation& prevSuballoc = suballocations2nd[prevSuballocIndex];
 | |
|                 if(VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity))
 | |
|                 {
 | |
|                     if(VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType))
 | |
|                     {
 | |
|                         bufferImageGranularityConflict = true;
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|                 else
 | |
|                     // Already on previous page.
 | |
|                     break;
 | |
|             }
 | |
|             if(bufferImageGranularityConflict)
 | |
|             {
 | |
|                 resultOffset = VmaAlignUp(resultOffset, bufferImageGranularity);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         pAllocationRequest->itemsToMakeLostCount = 0;
 | |
|         pAllocationRequest->sumItemSize = 0;
 | |
|         size_t index1st = m_1stNullItemsBeginCount;
 | |
| 
 | |
|         if(canMakeOtherLost)
 | |
|         {
 | |
|             while(index1st < suballocations1st.size() &&
 | |
|                 resultOffset + allocSize + VMA_DEBUG_MARGIN > suballocations1st[index1st].offset)
 | |
|             {
 | |
|                 // Next colliding allocation at the beginning of 1st vector found. Try to make it lost.
 | |
|                 const VmaSuballocation& suballoc = suballocations1st[index1st];
 | |
|                 if(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE)
 | |
|                 {
 | |
|                     // No problem.
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     VMA_ASSERT(suballoc.hAllocation != VK_NULL_HANDLE);
 | |
|                     if(suballoc.hAllocation->CanBecomeLost() &&
 | |
|                         suballoc.hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex)
 | |
|                     {
 | |
|                         ++pAllocationRequest->itemsToMakeLostCount;
 | |
|                         pAllocationRequest->sumItemSize += suballoc.size;
 | |
|                     }
 | |
|                     else
 | |
|                     {
 | |
|                         return false;
 | |
|                     }
 | |
|                 }
 | |
|                 ++index1st;
 | |
|             }
 | |
| 
 | |
|             // Check next suballocations for BufferImageGranularity conflicts.
 | |
|             // If conflict exists, we must mark more allocations lost or fail.
 | |
|             if(bufferImageGranularity > 1)
 | |
|             {
 | |
|                 while(index1st < suballocations1st.size())
 | |
|                 {
 | |
|                     const VmaSuballocation& suballoc = suballocations1st[index1st];
 | |
|                     if(VmaBlocksOnSamePage(resultOffset, allocSize, suballoc.offset, bufferImageGranularity))
 | |
|                     {
 | |
|                         if(suballoc.hAllocation != VK_NULL_HANDLE)
 | |
|                         {
 | |
|                             // Not checking actual VmaIsBufferImageGranularityConflict(allocType, suballoc.type).
 | |
|                             if(suballoc.hAllocation->CanBecomeLost() &&
 | |
|                                 suballoc.hAllocation->GetLastUseFrameIndex() + frameInUseCount < currentFrameIndex)
 | |
|                             {
 | |
|                                 ++pAllocationRequest->itemsToMakeLostCount;
 | |
|                                 pAllocationRequest->sumItemSize += suballoc.size;
 | |
|                             }
 | |
|                             else
 | |
|                             {
 | |
|                                 return false;
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
|                     else
 | |
|                     {
 | |
|                         // Already on next page.
 | |
|                         break;
 | |
|                     }
 | |
|                     ++index1st;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // Special case: There is not enough room at the end for this allocation, even after making all from the 1st lost.
 | |
|             if(index1st == suballocations1st.size() &&
 | |
|                 resultOffset + allocSize + VMA_DEBUG_MARGIN > size)
 | |
|             {
 | |
|                 // TODO: This is a known bug that it's not yet implemented and the allocation is failing.
 | |
|                 VMA_DEBUG_LOG("Unsupported special case in custom pool with linear allocation algorithm used as ring buffer with allocations that can be lost.");
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // There is enough free space at the end after alignment.
 | |
|         if((index1st == suballocations1st.size() && resultOffset + allocSize + VMA_DEBUG_MARGIN <= size) ||
 | |
|             (index1st < suballocations1st.size() && resultOffset + allocSize + VMA_DEBUG_MARGIN <= suballocations1st[index1st].offset))
 | |
|         {
 | |
|             // Check next suballocations for BufferImageGranularity conflicts.
 | |
|             // If conflict exists, allocation cannot be made here.
 | |
|             if(bufferImageGranularity > 1)
 | |
|             {
 | |
|                 for(size_t nextSuballocIndex = index1st;
 | |
|                     nextSuballocIndex < suballocations1st.size();
 | |
|                     nextSuballocIndex++)
 | |
|                 {
 | |
|                     const VmaSuballocation& nextSuballoc = suballocations1st[nextSuballocIndex];
 | |
|                     if(VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))
 | |
|                     {
 | |
|                         if(VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type))
 | |
|                         {
 | |
|                             return false;
 | |
|                         }
 | |
|                     }
 | |
|                     else
 | |
|                     {
 | |
|                         // Already on next page.
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // All tests passed: Success.
 | |
|             pAllocationRequest->offset = resultOffset;
 | |
|             pAllocationRequest->sumFreeSize =
 | |
|                 (index1st < suballocations1st.size() ? suballocations1st[index1st].offset : size)
 | |
|                 - resultBaseOffset
 | |
|                 - pAllocationRequest->sumItemSize;
 | |
|             pAllocationRequest->type = VmaAllocationRequestType::EndOf2nd;
 | |
|             // pAllocationRequest->item, customData unused.
 | |
|             return true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| bool VmaBlockMetadata_Linear::MakeRequestedAllocationsLost(
 | |
|     uint32_t currentFrameIndex,
 | |
|     uint32_t frameInUseCount,
 | |
|     VmaAllocationRequest* pAllocationRequest)
 | |
| {
 | |
|     if(pAllocationRequest->itemsToMakeLostCount == 0)
 | |
|     {
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     VMA_ASSERT(m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER);
 | |
|     
 | |
|     // We always start from 1st.
 | |
|     SuballocationVectorType* suballocations = &AccessSuballocations1st();
 | |
|     size_t index = m_1stNullItemsBeginCount;
 | |
|     size_t madeLostCount = 0;
 | |
|     while(madeLostCount < pAllocationRequest->itemsToMakeLostCount)
 | |
|     {
 | |
|         if(index == suballocations->size())
 | |
|         {
 | |
|             index = 0;
 | |
|             // If we get to the end of 1st, we wrap around to beginning of 2nd of 1st.
 | |
|             if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
 | |
|             {
 | |
|                 suballocations = &AccessSuballocations2nd();
 | |
|             }
 | |
|             // else: m_2ndVectorMode == SECOND_VECTOR_EMPTY:
 | |
|             // suballocations continues pointing at AccessSuballocations1st().
 | |
|             VMA_ASSERT(!suballocations->empty());
 | |
|         }
 | |
|         VmaSuballocation& suballoc = (*suballocations)[index];
 | |
|         if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE)
 | |
|         {
 | |
|             VMA_ASSERT(suballoc.hAllocation != VK_NULL_HANDLE);
 | |
|             VMA_ASSERT(suballoc.hAllocation->CanBecomeLost());
 | |
|             if(suballoc.hAllocation->MakeLost(currentFrameIndex, frameInUseCount))
 | |
|             {
 | |
|                 suballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
 | |
|                 suballoc.hAllocation = VK_NULL_HANDLE;
 | |
|                 m_SumFreeSize += suballoc.size;
 | |
|                 if(suballocations == &AccessSuballocations1st())
 | |
|                 {
 | |
|                     ++m_1stNullItemsMiddleCount;
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     ++m_2ndNullItemsCount;
 | |
|                 }
 | |
|                 ++madeLostCount;
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 return false;
 | |
|             }
 | |
|         }
 | |
|         ++index;
 | |
|     }
 | |
| 
 | |
|     CleanupAfterFree();
 | |
|     //VMA_HEAVY_ASSERT(Validate()); // Already called by ClanupAfterFree().
 | |
|     
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| uint32_t VmaBlockMetadata_Linear::MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount)
 | |
| {
 | |
|     uint32_t lostAllocationCount = 0;
 | |
|     
 | |
|     SuballocationVectorType& suballocations1st = AccessSuballocations1st();
 | |
|     for(size_t i = m_1stNullItemsBeginCount, count = suballocations1st.size(); i < count; ++i)
 | |
|     {
 | |
|         VmaSuballocation& suballoc = suballocations1st[i];
 | |
|         if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE &&
 | |
|             suballoc.hAllocation->CanBecomeLost() &&
 | |
|             suballoc.hAllocation->MakeLost(currentFrameIndex, frameInUseCount))
 | |
|         {
 | |
|             suballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
 | |
|             suballoc.hAllocation = VK_NULL_HANDLE;
 | |
|             ++m_1stNullItemsMiddleCount;
 | |
|             m_SumFreeSize += suballoc.size;
 | |
|             ++lostAllocationCount;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
 | |
|     for(size_t i = 0, count = suballocations2nd.size(); i < count; ++i)
 | |
|     {
 | |
|         VmaSuballocation& suballoc = suballocations2nd[i];
 | |
|         if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE &&
 | |
|             suballoc.hAllocation->CanBecomeLost() &&
 | |
|             suballoc.hAllocation->MakeLost(currentFrameIndex, frameInUseCount))
 | |
|         {
 | |
|             suballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
 | |
|             suballoc.hAllocation = VK_NULL_HANDLE;
 | |
|             ++m_2ndNullItemsCount;
 | |
|             m_SumFreeSize += suballoc.size;
 | |
|             ++lostAllocationCount;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if(lostAllocationCount)
 | |
|     {
 | |
|         CleanupAfterFree();
 | |
|     }
 | |
| 
 | |
|     return lostAllocationCount;
 | |
| }
 | |
| 
 | |
| VkResult VmaBlockMetadata_Linear::CheckCorruption(const void* pBlockData)
 | |
| {
 | |
|     SuballocationVectorType& suballocations1st = AccessSuballocations1st();
 | |
|     for(size_t i = m_1stNullItemsBeginCount, count = suballocations1st.size(); i < count; ++i)
 | |
|     {
 | |
|         const VmaSuballocation& suballoc = suballocations1st[i];
 | |
|         if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE)
 | |
|         {
 | |
|             if(!VmaValidateMagicValue(pBlockData, suballoc.offset - VMA_DEBUG_MARGIN))
 | |
|             {
 | |
|                 VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED BEFORE VALIDATED ALLOCATION!");
 | |
|                 return VK_ERROR_VALIDATION_FAILED_EXT;
 | |
|             }
 | |
|             if(!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size))
 | |
|             {
 | |
|                 VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!");
 | |
|                 return VK_ERROR_VALIDATION_FAILED_EXT;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
 | |
|     for(size_t i = 0, count = suballocations2nd.size(); i < count; ++i)
 | |
|     {
 | |
|         const VmaSuballocation& suballoc = suballocations2nd[i];
 | |
|         if(suballoc.type != VMA_SUBALLOCATION_TYPE_FREE)
 | |
|         {
 | |
|             if(!VmaValidateMagicValue(pBlockData, suballoc.offset - VMA_DEBUG_MARGIN))
 | |
|             {
 | |
|                 VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED BEFORE VALIDATED ALLOCATION!");
 | |
|                 return VK_ERROR_VALIDATION_FAILED_EXT;
 | |
|             }
 | |
|             if(!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size))
 | |
|             {
 | |
|                 VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!");
 | |
|                 return VK_ERROR_VALIDATION_FAILED_EXT;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return VK_SUCCESS;
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Linear::Alloc(
 | |
|     const VmaAllocationRequest& request,
 | |
|     VmaSuballocationType type,
 | |
|     VkDeviceSize allocSize,
 | |
|     VmaAllocation hAllocation)
 | |
| {
 | |
|     const VmaSuballocation newSuballoc = { request.offset, allocSize, hAllocation, type };
 | |
| 
 | |
|     switch(request.type)
 | |
|     {
 | |
|     case VmaAllocationRequestType::UpperAddress:
 | |
|         {
 | |
|             VMA_ASSERT(m_2ndVectorMode != SECOND_VECTOR_RING_BUFFER &&
 | |
|                 "CRITICAL ERROR: Trying to use linear allocator as double stack while it was already used as ring buffer.");
 | |
|             SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
 | |
|             suballocations2nd.push_back(newSuballoc);
 | |
|             m_2ndVectorMode = SECOND_VECTOR_DOUBLE_STACK;
 | |
|         }
 | |
|         break;
 | |
|     case VmaAllocationRequestType::EndOf1st:
 | |
|         {
 | |
|             SuballocationVectorType& suballocations1st = AccessSuballocations1st();
 | |
| 
 | |
|             VMA_ASSERT(suballocations1st.empty() ||
 | |
|                 request.offset >= suballocations1st.back().offset + suballocations1st.back().size);
 | |
|             // Check if it fits before the end of the block.
 | |
|             VMA_ASSERT(request.offset + allocSize <= GetSize());
 | |
| 
 | |
|             suballocations1st.push_back(newSuballoc);
 | |
|         }
 | |
|         break;
 | |
|     case VmaAllocationRequestType::EndOf2nd:
 | |
|         {
 | |
|             SuballocationVectorType& suballocations1st = AccessSuballocations1st();
 | |
|             // New allocation at the end of 2-part ring buffer, so before first allocation from 1st vector.
 | |
|             VMA_ASSERT(!suballocations1st.empty() &&
 | |
|                 request.offset + allocSize <= suballocations1st[m_1stNullItemsBeginCount].offset);
 | |
|             SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
 | |
| 
 | |
|             switch(m_2ndVectorMode)
 | |
|             {
 | |
|             case SECOND_VECTOR_EMPTY:
 | |
|                 // First allocation from second part ring buffer.
 | |
|                 VMA_ASSERT(suballocations2nd.empty());
 | |
|                 m_2ndVectorMode = SECOND_VECTOR_RING_BUFFER;
 | |
|                 break;
 | |
|             case SECOND_VECTOR_RING_BUFFER:
 | |
|                 // 2-part ring buffer is already started.
 | |
|                 VMA_ASSERT(!suballocations2nd.empty());
 | |
|                 break;
 | |
|             case SECOND_VECTOR_DOUBLE_STACK:
 | |
|                 VMA_ASSERT(0 && "CRITICAL ERROR: Trying to use linear allocator as ring buffer while it was already used as double stack.");
 | |
|                 break;
 | |
|             default:
 | |
|                 VMA_ASSERT(0);
 | |
|             }
 | |
| 
 | |
|             suballocations2nd.push_back(newSuballoc);
 | |
|         }
 | |
|         break;
 | |
|     default:
 | |
|         VMA_ASSERT(0 && "CRITICAL INTERNAL ERROR.");
 | |
|     }
 | |
| 
 | |
|     m_SumFreeSize -= newSuballoc.size;
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Linear::Free(const VmaAllocation allocation)
 | |
| {
 | |
|     FreeAtOffset(allocation->GetOffset());
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Linear::FreeAtOffset(VkDeviceSize offset)
 | |
| {
 | |
|     SuballocationVectorType& suballocations1st = AccessSuballocations1st();
 | |
|     SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
 | |
| 
 | |
|     if(!suballocations1st.empty())
 | |
|     {
 | |
|         // First allocation: Mark it as next empty at the beginning.
 | |
|         VmaSuballocation& firstSuballoc = suballocations1st[m_1stNullItemsBeginCount];
 | |
|         if(firstSuballoc.offset == offset)
 | |
|         {
 | |
|             firstSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
 | |
|             firstSuballoc.hAllocation = VK_NULL_HANDLE;
 | |
|             m_SumFreeSize += firstSuballoc.size;
 | |
|             ++m_1stNullItemsBeginCount;
 | |
|             CleanupAfterFree();
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Last allocation in 2-part ring buffer or top of upper stack (same logic).
 | |
|     if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER ||
 | |
|         m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
 | |
|     {
 | |
|         VmaSuballocation& lastSuballoc = suballocations2nd.back();
 | |
|         if(lastSuballoc.offset == offset)
 | |
|         {
 | |
|             m_SumFreeSize += lastSuballoc.size;
 | |
|             suballocations2nd.pop_back();
 | |
|             CleanupAfterFree();
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
|     // Last allocation in 1st vector.
 | |
|     else if(m_2ndVectorMode == SECOND_VECTOR_EMPTY)
 | |
|     {
 | |
|         VmaSuballocation& lastSuballoc = suballocations1st.back();
 | |
|         if(lastSuballoc.offset == offset)
 | |
|         {
 | |
|             m_SumFreeSize += lastSuballoc.size;
 | |
|             suballocations1st.pop_back();
 | |
|             CleanupAfterFree();
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Item from the middle of 1st vector.
 | |
|     {
 | |
|         VmaSuballocation refSuballoc;
 | |
|         refSuballoc.offset = offset;
 | |
|         // Rest of members stays uninitialized intentionally for better performance.
 | |
|         SuballocationVectorType::iterator it = VmaBinaryFindSorted(
 | |
|             suballocations1st.begin() + m_1stNullItemsBeginCount,
 | |
|             suballocations1st.end(),
 | |
|             refSuballoc,
 | |
|             VmaSuballocationOffsetLess());
 | |
|         if(it != suballocations1st.end())
 | |
|         {
 | |
|             it->type = VMA_SUBALLOCATION_TYPE_FREE;
 | |
|             it->hAllocation = VK_NULL_HANDLE;
 | |
|             ++m_1stNullItemsMiddleCount;
 | |
|             m_SumFreeSize += it->size;
 | |
|             CleanupAfterFree();
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if(m_2ndVectorMode != SECOND_VECTOR_EMPTY)
 | |
|     {
 | |
|         // Item from the middle of 2nd vector.
 | |
|         VmaSuballocation refSuballoc;
 | |
|         refSuballoc.offset = offset;
 | |
|         // Rest of members stays uninitialized intentionally for better performance.
 | |
|         SuballocationVectorType::iterator it = m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER ?
 | |
|             VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetLess()) :
 | |
|             VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetGreater());
 | |
|         if(it != suballocations2nd.end())
 | |
|         {
 | |
|             it->type = VMA_SUBALLOCATION_TYPE_FREE;
 | |
|             it->hAllocation = VK_NULL_HANDLE;
 | |
|             ++m_2ndNullItemsCount;
 | |
|             m_SumFreeSize += it->size;
 | |
|             CleanupAfterFree();
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     VMA_ASSERT(0 && "Allocation to free not found in linear allocator!");
 | |
| }
 | |
| 
 | |
| bool VmaBlockMetadata_Linear::ShouldCompact1st() const
 | |
| {
 | |
|     const size_t nullItemCount = m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount;
 | |
|     const size_t suballocCount = AccessSuballocations1st().size();
 | |
|     return suballocCount > 32 && nullItemCount * 2 >= (suballocCount - nullItemCount) * 3;
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Linear::CleanupAfterFree()
 | |
| {
 | |
|     SuballocationVectorType& suballocations1st = AccessSuballocations1st();
 | |
|     SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
 | |
| 
 | |
|     if(IsEmpty())
 | |
|     {
 | |
|         suballocations1st.clear();
 | |
|         suballocations2nd.clear();
 | |
|         m_1stNullItemsBeginCount = 0;
 | |
|         m_1stNullItemsMiddleCount = 0;
 | |
|         m_2ndNullItemsCount = 0;
 | |
|         m_2ndVectorMode = SECOND_VECTOR_EMPTY;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         const size_t suballoc1stCount = suballocations1st.size();
 | |
|         const size_t nullItem1stCount = m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount;
 | |
|         VMA_ASSERT(nullItem1stCount <= suballoc1stCount);
 | |
| 
 | |
|         // Find more null items at the beginning of 1st vector.
 | |
|         while(m_1stNullItemsBeginCount < suballoc1stCount &&
 | |
|             suballocations1st[m_1stNullItemsBeginCount].hAllocation == VK_NULL_HANDLE)
 | |
|         {
 | |
|             ++m_1stNullItemsBeginCount;
 | |
|             --m_1stNullItemsMiddleCount;
 | |
|         }
 | |
| 
 | |
|         // Find more null items at the end of 1st vector.
 | |
|         while(m_1stNullItemsMiddleCount > 0 &&
 | |
|             suballocations1st.back().hAllocation == VK_NULL_HANDLE)
 | |
|         {
 | |
|             --m_1stNullItemsMiddleCount;
 | |
|             suballocations1st.pop_back();
 | |
|         }
 | |
| 
 | |
|         // Find more null items at the end of 2nd vector.
 | |
|         while(m_2ndNullItemsCount > 0 &&
 | |
|             suballocations2nd.back().hAllocation == VK_NULL_HANDLE)
 | |
|         {
 | |
|             --m_2ndNullItemsCount;
 | |
|             suballocations2nd.pop_back();
 | |
|         }
 | |
| 
 | |
|         // Find more null items at the beginning of 2nd vector.
 | |
|         while(m_2ndNullItemsCount > 0 &&
 | |
|             suballocations2nd[0].hAllocation == VK_NULL_HANDLE)
 | |
|         {
 | |
|             --m_2ndNullItemsCount;
 | |
|             VmaVectorRemove(suballocations2nd, 0);
 | |
|         }
 | |
| 
 | |
|         if(ShouldCompact1st())
 | |
|         {
 | |
|             const size_t nonNullItemCount = suballoc1stCount - nullItem1stCount;
 | |
|             size_t srcIndex = m_1stNullItemsBeginCount;
 | |
|             for(size_t dstIndex = 0; dstIndex < nonNullItemCount; ++dstIndex)
 | |
|             {
 | |
|                 while(suballocations1st[srcIndex].hAllocation == VK_NULL_HANDLE)
 | |
|                 {
 | |
|                     ++srcIndex;
 | |
|                 }
 | |
|                 if(dstIndex != srcIndex)
 | |
|                 {
 | |
|                     suballocations1st[dstIndex] = suballocations1st[srcIndex];
 | |
|                 }
 | |
|                 ++srcIndex;
 | |
|             }
 | |
|             suballocations1st.resize(nonNullItemCount);
 | |
|             m_1stNullItemsBeginCount = 0;
 | |
|             m_1stNullItemsMiddleCount = 0;
 | |
|         }
 | |
| 
 | |
|         // 2nd vector became empty.
 | |
|         if(suballocations2nd.empty())
 | |
|         {
 | |
|             m_2ndVectorMode = SECOND_VECTOR_EMPTY;
 | |
|         }
 | |
| 
 | |
|         // 1st vector became empty.
 | |
|         if(suballocations1st.size() - m_1stNullItemsBeginCount == 0)
 | |
|         {
 | |
|             suballocations1st.clear();
 | |
|             m_1stNullItemsBeginCount = 0;
 | |
| 
 | |
|             if(!suballocations2nd.empty() && m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
 | |
|             {
 | |
|                 // Swap 1st with 2nd. Now 2nd is empty.
 | |
|                 m_2ndVectorMode = SECOND_VECTOR_EMPTY;
 | |
|                 m_1stNullItemsMiddleCount = m_2ndNullItemsCount;
 | |
|                 while(m_1stNullItemsBeginCount < suballocations2nd.size() &&
 | |
|                     suballocations2nd[m_1stNullItemsBeginCount].hAllocation == VK_NULL_HANDLE)
 | |
|                 {
 | |
|                     ++m_1stNullItemsBeginCount;
 | |
|                     --m_1stNullItemsMiddleCount;
 | |
|                 }
 | |
|                 m_2ndNullItemsCount = 0;
 | |
|                 m_1stVectorIndex ^= 1;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     VMA_HEAVY_ASSERT(Validate());
 | |
| }
 | |
| 
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| // class VmaBlockMetadata_Buddy
 | |
| 
 | |
| VmaBlockMetadata_Buddy::VmaBlockMetadata_Buddy(VmaAllocator hAllocator) :
 | |
|     VmaBlockMetadata(hAllocator),
 | |
|     m_Root(VMA_NULL),
 | |
|     m_AllocationCount(0),
 | |
|     m_FreeCount(1),
 | |
|     m_SumFreeSize(0)
 | |
| {
 | |
|     memset(m_FreeList, 0, sizeof(m_FreeList));
 | |
| }
 | |
| 
 | |
| VmaBlockMetadata_Buddy::~VmaBlockMetadata_Buddy()
 | |
| {
 | |
|     DeleteNode(m_Root);
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Buddy::Init(VkDeviceSize size)
 | |
| {
 | |
|     VmaBlockMetadata::Init(size);
 | |
| 
 | |
|     m_UsableSize = VmaPrevPow2(size);
 | |
|     m_SumFreeSize = m_UsableSize;
 | |
| 
 | |
|     // Calculate m_LevelCount.
 | |
|     m_LevelCount = 1;
 | |
|     while(m_LevelCount < MAX_LEVELS &&
 | |
|         LevelToNodeSize(m_LevelCount) >= MIN_NODE_SIZE)
 | |
|     {
 | |
|         ++m_LevelCount;
 | |
|     }
 | |
| 
 | |
|     Node* rootNode = vma_new(GetAllocationCallbacks(), Node)();
 | |
|     rootNode->offset = 0;
 | |
|     rootNode->type = Node::TYPE_FREE;
 | |
|     rootNode->parent = VMA_NULL;
 | |
|     rootNode->buddy = VMA_NULL;
 | |
| 
 | |
|     m_Root = rootNode;
 | |
|     AddToFreeListFront(0, rootNode);
 | |
| }
 | |
| 
 | |
| bool VmaBlockMetadata_Buddy::Validate() const
 | |
| {
 | |
|     // Validate tree.
 | |
|     ValidationContext ctx;
 | |
|     if(!ValidateNode(ctx, VMA_NULL, m_Root, 0, LevelToNodeSize(0)))
 | |
|     {
 | |
|         VMA_VALIDATE(false && "ValidateNode failed.");
 | |
|     }
 | |
|     VMA_VALIDATE(m_AllocationCount == ctx.calculatedAllocationCount);
 | |
|     VMA_VALIDATE(m_SumFreeSize == ctx.calculatedSumFreeSize);
 | |
| 
 | |
|     // Validate free node lists.
 | |
|     for(uint32_t level = 0; level < m_LevelCount; ++level)
 | |
|     {
 | |
|         VMA_VALIDATE(m_FreeList[level].front == VMA_NULL ||
 | |
|             m_FreeList[level].front->free.prev == VMA_NULL);
 | |
| 
 | |
|         for(Node* node = m_FreeList[level].front;
 | |
|             node != VMA_NULL;
 | |
|             node = node->free.next)
 | |
|         {
 | |
|             VMA_VALIDATE(node->type == Node::TYPE_FREE);
 | |
|             
 | |
|             if(node->free.next == VMA_NULL)
 | |
|             {
 | |
|                 VMA_VALIDATE(m_FreeList[level].back == node);
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 VMA_VALIDATE(node->free.next->free.prev == node);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Validate that free lists ar higher levels are empty.
 | |
|     for(uint32_t level = m_LevelCount; level < MAX_LEVELS; ++level)
 | |
|     {
 | |
|         VMA_VALIDATE(m_FreeList[level].front == VMA_NULL && m_FreeList[level].back == VMA_NULL);
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| VkDeviceSize VmaBlockMetadata_Buddy::GetUnusedRangeSizeMax() const
 | |
| {
 | |
|     for(uint32_t level = 0; level < m_LevelCount; ++level)
 | |
|     {
 | |
|         if(m_FreeList[level].front != VMA_NULL)
 | |
|         {
 | |
|             return LevelToNodeSize(level);
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Buddy::CalcAllocationStatInfo(VmaStatInfo& outInfo) const
 | |
| {
 | |
|     const VkDeviceSize unusableSize = GetUnusableSize();
 | |
| 
 | |
|     outInfo.blockCount = 1;
 | |
| 
 | |
|     outInfo.allocationCount = outInfo.unusedRangeCount = 0;
 | |
|     outInfo.usedBytes = outInfo.unusedBytes = 0;
 | |
| 
 | |
|     outInfo.allocationSizeMax = outInfo.unusedRangeSizeMax = 0;
 | |
|     outInfo.allocationSizeMin = outInfo.unusedRangeSizeMin = UINT64_MAX;
 | |
|     outInfo.allocationSizeAvg = outInfo.unusedRangeSizeAvg = 0; // Unused.
 | |
| 
 | |
|     CalcAllocationStatInfoNode(outInfo, m_Root, LevelToNodeSize(0));
 | |
| 
 | |
|     if(unusableSize > 0)
 | |
|     {
 | |
|         ++outInfo.unusedRangeCount;
 | |
|         outInfo.unusedBytes += unusableSize;
 | |
|         outInfo.unusedRangeSizeMax = VMA_MAX(outInfo.unusedRangeSizeMax, unusableSize);
 | |
|         outInfo.unusedRangeSizeMin = VMA_MIN(outInfo.unusedRangeSizeMin, unusableSize);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Buddy::AddPoolStats(VmaPoolStats& inoutStats) const
 | |
| {
 | |
|     const VkDeviceSize unusableSize = GetUnusableSize();
 | |
| 
 | |
|     inoutStats.size += GetSize();
 | |
|     inoutStats.unusedSize += m_SumFreeSize + unusableSize;
 | |
|     inoutStats.allocationCount += m_AllocationCount;
 | |
|     inoutStats.unusedRangeCount += m_FreeCount;
 | |
|     inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, GetUnusedRangeSizeMax());
 | |
| 
 | |
|     if(unusableSize > 0)
 | |
|     {
 | |
|         ++inoutStats.unusedRangeCount;
 | |
|         // Not updating inoutStats.unusedRangeSizeMax with unusableSize because this space is not available for allocations.
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
| 
 | |
| void VmaBlockMetadata_Buddy::PrintDetailedMap(class VmaJsonWriter& json) const
 | |
| {
 | |
|     // TODO optimize
 | |
|     VmaStatInfo stat;
 | |
|     CalcAllocationStatInfo(stat);
 | |
| 
 | |
|     PrintDetailedMap_Begin(
 | |
|         json,
 | |
|         stat.unusedBytes,
 | |
|         stat.allocationCount,
 | |
|         stat.unusedRangeCount);
 | |
| 
 | |
|     PrintDetailedMapNode(json, m_Root, LevelToNodeSize(0));
 | |
| 
 | |
|     const VkDeviceSize unusableSize = GetUnusableSize();
 | |
|     if(unusableSize > 0)
 | |
|     {
 | |
|         PrintDetailedMap_UnusedRange(json,
 | |
|             m_UsableSize, // offset
 | |
|             unusableSize); // size
 | |
|     }
 | |
| 
 | |
|     PrintDetailedMap_End(json);
 | |
| }
 | |
| 
 | |
| #endif // #if VMA_STATS_STRING_ENABLED
 | |
| 
 | |
| bool VmaBlockMetadata_Buddy::CreateAllocationRequest(
 | |
|     uint32_t currentFrameIndex,
 | |
|     uint32_t frameInUseCount,
 | |
|     VkDeviceSize bufferImageGranularity,
 | |
|     VkDeviceSize allocSize,
 | |
|     VkDeviceSize allocAlignment,
 | |
|     bool upperAddress,
 | |
|     VmaSuballocationType allocType,
 | |
|     bool canMakeOtherLost,
 | |
|     uint32_t strategy,
 | |
|     VmaAllocationRequest* pAllocationRequest)
 | |
| {
 | |
|     VMA_ASSERT(!upperAddress && "VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT can be used only with linear algorithm.");
 | |
| 
 | |
|     // Simple way to respect bufferImageGranularity. May be optimized some day.
 | |
|     // Whenever it might be an OPTIMAL image...
 | |
|     if(allocType == VMA_SUBALLOCATION_TYPE_UNKNOWN ||
 | |
|         allocType == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN ||
 | |
|         allocType == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL)
 | |
|     {
 | |
|         allocAlignment = VMA_MAX(allocAlignment, bufferImageGranularity);
 | |
|         allocSize = VMA_MAX(allocSize, bufferImageGranularity);
 | |
|     }
 | |
| 
 | |
|     if(allocSize > m_UsableSize)
 | |
|     {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     const uint32_t targetLevel = AllocSizeToLevel(allocSize);
 | |
|     for(uint32_t level = targetLevel + 1; level--; )
 | |
|     {
 | |
|         for(Node* freeNode = m_FreeList[level].front;
 | |
|             freeNode != VMA_NULL;
 | |
|             freeNode = freeNode->free.next)
 | |
|         {
 | |
|             if(freeNode->offset % allocAlignment == 0)
 | |
|             {
 | |
|                 pAllocationRequest->type = VmaAllocationRequestType::Normal;
 | |
|                 pAllocationRequest->offset = freeNode->offset;
 | |
|                 pAllocationRequest->sumFreeSize = LevelToNodeSize(level);
 | |
|                 pAllocationRequest->sumItemSize = 0;
 | |
|                 pAllocationRequest->itemsToMakeLostCount = 0;
 | |
|                 pAllocationRequest->customData = (void*)(uintptr_t)level;
 | |
|                 return true;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| bool VmaBlockMetadata_Buddy::MakeRequestedAllocationsLost(
 | |
|     uint32_t currentFrameIndex,
 | |
|     uint32_t frameInUseCount,
 | |
|     VmaAllocationRequest* pAllocationRequest)
 | |
| {
 | |
|     /*
 | |
|     Lost allocations are not supported in buddy allocator at the moment.
 | |
|     Support might be added in the future.
 | |
|     */
 | |
|     return pAllocationRequest->itemsToMakeLostCount == 0;
 | |
| }
 | |
| 
 | |
| uint32_t VmaBlockMetadata_Buddy::MakeAllocationsLost(uint32_t currentFrameIndex, uint32_t frameInUseCount)
 | |
| {
 | |
|     /*
 | |
|     Lost allocations are not supported in buddy allocator at the moment.
 | |
|     Support might be added in the future.
 | |
|     */
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Buddy::Alloc(
 | |
|     const VmaAllocationRequest& request,
 | |
|     VmaSuballocationType type,
 | |
|     VkDeviceSize allocSize,
 | |
|     VmaAllocation hAllocation)
 | |
| {
 | |
|     VMA_ASSERT(request.type == VmaAllocationRequestType::Normal);
 | |
| 
 | |
|     const uint32_t targetLevel = AllocSizeToLevel(allocSize);
 | |
|     uint32_t currLevel = (uint32_t)(uintptr_t)request.customData;
 | |
|     
 | |
|     Node* currNode = m_FreeList[currLevel].front;
 | |
|     VMA_ASSERT(currNode != VMA_NULL && currNode->type == Node::TYPE_FREE);
 | |
|     while(currNode->offset != request.offset)
 | |
|     {
 | |
|         currNode = currNode->free.next;
 | |
|         VMA_ASSERT(currNode != VMA_NULL && currNode->type == Node::TYPE_FREE);
 | |
|     }
 | |
|     
 | |
|     // Go down, splitting free nodes.
 | |
|     while(currLevel < targetLevel)
 | |
|     {
 | |
|         // currNode is already first free node at currLevel.
 | |
|         // Remove it from list of free nodes at this currLevel.
 | |
|         RemoveFromFreeList(currLevel, currNode);
 | |
|          
 | |
|         const uint32_t childrenLevel = currLevel + 1;
 | |
| 
 | |
|         // Create two free sub-nodes.
 | |
|         Node* leftChild = vma_new(GetAllocationCallbacks(), Node)();
 | |
|         Node* rightChild = vma_new(GetAllocationCallbacks(), Node)();
 | |
| 
 | |
|         leftChild->offset = currNode->offset;
 | |
|         leftChild->type = Node::TYPE_FREE;
 | |
|         leftChild->parent = currNode;
 | |
|         leftChild->buddy = rightChild;
 | |
| 
 | |
|         rightChild->offset = currNode->offset + LevelToNodeSize(childrenLevel);
 | |
|         rightChild->type = Node::TYPE_FREE;
 | |
|         rightChild->parent = currNode;
 | |
|         rightChild->buddy = leftChild;
 | |
| 
 | |
|         // Convert current currNode to split type.
 | |
|         currNode->type = Node::TYPE_SPLIT;
 | |
|         currNode->split.leftChild = leftChild;
 | |
| 
 | |
|         // Add child nodes to free list. Order is important!
 | |
|         AddToFreeListFront(childrenLevel, rightChild);
 | |
|         AddToFreeListFront(childrenLevel, leftChild);
 | |
| 
 | |
|         ++m_FreeCount;
 | |
|         //m_SumFreeSize -= LevelToNodeSize(currLevel) % 2; // Useful only when level node sizes can be non power of 2.
 | |
|         ++currLevel;
 | |
|         currNode = m_FreeList[currLevel].front;
 | |
| 
 | |
|         /*
 | |
|         We can be sure that currNode, as left child of node previously split,
 | |
|         also fullfills the alignment requirement.
 | |
|         */
 | |
|     }
 | |
| 
 | |
|     // Remove from free list.
 | |
|     VMA_ASSERT(currLevel == targetLevel &&
 | |
|         currNode != VMA_NULL &&
 | |
|         currNode->type == Node::TYPE_FREE);
 | |
|     RemoveFromFreeList(currLevel, currNode);
 | |
| 
 | |
|     // Convert to allocation node.
 | |
|     currNode->type = Node::TYPE_ALLOCATION;
 | |
|     currNode->allocation.alloc = hAllocation;
 | |
| 
 | |
|     ++m_AllocationCount;
 | |
|     --m_FreeCount;
 | |
|     m_SumFreeSize -= allocSize;
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Buddy::DeleteNode(Node* node)
 | |
| {
 | |
|     if(node->type == Node::TYPE_SPLIT)
 | |
|     {
 | |
|         DeleteNode(node->split.leftChild->buddy);
 | |
|         DeleteNode(node->split.leftChild);
 | |
|     }
 | |
| 
 | |
|     vma_delete(GetAllocationCallbacks(), node);
 | |
| }
 | |
| 
 | |
| bool VmaBlockMetadata_Buddy::ValidateNode(ValidationContext& ctx, const Node* parent, const Node* curr, uint32_t level, VkDeviceSize levelNodeSize) const
 | |
| {
 | |
|     VMA_VALIDATE(level < m_LevelCount);
 | |
|     VMA_VALIDATE(curr->parent == parent);
 | |
|     VMA_VALIDATE((curr->buddy == VMA_NULL) == (parent == VMA_NULL));
 | |
|     VMA_VALIDATE(curr->buddy == VMA_NULL || curr->buddy->buddy == curr);
 | |
|     switch(curr->type)
 | |
|     {
 | |
|     case Node::TYPE_FREE:
 | |
|         // curr->free.prev, next are validated separately.
 | |
|         ctx.calculatedSumFreeSize += levelNodeSize;
 | |
|         ++ctx.calculatedFreeCount;
 | |
|         break;
 | |
|     case Node::TYPE_ALLOCATION:
 | |
|         ++ctx.calculatedAllocationCount;
 | |
|         ctx.calculatedSumFreeSize += levelNodeSize - curr->allocation.alloc->GetSize();
 | |
|         VMA_VALIDATE(curr->allocation.alloc != VK_NULL_HANDLE);
 | |
|         break;
 | |
|     case Node::TYPE_SPLIT:
 | |
|         {
 | |
|             const uint32_t childrenLevel = level + 1;
 | |
|             const VkDeviceSize childrenLevelNodeSize = levelNodeSize / 2;
 | |
|             const Node* const leftChild = curr->split.leftChild;
 | |
|             VMA_VALIDATE(leftChild != VMA_NULL);
 | |
|             VMA_VALIDATE(leftChild->offset == curr->offset);
 | |
|             if(!ValidateNode(ctx, curr, leftChild, childrenLevel, childrenLevelNodeSize))
 | |
|             {
 | |
|                 VMA_VALIDATE(false && "ValidateNode for left child failed.");
 | |
|             }
 | |
|             const Node* const rightChild = leftChild->buddy;
 | |
|             VMA_VALIDATE(rightChild->offset == curr->offset + childrenLevelNodeSize);
 | |
|             if(!ValidateNode(ctx, curr, rightChild, childrenLevel, childrenLevelNodeSize))
 | |
|             {
 | |
|                 VMA_VALIDATE(false && "ValidateNode for right child failed.");
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
|     default:
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| uint32_t VmaBlockMetadata_Buddy::AllocSizeToLevel(VkDeviceSize allocSize) const
 | |
| {
 | |
|     // I know this could be optimized somehow e.g. by using std::log2p1 from C++20.
 | |
|     uint32_t level = 0;
 | |
|     VkDeviceSize currLevelNodeSize = m_UsableSize;
 | |
|     VkDeviceSize nextLevelNodeSize = currLevelNodeSize >> 1;
 | |
|     while(allocSize <= nextLevelNodeSize && level + 1 < m_LevelCount)
 | |
|     {
 | |
|         ++level;
 | |
|         currLevelNodeSize = nextLevelNodeSize;
 | |
|         nextLevelNodeSize = currLevelNodeSize >> 1;
 | |
|     }
 | |
|     return level;
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Buddy::FreeAtOffset(VmaAllocation alloc, VkDeviceSize offset)
 | |
| {
 | |
|     // Find node and level.
 | |
|     Node* node = m_Root;
 | |
|     VkDeviceSize nodeOffset = 0;
 | |
|     uint32_t level = 0;
 | |
|     VkDeviceSize levelNodeSize = LevelToNodeSize(0);
 | |
|     while(node->type == Node::TYPE_SPLIT)
 | |
|     {
 | |
|         const VkDeviceSize nextLevelSize = levelNodeSize >> 1;
 | |
|         if(offset < nodeOffset + nextLevelSize)
 | |
|         {
 | |
|             node = node->split.leftChild;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             node = node->split.leftChild->buddy;
 | |
|             nodeOffset += nextLevelSize;
 | |
|         }
 | |
|         ++level;
 | |
|         levelNodeSize = nextLevelSize;
 | |
|     }
 | |
| 
 | |
|     VMA_ASSERT(node != VMA_NULL && node->type == Node::TYPE_ALLOCATION);
 | |
|     VMA_ASSERT(alloc == VK_NULL_HANDLE || node->allocation.alloc == alloc);
 | |
| 
 | |
|     ++m_FreeCount;
 | |
|     --m_AllocationCount;
 | |
|     m_SumFreeSize += alloc->GetSize();
 | |
| 
 | |
|     node->type = Node::TYPE_FREE;
 | |
| 
 | |
|     // Join free nodes if possible.
 | |
|     while(level > 0 && node->buddy->type == Node::TYPE_FREE)
 | |
|     {
 | |
|         RemoveFromFreeList(level, node->buddy);
 | |
|         Node* const parent = node->parent;
 | |
| 
 | |
|         vma_delete(GetAllocationCallbacks(), node->buddy);
 | |
|         vma_delete(GetAllocationCallbacks(), node);
 | |
|         parent->type = Node::TYPE_FREE;
 | |
|         
 | |
|         node = parent;
 | |
|         --level;
 | |
|         //m_SumFreeSize += LevelToNodeSize(level) % 2; // Useful only when level node sizes can be non power of 2.
 | |
|         --m_FreeCount;
 | |
|     }
 | |
| 
 | |
|     AddToFreeListFront(level, node);
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Buddy::CalcAllocationStatInfoNode(VmaStatInfo& outInfo, const Node* node, VkDeviceSize levelNodeSize) const
 | |
| {
 | |
|     switch(node->type)
 | |
|     {
 | |
|     case Node::TYPE_FREE:
 | |
|         ++outInfo.unusedRangeCount;
 | |
|         outInfo.unusedBytes += levelNodeSize;
 | |
|         outInfo.unusedRangeSizeMax = VMA_MAX(outInfo.unusedRangeSizeMax, levelNodeSize);
 | |
|         outInfo.unusedRangeSizeMin = VMA_MAX(outInfo.unusedRangeSizeMin, levelNodeSize);
 | |
|         break;
 | |
|     case Node::TYPE_ALLOCATION:
 | |
|         {
 | |
|             const VkDeviceSize allocSize = node->allocation.alloc->GetSize();
 | |
|             ++outInfo.allocationCount;
 | |
|             outInfo.usedBytes += allocSize;
 | |
|             outInfo.allocationSizeMax = VMA_MAX(outInfo.allocationSizeMax, allocSize);
 | |
|             outInfo.allocationSizeMin = VMA_MAX(outInfo.allocationSizeMin, allocSize);
 | |
| 
 | |
|             const VkDeviceSize unusedRangeSize = levelNodeSize - allocSize;
 | |
|             if(unusedRangeSize > 0)
 | |
|             {
 | |
|                 ++outInfo.unusedRangeCount;
 | |
|                 outInfo.unusedBytes += unusedRangeSize;
 | |
|                 outInfo.unusedRangeSizeMax = VMA_MAX(outInfo.unusedRangeSizeMax, unusedRangeSize);
 | |
|                 outInfo.unusedRangeSizeMin = VMA_MAX(outInfo.unusedRangeSizeMin, unusedRangeSize);
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
|     case Node::TYPE_SPLIT:
 | |
|         {
 | |
|             const VkDeviceSize childrenNodeSize = levelNodeSize / 2;
 | |
|             const Node* const leftChild = node->split.leftChild;
 | |
|             CalcAllocationStatInfoNode(outInfo, leftChild, childrenNodeSize);
 | |
|             const Node* const rightChild = leftChild->buddy;
 | |
|             CalcAllocationStatInfoNode(outInfo, rightChild, childrenNodeSize);
 | |
|         }
 | |
|         break;
 | |
|     default:
 | |
|         VMA_ASSERT(0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Buddy::AddToFreeListFront(uint32_t level, Node* node)
 | |
| {
 | |
|     VMA_ASSERT(node->type == Node::TYPE_FREE);
 | |
| 
 | |
|     // List is empty.
 | |
|     Node* const frontNode = m_FreeList[level].front;
 | |
|     if(frontNode == VMA_NULL)
 | |
|     {
 | |
|         VMA_ASSERT(m_FreeList[level].back == VMA_NULL);
 | |
|         node->free.prev = node->free.next = VMA_NULL;
 | |
|         m_FreeList[level].front = m_FreeList[level].back = node;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         VMA_ASSERT(frontNode->free.prev == VMA_NULL);
 | |
|         node->free.prev = VMA_NULL;
 | |
|         node->free.next = frontNode;
 | |
|         frontNode->free.prev = node;
 | |
|         m_FreeList[level].front = node;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Buddy::RemoveFromFreeList(uint32_t level, Node* node)
 | |
| {
 | |
|     VMA_ASSERT(m_FreeList[level].front != VMA_NULL);
 | |
| 
 | |
|     // It is at the front.
 | |
|     if(node->free.prev == VMA_NULL)
 | |
|     {
 | |
|         VMA_ASSERT(m_FreeList[level].front == node);
 | |
|         m_FreeList[level].front = node->free.next;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         Node* const prevFreeNode = node->free.prev;
 | |
|         VMA_ASSERT(prevFreeNode->free.next == node);
 | |
|         prevFreeNode->free.next = node->free.next;
 | |
|     }
 | |
| 
 | |
|     // It is at the back.
 | |
|     if(node->free.next == VMA_NULL)
 | |
|     {
 | |
|         VMA_ASSERT(m_FreeList[level].back == node);
 | |
|         m_FreeList[level].back = node->free.prev;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         Node* const nextFreeNode = node->free.next;
 | |
|         VMA_ASSERT(nextFreeNode->free.prev == node);
 | |
|         nextFreeNode->free.prev = node->free.prev;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
| void VmaBlockMetadata_Buddy::PrintDetailedMapNode(class VmaJsonWriter& json, const Node* node, VkDeviceSize levelNodeSize) const
 | |
| {
 | |
|     switch(node->type)
 | |
|     {
 | |
|     case Node::TYPE_FREE:
 | |
|         PrintDetailedMap_UnusedRange(json, node->offset, levelNodeSize);
 | |
|         break;
 | |
|     case Node::TYPE_ALLOCATION:
 | |
|         {   
 | |
|             PrintDetailedMap_Allocation(json, node->offset, node->allocation.alloc);
 | |
|             const VkDeviceSize allocSize = node->allocation.alloc->GetSize();
 | |
|             if(allocSize < levelNodeSize)
 | |
|             {
 | |
|                 PrintDetailedMap_UnusedRange(json, node->offset + allocSize, levelNodeSize - allocSize);
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
|     case Node::TYPE_SPLIT:
 | |
|         {
 | |
|             const VkDeviceSize childrenNodeSize = levelNodeSize / 2;
 | |
|             const Node* const leftChild = node->split.leftChild;
 | |
|             PrintDetailedMapNode(json, leftChild, childrenNodeSize);
 | |
|             const Node* const rightChild = leftChild->buddy;
 | |
|             PrintDetailedMapNode(json, rightChild, childrenNodeSize);
 | |
|         }
 | |
|         break;
 | |
|     default:
 | |
|         VMA_ASSERT(0);
 | |
|     }
 | |
| }
 | |
| #endif // #if VMA_STATS_STRING_ENABLED
 | |
| 
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| // class VmaDeviceMemoryBlock
 | |
| 
 | |
| VmaDeviceMemoryBlock::VmaDeviceMemoryBlock(VmaAllocator hAllocator) :
 | |
|     m_pMetadata(VMA_NULL),
 | |
|     m_MemoryTypeIndex(UINT32_MAX),
 | |
|     m_Id(0),
 | |
|     m_hMemory(VK_NULL_HANDLE),
 | |
|     m_MapCount(0),
 | |
|     m_pMappedData(VMA_NULL)
 | |
| {
 | |
| }
 | |
| 
 | |
| void VmaDeviceMemoryBlock::Init(
 | |
|     VmaAllocator hAllocator,
 | |
|     VmaPool hParentPool,
 | |
|     uint32_t newMemoryTypeIndex,
 | |
|     VkDeviceMemory newMemory,
 | |
|     VkDeviceSize newSize,
 | |
|     uint32_t id,
 | |
|     uint32_t algorithm)
 | |
| {
 | |
|     VMA_ASSERT(m_hMemory == VK_NULL_HANDLE);
 | |
| 
 | |
|     m_hParentPool = hParentPool;
 | |
|     m_MemoryTypeIndex = newMemoryTypeIndex;
 | |
|     m_Id = id;
 | |
|     m_hMemory = newMemory;
 | |
| 
 | |
|     switch(algorithm)
 | |
|     {
 | |
|     case VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT:
 | |
|         m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_Linear)(hAllocator);
 | |
|         break;
 | |
|     case VMA_POOL_CREATE_BUDDY_ALGORITHM_BIT:
 | |
|         m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_Buddy)(hAllocator);
 | |
|         break;
 | |
|     default:
 | |
|         VMA_ASSERT(0);
 | |
|         // Fall-through.
 | |
|     case 0:
 | |
|         m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_Generic)(hAllocator);
 | |
|     }
 | |
|     m_pMetadata->Init(newSize);
 | |
| }
 | |
| 
 | |
| void VmaDeviceMemoryBlock::Destroy(VmaAllocator allocator)
 | |
| {
 | |
|     // This is the most important assert in the entire library.
 | |
|     // Hitting it means you have some memory leak - unreleased VmaAllocation objects.
 | |
|     VMA_ASSERT(m_pMetadata->IsEmpty() && "Some allocations were not freed before destruction of this memory block!");
 | |
| 
 | |
|     VMA_ASSERT(m_hMemory != VK_NULL_HANDLE);
 | |
|     allocator->FreeVulkanMemory(m_MemoryTypeIndex, m_pMetadata->GetSize(), m_hMemory);
 | |
|     m_hMemory = VK_NULL_HANDLE;
 | |
| 
 | |
|     vma_delete(allocator, m_pMetadata);
 | |
|     m_pMetadata = VMA_NULL;
 | |
| }
 | |
| 
 | |
| bool VmaDeviceMemoryBlock::Validate() const
 | |
| {
 | |
|     VMA_VALIDATE((m_hMemory != VK_NULL_HANDLE) &&
 | |
|         (m_pMetadata->GetSize() != 0));
 | |
|     
 | |
|     return m_pMetadata->Validate();
 | |
| }
 | |
| 
 | |
| VkResult VmaDeviceMemoryBlock::CheckCorruption(VmaAllocator hAllocator)
 | |
| {
 | |
|     void* pData = nullptr;
 | |
|     VkResult res = Map(hAllocator, 1, &pData);
 | |
|     if(res != VK_SUCCESS)
 | |
|     {
 | |
|         return res;
 | |
|     }
 | |
| 
 | |
|     res = m_pMetadata->CheckCorruption(pData);
 | |
| 
 | |
|     Unmap(hAllocator, 1);
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| VkResult VmaDeviceMemoryBlock::Map(VmaAllocator hAllocator, uint32_t count, void** ppData)
 | |
| {
 | |
|     if(count == 0)
 | |
|     {
 | |
|         return VK_SUCCESS;
 | |
|     }
 | |
| 
 | |
|     VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex);
 | |
|     if(m_MapCount != 0)
 | |
|     {
 | |
|         m_MapCount += count;
 | |
|         VMA_ASSERT(m_pMappedData != VMA_NULL);
 | |
|         if(ppData != VMA_NULL)
 | |
|         {
 | |
|             *ppData = m_pMappedData;
 | |
|         }
 | |
|         return VK_SUCCESS;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)(
 | |
|             hAllocator->m_hDevice,
 | |
|             m_hMemory,
 | |
|             0, // offset
 | |
|             VK_WHOLE_SIZE,
 | |
|             0, // flags
 | |
|             &m_pMappedData);
 | |
|         if(result == VK_SUCCESS)
 | |
|         {
 | |
|             if(ppData != VMA_NULL)
 | |
|             {
 | |
|                 *ppData = m_pMappedData;
 | |
|             }
 | |
|             m_MapCount = count;
 | |
|         }
 | |
|         return result;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaDeviceMemoryBlock::Unmap(VmaAllocator hAllocator, uint32_t count)
 | |
| {
 | |
|     if(count == 0)
 | |
|     {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex);
 | |
|     if(m_MapCount >= count)
 | |
|     {
 | |
|         m_MapCount -= count;
 | |
|         if(m_MapCount == 0)
 | |
|         {
 | |
|             m_pMappedData = VMA_NULL;
 | |
|             (*hAllocator->GetVulkanFunctions().vkUnmapMemory)(hAllocator->m_hDevice, m_hMemory);
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         VMA_ASSERT(0 && "VkDeviceMemory block is being unmapped while it was not previously mapped.");
 | |
|     }
 | |
| }
 | |
| 
 | |
| VkResult VmaDeviceMemoryBlock::WriteMagicValueAroundAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize)
 | |
| {
 | |
|     VMA_ASSERT(VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_MARGIN % 4 == 0 && VMA_DEBUG_DETECT_CORRUPTION);
 | |
|     VMA_ASSERT(allocOffset >= VMA_DEBUG_MARGIN);
 | |
| 
 | |
|     void* pData;
 | |
|     VkResult res = Map(hAllocator, 1, &pData);
 | |
|     if(res != VK_SUCCESS)
 | |
|     {
 | |
|         return res;
 | |
|     }
 | |
| 
 | |
|     VmaWriteMagicValue(pData, allocOffset - VMA_DEBUG_MARGIN);
 | |
|     VmaWriteMagicValue(pData, allocOffset + allocSize);
 | |
| 
 | |
|     Unmap(hAllocator, 1);
 | |
| 
 | |
|     return VK_SUCCESS;
 | |
| }
 | |
| 
 | |
| VkResult VmaDeviceMemoryBlock::ValidateMagicValueAroundAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize)
 | |
| {
 | |
|     VMA_ASSERT(VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_MARGIN % 4 == 0 && VMA_DEBUG_DETECT_CORRUPTION);
 | |
|     VMA_ASSERT(allocOffset >= VMA_DEBUG_MARGIN);
 | |
| 
 | |
|     void* pData;
 | |
|     VkResult res = Map(hAllocator, 1, &pData);
 | |
|     if(res != VK_SUCCESS)
 | |
|     {
 | |
|         return res;
 | |
|     }
 | |
| 
 | |
|     if(!VmaValidateMagicValue(pData, allocOffset - VMA_DEBUG_MARGIN))
 | |
|     {
 | |
|         VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED BEFORE FREED ALLOCATION!");
 | |
|     }
 | |
|     else if(!VmaValidateMagicValue(pData, allocOffset + allocSize))
 | |
|     {
 | |
|         VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER FREED ALLOCATION!");
 | |
|     }
 | |
| 
 | |
|     Unmap(hAllocator, 1);
 | |
| 
 | |
|     return VK_SUCCESS;
 | |
| }
 | |
| 
 | |
| VkResult VmaDeviceMemoryBlock::BindBufferMemory(
 | |
|     const VmaAllocator hAllocator,
 | |
|     const VmaAllocation hAllocation,
 | |
|     VkDeviceSize allocationLocalOffset,
 | |
|     VkBuffer hBuffer,
 | |
|     const void* pNext)
 | |
| {
 | |
|     VMA_ASSERT(hAllocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK &&
 | |
|         hAllocation->GetBlock() == this);
 | |
|     VMA_ASSERT(allocationLocalOffset < hAllocation->GetSize() &&
 | |
|         "Invalid allocationLocalOffset. Did you forget that this offset is relative to the beginning of the allocation, not the whole memory block?");
 | |
|     const VkDeviceSize memoryOffset = hAllocation->GetOffset() + allocationLocalOffset;
 | |
|     // This lock is important so that we don't call vkBind... and/or vkMap... simultaneously on the same VkDeviceMemory from multiple threads.
 | |
|     VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex);
 | |
|     return hAllocator->BindVulkanBuffer(m_hMemory, memoryOffset, hBuffer, pNext);
 | |
| }
 | |
| 
 | |
| VkResult VmaDeviceMemoryBlock::BindImageMemory(
 | |
|     const VmaAllocator hAllocator,
 | |
|     const VmaAllocation hAllocation,
 | |
|     VkDeviceSize allocationLocalOffset,
 | |
|     VkImage hImage,
 | |
|     const void* pNext)
 | |
| {
 | |
|     VMA_ASSERT(hAllocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK &&
 | |
|         hAllocation->GetBlock() == this);
 | |
|     VMA_ASSERT(allocationLocalOffset < hAllocation->GetSize() &&
 | |
|         "Invalid allocationLocalOffset. Did you forget that this offset is relative to the beginning of the allocation, not the whole memory block?");
 | |
|     const VkDeviceSize memoryOffset = hAllocation->GetOffset() + allocationLocalOffset;
 | |
|     // This lock is important so that we don't call vkBind... and/or vkMap... simultaneously on the same VkDeviceMemory from multiple threads.
 | |
|     VmaMutexLock lock(m_Mutex, hAllocator->m_UseMutex);
 | |
|     return hAllocator->BindVulkanImage(m_hMemory, memoryOffset, hImage, pNext);
 | |
| }
 | |
| 
 | |
| static void InitStatInfo(VmaStatInfo& outInfo)
 | |
| {
 | |
|     memset(&outInfo, 0, sizeof(outInfo));
 | |
|     outInfo.allocationSizeMin = UINT64_MAX;
 | |
|     outInfo.unusedRangeSizeMin = UINT64_MAX;
 | |
| }
 | |
| 
 | |
| // Adds statistics srcInfo into inoutInfo, like: inoutInfo += srcInfo.
 | |
| static void VmaAddStatInfo(VmaStatInfo& inoutInfo, const VmaStatInfo& srcInfo)
 | |
| {
 | |
|     inoutInfo.blockCount += srcInfo.blockCount;
 | |
|     inoutInfo.allocationCount += srcInfo.allocationCount;
 | |
|     inoutInfo.unusedRangeCount += srcInfo.unusedRangeCount;
 | |
|     inoutInfo.usedBytes += srcInfo.usedBytes;
 | |
|     inoutInfo.unusedBytes += srcInfo.unusedBytes;
 | |
|     inoutInfo.allocationSizeMin = VMA_MIN(inoutInfo.allocationSizeMin, srcInfo.allocationSizeMin);
 | |
|     inoutInfo.allocationSizeMax = VMA_MAX(inoutInfo.allocationSizeMax, srcInfo.allocationSizeMax);
 | |
|     inoutInfo.unusedRangeSizeMin = VMA_MIN(inoutInfo.unusedRangeSizeMin, srcInfo.unusedRangeSizeMin);
 | |
|     inoutInfo.unusedRangeSizeMax = VMA_MAX(inoutInfo.unusedRangeSizeMax, srcInfo.unusedRangeSizeMax);
 | |
| }
 | |
| 
 | |
| static void VmaPostprocessCalcStatInfo(VmaStatInfo& inoutInfo)
 | |
| {
 | |
|     inoutInfo.allocationSizeAvg = (inoutInfo.allocationCount > 0) ?
 | |
|         VmaRoundDiv<VkDeviceSize>(inoutInfo.usedBytes, inoutInfo.allocationCount) : 0;
 | |
|     inoutInfo.unusedRangeSizeAvg = (inoutInfo.unusedRangeCount > 0) ?
 | |
|         VmaRoundDiv<VkDeviceSize>(inoutInfo.unusedBytes, inoutInfo.unusedRangeCount) : 0;
 | |
| }
 | |
| 
 | |
| VmaPool_T::VmaPool_T(
 | |
|     VmaAllocator hAllocator,
 | |
|     const VmaPoolCreateInfo& createInfo,
 | |
|     VkDeviceSize preferredBlockSize) :
 | |
|     m_BlockVector(
 | |
|         hAllocator,
 | |
|         this, // hParentPool
 | |
|         createInfo.memoryTypeIndex,
 | |
|         createInfo.blockSize != 0 ? createInfo.blockSize : preferredBlockSize,
 | |
|         createInfo.minBlockCount,
 | |
|         createInfo.maxBlockCount,
 | |
|         (createInfo.flags & VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT) != 0 ? 1 : hAllocator->GetBufferImageGranularity(),
 | |
|         createInfo.frameInUseCount,
 | |
|         createInfo.blockSize != 0, // explicitBlockSize
 | |
|         createInfo.flags & VMA_POOL_CREATE_ALGORITHM_MASK), // algorithm
 | |
|     m_Id(0),
 | |
|     m_Name(VMA_NULL)
 | |
| {
 | |
| }
 | |
| 
 | |
| VmaPool_T::~VmaPool_T()
 | |
| {
 | |
| }
 | |
| 
 | |
| void VmaPool_T::SetName(const char* pName)
 | |
| {
 | |
|     const VkAllocationCallbacks* allocs = m_BlockVector.GetAllocator()->GetAllocationCallbacks();
 | |
|     VmaFreeString(allocs, m_Name);
 | |
|     
 | |
|     if(pName != VMA_NULL)
 | |
|     {
 | |
|         m_Name = VmaCreateStringCopy(allocs, pName);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         m_Name = VMA_NULL;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
| 
 | |
| #endif // #if VMA_STATS_STRING_ENABLED
 | |
| 
 | |
| VmaBlockVector::VmaBlockVector(
 | |
|     VmaAllocator hAllocator,
 | |
|     VmaPool hParentPool,
 | |
|     uint32_t memoryTypeIndex,
 | |
|     VkDeviceSize preferredBlockSize,
 | |
|     size_t minBlockCount,
 | |
|     size_t maxBlockCount,
 | |
|     VkDeviceSize bufferImageGranularity,
 | |
|     uint32_t frameInUseCount,
 | |
|     bool explicitBlockSize,
 | |
|     uint32_t algorithm) :
 | |
|     m_hAllocator(hAllocator),
 | |
|     m_hParentPool(hParentPool),
 | |
|     m_MemoryTypeIndex(memoryTypeIndex),
 | |
|     m_PreferredBlockSize(preferredBlockSize),
 | |
|     m_MinBlockCount(minBlockCount),
 | |
|     m_MaxBlockCount(maxBlockCount),
 | |
|     m_BufferImageGranularity(bufferImageGranularity),
 | |
|     m_FrameInUseCount(frameInUseCount),
 | |
|     m_ExplicitBlockSize(explicitBlockSize),
 | |
|     m_Algorithm(algorithm),
 | |
|     m_HasEmptyBlock(false),
 | |
|     m_Blocks(VmaStlAllocator<VmaDeviceMemoryBlock*>(hAllocator->GetAllocationCallbacks())),
 | |
|     m_NextBlockId(0)
 | |
| {
 | |
| }
 | |
| 
 | |
| VmaBlockVector::~VmaBlockVector()
 | |
| {
 | |
|     for(size_t i = m_Blocks.size(); i--; )
 | |
|     {
 | |
|         m_Blocks[i]->Destroy(m_hAllocator);
 | |
|         vma_delete(m_hAllocator, m_Blocks[i]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| VkResult VmaBlockVector::CreateMinBlocks()
 | |
| {
 | |
|     for(size_t i = 0; i < m_MinBlockCount; ++i)
 | |
|     {
 | |
|         VkResult res = CreateBlock(m_PreferredBlockSize, VMA_NULL);
 | |
|         if(res != VK_SUCCESS)
 | |
|         {
 | |
|             return res;
 | |
|         }
 | |
|     }
 | |
|     return VK_SUCCESS;
 | |
| }
 | |
| 
 | |
| void VmaBlockVector::GetPoolStats(VmaPoolStats* pStats)
 | |
| {
 | |
|     VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);
 | |
| 
 | |
|     const size_t blockCount = m_Blocks.size();
 | |
| 
 | |
|     pStats->size = 0;
 | |
|     pStats->unusedSize = 0;
 | |
|     pStats->allocationCount = 0;
 | |
|     pStats->unusedRangeCount = 0;
 | |
|     pStats->unusedRangeSizeMax = 0;
 | |
|     pStats->blockCount = blockCount;
 | |
| 
 | |
|     for(uint32_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)
 | |
|     {
 | |
|         const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];
 | |
|         VMA_ASSERT(pBlock);
 | |
|         VMA_HEAVY_ASSERT(pBlock->Validate());
 | |
|         pBlock->m_pMetadata->AddPoolStats(*pStats);
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool VmaBlockVector::IsEmpty()
 | |
| {
 | |
|     VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);
 | |
|     return m_Blocks.empty();
 | |
| }
 | |
| 
 | |
| bool VmaBlockVector::IsCorruptionDetectionEnabled() const
 | |
| {
 | |
|     const uint32_t requiredMemFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
 | |
|     return (VMA_DEBUG_DETECT_CORRUPTION != 0) &&
 | |
|         (VMA_DEBUG_MARGIN > 0) &&
 | |
|         (m_Algorithm == 0 || m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT) &&
 | |
|         (m_hAllocator->m_MemProps.memoryTypes[m_MemoryTypeIndex].propertyFlags & requiredMemFlags) == requiredMemFlags;
 | |
| }
 | |
| 
 | |
| static const uint32_t VMA_ALLOCATION_TRY_COUNT = 32;
 | |
| 
 | |
| VkResult VmaBlockVector::Allocate(
 | |
|     uint32_t currentFrameIndex,
 | |
|     VkDeviceSize size,
 | |
|     VkDeviceSize alignment,
 | |
|     const VmaAllocationCreateInfo& createInfo,
 | |
|     VmaSuballocationType suballocType,
 | |
|     size_t allocationCount,
 | |
|     VmaAllocation* pAllocations)
 | |
| {
 | |
|     size_t allocIndex;
 | |
|     VkResult res = VK_SUCCESS;
 | |
| 
 | |
|     if(IsCorruptionDetectionEnabled())
 | |
|     {
 | |
|         size = VmaAlignUp<VkDeviceSize>(size, sizeof(VMA_CORRUPTION_DETECTION_MAGIC_VALUE));
 | |
|         alignment = VmaAlignUp<VkDeviceSize>(alignment, sizeof(VMA_CORRUPTION_DETECTION_MAGIC_VALUE));
 | |
|     }
 | |
| 
 | |
|     {
 | |
|         VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex);
 | |
|         for(allocIndex = 0; allocIndex < allocationCount; ++allocIndex)
 | |
|         {
 | |
|             res = AllocatePage(
 | |
|                 currentFrameIndex,
 | |
|                 size,
 | |
|                 alignment,
 | |
|                 createInfo,
 | |
|                 suballocType,
 | |
|                 pAllocations + allocIndex);
 | |
|             if(res != VK_SUCCESS)
 | |
|             {
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if(res != VK_SUCCESS)
 | |
|     {
 | |
|         // Free all already created allocations.
 | |
|         while(allocIndex--)
 | |
|         {
 | |
|             Free(pAllocations[allocIndex]);
 | |
|         }
 | |
|         memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount);
 | |
|     }
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| VkResult VmaBlockVector::AllocatePage(
 | |
|     uint32_t currentFrameIndex,
 | |
|     VkDeviceSize size,
 | |
|     VkDeviceSize alignment,
 | |
|     const VmaAllocationCreateInfo& createInfo,
 | |
|     VmaSuballocationType suballocType,
 | |
|     VmaAllocation* pAllocation)
 | |
| {
 | |
|     const bool isUpperAddress = (createInfo.flags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0;
 | |
|     bool canMakeOtherLost = (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT) != 0;
 | |
|     const bool mapped = (createInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0;
 | |
|     const bool isUserDataString = (createInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0;
 | |
|     
 | |
|     const bool withinBudget = (createInfo.flags & VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT) != 0;
 | |
|     VkDeviceSize freeMemory;
 | |
|     {
 | |
|         const uint32_t heapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex);
 | |
|         VmaBudget heapBudget = {};
 | |
|         m_hAllocator->GetBudget(&heapBudget, heapIndex, 1);
 | |
|         freeMemory = (heapBudget.usage < heapBudget.budget) ? (heapBudget.budget - heapBudget.usage) : 0;
 | |
|     }
 | |
|     
 | |
|     const bool canFallbackToDedicated = !IsCustomPool();
 | |
|     const bool canCreateNewBlock =
 | |
|         ((createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0) &&
 | |
|         (m_Blocks.size() < m_MaxBlockCount) &&
 | |
|         (freeMemory >= size || !canFallbackToDedicated);
 | |
|     uint32_t strategy = createInfo.flags & VMA_ALLOCATION_CREATE_STRATEGY_MASK;
 | |
| 
 | |
|     // If linearAlgorithm is used, canMakeOtherLost is available only when used as ring buffer.
 | |
|     // Which in turn is available only when maxBlockCount = 1.
 | |
|     if(m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT && m_MaxBlockCount > 1)
 | |
|     {
 | |
|         canMakeOtherLost = false;
 | |
|     }
 | |
| 
 | |
|     // Upper address can only be used with linear allocator and within single memory block.
 | |
|     if(isUpperAddress &&
 | |
|         (m_Algorithm != VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT || m_MaxBlockCount > 1))
 | |
|     {
 | |
|         return VK_ERROR_FEATURE_NOT_PRESENT;
 | |
|     }
 | |
| 
 | |
|     // Validate strategy.
 | |
|     switch(strategy)
 | |
|     {
 | |
|     case 0:
 | |
|         strategy = VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT;
 | |
|         break;
 | |
|     case VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT:
 | |
|     case VMA_ALLOCATION_CREATE_STRATEGY_WORST_FIT_BIT:
 | |
|     case VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT:
 | |
|         break;
 | |
|     default:
 | |
|         return VK_ERROR_FEATURE_NOT_PRESENT;
 | |
|     }
 | |
| 
 | |
|     // Early reject: requested allocation size is larger that maximum block size for this block vector.
 | |
|     if(size + 2 * VMA_DEBUG_MARGIN > m_PreferredBlockSize)
 | |
|     {
 | |
|         return VK_ERROR_OUT_OF_DEVICE_MEMORY;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|     Under certain condition, this whole section can be skipped for optimization, so
 | |
|     we move on directly to trying to allocate with canMakeOtherLost. That's the case
 | |
|     e.g. for custom pools with linear algorithm.
 | |
|     */
 | |
|     if(!canMakeOtherLost || canCreateNewBlock)
 | |
|     {
 | |
|         // 1. Search existing allocations. Try to allocate without making other allocations lost.
 | |
|         VmaAllocationCreateFlags allocFlagsCopy = createInfo.flags;
 | |
|         allocFlagsCopy &= ~VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT;
 | |
| 
 | |
|         if(m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT)
 | |
|         {
 | |
|             // Use only last block.
 | |
|             if(!m_Blocks.empty())
 | |
|             {
 | |
|                 VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks.back();
 | |
|                 VMA_ASSERT(pCurrBlock);
 | |
|                 VkResult res = AllocateFromBlock(
 | |
|                     pCurrBlock,
 | |
|                     currentFrameIndex,
 | |
|                     size,
 | |
|                     alignment,
 | |
|                     allocFlagsCopy,
 | |
|                     createInfo.pUserData,
 | |
|                     suballocType,
 | |
|                     strategy,
 | |
|                     pAllocation);
 | |
|                 if(res == VK_SUCCESS)
 | |
|                 {
 | |
|                     VMA_DEBUG_LOG("    Returned from last block #%u", pCurrBlock->GetId());
 | |
|                     return VK_SUCCESS;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             if(strategy == VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT)
 | |
|             {
 | |
|                 // Forward order in m_Blocks - prefer blocks with smallest amount of free space.
 | |
|                 for(size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex )
 | |
|                 {
 | |
|                     VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex];
 | |
|                     VMA_ASSERT(pCurrBlock);
 | |
|                     VkResult res = AllocateFromBlock(
 | |
|                         pCurrBlock,
 | |
|                         currentFrameIndex,
 | |
|                         size,
 | |
|                         alignment,
 | |
|                         allocFlagsCopy,
 | |
|                         createInfo.pUserData,
 | |
|                         suballocType,
 | |
|                         strategy,
 | |
|                         pAllocation);
 | |
|                     if(res == VK_SUCCESS)
 | |
|                     {
 | |
|                         VMA_DEBUG_LOG("    Returned from existing block #%u", pCurrBlock->GetId());
 | |
|                         return VK_SUCCESS;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             else // WORST_FIT, FIRST_FIT
 | |
|             {
 | |
|                 // Backward order in m_Blocks - prefer blocks with largest amount of free space.
 | |
|                 for(size_t blockIndex = m_Blocks.size(); blockIndex--; )
 | |
|                 {
 | |
|                     VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex];
 | |
|                     VMA_ASSERT(pCurrBlock);
 | |
|                     VkResult res = AllocateFromBlock(
 | |
|                         pCurrBlock,
 | |
|                         currentFrameIndex,
 | |
|                         size,
 | |
|                         alignment,
 | |
|                         allocFlagsCopy,
 | |
|                         createInfo.pUserData,
 | |
|                         suballocType,
 | |
|                         strategy,
 | |
|                         pAllocation);
 | |
|                     if(res == VK_SUCCESS)
 | |
|                     {
 | |
|                         VMA_DEBUG_LOG("    Returned from existing block #%u", pCurrBlock->GetId());
 | |
|                         return VK_SUCCESS;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // 2. Try to create new block.
 | |
|         if(canCreateNewBlock)
 | |
|         {
 | |
|             // Calculate optimal size for new block.
 | |
|             VkDeviceSize newBlockSize = m_PreferredBlockSize;
 | |
|             uint32_t newBlockSizeShift = 0;
 | |
|             const uint32_t NEW_BLOCK_SIZE_SHIFT_MAX = 3;
 | |
| 
 | |
|             if(!m_ExplicitBlockSize)
 | |
|             {
 | |
|                 // Allocate 1/8, 1/4, 1/2 as first blocks.
 | |
|                 const VkDeviceSize maxExistingBlockSize = CalcMaxBlockSize();
 | |
|                 for(uint32_t i = 0; i < NEW_BLOCK_SIZE_SHIFT_MAX; ++i)
 | |
|                 {
 | |
|                     const VkDeviceSize smallerNewBlockSize = newBlockSize / 2;
 | |
|                     if(smallerNewBlockSize > maxExistingBlockSize && smallerNewBlockSize >= size * 2)
 | |
|                     {
 | |
|                         newBlockSize = smallerNewBlockSize;
 | |
|                         ++newBlockSizeShift;
 | |
|                     }
 | |
|                     else
 | |
|                     {
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             size_t newBlockIndex = 0;
 | |
|             VkResult res = (newBlockSize <= freeMemory || !canFallbackToDedicated) ?
 | |
|                 CreateBlock(newBlockSize, &newBlockIndex) : VK_ERROR_OUT_OF_DEVICE_MEMORY;
 | |
|             // Allocation of this size failed? Try 1/2, 1/4, 1/8 of m_PreferredBlockSize.
 | |
|             if(!m_ExplicitBlockSize)
 | |
|             {
 | |
|                 while(res < 0 && newBlockSizeShift < NEW_BLOCK_SIZE_SHIFT_MAX)
 | |
|                 {
 | |
|                     const VkDeviceSize smallerNewBlockSize = newBlockSize / 2;
 | |
|                     if(smallerNewBlockSize >= size)
 | |
|                     {
 | |
|                         newBlockSize = smallerNewBlockSize;
 | |
|                         ++newBlockSizeShift;
 | |
|                         res = (newBlockSize <= freeMemory || !canFallbackToDedicated) ?
 | |
|                             CreateBlock(newBlockSize, &newBlockIndex) : VK_ERROR_OUT_OF_DEVICE_MEMORY;
 | |
|                     }
 | |
|                     else
 | |
|                     {
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if(res == VK_SUCCESS)
 | |
|             {
 | |
|                 VmaDeviceMemoryBlock* const pBlock = m_Blocks[newBlockIndex];
 | |
|                 VMA_ASSERT(pBlock->m_pMetadata->GetSize() >= size);
 | |
| 
 | |
|                 res = AllocateFromBlock(
 | |
|                     pBlock,
 | |
|                     currentFrameIndex,
 | |
|                     size,
 | |
|                     alignment,
 | |
|                     allocFlagsCopy,
 | |
|                     createInfo.pUserData,
 | |
|                     suballocType,
 | |
|                     strategy,
 | |
|                     pAllocation);
 | |
|                 if(res == VK_SUCCESS)
 | |
|                 {
 | |
|                     VMA_DEBUG_LOG("    Created new block #%u Size=%llu", pBlock->GetId(), newBlockSize);
 | |
|                     return VK_SUCCESS;
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     // Allocation from new block failed, possibly due to VMA_DEBUG_MARGIN or alignment.
 | |
|                     return VK_ERROR_OUT_OF_DEVICE_MEMORY;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // 3. Try to allocate from existing blocks with making other allocations lost.
 | |
|     if(canMakeOtherLost)
 | |
|     {
 | |
|         uint32_t tryIndex = 0;
 | |
|         for(; tryIndex < VMA_ALLOCATION_TRY_COUNT; ++tryIndex)
 | |
|         {
 | |
|             VmaDeviceMemoryBlock* pBestRequestBlock = VMA_NULL;
 | |
|             VmaAllocationRequest bestRequest = {};
 | |
|             VkDeviceSize bestRequestCost = VK_WHOLE_SIZE;
 | |
| 
 | |
|             // 1. Search existing allocations.
 | |
|             if(strategy == VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT)
 | |
|             {
 | |
|                 // Forward order in m_Blocks - prefer blocks with smallest amount of free space.
 | |
|                 for(size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex )
 | |
|                 {
 | |
|                     VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex];
 | |
|                     VMA_ASSERT(pCurrBlock);
 | |
|                     VmaAllocationRequest currRequest = {};
 | |
|                     if(pCurrBlock->m_pMetadata->CreateAllocationRequest(
 | |
|                         currentFrameIndex,
 | |
|                         m_FrameInUseCount,
 | |
|                         m_BufferImageGranularity,
 | |
|                         size,
 | |
|                         alignment,
 | |
|                         (createInfo.flags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0,
 | |
|                         suballocType,
 | |
|                         canMakeOtherLost,
 | |
|                         strategy,
 | |
|                         &currRequest))
 | |
|                     {
 | |
|                         const VkDeviceSize currRequestCost = currRequest.CalcCost();
 | |
|                         if(pBestRequestBlock == VMA_NULL ||
 | |
|                             currRequestCost < bestRequestCost)
 | |
|                         {
 | |
|                             pBestRequestBlock = pCurrBlock;
 | |
|                             bestRequest = currRequest;
 | |
|                             bestRequestCost = currRequestCost;
 | |
| 
 | |
|                             if(bestRequestCost == 0)
 | |
|                             {
 | |
|                                 break;
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             else // WORST_FIT, FIRST_FIT
 | |
|             {
 | |
|                 // Backward order in m_Blocks - prefer blocks with largest amount of free space.
 | |
|                 for(size_t blockIndex = m_Blocks.size(); blockIndex--; )
 | |
|                 {
 | |
|                     VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex];
 | |
|                     VMA_ASSERT(pCurrBlock);
 | |
|                     VmaAllocationRequest currRequest = {};
 | |
|                     if(pCurrBlock->m_pMetadata->CreateAllocationRequest(
 | |
|                         currentFrameIndex,
 | |
|                         m_FrameInUseCount,
 | |
|                         m_BufferImageGranularity,
 | |
|                         size,
 | |
|                         alignment,
 | |
|                         (createInfo.flags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0,
 | |
|                         suballocType,
 | |
|                         canMakeOtherLost,
 | |
|                         strategy,
 | |
|                         &currRequest))
 | |
|                     {
 | |
|                         const VkDeviceSize currRequestCost = currRequest.CalcCost();
 | |
|                         if(pBestRequestBlock == VMA_NULL ||
 | |
|                             currRequestCost < bestRequestCost ||
 | |
|                             strategy == VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT)
 | |
|                         {
 | |
|                             pBestRequestBlock = pCurrBlock;
 | |
|                             bestRequest = currRequest;
 | |
|                             bestRequestCost = currRequestCost;
 | |
| 
 | |
|                             if(bestRequestCost == 0 ||
 | |
|                                 strategy == VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT)
 | |
|                             {
 | |
|                                 break;
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if(pBestRequestBlock != VMA_NULL)
 | |
|             {
 | |
|                 if(mapped)
 | |
|                 {
 | |
|                     VkResult res = pBestRequestBlock->Map(m_hAllocator, 1, VMA_NULL);
 | |
|                     if(res != VK_SUCCESS)
 | |
|                     {
 | |
|                         return res;
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 if(pBestRequestBlock->m_pMetadata->MakeRequestedAllocationsLost(
 | |
|                     currentFrameIndex,
 | |
|                     m_FrameInUseCount,
 | |
|                     &bestRequest))
 | |
|                 {
 | |
|                     // Allocate from this pBlock.
 | |
|                     *pAllocation = m_hAllocator->m_AllocationObjectAllocator.Allocate();
 | |
|                     (*pAllocation)->Ctor(currentFrameIndex, isUserDataString);
 | |
|                     pBestRequestBlock->m_pMetadata->Alloc(bestRequest, suballocType, size, *pAllocation);
 | |
|                     UpdateHasEmptyBlock();
 | |
|                     (*pAllocation)->InitBlockAllocation(
 | |
|                         pBestRequestBlock,
 | |
|                         bestRequest.offset,
 | |
|                         alignment,
 | |
|                         size,
 | |
|                         m_MemoryTypeIndex,
 | |
|                         suballocType,
 | |
|                         mapped,
 | |
|                         (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0);
 | |
|                     VMA_HEAVY_ASSERT(pBestRequestBlock->Validate());
 | |
|                     VMA_DEBUG_LOG("    Returned from existing block");
 | |
|                     (*pAllocation)->SetUserData(m_hAllocator, createInfo.pUserData);
 | |
|                     m_hAllocator->m_Budget.AddAllocation(m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex), size);
 | |
|                     if(VMA_DEBUG_INITIALIZE_ALLOCATIONS)
 | |
|                     {
 | |
|                         m_hAllocator->FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED);
 | |
|                     }
 | |
|                     if(IsCorruptionDetectionEnabled())
 | |
|                     {
 | |
|                         VkResult res = pBestRequestBlock->WriteMagicValueAroundAllocation(m_hAllocator, bestRequest.offset, size);
 | |
|                         VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to write magic value.");
 | |
|                     }
 | |
|                     return VK_SUCCESS;
 | |
|                 }
 | |
|                 // else: Some allocations must have been touched while we are here. Next try.
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 // Could not find place in any of the blocks - break outer loop.
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         /* Maximum number of tries exceeded - a very unlike event when many other
 | |
|         threads are simultaneously touching allocations making it impossible to make
 | |
|         lost at the same time as we try to allocate. */
 | |
|         if(tryIndex == VMA_ALLOCATION_TRY_COUNT)
 | |
|         {
 | |
|             return VK_ERROR_TOO_MANY_OBJECTS;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return VK_ERROR_OUT_OF_DEVICE_MEMORY;
 | |
| }
 | |
| 
 | |
| void VmaBlockVector::Free(
 | |
|     const VmaAllocation hAllocation)
 | |
| {
 | |
|     VmaDeviceMemoryBlock* pBlockToDelete = VMA_NULL;
 | |
| 
 | |
|     bool budgetExceeded = false;
 | |
|     {
 | |
|         const uint32_t heapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex);
 | |
|         VmaBudget heapBudget = {};
 | |
|         m_hAllocator->GetBudget(&heapBudget, heapIndex, 1);
 | |
|         budgetExceeded = heapBudget.usage >= heapBudget.budget;
 | |
|     }
 | |
| 
 | |
|     // Scope for lock.
 | |
|     {
 | |
|         VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex);
 | |
| 
 | |
|         VmaDeviceMemoryBlock* pBlock = hAllocation->GetBlock();
 | |
| 
 | |
|         if(IsCorruptionDetectionEnabled())
 | |
|         {
 | |
|             VkResult res = pBlock->ValidateMagicValueAroundAllocation(m_hAllocator, hAllocation->GetOffset(), hAllocation->GetSize());
 | |
|             VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to validate magic value.");
 | |
|         }
 | |
| 
 | |
|         if(hAllocation->IsPersistentMap())
 | |
|         {
 | |
|             pBlock->Unmap(m_hAllocator, 1);
 | |
|         }
 | |
| 
 | |
|         pBlock->m_pMetadata->Free(hAllocation);
 | |
|         VMA_HEAVY_ASSERT(pBlock->Validate());
 | |
| 
 | |
|         VMA_DEBUG_LOG("  Freed from MemoryTypeIndex=%u", m_MemoryTypeIndex);
 | |
| 
 | |
|         const bool canDeleteBlock = m_Blocks.size() > m_MinBlockCount;
 | |
|         // pBlock became empty after this deallocation.
 | |
|         if(pBlock->m_pMetadata->IsEmpty())
 | |
|         {
 | |
|             // Already has empty block. We don't want to have two, so delete this one.
 | |
|             if((m_HasEmptyBlock || budgetExceeded) && canDeleteBlock)
 | |
|             {
 | |
|                 pBlockToDelete = pBlock;
 | |
|                 Remove(pBlock);
 | |
|             }
 | |
|             // else: We now have an empty block - leave it.
 | |
|         }
 | |
|         // pBlock didn't become empty, but we have another empty block - find and free that one.
 | |
|         // (This is optional, heuristics.)
 | |
|         else if(m_HasEmptyBlock && canDeleteBlock)
 | |
|         {
 | |
|             VmaDeviceMemoryBlock* pLastBlock = m_Blocks.back();
 | |
|             if(pLastBlock->m_pMetadata->IsEmpty())
 | |
|             {
 | |
|                 pBlockToDelete = pLastBlock;
 | |
|                 m_Blocks.pop_back();
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         UpdateHasEmptyBlock();
 | |
|         IncrementallySortBlocks();
 | |
|     }
 | |
| 
 | |
|     // Destruction of a free block. Deferred until this point, outside of mutex
 | |
|     // lock, for performance reason.
 | |
|     if(pBlockToDelete != VMA_NULL)
 | |
|     {
 | |
|         VMA_DEBUG_LOG("    Deleted empty block");
 | |
|         pBlockToDelete->Destroy(m_hAllocator);
 | |
|         vma_delete(m_hAllocator, pBlockToDelete);
 | |
|     }
 | |
| }
 | |
| 
 | |
| VkDeviceSize VmaBlockVector::CalcMaxBlockSize() const
 | |
| {
 | |
|     VkDeviceSize result = 0;
 | |
|     for(size_t i = m_Blocks.size(); i--; )
 | |
|     {
 | |
|         result = VMA_MAX(result, m_Blocks[i]->m_pMetadata->GetSize());
 | |
|         if(result >= m_PreferredBlockSize)
 | |
|         {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| void VmaBlockVector::Remove(VmaDeviceMemoryBlock* pBlock)
 | |
| {
 | |
|     for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
 | |
|     {
 | |
|         if(m_Blocks[blockIndex] == pBlock)
 | |
|         {
 | |
|             VmaVectorRemove(m_Blocks, blockIndex);
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
|     VMA_ASSERT(0);
 | |
| }
 | |
| 
 | |
| void VmaBlockVector::IncrementallySortBlocks()
 | |
| {
 | |
|     if(m_Algorithm != VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT)
 | |
|     {
 | |
|         // Bubble sort only until first swap.
 | |
|         for(size_t i = 1; i < m_Blocks.size(); ++i)
 | |
|         {
 | |
|             if(m_Blocks[i - 1]->m_pMetadata->GetSumFreeSize() > m_Blocks[i]->m_pMetadata->GetSumFreeSize())
 | |
|             {
 | |
|                 VMA_SWAP(m_Blocks[i - 1], m_Blocks[i]);
 | |
|                 return;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| VkResult VmaBlockVector::AllocateFromBlock(
 | |
|     VmaDeviceMemoryBlock* pBlock,
 | |
|     uint32_t currentFrameIndex,
 | |
|     VkDeviceSize size,
 | |
|     VkDeviceSize alignment,
 | |
|     VmaAllocationCreateFlags allocFlags,
 | |
|     void* pUserData,
 | |
|     VmaSuballocationType suballocType,
 | |
|     uint32_t strategy,
 | |
|     VmaAllocation* pAllocation)
 | |
| {
 | |
|     VMA_ASSERT((allocFlags & VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT) == 0);
 | |
|     const bool isUpperAddress = (allocFlags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0;
 | |
|     const bool mapped = (allocFlags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0;
 | |
|     const bool isUserDataString = (allocFlags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0;
 | |
| 
 | |
|     VmaAllocationRequest currRequest = {};
 | |
|     if(pBlock->m_pMetadata->CreateAllocationRequest(
 | |
|         currentFrameIndex,
 | |
|         m_FrameInUseCount,
 | |
|         m_BufferImageGranularity,
 | |
|         size,
 | |
|         alignment,
 | |
|         isUpperAddress,
 | |
|         suballocType,
 | |
|         false, // canMakeOtherLost
 | |
|         strategy,
 | |
|         &currRequest))
 | |
|     {
 | |
|         // Allocate from pCurrBlock.
 | |
|         VMA_ASSERT(currRequest.itemsToMakeLostCount == 0);
 | |
| 
 | |
|         if(mapped)
 | |
|         {
 | |
|             VkResult res = pBlock->Map(m_hAllocator, 1, VMA_NULL);
 | |
|             if(res != VK_SUCCESS)
 | |
|             {
 | |
|                 return res;
 | |
|             }
 | |
|         }
 | |
|             
 | |
|         *pAllocation = m_hAllocator->m_AllocationObjectAllocator.Allocate();
 | |
|         (*pAllocation)->Ctor(currentFrameIndex, isUserDataString);
 | |
|         pBlock->m_pMetadata->Alloc(currRequest, suballocType, size, *pAllocation);
 | |
|         UpdateHasEmptyBlock();
 | |
|         (*pAllocation)->InitBlockAllocation(
 | |
|             pBlock,
 | |
|             currRequest.offset,
 | |
|             alignment,
 | |
|             size,
 | |
|             m_MemoryTypeIndex,
 | |
|             suballocType,
 | |
|             mapped,
 | |
|             (allocFlags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0);
 | |
|         VMA_HEAVY_ASSERT(pBlock->Validate());
 | |
|         (*pAllocation)->SetUserData(m_hAllocator, pUserData);
 | |
|         m_hAllocator->m_Budget.AddAllocation(m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex), size);
 | |
|         if(VMA_DEBUG_INITIALIZE_ALLOCATIONS)
 | |
|         {
 | |
|             m_hAllocator->FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED);
 | |
|         }
 | |
|         if(IsCorruptionDetectionEnabled())
 | |
|         {
 | |
|             VkResult res = pBlock->WriteMagicValueAroundAllocation(m_hAllocator, currRequest.offset, size);
 | |
|             VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to write magic value.");
 | |
|         }
 | |
|         return VK_SUCCESS;
 | |
|     }
 | |
|     return VK_ERROR_OUT_OF_DEVICE_MEMORY;
 | |
| }
 | |
| 
 | |
| VkResult VmaBlockVector::CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex)
 | |
| {
 | |
|     VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO };
 | |
|     allocInfo.memoryTypeIndex = m_MemoryTypeIndex;
 | |
|     allocInfo.allocationSize = blockSize;
 | |
|     VkDeviceMemory mem = VK_NULL_HANDLE;
 | |
|     VkResult res = m_hAllocator->AllocateVulkanMemory(&allocInfo, &mem);
 | |
|     if(res < 0)
 | |
|     {
 | |
|         return res;
 | |
|     }
 | |
| 
 | |
|     // New VkDeviceMemory successfully created.
 | |
| 
 | |
|     // Create new Allocation for it.
 | |
|     VmaDeviceMemoryBlock* const pBlock = vma_new(m_hAllocator, VmaDeviceMemoryBlock)(m_hAllocator);
 | |
|     pBlock->Init(
 | |
|         m_hAllocator,
 | |
|         m_hParentPool,
 | |
|         m_MemoryTypeIndex,
 | |
|         mem,
 | |
|         allocInfo.allocationSize,
 | |
|         m_NextBlockId++,
 | |
|         m_Algorithm);
 | |
| 
 | |
|     m_Blocks.push_back(pBlock);
 | |
|     if(pNewBlockIndex != VMA_NULL)
 | |
|     {
 | |
|         *pNewBlockIndex = m_Blocks.size() - 1;
 | |
|     }
 | |
| 
 | |
|     return VK_SUCCESS;
 | |
| }
 | |
| 
 | |
| void VmaBlockVector::ApplyDefragmentationMovesCpu(
 | |
|     class VmaBlockVectorDefragmentationContext* pDefragCtx,
 | |
|     const VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves)
 | |
| {
 | |
|     const size_t blockCount = m_Blocks.size();
 | |
|     const bool isNonCoherent = m_hAllocator->IsMemoryTypeNonCoherent(m_MemoryTypeIndex);
 | |
| 
 | |
|     enum BLOCK_FLAG
 | |
|     {
 | |
|         BLOCK_FLAG_USED = 0x00000001,
 | |
|         BLOCK_FLAG_MAPPED_FOR_DEFRAGMENTATION = 0x00000002,
 | |
|     };
 | |
| 
 | |
|     struct BlockInfo
 | |
|     {
 | |
|         uint32_t flags;
 | |
|         void* pMappedData;
 | |
|     };
 | |
|     VmaVector< BlockInfo, VmaStlAllocator<BlockInfo> >
 | |
|         blockInfo(blockCount, BlockInfo(), VmaStlAllocator<BlockInfo>(m_hAllocator->GetAllocationCallbacks()));
 | |
|     memset(blockInfo.data(), 0, blockCount * sizeof(BlockInfo));
 | |
| 
 | |
|     // Go over all moves. Mark blocks that are used with BLOCK_FLAG_USED.
 | |
|     const size_t moveCount = moves.size();
 | |
|     for(size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex)
 | |
|     {
 | |
|         const VmaDefragmentationMove& move = moves[moveIndex];
 | |
|         blockInfo[move.srcBlockIndex].flags |= BLOCK_FLAG_USED;
 | |
|         blockInfo[move.dstBlockIndex].flags |= BLOCK_FLAG_USED;
 | |
|     }
 | |
| 
 | |
|     VMA_ASSERT(pDefragCtx->res == VK_SUCCESS);
 | |
| 
 | |
|     // Go over all blocks. Get mapped pointer or map if necessary.
 | |
|     for(size_t blockIndex = 0; pDefragCtx->res == VK_SUCCESS && blockIndex < blockCount; ++blockIndex)
 | |
|     {
 | |
|         BlockInfo& currBlockInfo = blockInfo[blockIndex];
 | |
|         VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex];
 | |
|         if((currBlockInfo.flags & BLOCK_FLAG_USED) != 0)
 | |
|         {
 | |
|             currBlockInfo.pMappedData = pBlock->GetMappedData();
 | |
|             // It is not originally mapped - map it.
 | |
|             if(currBlockInfo.pMappedData == VMA_NULL)
 | |
|             {
 | |
|                 pDefragCtx->res = pBlock->Map(m_hAllocator, 1, &currBlockInfo.pMappedData);
 | |
|                 if(pDefragCtx->res == VK_SUCCESS)
 | |
|                 {
 | |
|                     currBlockInfo.flags |= BLOCK_FLAG_MAPPED_FOR_DEFRAGMENTATION;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Go over all moves. Do actual data transfer.
 | |
|     if(pDefragCtx->res == VK_SUCCESS)
 | |
|     {
 | |
|         const VkDeviceSize nonCoherentAtomSize = m_hAllocator->m_PhysicalDeviceProperties.limits.nonCoherentAtomSize;
 | |
|         VkMappedMemoryRange memRange = { VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE };
 | |
| 
 | |
|         for(size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex)
 | |
|         {
 | |
|             const VmaDefragmentationMove& move = moves[moveIndex];
 | |
| 
 | |
|             const BlockInfo& srcBlockInfo = blockInfo[move.srcBlockIndex];
 | |
|             const BlockInfo& dstBlockInfo = blockInfo[move.dstBlockIndex];
 | |
| 
 | |
|             VMA_ASSERT(srcBlockInfo.pMappedData && dstBlockInfo.pMappedData);
 | |
| 
 | |
|             // Invalidate source.
 | |
|             if(isNonCoherent)
 | |
|             {
 | |
|                 VmaDeviceMemoryBlock* const pSrcBlock = m_Blocks[move.srcBlockIndex];
 | |
|                 memRange.memory = pSrcBlock->GetDeviceMemory();
 | |
|                 memRange.offset = VmaAlignDown(move.srcOffset, nonCoherentAtomSize);
 | |
|                 memRange.size = VMA_MIN(
 | |
|                     VmaAlignUp(move.size + (move.srcOffset - memRange.offset), nonCoherentAtomSize),
 | |
|                     pSrcBlock->m_pMetadata->GetSize() - memRange.offset);
 | |
|                 (*m_hAllocator->GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hAllocator->m_hDevice, 1, &memRange);
 | |
|             }
 | |
| 
 | |
|             // THE PLACE WHERE ACTUAL DATA COPY HAPPENS.
 | |
|             memmove(
 | |
|                 reinterpret_cast<char*>(dstBlockInfo.pMappedData) + move.dstOffset,
 | |
|                 reinterpret_cast<char*>(srcBlockInfo.pMappedData) + move.srcOffset,
 | |
|                 static_cast<size_t>(move.size));
 | |
| 
 | |
|             if(IsCorruptionDetectionEnabled())
 | |
|             {
 | |
|                 VmaWriteMagicValue(dstBlockInfo.pMappedData, move.dstOffset - VMA_DEBUG_MARGIN);
 | |
|                 VmaWriteMagicValue(dstBlockInfo.pMappedData, move.dstOffset + move.size);
 | |
|             }
 | |
| 
 | |
|             // Flush destination.
 | |
|             if(isNonCoherent)
 | |
|             {
 | |
|                 VmaDeviceMemoryBlock* const pDstBlock = m_Blocks[move.dstBlockIndex];
 | |
|                 memRange.memory = pDstBlock->GetDeviceMemory();
 | |
|                 memRange.offset = VmaAlignDown(move.dstOffset, nonCoherentAtomSize);
 | |
|                 memRange.size = VMA_MIN(
 | |
|                     VmaAlignUp(move.size + (move.dstOffset - memRange.offset), nonCoherentAtomSize),
 | |
|                     pDstBlock->m_pMetadata->GetSize() - memRange.offset);
 | |
|                 (*m_hAllocator->GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hAllocator->m_hDevice, 1, &memRange);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Go over all blocks in reverse order. Unmap those that were mapped just for defragmentation.
 | |
|     // Regardless of pCtx->res == VK_SUCCESS.
 | |
|     for(size_t blockIndex = blockCount; blockIndex--; )
 | |
|     {
 | |
|         const BlockInfo& currBlockInfo = blockInfo[blockIndex];
 | |
|         if((currBlockInfo.flags & BLOCK_FLAG_MAPPED_FOR_DEFRAGMENTATION) != 0)
 | |
|         {
 | |
|             VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex];
 | |
|             pBlock->Unmap(m_hAllocator, 1);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaBlockVector::ApplyDefragmentationMovesGpu(
 | |
|     class VmaBlockVectorDefragmentationContext* pDefragCtx,
 | |
|     const VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves,
 | |
|     VkCommandBuffer commandBuffer)
 | |
| {
 | |
|     const size_t blockCount = m_Blocks.size();
 | |
| 
 | |
|     pDefragCtx->blockContexts.resize(blockCount);
 | |
|     memset(pDefragCtx->blockContexts.data(), 0, blockCount * sizeof(VmaBlockDefragmentationContext));
 | |
| 
 | |
|     // Go over all moves. Mark blocks that are used with BLOCK_FLAG_USED.
 | |
|     const size_t moveCount = moves.size();
 | |
|     for(size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex)
 | |
|     {
 | |
|         const VmaDefragmentationMove& move = moves[moveIndex];
 | |
|         pDefragCtx->blockContexts[move.srcBlockIndex].flags |= VmaBlockDefragmentationContext::BLOCK_FLAG_USED;
 | |
|         pDefragCtx->blockContexts[move.dstBlockIndex].flags |= VmaBlockDefragmentationContext::BLOCK_FLAG_USED;
 | |
|     }
 | |
| 
 | |
|     VMA_ASSERT(pDefragCtx->res == VK_SUCCESS);
 | |
| 
 | |
|     // Go over all blocks. Create and bind buffer for whole block if necessary.
 | |
|     {
 | |
|         VkBufferCreateInfo bufCreateInfo;
 | |
|         VmaFillGpuDefragmentationBufferCreateInfo(bufCreateInfo);
 | |
| 
 | |
|         for(size_t blockIndex = 0; pDefragCtx->res == VK_SUCCESS && blockIndex < blockCount; ++blockIndex)
 | |
|         {
 | |
|             VmaBlockDefragmentationContext& currBlockCtx = pDefragCtx->blockContexts[blockIndex];
 | |
|             VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex];
 | |
|             if((currBlockCtx.flags & VmaBlockDefragmentationContext::BLOCK_FLAG_USED) != 0)
 | |
|             {
 | |
|                 bufCreateInfo.size = pBlock->m_pMetadata->GetSize();
 | |
|                 pDefragCtx->res = (*m_hAllocator->GetVulkanFunctions().vkCreateBuffer)(
 | |
|                     m_hAllocator->m_hDevice, &bufCreateInfo, m_hAllocator->GetAllocationCallbacks(), &currBlockCtx.hBuffer);
 | |
|                 if(pDefragCtx->res == VK_SUCCESS)
 | |
|                 {
 | |
|                     pDefragCtx->res = (*m_hAllocator->GetVulkanFunctions().vkBindBufferMemory)(
 | |
|                         m_hAllocator->m_hDevice, currBlockCtx.hBuffer, pBlock->GetDeviceMemory(), 0);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Go over all moves. Post data transfer commands to command buffer.
 | |
|     if(pDefragCtx->res == VK_SUCCESS)
 | |
|     {
 | |
|         for(size_t moveIndex = 0; moveIndex < moveCount; ++moveIndex)
 | |
|         {
 | |
|             const VmaDefragmentationMove& move = moves[moveIndex];
 | |
| 
 | |
|             const VmaBlockDefragmentationContext& srcBlockCtx = pDefragCtx->blockContexts[move.srcBlockIndex];
 | |
|             const VmaBlockDefragmentationContext& dstBlockCtx = pDefragCtx->blockContexts[move.dstBlockIndex];
 | |
| 
 | |
|             VMA_ASSERT(srcBlockCtx.hBuffer && dstBlockCtx.hBuffer);
 | |
| 
 | |
|             VkBufferCopy region = {
 | |
|                 move.srcOffset,
 | |
|                 move.dstOffset,
 | |
|                 move.size };
 | |
|             (*m_hAllocator->GetVulkanFunctions().vkCmdCopyBuffer)(
 | |
|                 commandBuffer, srcBlockCtx.hBuffer, dstBlockCtx.hBuffer, 1, ®ion);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Save buffers to defrag context for later destruction.
 | |
|     if(pDefragCtx->res == VK_SUCCESS && moveCount > 0)
 | |
|     {
 | |
|         pDefragCtx->res = VK_NOT_READY;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaBlockVector::FreeEmptyBlocks(VmaDefragmentationStats* pDefragmentationStats)
 | |
| {
 | |
|     for(size_t blockIndex = m_Blocks.size(); blockIndex--; )
 | |
|     {
 | |
|         VmaDeviceMemoryBlock* pBlock = m_Blocks[blockIndex];
 | |
|         if(pBlock->m_pMetadata->IsEmpty())
 | |
|         {
 | |
|             if(m_Blocks.size() > m_MinBlockCount)
 | |
|             {
 | |
|                 if(pDefragmentationStats != VMA_NULL)
 | |
|                 {
 | |
|                     ++pDefragmentationStats->deviceMemoryBlocksFreed;
 | |
|                     pDefragmentationStats->bytesFreed += pBlock->m_pMetadata->GetSize();
 | |
|                 }
 | |
| 
 | |
|                 VmaVectorRemove(m_Blocks, blockIndex);
 | |
|                 pBlock->Destroy(m_hAllocator);
 | |
|                 vma_delete(m_hAllocator, pBlock);
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     UpdateHasEmptyBlock();
 | |
| }
 | |
| 
 | |
| void VmaBlockVector::UpdateHasEmptyBlock()
 | |
| {
 | |
|     m_HasEmptyBlock = false;
 | |
|     for(size_t index = 0, count = m_Blocks.size(); index < count; ++index)
 | |
|     {
 | |
|         VmaDeviceMemoryBlock* const pBlock = m_Blocks[index];
 | |
|         if(pBlock->m_pMetadata->IsEmpty())
 | |
|         {
 | |
|             m_HasEmptyBlock = true;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
| 
 | |
| void VmaBlockVector::PrintDetailedMap(class VmaJsonWriter& json)
 | |
| {
 | |
|     VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);
 | |
| 
 | |
|     json.BeginObject();
 | |
| 
 | |
|     if(IsCustomPool())
 | |
|     {
 | |
|         const char* poolName = m_hParentPool->GetName();
 | |
|         if(poolName != VMA_NULL && poolName[0] != '\0')
 | |
|         {
 | |
|             json.WriteString("Name");
 | |
|             json.WriteString(poolName);
 | |
|         }
 | |
| 
 | |
|         json.WriteString("MemoryTypeIndex");
 | |
|         json.WriteNumber(m_MemoryTypeIndex);
 | |
| 
 | |
|         json.WriteString("BlockSize");
 | |
|         json.WriteNumber(m_PreferredBlockSize);
 | |
| 
 | |
|         json.WriteString("BlockCount");
 | |
|         json.BeginObject(true);
 | |
|         if(m_MinBlockCount > 0)
 | |
|         {
 | |
|             json.WriteString("Min");
 | |
|             json.WriteNumber((uint64_t)m_MinBlockCount);
 | |
|         }
 | |
|         if(m_MaxBlockCount < SIZE_MAX)
 | |
|         {
 | |
|             json.WriteString("Max");
 | |
|             json.WriteNumber((uint64_t)m_MaxBlockCount);
 | |
|         }
 | |
|         json.WriteString("Cur");
 | |
|         json.WriteNumber((uint64_t)m_Blocks.size());
 | |
|         json.EndObject();
 | |
| 
 | |
|         if(m_FrameInUseCount > 0)
 | |
|         {
 | |
|             json.WriteString("FrameInUseCount");
 | |
|             json.WriteNumber(m_FrameInUseCount);
 | |
|         }
 | |
| 
 | |
|         if(m_Algorithm != 0)
 | |
|         {
 | |
|             json.WriteString("Algorithm");
 | |
|             json.WriteString(VmaAlgorithmToStr(m_Algorithm));
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         json.WriteString("PreferredBlockSize");
 | |
|         json.WriteNumber(m_PreferredBlockSize);
 | |
|     }
 | |
| 
 | |
|     json.WriteString("Blocks");
 | |
|     json.BeginObject();
 | |
|     for(size_t i = 0; i < m_Blocks.size(); ++i)
 | |
|     {
 | |
|         json.BeginString();
 | |
|         json.ContinueString(m_Blocks[i]->GetId());
 | |
|         json.EndString();
 | |
| 
 | |
|         m_Blocks[i]->m_pMetadata->PrintDetailedMap(json);
 | |
|     }
 | |
|     json.EndObject();
 | |
| 
 | |
|     json.EndObject();
 | |
| }
 | |
| 
 | |
| #endif // #if VMA_STATS_STRING_ENABLED
 | |
| 
 | |
| void VmaBlockVector::Defragment(
 | |
|     class VmaBlockVectorDefragmentationContext* pCtx,
 | |
|     VmaDefragmentationStats* pStats,
 | |
|     VkDeviceSize& maxCpuBytesToMove, uint32_t& maxCpuAllocationsToMove,
 | |
|     VkDeviceSize& maxGpuBytesToMove, uint32_t& maxGpuAllocationsToMove,
 | |
|     VkCommandBuffer commandBuffer)
 | |
| {
 | |
|     pCtx->res = VK_SUCCESS;
 | |
|     
 | |
|     const VkMemoryPropertyFlags memPropFlags =
 | |
|         m_hAllocator->m_MemProps.memoryTypes[m_MemoryTypeIndex].propertyFlags;
 | |
|     const bool isHostVisible = (memPropFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0;
 | |
| 
 | |
|     const bool canDefragmentOnCpu = maxCpuBytesToMove > 0 && maxCpuAllocationsToMove > 0 &&
 | |
|         isHostVisible;
 | |
|     const bool canDefragmentOnGpu = maxGpuBytesToMove > 0 && maxGpuAllocationsToMove > 0 &&
 | |
|         !IsCorruptionDetectionEnabled() &&
 | |
|         ((1u << m_MemoryTypeIndex) & m_hAllocator->GetGpuDefragmentationMemoryTypeBits()) != 0;
 | |
| 
 | |
|     // There are options to defragment this memory type.
 | |
|     if(canDefragmentOnCpu || canDefragmentOnGpu)
 | |
|     {
 | |
|         bool defragmentOnGpu;
 | |
|         // There is only one option to defragment this memory type.
 | |
|         if(canDefragmentOnGpu != canDefragmentOnCpu)
 | |
|         {
 | |
|             defragmentOnGpu = canDefragmentOnGpu;
 | |
|         }
 | |
|         // Both options are available: Heuristics to choose the best one.
 | |
|         else
 | |
|         {
 | |
|             defragmentOnGpu = (memPropFlags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) != 0 ||
 | |
|                 m_hAllocator->IsIntegratedGpu();
 | |
|         }
 | |
| 
 | |
|         bool overlappingMoveSupported = !defragmentOnGpu;
 | |
| 
 | |
|         if(m_hAllocator->m_UseMutex)
 | |
|         {
 | |
|             m_Mutex.LockWrite();
 | |
|             pCtx->mutexLocked = true;
 | |
|         }
 | |
| 
 | |
|         pCtx->Begin(overlappingMoveSupported);
 | |
| 
 | |
|         // Defragment.
 | |
| 
 | |
|         const VkDeviceSize maxBytesToMove = defragmentOnGpu ? maxGpuBytesToMove : maxCpuBytesToMove;
 | |
|         const uint32_t maxAllocationsToMove = defragmentOnGpu ? maxGpuAllocationsToMove : maxCpuAllocationsToMove;
 | |
|         VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> > moves = 
 | |
|             VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >(VmaStlAllocator<VmaDefragmentationMove>(m_hAllocator->GetAllocationCallbacks()));
 | |
|         pCtx->res = pCtx->GetAlgorithm()->Defragment(moves, maxBytesToMove, maxAllocationsToMove);
 | |
| 
 | |
|         // Accumulate statistics.
 | |
|         if(pStats != VMA_NULL)
 | |
|         {
 | |
|             const VkDeviceSize bytesMoved = pCtx->GetAlgorithm()->GetBytesMoved();
 | |
|             const uint32_t allocationsMoved = pCtx->GetAlgorithm()->GetAllocationsMoved();
 | |
|             pStats->bytesMoved += bytesMoved;
 | |
|             pStats->allocationsMoved += allocationsMoved;
 | |
|             VMA_ASSERT(bytesMoved <= maxBytesToMove);
 | |
|             VMA_ASSERT(allocationsMoved <= maxAllocationsToMove);
 | |
|             if(defragmentOnGpu)
 | |
|             {
 | |
|                 maxGpuBytesToMove -= bytesMoved;
 | |
|                 maxGpuAllocationsToMove -= allocationsMoved;
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 maxCpuBytesToMove -= bytesMoved;
 | |
|                 maxCpuAllocationsToMove -= allocationsMoved;
 | |
|             }
 | |
|         }
 | |
|     
 | |
|         if(pCtx->res >= VK_SUCCESS)
 | |
|         {
 | |
|             if(defragmentOnGpu)
 | |
|             {
 | |
|                 ApplyDefragmentationMovesGpu(pCtx, moves, commandBuffer);
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 ApplyDefragmentationMovesCpu(pCtx, moves);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaBlockVector::DefragmentationEnd(
 | |
|     class VmaBlockVectorDefragmentationContext* pCtx,
 | |
|     VmaDefragmentationStats* pStats)
 | |
| {
 | |
|     // Destroy buffers.
 | |
|     for(size_t blockIndex = pCtx->blockContexts.size(); blockIndex--; )
 | |
|     {
 | |
|         VmaBlockDefragmentationContext& blockCtx = pCtx->blockContexts[blockIndex];
 | |
|         if(blockCtx.hBuffer)
 | |
|         {
 | |
|             (*m_hAllocator->GetVulkanFunctions().vkDestroyBuffer)(
 | |
|                 m_hAllocator->m_hDevice, blockCtx.hBuffer, m_hAllocator->GetAllocationCallbacks());
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if(pCtx->res >= VK_SUCCESS)
 | |
|     {
 | |
|         FreeEmptyBlocks(pStats);
 | |
|     }
 | |
| 
 | |
|     if(pCtx->mutexLocked)
 | |
|     {
 | |
|         VMA_ASSERT(m_hAllocator->m_UseMutex);
 | |
|         m_Mutex.UnlockWrite();
 | |
|     }
 | |
| }
 | |
| 
 | |
| size_t VmaBlockVector::CalcAllocationCount() const
 | |
| {
 | |
|     size_t result = 0;
 | |
|     for(size_t i = 0; i < m_Blocks.size(); ++i)
 | |
|     {
 | |
|         result += m_Blocks[i]->m_pMetadata->GetAllocationCount();
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| bool VmaBlockVector::IsBufferImageGranularityConflictPossible() const
 | |
| {
 | |
|     if(m_BufferImageGranularity == 1)
 | |
|     {
 | |
|         return false;
 | |
|     }
 | |
|     VmaSuballocationType lastSuballocType = VMA_SUBALLOCATION_TYPE_FREE;
 | |
|     for(size_t i = 0, count = m_Blocks.size(); i < count; ++i)
 | |
|     {
 | |
|         VmaDeviceMemoryBlock* const pBlock = m_Blocks[i];
 | |
|         VMA_ASSERT(m_Algorithm == 0);
 | |
|         VmaBlockMetadata_Generic* const pMetadata = (VmaBlockMetadata_Generic*)pBlock->m_pMetadata;
 | |
|         if(pMetadata->IsBufferImageGranularityConflictPossible(m_BufferImageGranularity, lastSuballocType))
 | |
|         {
 | |
|             return true;
 | |
|         }
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| void VmaBlockVector::MakePoolAllocationsLost(
 | |
|     uint32_t currentFrameIndex,
 | |
|     size_t* pLostAllocationCount)
 | |
| {
 | |
|     VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex);
 | |
|     size_t lostAllocationCount = 0;
 | |
|     for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
 | |
|     {
 | |
|         VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];
 | |
|         VMA_ASSERT(pBlock);
 | |
|         lostAllocationCount += pBlock->m_pMetadata->MakeAllocationsLost(currentFrameIndex, m_FrameInUseCount);
 | |
|     }
 | |
|     if(pLostAllocationCount != VMA_NULL)
 | |
|     {
 | |
|         *pLostAllocationCount = lostAllocationCount;
 | |
|     }
 | |
| }
 | |
| 
 | |
| VkResult VmaBlockVector::CheckCorruption()
 | |
| {
 | |
|     if(!IsCorruptionDetectionEnabled())
 | |
|     {
 | |
|         return VK_ERROR_FEATURE_NOT_PRESENT;
 | |
|     }
 | |
| 
 | |
|     VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);
 | |
|     for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
 | |
|     {
 | |
|         VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];
 | |
|         VMA_ASSERT(pBlock);
 | |
|         VkResult res = pBlock->CheckCorruption(m_hAllocator);
 | |
|         if(res != VK_SUCCESS)
 | |
|         {
 | |
|             return res;
 | |
|         }
 | |
|     }
 | |
|     return VK_SUCCESS;
 | |
| }
 | |
| 
 | |
| void VmaBlockVector::AddStats(VmaStats* pStats)
 | |
| {
 | |
|     const uint32_t memTypeIndex = m_MemoryTypeIndex;
 | |
|     const uint32_t memHeapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(memTypeIndex);
 | |
| 
 | |
|     VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);
 | |
| 
 | |
|     for(uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
 | |
|     {
 | |
|         const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];
 | |
|         VMA_ASSERT(pBlock);
 | |
|         VMA_HEAVY_ASSERT(pBlock->Validate());
 | |
|         VmaStatInfo allocationStatInfo;
 | |
|         pBlock->m_pMetadata->CalcAllocationStatInfo(allocationStatInfo);
 | |
|         VmaAddStatInfo(pStats->total, allocationStatInfo);
 | |
|         VmaAddStatInfo(pStats->memoryType[memTypeIndex], allocationStatInfo);
 | |
|         VmaAddStatInfo(pStats->memoryHeap[memHeapIndex], allocationStatInfo);
 | |
|     }
 | |
| }
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| // VmaDefragmentationAlgorithm_Generic members definition
 | |
| 
 | |
| VmaDefragmentationAlgorithm_Generic::VmaDefragmentationAlgorithm_Generic(
 | |
|     VmaAllocator hAllocator,
 | |
|     VmaBlockVector* pBlockVector,
 | |
|     uint32_t currentFrameIndex,
 | |
|     bool overlappingMoveSupported) :
 | |
|     VmaDefragmentationAlgorithm(hAllocator, pBlockVector, currentFrameIndex),
 | |
|     m_AllocationCount(0),
 | |
|     m_AllAllocations(false),
 | |
|     m_BytesMoved(0),
 | |
|     m_AllocationsMoved(0),
 | |
|     m_Blocks(VmaStlAllocator<BlockInfo*>(hAllocator->GetAllocationCallbacks()))
 | |
| {
 | |
|     // Create block info for each block.
 | |
|     const size_t blockCount = m_pBlockVector->m_Blocks.size();
 | |
|     for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)
 | |
|     {
 | |
|         BlockInfo* pBlockInfo = vma_new(m_hAllocator, BlockInfo)(m_hAllocator->GetAllocationCallbacks());
 | |
|         pBlockInfo->m_OriginalBlockIndex = blockIndex;
 | |
|         pBlockInfo->m_pBlock = m_pBlockVector->m_Blocks[blockIndex];
 | |
|         m_Blocks.push_back(pBlockInfo);
 | |
|     }
 | |
| 
 | |
|     // Sort them by m_pBlock pointer value.
 | |
|     VMA_SORT(m_Blocks.begin(), m_Blocks.end(), BlockPointerLess());
 | |
| }
 | |
| 
 | |
| VmaDefragmentationAlgorithm_Generic::~VmaDefragmentationAlgorithm_Generic()
 | |
| {
 | |
|     for(size_t i = m_Blocks.size(); i--; )
 | |
|     {
 | |
|         vma_delete(m_hAllocator, m_Blocks[i]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaDefragmentationAlgorithm_Generic::AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged)
 | |
| {
 | |
|     // Now as we are inside VmaBlockVector::m_Mutex, we can make final check if this allocation was not lost.
 | |
|     if(hAlloc->GetLastUseFrameIndex() != VMA_FRAME_INDEX_LOST)
 | |
|     {
 | |
|         VmaDeviceMemoryBlock* pBlock = hAlloc->GetBlock();
 | |
|         BlockInfoVector::iterator it = VmaBinaryFindFirstNotLess(m_Blocks.begin(), m_Blocks.end(), pBlock, BlockPointerLess());
 | |
|         if(it != m_Blocks.end() && (*it)->m_pBlock == pBlock)
 | |
|         {
 | |
|             AllocationInfo allocInfo = AllocationInfo(hAlloc, pChanged);
 | |
|             (*it)->m_Allocations.push_back(allocInfo);
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             VMA_ASSERT(0);
 | |
|         }
 | |
| 
 | |
|         ++m_AllocationCount;
 | |
|     }
 | |
| }
 | |
| 
 | |
| VkResult VmaDefragmentationAlgorithm_Generic::DefragmentRound(
 | |
|     VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves,
 | |
|     VkDeviceSize maxBytesToMove,
 | |
|     uint32_t maxAllocationsToMove)
 | |
| {
 | |
|     if(m_Blocks.empty())
 | |
|     {
 | |
|         return VK_SUCCESS;
 | |
|     }
 | |
| 
 | |
|     // This is a choice based on research.
 | |
|     // Option 1:
 | |
|     uint32_t strategy = VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT;
 | |
|     // Option 2:
 | |
|     //uint32_t strategy = VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT;
 | |
|     // Option 3:
 | |
|     //uint32_t strategy = VMA_ALLOCATION_CREATE_STRATEGY_MIN_FRAGMENTATION_BIT;
 | |
| 
 | |
|     size_t srcBlockMinIndex = 0;
 | |
|     // When FAST_ALGORITHM, move allocations from only last out of blocks that contain non-movable allocations.
 | |
|     /*
 | |
|     if(m_AlgorithmFlags & VMA_DEFRAGMENTATION_FAST_ALGORITHM_BIT)
 | |
|     {
 | |
|         const size_t blocksWithNonMovableCount = CalcBlocksWithNonMovableCount();
 | |
|         if(blocksWithNonMovableCount > 0)
 | |
|         {
 | |
|             srcBlockMinIndex = blocksWithNonMovableCount - 1;
 | |
|         }
 | |
|     }
 | |
|     */
 | |
| 
 | |
|     size_t srcBlockIndex = m_Blocks.size() - 1;
 | |
|     size_t srcAllocIndex = SIZE_MAX;
 | |
|     for(;;)
 | |
|     {
 | |
|         // 1. Find next allocation to move.
 | |
|         // 1.1. Start from last to first m_Blocks - they are sorted from most "destination" to most "source".
 | |
|         // 1.2. Then start from last to first m_Allocations.
 | |
|         while(srcAllocIndex >= m_Blocks[srcBlockIndex]->m_Allocations.size())
 | |
|         {
 | |
|             if(m_Blocks[srcBlockIndex]->m_Allocations.empty())
 | |
|             {
 | |
|                 // Finished: no more allocations to process.
 | |
|                 if(srcBlockIndex == srcBlockMinIndex)
 | |
|                 {
 | |
|                     return VK_SUCCESS;
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     --srcBlockIndex;
 | |
|                     srcAllocIndex = SIZE_MAX;
 | |
|                 }
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 srcAllocIndex = m_Blocks[srcBlockIndex]->m_Allocations.size() - 1;
 | |
|             }
 | |
|         }
 | |
|         
 | |
|         BlockInfo* pSrcBlockInfo = m_Blocks[srcBlockIndex];
 | |
|         AllocationInfo& allocInfo = pSrcBlockInfo->m_Allocations[srcAllocIndex];
 | |
| 
 | |
|         const VkDeviceSize size = allocInfo.m_hAllocation->GetSize();
 | |
|         const VkDeviceSize srcOffset = allocInfo.m_hAllocation->GetOffset();
 | |
|         const VkDeviceSize alignment = allocInfo.m_hAllocation->GetAlignment();
 | |
|         const VmaSuballocationType suballocType = allocInfo.m_hAllocation->GetSuballocationType();
 | |
| 
 | |
|         // 2. Try to find new place for this allocation in preceding or current block.
 | |
|         for(size_t dstBlockIndex = 0; dstBlockIndex <= srcBlockIndex; ++dstBlockIndex)
 | |
|         {
 | |
|             BlockInfo* pDstBlockInfo = m_Blocks[dstBlockIndex];
 | |
|             VmaAllocationRequest dstAllocRequest;
 | |
|             if(pDstBlockInfo->m_pBlock->m_pMetadata->CreateAllocationRequest(
 | |
|                 m_CurrentFrameIndex,
 | |
|                 m_pBlockVector->GetFrameInUseCount(),
 | |
|                 m_pBlockVector->GetBufferImageGranularity(),
 | |
|                 size,
 | |
|                 alignment,
 | |
|                 false, // upperAddress
 | |
|                 suballocType,
 | |
|                 false, // canMakeOtherLost
 | |
|                 strategy,
 | |
|                 &dstAllocRequest) &&
 | |
|             MoveMakesSense(
 | |
|                 dstBlockIndex, dstAllocRequest.offset, srcBlockIndex, srcOffset))
 | |
|             {
 | |
|                 VMA_ASSERT(dstAllocRequest.itemsToMakeLostCount == 0);
 | |
| 
 | |
|                 // Reached limit on number of allocations or bytes to move.
 | |
|                 if((m_AllocationsMoved + 1 > maxAllocationsToMove) ||
 | |
|                     (m_BytesMoved + size > maxBytesToMove))
 | |
|                 {
 | |
|                     return VK_SUCCESS;
 | |
|                 }
 | |
| 
 | |
|                 VmaDefragmentationMove move;
 | |
|                 move.srcBlockIndex = pSrcBlockInfo->m_OriginalBlockIndex;
 | |
|                 move.dstBlockIndex = pDstBlockInfo->m_OriginalBlockIndex;
 | |
|                 move.srcOffset = srcOffset;
 | |
|                 move.dstOffset = dstAllocRequest.offset;
 | |
|                 move.size = size;
 | |
|                 moves.push_back(move);
 | |
| 
 | |
|                 pDstBlockInfo->m_pBlock->m_pMetadata->Alloc(
 | |
|                     dstAllocRequest,
 | |
|                     suballocType,
 | |
|                     size,
 | |
|                     allocInfo.m_hAllocation);
 | |
|                 pSrcBlockInfo->m_pBlock->m_pMetadata->FreeAtOffset(srcOffset);
 | |
|                 
 | |
|                 allocInfo.m_hAllocation->ChangeBlockAllocation(m_hAllocator, pDstBlockInfo->m_pBlock, dstAllocRequest.offset);
 | |
| 
 | |
|                 if(allocInfo.m_pChanged != VMA_NULL)
 | |
|                 {
 | |
|                     *allocInfo.m_pChanged = VK_TRUE;
 | |
|                 }
 | |
| 
 | |
|                 ++m_AllocationsMoved;
 | |
|                 m_BytesMoved += size;
 | |
| 
 | |
|                 VmaVectorRemove(pSrcBlockInfo->m_Allocations, srcAllocIndex);
 | |
| 
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // If not processed, this allocInfo remains in pBlockInfo->m_Allocations for next round.
 | |
| 
 | |
|         if(srcAllocIndex > 0)
 | |
|         {
 | |
|             --srcAllocIndex;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             if(srcBlockIndex > 0)
 | |
|             {
 | |
|                 --srcBlockIndex;
 | |
|                 srcAllocIndex = SIZE_MAX;
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 return VK_SUCCESS;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| size_t VmaDefragmentationAlgorithm_Generic::CalcBlocksWithNonMovableCount() const
 | |
| {
 | |
|     size_t result = 0;
 | |
|     for(size_t i = 0; i < m_Blocks.size(); ++i)
 | |
|     {
 | |
|         if(m_Blocks[i]->m_HasNonMovableAllocations)
 | |
|         {
 | |
|             ++result;
 | |
|         }
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| VkResult VmaDefragmentationAlgorithm_Generic::Defragment(
 | |
|     VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves,
 | |
|     VkDeviceSize maxBytesToMove,
 | |
|     uint32_t maxAllocationsToMove)
 | |
| {
 | |
|     if(!m_AllAllocations && m_AllocationCount == 0)
 | |
|     {
 | |
|         return VK_SUCCESS;
 | |
|     }
 | |
| 
 | |
|     const size_t blockCount = m_Blocks.size();
 | |
|     for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)
 | |
|     {
 | |
|         BlockInfo* pBlockInfo = m_Blocks[blockIndex];
 | |
| 
 | |
|         if(m_AllAllocations)
 | |
|         {
 | |
|             VmaBlockMetadata_Generic* pMetadata = (VmaBlockMetadata_Generic*)pBlockInfo->m_pBlock->m_pMetadata;
 | |
|             for(VmaSuballocationList::const_iterator it = pMetadata->m_Suballocations.begin();
 | |
|                 it != pMetadata->m_Suballocations.end();
 | |
|                 ++it)
 | |
|             {
 | |
|                 if(it->type != VMA_SUBALLOCATION_TYPE_FREE)
 | |
|                 {
 | |
|                     AllocationInfo allocInfo = AllocationInfo(it->hAllocation, VMA_NULL);
 | |
|                     pBlockInfo->m_Allocations.push_back(allocInfo);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         pBlockInfo->CalcHasNonMovableAllocations();
 | |
|         
 | |
|         // This is a choice based on research.
 | |
|         // Option 1:
 | |
|         pBlockInfo->SortAllocationsByOffsetDescending();
 | |
|         // Option 2:
 | |
|         //pBlockInfo->SortAllocationsBySizeDescending();
 | |
|     }
 | |
| 
 | |
|     // Sort m_Blocks this time by the main criterium, from most "destination" to most "source" blocks.
 | |
|     VMA_SORT(m_Blocks.begin(), m_Blocks.end(), BlockInfoCompareMoveDestination());
 | |
| 
 | |
|     // This is a choice based on research.
 | |
|     const uint32_t roundCount = 2;
 | |
| 
 | |
|     // Execute defragmentation rounds (the main part).
 | |
|     VkResult result = VK_SUCCESS;
 | |
|     for(uint32_t round = 0; (round < roundCount) && (result == VK_SUCCESS); ++round)
 | |
|     {
 | |
|         result = DefragmentRound(moves, maxBytesToMove, maxAllocationsToMove);
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| bool VmaDefragmentationAlgorithm_Generic::MoveMakesSense(
 | |
|         size_t dstBlockIndex, VkDeviceSize dstOffset,
 | |
|         size_t srcBlockIndex, VkDeviceSize srcOffset)
 | |
| {
 | |
|     if(dstBlockIndex < srcBlockIndex)
 | |
|     {
 | |
|         return true;
 | |
|     }
 | |
|     if(dstBlockIndex > srcBlockIndex)
 | |
|     {
 | |
|         return false;
 | |
|     }
 | |
|     if(dstOffset < srcOffset)
 | |
|     {
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| // VmaDefragmentationAlgorithm_Fast
 | |
| 
 | |
| VmaDefragmentationAlgorithm_Fast::VmaDefragmentationAlgorithm_Fast(
 | |
|     VmaAllocator hAllocator,
 | |
|     VmaBlockVector* pBlockVector,
 | |
|     uint32_t currentFrameIndex,
 | |
|     bool overlappingMoveSupported) :
 | |
|     VmaDefragmentationAlgorithm(hAllocator, pBlockVector, currentFrameIndex),
 | |
|     m_OverlappingMoveSupported(overlappingMoveSupported),
 | |
|     m_AllocationCount(0),
 | |
|     m_AllAllocations(false),
 | |
|     m_BytesMoved(0),
 | |
|     m_AllocationsMoved(0),
 | |
|     m_BlockInfos(VmaStlAllocator<BlockInfo>(hAllocator->GetAllocationCallbacks()))
 | |
| {
 | |
|     VMA_ASSERT(VMA_DEBUG_MARGIN == 0);
 | |
| 
 | |
| }
 | |
| 
 | |
| VmaDefragmentationAlgorithm_Fast::~VmaDefragmentationAlgorithm_Fast()
 | |
| {
 | |
| }
 | |
| 
 | |
| VkResult VmaDefragmentationAlgorithm_Fast::Defragment(
 | |
|     VmaVector< VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove> >& moves,
 | |
|     VkDeviceSize maxBytesToMove,
 | |
|     uint32_t maxAllocationsToMove)
 | |
| {
 | |
|     VMA_ASSERT(m_AllAllocations || m_pBlockVector->CalcAllocationCount() == m_AllocationCount);
 | |
| 
 | |
|     const size_t blockCount = m_pBlockVector->GetBlockCount();
 | |
|     if(blockCount == 0 || maxBytesToMove == 0 || maxAllocationsToMove == 0)
 | |
|     {
 | |
|         return VK_SUCCESS;
 | |
|     }
 | |
| 
 | |
|     PreprocessMetadata();
 | |
| 
 | |
|     // Sort blocks in order from most destination.
 | |
| 
 | |
|     m_BlockInfos.resize(blockCount);
 | |
|     for(size_t i = 0; i < blockCount; ++i)
 | |
|     {
 | |
|         m_BlockInfos[i].origBlockIndex = i;
 | |
|     }
 | |
| 
 | |
|     VMA_SORT(m_BlockInfos.begin(), m_BlockInfos.end(), [this](const BlockInfo& lhs, const BlockInfo& rhs) -> bool {
 | |
|         return m_pBlockVector->GetBlock(lhs.origBlockIndex)->m_pMetadata->GetSumFreeSize() <
 | |
|             m_pBlockVector->GetBlock(rhs.origBlockIndex)->m_pMetadata->GetSumFreeSize();
 | |
|     });
 | |
| 
 | |
|     // THE MAIN ALGORITHM
 | |
| 
 | |
|     FreeSpaceDatabase freeSpaceDb;
 | |
| 
 | |
|     size_t dstBlockInfoIndex = 0;
 | |
|     size_t dstOrigBlockIndex = m_BlockInfos[dstBlockInfoIndex].origBlockIndex;
 | |
|     VmaDeviceMemoryBlock* pDstBlock = m_pBlockVector->GetBlock(dstOrigBlockIndex);
 | |
|     VmaBlockMetadata_Generic* pDstMetadata = (VmaBlockMetadata_Generic*)pDstBlock->m_pMetadata;
 | |
|     VkDeviceSize dstBlockSize = pDstMetadata->GetSize();
 | |
|     VkDeviceSize dstOffset = 0;
 | |
| 
 | |
|     bool end = false;
 | |
|     for(size_t srcBlockInfoIndex = 0; !end && srcBlockInfoIndex < blockCount; ++srcBlockInfoIndex)
 | |
|     {
 | |
|         const size_t srcOrigBlockIndex = m_BlockInfos[srcBlockInfoIndex].origBlockIndex;
 | |
|         VmaDeviceMemoryBlock* const pSrcBlock = m_pBlockVector->GetBlock(srcOrigBlockIndex);
 | |
|         VmaBlockMetadata_Generic* const pSrcMetadata = (VmaBlockMetadata_Generic*)pSrcBlock->m_pMetadata;
 | |
|         for(VmaSuballocationList::iterator srcSuballocIt = pSrcMetadata->m_Suballocations.begin();
 | |
|             !end && srcSuballocIt != pSrcMetadata->m_Suballocations.end(); )
 | |
|         {
 | |
|             VmaAllocation_T* const pAlloc = srcSuballocIt->hAllocation;
 | |
|             const VkDeviceSize srcAllocAlignment = pAlloc->GetAlignment();
 | |
|             const VkDeviceSize srcAllocSize = srcSuballocIt->size;
 | |
|             if(m_AllocationsMoved == maxAllocationsToMove ||
 | |
|                 m_BytesMoved + srcAllocSize > maxBytesToMove)
 | |
|             {
 | |
|                 end = true;
 | |
|                 break;
 | |
|             }
 | |
|             const VkDeviceSize srcAllocOffset = srcSuballocIt->offset;
 | |
| 
 | |
|             // Try to place it in one of free spaces from the database.
 | |
|             size_t freeSpaceInfoIndex;
 | |
|             VkDeviceSize dstAllocOffset;
 | |
|             if(freeSpaceDb.Fetch(srcAllocAlignment, srcAllocSize,
 | |
|                 freeSpaceInfoIndex, dstAllocOffset))
 | |
|             {
 | |
|                 size_t freeSpaceOrigBlockIndex = m_BlockInfos[freeSpaceInfoIndex].origBlockIndex;
 | |
|                 VmaDeviceMemoryBlock* pFreeSpaceBlock = m_pBlockVector->GetBlock(freeSpaceOrigBlockIndex);
 | |
|                 VmaBlockMetadata_Generic* pFreeSpaceMetadata = (VmaBlockMetadata_Generic*)pFreeSpaceBlock->m_pMetadata;
 | |
| 
 | |
|                 // Same block
 | |
|                 if(freeSpaceInfoIndex == srcBlockInfoIndex)
 | |
|                 {
 | |
|                     VMA_ASSERT(dstAllocOffset <= srcAllocOffset);
 | |
| 
 | |
|                     // MOVE OPTION 1: Move the allocation inside the same block by decreasing offset.
 | |
| 
 | |
|                     VmaSuballocation suballoc = *srcSuballocIt;
 | |
|                     suballoc.offset = dstAllocOffset;
 | |
|                     suballoc.hAllocation->ChangeOffset(dstAllocOffset);
 | |
|                     m_BytesMoved += srcAllocSize;
 | |
|                     ++m_AllocationsMoved;
 | |
|                     
 | |
|                     VmaSuballocationList::iterator nextSuballocIt = srcSuballocIt;
 | |
|                     ++nextSuballocIt;
 | |
|                     pSrcMetadata->m_Suballocations.erase(srcSuballocIt);
 | |
|                     srcSuballocIt = nextSuballocIt;
 | |
| 
 | |
|                     InsertSuballoc(pFreeSpaceMetadata, suballoc);
 | |
| 
 | |
|                     VmaDefragmentationMove move = {
 | |
|                         srcOrigBlockIndex, freeSpaceOrigBlockIndex,
 | |
|                         srcAllocOffset, dstAllocOffset,
 | |
|                         srcAllocSize };
 | |
|                     moves.push_back(move);
 | |
|                 }
 | |
|                 // Different block
 | |
|                 else
 | |
|                 {
 | |
|                     // MOVE OPTION 2: Move the allocation to a different block.
 | |
| 
 | |
|                     VMA_ASSERT(freeSpaceInfoIndex < srcBlockInfoIndex);
 | |
| 
 | |
|                     VmaSuballocation suballoc = *srcSuballocIt;
 | |
|                     suballoc.offset = dstAllocOffset;
 | |
|                     suballoc.hAllocation->ChangeBlockAllocation(m_hAllocator, pFreeSpaceBlock, dstAllocOffset);
 | |
|                     m_BytesMoved += srcAllocSize;
 | |
|                     ++m_AllocationsMoved;
 | |
| 
 | |
|                     VmaSuballocationList::iterator nextSuballocIt = srcSuballocIt;
 | |
|                     ++nextSuballocIt;
 | |
|                     pSrcMetadata->m_Suballocations.erase(srcSuballocIt);
 | |
|                     srcSuballocIt = nextSuballocIt;
 | |
| 
 | |
|                     InsertSuballoc(pFreeSpaceMetadata, suballoc);
 | |
| 
 | |
|                     VmaDefragmentationMove move = {
 | |
|                         srcOrigBlockIndex, freeSpaceOrigBlockIndex,
 | |
|                         srcAllocOffset, dstAllocOffset,
 | |
|                         srcAllocSize };
 | |
|                     moves.push_back(move);
 | |
|                 }
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 dstAllocOffset = VmaAlignUp(dstOffset, srcAllocAlignment);
 | |
| 
 | |
|                 // If the allocation doesn't fit before the end of dstBlock, forward to next block.
 | |
|                 while(dstBlockInfoIndex < srcBlockInfoIndex &&
 | |
|                     dstAllocOffset + srcAllocSize > dstBlockSize)
 | |
|                 {
 | |
|                     // But before that, register remaining free space at the end of dst block.
 | |
|                     freeSpaceDb.Register(dstBlockInfoIndex, dstOffset, dstBlockSize - dstOffset);
 | |
| 
 | |
|                     ++dstBlockInfoIndex;
 | |
|                     dstOrigBlockIndex = m_BlockInfos[dstBlockInfoIndex].origBlockIndex;
 | |
|                     pDstBlock = m_pBlockVector->GetBlock(dstOrigBlockIndex);
 | |
|                     pDstMetadata = (VmaBlockMetadata_Generic*)pDstBlock->m_pMetadata;
 | |
|                     dstBlockSize = pDstMetadata->GetSize();
 | |
|                     dstOffset = 0;
 | |
|                     dstAllocOffset = 0;
 | |
|                 }
 | |
| 
 | |
|                 // Same block
 | |
|                 if(dstBlockInfoIndex == srcBlockInfoIndex)
 | |
|                 {
 | |
|                     VMA_ASSERT(dstAllocOffset <= srcAllocOffset);
 | |
| 
 | |
|                     const bool overlap = dstAllocOffset + srcAllocSize > srcAllocOffset;
 | |
| 
 | |
|                     bool skipOver = overlap;
 | |
|                     if(overlap && m_OverlappingMoveSupported && dstAllocOffset < srcAllocOffset)
 | |
|                     {
 | |
|                         // If destination and source place overlap, skip if it would move it
 | |
|                         // by only < 1/64 of its size.
 | |
|                         skipOver = (srcAllocOffset - dstAllocOffset) * 64 < srcAllocSize;
 | |
|                     }
 | |
| 
 | |
|                     if(skipOver)
 | |
|                     {
 | |
|                         freeSpaceDb.Register(dstBlockInfoIndex, dstOffset, srcAllocOffset - dstOffset);
 | |
| 
 | |
|                         dstOffset = srcAllocOffset + srcAllocSize;
 | |
|                         ++srcSuballocIt;
 | |
|                     }
 | |
|                     // MOVE OPTION 1: Move the allocation inside the same block by decreasing offset.
 | |
|                     else
 | |
|                     {
 | |
|                         srcSuballocIt->offset = dstAllocOffset;
 | |
|                         srcSuballocIt->hAllocation->ChangeOffset(dstAllocOffset);
 | |
|                         dstOffset = dstAllocOffset + srcAllocSize;
 | |
|                         m_BytesMoved += srcAllocSize;
 | |
|                         ++m_AllocationsMoved;
 | |
|                         ++srcSuballocIt;
 | |
|                         VmaDefragmentationMove move = {
 | |
|                             srcOrigBlockIndex, dstOrigBlockIndex,
 | |
|                             srcAllocOffset, dstAllocOffset,
 | |
|                             srcAllocSize };
 | |
|                         moves.push_back(move);
 | |
|                     }
 | |
|                 }
 | |
|                 // Different block
 | |
|                 else
 | |
|                 {
 | |
|                     // MOVE OPTION 2: Move the allocation to a different block.
 | |
| 
 | |
|                     VMA_ASSERT(dstBlockInfoIndex < srcBlockInfoIndex);
 | |
|                     VMA_ASSERT(dstAllocOffset + srcAllocSize <= dstBlockSize);
 | |
| 
 | |
|                     VmaSuballocation suballoc = *srcSuballocIt;
 | |
|                     suballoc.offset = dstAllocOffset;
 | |
|                     suballoc.hAllocation->ChangeBlockAllocation(m_hAllocator, pDstBlock, dstAllocOffset);
 | |
|                     dstOffset = dstAllocOffset + srcAllocSize;
 | |
|                     m_BytesMoved += srcAllocSize;
 | |
|                     ++m_AllocationsMoved;
 | |
| 
 | |
|                     VmaSuballocationList::iterator nextSuballocIt = srcSuballocIt;
 | |
|                     ++nextSuballocIt;
 | |
|                     pSrcMetadata->m_Suballocations.erase(srcSuballocIt);
 | |
|                     srcSuballocIt = nextSuballocIt;
 | |
| 
 | |
|                     pDstMetadata->m_Suballocations.push_back(suballoc);
 | |
| 
 | |
|                     VmaDefragmentationMove move = {
 | |
|                         srcOrigBlockIndex, dstOrigBlockIndex,
 | |
|                         srcAllocOffset, dstAllocOffset,
 | |
|                         srcAllocSize };
 | |
|                     moves.push_back(move);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     m_BlockInfos.clear();
 | |
|     
 | |
|     PostprocessMetadata();
 | |
| 
 | |
|     return VK_SUCCESS;
 | |
| }
 | |
| 
 | |
| void VmaDefragmentationAlgorithm_Fast::PreprocessMetadata()
 | |
| {
 | |
|     const size_t blockCount = m_pBlockVector->GetBlockCount();
 | |
|     for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)
 | |
|     {
 | |
|         VmaBlockMetadata_Generic* const pMetadata =
 | |
|             (VmaBlockMetadata_Generic*)m_pBlockVector->GetBlock(blockIndex)->m_pMetadata;
 | |
|         pMetadata->m_FreeCount = 0;
 | |
|         pMetadata->m_SumFreeSize = pMetadata->GetSize();
 | |
|         pMetadata->m_FreeSuballocationsBySize.clear();
 | |
|         for(VmaSuballocationList::iterator it = pMetadata->m_Suballocations.begin();
 | |
|             it != pMetadata->m_Suballocations.end(); )
 | |
|         {
 | |
|             if(it->type == VMA_SUBALLOCATION_TYPE_FREE)
 | |
|             {
 | |
|                 VmaSuballocationList::iterator nextIt = it;
 | |
|                 ++nextIt;
 | |
|                 pMetadata->m_Suballocations.erase(it);
 | |
|                 it = nextIt;
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 ++it;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaDefragmentationAlgorithm_Fast::PostprocessMetadata()
 | |
| {
 | |
|     const size_t blockCount = m_pBlockVector->GetBlockCount();
 | |
|     for(size_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)
 | |
|     {
 | |
|         VmaBlockMetadata_Generic* const pMetadata =
 | |
|             (VmaBlockMetadata_Generic*)m_pBlockVector->GetBlock(blockIndex)->m_pMetadata;
 | |
|         const VkDeviceSize blockSize = pMetadata->GetSize();
 | |
|         
 | |
|         // No allocations in this block - entire area is free.
 | |
|         if(pMetadata->m_Suballocations.empty())
 | |
|         {
 | |
|             pMetadata->m_FreeCount = 1;
 | |
|             //pMetadata->m_SumFreeSize is already set to blockSize.
 | |
|             VmaSuballocation suballoc = {
 | |
|                 0, // offset
 | |
|                 blockSize, // size
 | |
|                 VMA_NULL, // hAllocation
 | |
|                 VMA_SUBALLOCATION_TYPE_FREE };
 | |
|             pMetadata->m_Suballocations.push_back(suballoc);
 | |
|             pMetadata->RegisterFreeSuballocation(pMetadata->m_Suballocations.begin());
 | |
|         }
 | |
|         // There are some allocations in this block.
 | |
|         else
 | |
|         {
 | |
|             VkDeviceSize offset = 0;
 | |
|             VmaSuballocationList::iterator it;
 | |
|             for(it = pMetadata->m_Suballocations.begin();
 | |
|                 it != pMetadata->m_Suballocations.end();
 | |
|                 ++it)
 | |
|             {
 | |
|                 VMA_ASSERT(it->type != VMA_SUBALLOCATION_TYPE_FREE);
 | |
|                 VMA_ASSERT(it->offset >= offset);
 | |
| 
 | |
|                 // Need to insert preceding free space.
 | |
|                 if(it->offset > offset)
 | |
|                 {
 | |
|                     ++pMetadata->m_FreeCount;
 | |
|                     const VkDeviceSize freeSize = it->offset - offset;
 | |
|                     VmaSuballocation suballoc = {
 | |
|                         offset, // offset
 | |
|                         freeSize, // size
 | |
|                         VMA_NULL, // hAllocation
 | |
|                         VMA_SUBALLOCATION_TYPE_FREE };
 | |
|                     VmaSuballocationList::iterator precedingFreeIt = pMetadata->m_Suballocations.insert(it, suballoc);
 | |
|                     if(freeSize >= VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)
 | |
|                     {
 | |
|                         pMetadata->m_FreeSuballocationsBySize.push_back(precedingFreeIt);
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 pMetadata->m_SumFreeSize -= it->size;
 | |
|                 offset = it->offset + it->size;
 | |
|             }
 | |
| 
 | |
|             // Need to insert trailing free space.
 | |
|             if(offset < blockSize)
 | |
|             {
 | |
|                 ++pMetadata->m_FreeCount;
 | |
|                 const VkDeviceSize freeSize = blockSize - offset;
 | |
|                 VmaSuballocation suballoc = {
 | |
|                     offset, // offset
 | |
|                     freeSize, // size
 | |
|                     VMA_NULL, // hAllocation
 | |
|                     VMA_SUBALLOCATION_TYPE_FREE };
 | |
|                 VMA_ASSERT(it == pMetadata->m_Suballocations.end());
 | |
|                 VmaSuballocationList::iterator trailingFreeIt = pMetadata->m_Suballocations.insert(it, suballoc);
 | |
|                 if(freeSize > VMA_MIN_FREE_SUBALLOCATION_SIZE_TO_REGISTER)
 | |
|                 {
 | |
|                     pMetadata->m_FreeSuballocationsBySize.push_back(trailingFreeIt);
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             VMA_SORT(
 | |
|                 pMetadata->m_FreeSuballocationsBySize.begin(),
 | |
|                 pMetadata->m_FreeSuballocationsBySize.end(),
 | |
|                 VmaSuballocationItemSizeLess());
 | |
|         }
 | |
| 
 | |
|         VMA_HEAVY_ASSERT(pMetadata->Validate());
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaDefragmentationAlgorithm_Fast::InsertSuballoc(VmaBlockMetadata_Generic* pMetadata, const VmaSuballocation& suballoc)
 | |
| {
 | |
|     // TODO: Optimize somehow. Remember iterator instead of searching for it linearly.
 | |
|     VmaSuballocationList::iterator it = pMetadata->m_Suballocations.begin();
 | |
|     while(it != pMetadata->m_Suballocations.end())
 | |
|     {
 | |
|         if(it->offset < suballoc.offset)
 | |
|         {
 | |
|             ++it;
 | |
|         }
 | |
|     }
 | |
|     pMetadata->m_Suballocations.insert(it, suballoc);
 | |
| }
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| // VmaBlockVectorDefragmentationContext
 | |
| 
 | |
| VmaBlockVectorDefragmentationContext::VmaBlockVectorDefragmentationContext(
 | |
|     VmaAllocator hAllocator,
 | |
|     VmaPool hCustomPool,
 | |
|     VmaBlockVector* pBlockVector,
 | |
|     uint32_t currFrameIndex) :
 | |
|     res(VK_SUCCESS),
 | |
|     mutexLocked(false),
 | |
|     blockContexts(VmaStlAllocator<VmaBlockDefragmentationContext>(hAllocator->GetAllocationCallbacks())),
 | |
|     m_hAllocator(hAllocator),
 | |
|     m_hCustomPool(hCustomPool),
 | |
|     m_pBlockVector(pBlockVector),
 | |
|     m_CurrFrameIndex(currFrameIndex),
 | |
|     m_pAlgorithm(VMA_NULL),
 | |
|     m_Allocations(VmaStlAllocator<AllocInfo>(hAllocator->GetAllocationCallbacks())),
 | |
|     m_AllAllocations(false)
 | |
| {
 | |
| }
 | |
| 
 | |
| VmaBlockVectorDefragmentationContext::~VmaBlockVectorDefragmentationContext()
 | |
| {
 | |
|     vma_delete(m_hAllocator, m_pAlgorithm);
 | |
| }
 | |
| 
 | |
| void VmaBlockVectorDefragmentationContext::AddAllocation(VmaAllocation hAlloc, VkBool32* pChanged)
 | |
| {
 | |
|     AllocInfo info = { hAlloc, pChanged };
 | |
|     m_Allocations.push_back(info);
 | |
| }
 | |
| 
 | |
| void VmaBlockVectorDefragmentationContext::Begin(bool overlappingMoveSupported)
 | |
| {
 | |
|     const bool allAllocations = m_AllAllocations ||
 | |
|         m_Allocations.size() == m_pBlockVector->CalcAllocationCount();
 | |
| 
 | |
|     /********************************
 | |
|     HERE IS THE CHOICE OF DEFRAGMENTATION ALGORITHM.
 | |
|     ********************************/
 | |
| 
 | |
|     /*
 | |
|     Fast algorithm is supported only when certain criteria are met:
 | |
|     - VMA_DEBUG_MARGIN is 0.
 | |
|     - All allocations in this block vector are moveable.
 | |
|     - There is no possibility of image/buffer granularity conflict.
 | |
|     */
 | |
|     if(VMA_DEBUG_MARGIN == 0 &&
 | |
|         allAllocations &&
 | |
|         !m_pBlockVector->IsBufferImageGranularityConflictPossible())
 | |
|     {
 | |
|         m_pAlgorithm = vma_new(m_hAllocator, VmaDefragmentationAlgorithm_Fast)(
 | |
|             m_hAllocator, m_pBlockVector, m_CurrFrameIndex, overlappingMoveSupported);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         m_pAlgorithm = vma_new(m_hAllocator, VmaDefragmentationAlgorithm_Generic)(
 | |
|             m_hAllocator, m_pBlockVector, m_CurrFrameIndex, overlappingMoveSupported);
 | |
|     }
 | |
| 
 | |
|     if(allAllocations)
 | |
|     {
 | |
|         m_pAlgorithm->AddAll();
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         for(size_t i = 0, count = m_Allocations.size(); i < count; ++i)
 | |
|         {
 | |
|             m_pAlgorithm->AddAllocation(m_Allocations[i].hAlloc, m_Allocations[i].pChanged);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| // VmaDefragmentationContext
 | |
| 
 | |
| VmaDefragmentationContext_T::VmaDefragmentationContext_T(
 | |
|     VmaAllocator hAllocator,
 | |
|     uint32_t currFrameIndex,
 | |
|     uint32_t flags,
 | |
|     VmaDefragmentationStats* pStats) :
 | |
|     m_hAllocator(hAllocator),
 | |
|     m_CurrFrameIndex(currFrameIndex),
 | |
|     m_Flags(flags),
 | |
|     m_pStats(pStats),
 | |
|     m_CustomPoolContexts(VmaStlAllocator<VmaBlockVectorDefragmentationContext*>(hAllocator->GetAllocationCallbacks()))
 | |
| {
 | |
|     memset(m_DefaultPoolContexts, 0, sizeof(m_DefaultPoolContexts));
 | |
| }
 | |
| 
 | |
| VmaDefragmentationContext_T::~VmaDefragmentationContext_T()
 | |
| {
 | |
|     for(size_t i = m_CustomPoolContexts.size(); i--; )
 | |
|     {
 | |
|         VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_CustomPoolContexts[i];
 | |
|         pBlockVectorCtx->GetBlockVector()->DefragmentationEnd(pBlockVectorCtx, m_pStats);
 | |
|         vma_delete(m_hAllocator, pBlockVectorCtx);
 | |
|     }
 | |
|     for(size_t i = m_hAllocator->m_MemProps.memoryTypeCount; i--; )
 | |
|     {
 | |
|         VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_DefaultPoolContexts[i];
 | |
|         if(pBlockVectorCtx)
 | |
|         {
 | |
|             pBlockVectorCtx->GetBlockVector()->DefragmentationEnd(pBlockVectorCtx, m_pStats);
 | |
|             vma_delete(m_hAllocator, pBlockVectorCtx);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaDefragmentationContext_T::AddPools(uint32_t poolCount, VmaPool* pPools)
 | |
| {
 | |
|     for(uint32_t poolIndex = 0; poolIndex < poolCount; ++poolIndex)
 | |
|     {
 | |
|         VmaPool pool = pPools[poolIndex];
 | |
|         VMA_ASSERT(pool);
 | |
|         // Pools with algorithm other than default are not defragmented.
 | |
|         if(pool->m_BlockVector.GetAlgorithm() == 0)
 | |
|         {
 | |
|             VmaBlockVectorDefragmentationContext* pBlockVectorDefragCtx = VMA_NULL;
 | |
|             
 | |
|             for(size_t i = m_CustomPoolContexts.size(); i--; )
 | |
|             {
 | |
|                 if(m_CustomPoolContexts[i]->GetCustomPool() == pool)
 | |
|                 {
 | |
|                     pBlockVectorDefragCtx = m_CustomPoolContexts[i];
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|             
 | |
|             if(!pBlockVectorDefragCtx)
 | |
|             {
 | |
|                 pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)(
 | |
|                     m_hAllocator,
 | |
|                     pool,
 | |
|                     &pool->m_BlockVector,
 | |
|                     m_CurrFrameIndex);
 | |
|                 m_CustomPoolContexts.push_back(pBlockVectorDefragCtx);
 | |
|             }
 | |
| 
 | |
|             pBlockVectorDefragCtx->AddAll();
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaDefragmentationContext_T::AddAllocations(
 | |
|     uint32_t allocationCount,
 | |
|     VmaAllocation* pAllocations,
 | |
|     VkBool32* pAllocationsChanged)
 | |
| {
 | |
|     // Dispatch pAllocations among defragmentators. Create them when necessary.
 | |
|     for(uint32_t allocIndex = 0; allocIndex < allocationCount; ++allocIndex)
 | |
|     {
 | |
|         const VmaAllocation hAlloc = pAllocations[allocIndex];
 | |
|         VMA_ASSERT(hAlloc);
 | |
|         // DedicatedAlloc cannot be defragmented.
 | |
|         if((hAlloc->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK) &&
 | |
|             // Lost allocation cannot be defragmented.
 | |
|             (hAlloc->GetLastUseFrameIndex() != VMA_FRAME_INDEX_LOST))
 | |
|         {
 | |
|             VmaBlockVectorDefragmentationContext* pBlockVectorDefragCtx = VMA_NULL;
 | |
| 
 | |
|             const VmaPool hAllocPool = hAlloc->GetBlock()->GetParentPool();
 | |
|             // This allocation belongs to custom pool.
 | |
|             if(hAllocPool != VK_NULL_HANDLE)
 | |
|             {
 | |
|                 // Pools with algorithm other than default are not defragmented.
 | |
|                 if(hAllocPool->m_BlockVector.GetAlgorithm() == 0)
 | |
|                 {
 | |
|                     for(size_t i = m_CustomPoolContexts.size(); i--; )
 | |
|                     {
 | |
|                         if(m_CustomPoolContexts[i]->GetCustomPool() == hAllocPool)
 | |
|                         {
 | |
|                             pBlockVectorDefragCtx = m_CustomPoolContexts[i];
 | |
|                             break;
 | |
|                         }
 | |
|                     }
 | |
|                     if(!pBlockVectorDefragCtx)
 | |
|                     {
 | |
|                         pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)(
 | |
|                             m_hAllocator,
 | |
|                             hAllocPool,
 | |
|                             &hAllocPool->m_BlockVector,
 | |
|                             m_CurrFrameIndex);
 | |
|                         m_CustomPoolContexts.push_back(pBlockVectorDefragCtx);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             // This allocation belongs to default pool.
 | |
|             else
 | |
|             {
 | |
|                 const uint32_t memTypeIndex = hAlloc->GetMemoryTypeIndex();
 | |
|                 pBlockVectorDefragCtx = m_DefaultPoolContexts[memTypeIndex];
 | |
|                 if(!pBlockVectorDefragCtx)
 | |
|                 {
 | |
|                     pBlockVectorDefragCtx = vma_new(m_hAllocator, VmaBlockVectorDefragmentationContext)(
 | |
|                         m_hAllocator,
 | |
|                         VMA_NULL, // hCustomPool
 | |
|                         m_hAllocator->m_pBlockVectors[memTypeIndex],
 | |
|                         m_CurrFrameIndex);
 | |
|                     m_DefaultPoolContexts[memTypeIndex] = pBlockVectorDefragCtx;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if(pBlockVectorDefragCtx)
 | |
|             {
 | |
|                 VkBool32* const pChanged = (pAllocationsChanged != VMA_NULL) ?
 | |
|                     &pAllocationsChanged[allocIndex] : VMA_NULL;
 | |
|                 pBlockVectorDefragCtx->AddAllocation(hAlloc, pChanged);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| VkResult VmaDefragmentationContext_T::Defragment(
 | |
|     VkDeviceSize maxCpuBytesToMove, uint32_t maxCpuAllocationsToMove,
 | |
|     VkDeviceSize maxGpuBytesToMove, uint32_t maxGpuAllocationsToMove,
 | |
|     VkCommandBuffer commandBuffer, VmaDefragmentationStats* pStats)
 | |
| {
 | |
|     if(pStats)
 | |
|     {
 | |
|         memset(pStats, 0, sizeof(VmaDefragmentationStats));
 | |
|     }
 | |
| 
 | |
|     if(commandBuffer == VK_NULL_HANDLE)
 | |
|     {
 | |
|         maxGpuBytesToMove = 0;
 | |
|         maxGpuAllocationsToMove = 0;
 | |
|     }
 | |
| 
 | |
|     VkResult res = VK_SUCCESS;
 | |
| 
 | |
|     // Process default pools.
 | |
|     for(uint32_t memTypeIndex = 0;
 | |
|         memTypeIndex < m_hAllocator->GetMemoryTypeCount() && res >= VK_SUCCESS;
 | |
|         ++memTypeIndex)
 | |
|     {
 | |
|         VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_DefaultPoolContexts[memTypeIndex];
 | |
|         if(pBlockVectorCtx)
 | |
|         {
 | |
|             VMA_ASSERT(pBlockVectorCtx->GetBlockVector());
 | |
|             pBlockVectorCtx->GetBlockVector()->Defragment(
 | |
|                 pBlockVectorCtx,
 | |
|                 pStats,
 | |
|                 maxCpuBytesToMove, maxCpuAllocationsToMove,
 | |
|                 maxGpuBytesToMove, maxGpuAllocationsToMove,
 | |
|                 commandBuffer);
 | |
|             if(pBlockVectorCtx->res != VK_SUCCESS)
 | |
|             {
 | |
|                 res = pBlockVectorCtx->res;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Process custom pools.
 | |
|     for(size_t customCtxIndex = 0, customCtxCount = m_CustomPoolContexts.size();
 | |
|         customCtxIndex < customCtxCount && res >= VK_SUCCESS;
 | |
|         ++customCtxIndex)
 | |
|     {
 | |
|         VmaBlockVectorDefragmentationContext* pBlockVectorCtx = m_CustomPoolContexts[customCtxIndex];
 | |
|         VMA_ASSERT(pBlockVectorCtx && pBlockVectorCtx->GetBlockVector());
 | |
|         pBlockVectorCtx->GetBlockVector()->Defragment(
 | |
|             pBlockVectorCtx,
 | |
|             pStats,
 | |
|             maxCpuBytesToMove, maxCpuAllocationsToMove,
 | |
|             maxGpuBytesToMove, maxGpuAllocationsToMove,
 | |
|             commandBuffer);
 | |
|         if(pBlockVectorCtx->res != VK_SUCCESS)
 | |
|         {
 | |
|             res = pBlockVectorCtx->res;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| // VmaRecorder
 | |
| 
 | |
| #if VMA_RECORDING_ENABLED
 | |
| 
 | |
| VmaRecorder::VmaRecorder() :
 | |
|     m_UseMutex(true),
 | |
|     m_Flags(0),
 | |
|     m_File(VMA_NULL),
 | |
|     m_Freq(INT64_MAX),
 | |
|     m_StartCounter(INT64_MAX)
 | |
| {
 | |
| }
 | |
| 
 | |
| VkResult VmaRecorder::Init(const VmaRecordSettings& settings, bool useMutex)
 | |
| {
 | |
|     m_UseMutex = useMutex;
 | |
|     m_Flags = settings.flags;
 | |
| 
 | |
|     QueryPerformanceFrequency((LARGE_INTEGER*)&m_Freq);
 | |
|     QueryPerformanceCounter((LARGE_INTEGER*)&m_StartCounter);
 | |
| 
 | |
|     // Open file for writing.
 | |
|     errno_t err = fopen_s(&m_File, settings.pFilePath, "wb");
 | |
|     if(err != 0)
 | |
|     {
 | |
|         return VK_ERROR_INITIALIZATION_FAILED;
 | |
|     }
 | |
| 
 | |
|     // Write header.
 | |
|     fprintf(m_File, "%s\n", "Vulkan Memory Allocator,Calls recording");
 | |
|     fprintf(m_File, "%s\n", "1,8");
 | |
| 
 | |
|     return VK_SUCCESS;
 | |
| }
 | |
| 
 | |
| VmaRecorder::~VmaRecorder()
 | |
| {
 | |
|     if(m_File != VMA_NULL)
 | |
|     {
 | |
|         fclose(m_File);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaRecorder::RecordCreateAllocator(uint32_t frameIndex)
 | |
| {
 | |
|     CallParams callParams;
 | |
|     GetBasicParams(callParams);
 | |
| 
 | |
|     VmaMutexLock lock(m_FileMutex, m_UseMutex);
 | |
|     fprintf(m_File, "%u,%.3f,%u,vmaCreateAllocator\n", callParams.threadId, callParams.time, frameIndex);
 | |
|     Flush();
 | |
| }
 | |
| 
 | |
| void VmaRecorder::RecordDestroyAllocator(uint32_t frameIndex)
 | |
| {
 | |
|     CallParams callParams;
 | |
|     GetBasicParams(callParams);
 | |
| 
 | |
|     VmaMutexLock lock(m_FileMutex, m_UseMutex);
 | |
|     fprintf(m_File, "%u,%.3f,%u,vmaDestroyAllocator\n", callParams.threadId, callParams.time, frameIndex);
 | |
|     Flush();
 | |
| }
 | |
| 
 | |
| void VmaRecorder::RecordCreatePool(uint32_t frameIndex, const VmaPoolCreateInfo& createInfo, VmaPool pool)
 | |
| {
 | |
|     CallParams callParams;
 | |
|     GetBasicParams(callParams);
 | |
| 
 | |
|     VmaMutexLock lock(m_FileMutex, m_UseMutex);
 | |
|     fprintf(m_File, "%u,%.3f,%u,vmaCreatePool,%u,%u,%llu,%llu,%llu,%u,%p\n", callParams.threadId, callParams.time, frameIndex,
 | |
|         createInfo.memoryTypeIndex,
 | |
|         createInfo.flags,
 | |
|         createInfo.blockSize,
 | |
|         (uint64_t)createInfo.minBlockCount,
 | |
|         (uint64_t)createInfo.maxBlockCount,
 | |
|         createInfo.frameInUseCount,
 | |
|         pool);
 | |
|     Flush();
 | |
| }
 | |
| 
 | |
| void VmaRecorder::RecordDestroyPool(uint32_t frameIndex, VmaPool pool)
 | |
| {
 | |
|     CallParams callParams;
 | |
|     GetBasicParams(callParams);
 | |
| 
 | |
|     VmaMutexLock lock(m_FileMutex, m_UseMutex);
 | |
|     fprintf(m_File, "%u,%.3f,%u,vmaDestroyPool,%p\n", callParams.threadId, callParams.time, frameIndex,
 | |
|         pool);
 | |
|     Flush();
 | |
| }
 | |
| 
 | |
| void VmaRecorder::RecordAllocateMemory(uint32_t frameIndex,
 | |
|         const VkMemoryRequirements& vkMemReq,
 | |
|         const VmaAllocationCreateInfo& createInfo,
 | |
|         VmaAllocation allocation)
 | |
| {
 | |
|     CallParams callParams;
 | |
|     GetBasicParams(callParams);
 | |
| 
 | |
|     VmaMutexLock lock(m_FileMutex, m_UseMutex);
 | |
|     UserDataString userDataStr(createInfo.flags, createInfo.pUserData);
 | |
|     fprintf(m_File, "%u,%.3f,%u,vmaAllocateMemory,%llu,%llu,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex,
 | |
|         vkMemReq.size,
 | |
|         vkMemReq.alignment,
 | |
|         vkMemReq.memoryTypeBits,
 | |
|         createInfo.flags,
 | |
|         createInfo.usage,
 | |
|         createInfo.requiredFlags,
 | |
|         createInfo.preferredFlags,
 | |
|         createInfo.memoryTypeBits,
 | |
|         createInfo.pool,
 | |
|         allocation,
 | |
|         userDataStr.GetString());
 | |
|     Flush();
 | |
| }
 | |
| 
 | |
| void VmaRecorder::RecordAllocateMemoryPages(uint32_t frameIndex,
 | |
|     const VkMemoryRequirements& vkMemReq,
 | |
|     const VmaAllocationCreateInfo& createInfo,
 | |
|     uint64_t allocationCount,
 | |
|     const VmaAllocation* pAllocations)
 | |
| {
 | |
|     CallParams callParams;
 | |
|     GetBasicParams(callParams);
 | |
| 
 | |
|     VmaMutexLock lock(m_FileMutex, m_UseMutex);
 | |
|     UserDataString userDataStr(createInfo.flags, createInfo.pUserData);
 | |
|     fprintf(m_File, "%u,%.3f,%u,vmaAllocateMemoryPages,%llu,%llu,%u,%u,%u,%u,%u,%u,%p,", callParams.threadId, callParams.time, frameIndex,
 | |
|         vkMemReq.size,
 | |
|         vkMemReq.alignment,
 | |
|         vkMemReq.memoryTypeBits,
 | |
|         createInfo.flags,
 | |
|         createInfo.usage,
 | |
|         createInfo.requiredFlags,
 | |
|         createInfo.preferredFlags,
 | |
|         createInfo.memoryTypeBits,
 | |
|         createInfo.pool);
 | |
|     PrintPointerList(allocationCount, pAllocations);
 | |
|     fprintf(m_File, ",%s\n", userDataStr.GetString());
 | |
|     Flush();
 | |
| }
 | |
| 
 | |
| void VmaRecorder::RecordAllocateMemoryForBuffer(uint32_t frameIndex,
 | |
|     const VkMemoryRequirements& vkMemReq,
 | |
|     bool requiresDedicatedAllocation,
 | |
|     bool prefersDedicatedAllocation,
 | |
|     const VmaAllocationCreateInfo& createInfo,
 | |
|     VmaAllocation allocation)
 | |
| {
 | |
|     CallParams callParams;
 | |
|     GetBasicParams(callParams);
 | |
| 
 | |
|     VmaMutexLock lock(m_FileMutex, m_UseMutex);
 | |
|     UserDataString userDataStr(createInfo.flags, createInfo.pUserData);
 | |
|     fprintf(m_File, "%u,%.3f,%u,vmaAllocateMemoryForBuffer,%llu,%llu,%u,%u,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex,
 | |
|         vkMemReq.size,
 | |
|         vkMemReq.alignment,
 | |
|         vkMemReq.memoryTypeBits,
 | |
|         requiresDedicatedAllocation ? 1 : 0,
 | |
|         prefersDedicatedAllocation ? 1 : 0,
 | |
|         createInfo.flags,
 | |
|         createInfo.usage,
 | |
|         createInfo.requiredFlags,
 | |
|         createInfo.preferredFlags,
 | |
|         createInfo.memoryTypeBits,
 | |
|         createInfo.pool,
 | |
|         allocation,
 | |
|         userDataStr.GetString());
 | |
|     Flush();
 | |
| }
 | |
| 
 | |
| void VmaRecorder::RecordAllocateMemoryForImage(uint32_t frameIndex,
 | |
|     const VkMemoryRequirements& vkMemReq,
 | |
|     bool requiresDedicatedAllocation,
 | |
|     bool prefersDedicatedAllocation,
 | |
|     const VmaAllocationCreateInfo& createInfo,
 | |
|     VmaAllocation allocation)
 | |
| {
 | |
|     CallParams callParams;
 | |
|     GetBasicParams(callParams);
 | |
| 
 | |
|     VmaMutexLock lock(m_FileMutex, m_UseMutex);
 | |
|     UserDataString userDataStr(createInfo.flags, createInfo.pUserData);
 | |
|     fprintf(m_File, "%u,%.3f,%u,vmaAllocateMemoryForImage,%llu,%llu,%u,%u,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex,
 | |
|         vkMemReq.size,
 | |
|         vkMemReq.alignment,
 | |
|         vkMemReq.memoryTypeBits,
 | |
|         requiresDedicatedAllocation ? 1 : 0,
 | |
|         prefersDedicatedAllocation ? 1 : 0,
 | |
|         createInfo.flags,
 | |
|         createInfo.usage,
 | |
|         createInfo.requiredFlags,
 | |
|         createInfo.preferredFlags,
 | |
|         createInfo.memoryTypeBits,
 | |
|         createInfo.pool,
 | |
|         allocation,
 | |
|         userDataStr.GetString());
 | |
|     Flush();
 | |
| }
 | |
| 
 | |
| void VmaRecorder::RecordFreeMemory(uint32_t frameIndex,
 | |
|     VmaAllocation allocation)
 | |
| {
 | |
|     CallParams callParams;
 | |
|     GetBasicParams(callParams);
 | |
| 
 | |
|     VmaMutexLock lock(m_FileMutex, m_UseMutex);
 | |
|     fprintf(m_File, "%u,%.3f,%u,vmaFreeMemory,%p\n", callParams.threadId, callParams.time, frameIndex,
 | |
|         allocation);
 | |
|     Flush();
 | |
| }
 | |
| 
 | |
| void VmaRecorder::RecordFreeMemoryPages(uint32_t frameIndex,
 | |
|     uint64_t allocationCount,
 | |
|     const VmaAllocation* pAllocations)
 | |
| {
 | |
|     CallParams callParams;
 | |
|     GetBasicParams(callParams);
 | |
| 
 | |
|     VmaMutexLock lock(m_FileMutex, m_UseMutex);
 | |
|     fprintf(m_File, "%u,%.3f,%u,vmaFreeMemoryPages,", callParams.threadId, callParams.time, frameIndex);
 | |
|     PrintPointerList(allocationCount, pAllocations);
 | |
|     fprintf(m_File, "\n");
 | |
|     Flush();
 | |
| }
 | |
| 
 | |
| void VmaRecorder::RecordSetAllocationUserData(uint32_t frameIndex,
 | |
|     VmaAllocation allocation,
 | |
|     const void* pUserData)
 | |
| {
 | |
|     CallParams callParams;
 | |
|     GetBasicParams(callParams);
 | |
| 
 | |
|     VmaMutexLock lock(m_FileMutex, m_UseMutex);
 | |
|     UserDataString userDataStr(
 | |
|         allocation->IsUserDataString() ? VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT : 0,
 | |
|         pUserData);
 | |
|     fprintf(m_File, "%u,%.3f,%u,vmaSetAllocationUserData,%p,%s\n", callParams.threadId, callParams.time, frameIndex,
 | |
|         allocation,
 | |
|         userDataStr.GetString());
 | |
|     Flush();
 | |
| }
 | |
| 
 | |
| void VmaRecorder::RecordCreateLostAllocation(uint32_t frameIndex,
 | |
|     VmaAllocation allocation)
 | |
| {
 | |
|     CallParams callParams;
 | |
|     GetBasicParams(callParams);
 | |
| 
 | |
|     VmaMutexLock lock(m_FileMutex, m_UseMutex);
 | |
|     fprintf(m_File, "%u,%.3f,%u,vmaCreateLostAllocation,%p\n", callParams.threadId, callParams.time, frameIndex,
 | |
|         allocation);
 | |
|     Flush();
 | |
| }
 | |
| 
 | |
| void VmaRecorder::RecordMapMemory(uint32_t frameIndex,
 | |
|     VmaAllocation allocation)
 | |
| {
 | |
|     CallParams callParams;
 | |
|     GetBasicParams(callParams);
 | |
| 
 | |
|     VmaMutexLock lock(m_FileMutex, m_UseMutex);
 | |
|     fprintf(m_File, "%u,%.3f,%u,vmaMapMemory,%p\n", callParams.threadId, callParams.time, frameIndex,
 | |
|         allocation);
 | |
|     Flush();
 | |
| }
 | |
| 
 | |
| void VmaRecorder::RecordUnmapMemory(uint32_t frameIndex,
 | |
|     VmaAllocation allocation)
 | |
| {
 | |
|     CallParams callParams;
 | |
|     GetBasicParams(callParams);
 | |
| 
 | |
|     VmaMutexLock lock(m_FileMutex, m_UseMutex);
 | |
|     fprintf(m_File, "%u,%.3f,%u,vmaUnmapMemory,%p\n", callParams.threadId, callParams.time, frameIndex,
 | |
|         allocation);
 | |
|     Flush();
 | |
| }
 | |
| 
 | |
| void VmaRecorder::RecordFlushAllocation(uint32_t frameIndex,
 | |
|     VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size)
 | |
| {
 | |
|     CallParams callParams;
 | |
|     GetBasicParams(callParams);
 | |
| 
 | |
|     VmaMutexLock lock(m_FileMutex, m_UseMutex);
 | |
|     fprintf(m_File, "%u,%.3f,%u,vmaFlushAllocation,%p,%llu,%llu\n", callParams.threadId, callParams.time, frameIndex,
 | |
|         allocation,
 | |
|         offset,
 | |
|         size);
 | |
|     Flush();
 | |
| }
 | |
| 
 | |
| void VmaRecorder::RecordInvalidateAllocation(uint32_t frameIndex,
 | |
|     VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size)
 | |
| {
 | |
|     CallParams callParams;
 | |
|     GetBasicParams(callParams);
 | |
| 
 | |
|     VmaMutexLock lock(m_FileMutex, m_UseMutex);
 | |
|     fprintf(m_File, "%u,%.3f,%u,vmaInvalidateAllocation,%p,%llu,%llu\n", callParams.threadId, callParams.time, frameIndex,
 | |
|         allocation,
 | |
|         offset,
 | |
|         size);
 | |
|     Flush();
 | |
| }
 | |
| 
 | |
| void VmaRecorder::RecordCreateBuffer(uint32_t frameIndex,
 | |
|     const VkBufferCreateInfo& bufCreateInfo,
 | |
|     const VmaAllocationCreateInfo& allocCreateInfo,
 | |
|     VmaAllocation allocation)
 | |
| {
 | |
|     CallParams callParams;
 | |
|     GetBasicParams(callParams);
 | |
| 
 | |
|     VmaMutexLock lock(m_FileMutex, m_UseMutex);
 | |
|     UserDataString userDataStr(allocCreateInfo.flags, allocCreateInfo.pUserData);
 | |
|     fprintf(m_File, "%u,%.3f,%u,vmaCreateBuffer,%u,%llu,%u,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex,
 | |
|         bufCreateInfo.flags,
 | |
|         bufCreateInfo.size,
 | |
|         bufCreateInfo.usage,
 | |
|         bufCreateInfo.sharingMode,
 | |
|         allocCreateInfo.flags,
 | |
|         allocCreateInfo.usage,
 | |
|         allocCreateInfo.requiredFlags,
 | |
|         allocCreateInfo.preferredFlags,
 | |
|         allocCreateInfo.memoryTypeBits,
 | |
|         allocCreateInfo.pool,
 | |
|         allocation,
 | |
|         userDataStr.GetString());
 | |
|     Flush();
 | |
| }
 | |
| 
 | |
| void VmaRecorder::RecordCreateImage(uint32_t frameIndex,
 | |
|     const VkImageCreateInfo& imageCreateInfo,
 | |
|     const VmaAllocationCreateInfo& allocCreateInfo,
 | |
|     VmaAllocation allocation)
 | |
| {
 | |
|     CallParams callParams;
 | |
|     GetBasicParams(callParams);
 | |
| 
 | |
|     VmaMutexLock lock(m_FileMutex, m_UseMutex);
 | |
|     UserDataString userDataStr(allocCreateInfo.flags, allocCreateInfo.pUserData);
 | |
|     fprintf(m_File, "%u,%.3f,%u,vmaCreateImage,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%u,%p,%p,%s\n", callParams.threadId, callParams.time, frameIndex,
 | |
|         imageCreateInfo.flags,
 | |
|         imageCreateInfo.imageType,
 | |
|         imageCreateInfo.format,
 | |
|         imageCreateInfo.extent.width,
 | |
|         imageCreateInfo.extent.height,
 | |
|         imageCreateInfo.extent.depth,
 | |
|         imageCreateInfo.mipLevels,
 | |
|         imageCreateInfo.arrayLayers,
 | |
|         imageCreateInfo.samples,
 | |
|         imageCreateInfo.tiling,
 | |
|         imageCreateInfo.usage,
 | |
|         imageCreateInfo.sharingMode,
 | |
|         imageCreateInfo.initialLayout,
 | |
|         allocCreateInfo.flags,
 | |
|         allocCreateInfo.usage,
 | |
|         allocCreateInfo.requiredFlags,
 | |
|         allocCreateInfo.preferredFlags,
 | |
|         allocCreateInfo.memoryTypeBits,
 | |
|         allocCreateInfo.pool,
 | |
|         allocation,
 | |
|         userDataStr.GetString());
 | |
|     Flush();
 | |
| }
 | |
| 
 | |
| void VmaRecorder::RecordDestroyBuffer(uint32_t frameIndex,
 | |
|     VmaAllocation allocation)
 | |
| {
 | |
|     CallParams callParams;
 | |
|     GetBasicParams(callParams);
 | |
| 
 | |
|     VmaMutexLock lock(m_FileMutex, m_UseMutex);
 | |
|     fprintf(m_File, "%u,%.3f,%u,vmaDestroyBuffer,%p\n", callParams.threadId, callParams.time, frameIndex,
 | |
|         allocation);
 | |
|     Flush();
 | |
| }
 | |
| 
 | |
| void VmaRecorder::RecordDestroyImage(uint32_t frameIndex,
 | |
|     VmaAllocation allocation)
 | |
| {
 | |
|     CallParams callParams;
 | |
|     GetBasicParams(callParams);
 | |
| 
 | |
|     VmaMutexLock lock(m_FileMutex, m_UseMutex);
 | |
|     fprintf(m_File, "%u,%.3f,%u,vmaDestroyImage,%p\n", callParams.threadId, callParams.time, frameIndex,
 | |
|         allocation);
 | |
|     Flush();
 | |
| }
 | |
| 
 | |
| void VmaRecorder::RecordTouchAllocation(uint32_t frameIndex,
 | |
|     VmaAllocation allocation)
 | |
| {
 | |
|     CallParams callParams;
 | |
|     GetBasicParams(callParams);
 | |
| 
 | |
|     VmaMutexLock lock(m_FileMutex, m_UseMutex);
 | |
|     fprintf(m_File, "%u,%.3f,%u,vmaTouchAllocation,%p\n", callParams.threadId, callParams.time, frameIndex,
 | |
|         allocation);
 | |
|     Flush();
 | |
| }
 | |
| 
 | |
| void VmaRecorder::RecordGetAllocationInfo(uint32_t frameIndex,
 | |
|     VmaAllocation allocation)
 | |
| {
 | |
|     CallParams callParams;
 | |
|     GetBasicParams(callParams);
 | |
| 
 | |
|     VmaMutexLock lock(m_FileMutex, m_UseMutex);
 | |
|     fprintf(m_File, "%u,%.3f,%u,vmaGetAllocationInfo,%p\n", callParams.threadId, callParams.time, frameIndex,
 | |
|         allocation);
 | |
|     Flush();
 | |
| }
 | |
| 
 | |
| void VmaRecorder::RecordMakePoolAllocationsLost(uint32_t frameIndex,
 | |
|     VmaPool pool)
 | |
| {
 | |
|     CallParams callParams;
 | |
|     GetBasicParams(callParams);
 | |
| 
 | |
|     VmaMutexLock lock(m_FileMutex, m_UseMutex);
 | |
|     fprintf(m_File, "%u,%.3f,%u,vmaMakePoolAllocationsLost,%p\n", callParams.threadId, callParams.time, frameIndex,
 | |
|         pool);
 | |
|     Flush();
 | |
| }
 | |
| 
 | |
| void VmaRecorder::RecordDefragmentationBegin(uint32_t frameIndex,
 | |
|     const VmaDefragmentationInfo2& info,
 | |
|     VmaDefragmentationContext ctx)
 | |
| {
 | |
|     CallParams callParams;
 | |
|     GetBasicParams(callParams);
 | |
| 
 | |
|     VmaMutexLock lock(m_FileMutex, m_UseMutex);
 | |
|     fprintf(m_File, "%u,%.3f,%u,vmaDefragmentationBegin,%u,", callParams.threadId, callParams.time, frameIndex,
 | |
|         info.flags);
 | |
|     PrintPointerList(info.allocationCount, info.pAllocations);
 | |
|     fprintf(m_File, ",");
 | |
|     PrintPointerList(info.poolCount, info.pPools);
 | |
|     fprintf(m_File, ",%llu,%u,%llu,%u,%p,%p\n",
 | |
|         info.maxCpuBytesToMove,
 | |
|         info.maxCpuAllocationsToMove,
 | |
|         info.maxGpuBytesToMove,
 | |
|         info.maxGpuAllocationsToMove,
 | |
|         info.commandBuffer,
 | |
|         ctx);
 | |
|     Flush();
 | |
| }
 | |
| 
 | |
| void VmaRecorder::RecordDefragmentationEnd(uint32_t frameIndex,
 | |
|     VmaDefragmentationContext ctx)
 | |
| {
 | |
|     CallParams callParams;
 | |
|     GetBasicParams(callParams);
 | |
| 
 | |
|     VmaMutexLock lock(m_FileMutex, m_UseMutex);
 | |
|     fprintf(m_File, "%u,%.3f,%u,vmaDefragmentationEnd,%p\n", callParams.threadId, callParams.time, frameIndex,
 | |
|         ctx);
 | |
|     Flush();
 | |
| }
 | |
| 
 | |
| void VmaRecorder::RecordSetPoolName(uint32_t frameIndex,
 | |
|     VmaPool pool,
 | |
|     const char* name)
 | |
| {
 | |
|     CallParams callParams;
 | |
|     GetBasicParams(callParams);
 | |
| 
 | |
|     VmaMutexLock lock(m_FileMutex, m_UseMutex);
 | |
|     fprintf(m_File, "%u,%.3f,%u,vmaSetPoolName,%p,%s\n", callParams.threadId, callParams.time, frameIndex,
 | |
|         pool, name != VMA_NULL ? name : "");
 | |
|     Flush();
 | |
| }
 | |
| 
 | |
| VmaRecorder::UserDataString::UserDataString(VmaAllocationCreateFlags allocFlags, const void* pUserData)
 | |
| {
 | |
|     if(pUserData != VMA_NULL)
 | |
|     {
 | |
|         if((allocFlags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0)
 | |
|         {
 | |
|             m_Str = (const char*)pUserData;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             sprintf_s(m_PtrStr, "%p", pUserData);
 | |
|             m_Str = m_PtrStr;
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         m_Str = "";
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaRecorder::WriteConfiguration(
 | |
|     const VkPhysicalDeviceProperties& devProps,
 | |
|     const VkPhysicalDeviceMemoryProperties& memProps,
 | |
|     uint32_t vulkanApiVersion,
 | |
|     bool dedicatedAllocationExtensionEnabled,
 | |
|     bool bindMemory2ExtensionEnabled,
 | |
|     bool memoryBudgetExtensionEnabled)
 | |
| {
 | |
|     fprintf(m_File, "Config,Begin\n");
 | |
| 
 | |
|     fprintf(m_File, "VulkanApiVersion,%u,%u\n", VK_VERSION_MAJOR(vulkanApiVersion), VK_VERSION_MINOR(vulkanApiVersion));
 | |
| 
 | |
|     fprintf(m_File, "PhysicalDevice,apiVersion,%u\n", devProps.apiVersion);
 | |
|     fprintf(m_File, "PhysicalDevice,driverVersion,%u\n", devProps.driverVersion);
 | |
|     fprintf(m_File, "PhysicalDevice,vendorID,%u\n", devProps.vendorID);
 | |
|     fprintf(m_File, "PhysicalDevice,deviceID,%u\n", devProps.deviceID);
 | |
|     fprintf(m_File, "PhysicalDevice,deviceType,%u\n", devProps.deviceType);
 | |
|     fprintf(m_File, "PhysicalDevice,deviceName,%s\n", devProps.deviceName);
 | |
| 
 | |
|     fprintf(m_File, "PhysicalDeviceLimits,maxMemoryAllocationCount,%u\n", devProps.limits.maxMemoryAllocationCount);
 | |
|     fprintf(m_File, "PhysicalDeviceLimits,bufferImageGranularity,%llu\n", devProps.limits.bufferImageGranularity);
 | |
|     fprintf(m_File, "PhysicalDeviceLimits,nonCoherentAtomSize,%llu\n", devProps.limits.nonCoherentAtomSize);
 | |
| 
 | |
|     fprintf(m_File, "PhysicalDeviceMemory,HeapCount,%u\n", memProps.memoryHeapCount);
 | |
|     for(uint32_t i = 0; i < memProps.memoryHeapCount; ++i)
 | |
|     {
 | |
|         fprintf(m_File, "PhysicalDeviceMemory,Heap,%u,size,%llu\n", i, memProps.memoryHeaps[i].size);
 | |
|         fprintf(m_File, "PhysicalDeviceMemory,Heap,%u,flags,%u\n", i, memProps.memoryHeaps[i].flags);
 | |
|     }
 | |
|     fprintf(m_File, "PhysicalDeviceMemory,TypeCount,%u\n", memProps.memoryTypeCount);
 | |
|     for(uint32_t i = 0; i < memProps.memoryTypeCount; ++i)
 | |
|     {
 | |
|         fprintf(m_File, "PhysicalDeviceMemory,Type,%u,heapIndex,%u\n", i, memProps.memoryTypes[i].heapIndex);
 | |
|         fprintf(m_File, "PhysicalDeviceMemory,Type,%u,propertyFlags,%u\n", i, memProps.memoryTypes[i].propertyFlags);
 | |
|     }
 | |
| 
 | |
|     fprintf(m_File, "Extension,VK_KHR_dedicated_allocation,%u\n", dedicatedAllocationExtensionEnabled ? 1 : 0);
 | |
|     fprintf(m_File, "Extension,VK_KHR_bind_memory2,%u\n", bindMemory2ExtensionEnabled ? 1 : 0);
 | |
|     fprintf(m_File, "Extension,VK_EXT_memory_budget,%u\n", memoryBudgetExtensionEnabled ? 1 : 0);
 | |
| 
 | |
|     fprintf(m_File, "Macro,VMA_DEBUG_ALWAYS_DEDICATED_MEMORY,%u\n", VMA_DEBUG_ALWAYS_DEDICATED_MEMORY ? 1 : 0);
 | |
|     fprintf(m_File, "Macro,VMA_DEBUG_ALIGNMENT,%llu\n", (VkDeviceSize)VMA_DEBUG_ALIGNMENT);
 | |
|     fprintf(m_File, "Macro,VMA_DEBUG_MARGIN,%llu\n", (VkDeviceSize)VMA_DEBUG_MARGIN);
 | |
|     fprintf(m_File, "Macro,VMA_DEBUG_INITIALIZE_ALLOCATIONS,%u\n", VMA_DEBUG_INITIALIZE_ALLOCATIONS ? 1 : 0);
 | |
|     fprintf(m_File, "Macro,VMA_DEBUG_DETECT_CORRUPTION,%u\n", VMA_DEBUG_DETECT_CORRUPTION ? 1 : 0);
 | |
|     fprintf(m_File, "Macro,VMA_DEBUG_GLOBAL_MUTEX,%u\n", VMA_DEBUG_GLOBAL_MUTEX ? 1 : 0);
 | |
|     fprintf(m_File, "Macro,VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY,%llu\n", (VkDeviceSize)VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY);
 | |
|     fprintf(m_File, "Macro,VMA_SMALL_HEAP_MAX_SIZE,%llu\n", (VkDeviceSize)VMA_SMALL_HEAP_MAX_SIZE);
 | |
|     fprintf(m_File, "Macro,VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE,%llu\n", (VkDeviceSize)VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE);
 | |
| 
 | |
|     fprintf(m_File, "Config,End\n");
 | |
| }
 | |
| 
 | |
| void VmaRecorder::GetBasicParams(CallParams& outParams)
 | |
| {
 | |
|     outParams.threadId = GetCurrentThreadId();
 | |
| 
 | |
|     LARGE_INTEGER counter;
 | |
|     QueryPerformanceCounter(&counter);
 | |
|     outParams.time = (double)(counter.QuadPart - m_StartCounter) / (double)m_Freq;
 | |
| }
 | |
| 
 | |
| void VmaRecorder::PrintPointerList(uint64_t count, const VmaAllocation* pItems)
 | |
| {
 | |
|     if(count)
 | |
|     {
 | |
|         fprintf(m_File, "%p", pItems[0]);
 | |
|         for(uint64_t i = 1; i < count; ++i)
 | |
|         {
 | |
|             fprintf(m_File, " %p", pItems[i]);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaRecorder::Flush()
 | |
| {
 | |
|     if((m_Flags & VMA_RECORD_FLUSH_AFTER_CALL_BIT) != 0)
 | |
|     {
 | |
|         fflush(m_File);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #endif // #if VMA_RECORDING_ENABLED
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| // VmaAllocationObjectAllocator
 | |
| 
 | |
| VmaAllocationObjectAllocator::VmaAllocationObjectAllocator(const VkAllocationCallbacks* pAllocationCallbacks) :
 | |
|     m_Allocator(pAllocationCallbacks, 1024)
 | |
| {
 | |
| }
 | |
| 
 | |
| VmaAllocation VmaAllocationObjectAllocator::Allocate()
 | |
| {
 | |
|     VmaMutexLock mutexLock(m_Mutex);
 | |
|     return m_Allocator.Alloc();
 | |
| }
 | |
| 
 | |
| void VmaAllocationObjectAllocator::Free(VmaAllocation hAlloc)
 | |
| {
 | |
|     VmaMutexLock mutexLock(m_Mutex);
 | |
|     m_Allocator.Free(hAlloc);
 | |
| }
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| // VmaAllocator_T
 | |
| 
 | |
| VmaAllocator_T::VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo) :
 | |
|     m_UseMutex((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT) == 0),
 | |
|     m_VulkanApiVersion(pCreateInfo->vulkanApiVersion != 0 ? pCreateInfo->vulkanApiVersion : VK_API_VERSION_1_0),
 | |
|     m_UseKhrDedicatedAllocation((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT) != 0),
 | |
|     m_UseKhrBindMemory2((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT) != 0),
 | |
|     m_UseExtMemoryBudget((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT) != 0),
 | |
|     m_hDevice(pCreateInfo->device),
 | |
|     m_hInstance(pCreateInfo->instance),
 | |
|     m_AllocationCallbacksSpecified(pCreateInfo->pAllocationCallbacks != VMA_NULL),
 | |
|     m_AllocationCallbacks(pCreateInfo->pAllocationCallbacks ?
 | |
|         *pCreateInfo->pAllocationCallbacks : VmaEmptyAllocationCallbacks),
 | |
|     m_AllocationObjectAllocator(&m_AllocationCallbacks),
 | |
|     m_HeapSizeLimitMask(0),
 | |
|     m_PreferredLargeHeapBlockSize(0),
 | |
|     m_PhysicalDevice(pCreateInfo->physicalDevice),
 | |
|     m_CurrentFrameIndex(0),
 | |
|     m_GpuDefragmentationMemoryTypeBits(UINT32_MAX),
 | |
|     m_Pools(VmaStlAllocator<VmaPool>(GetAllocationCallbacks())),
 | |
|     m_NextPoolId(0)
 | |
| #if VMA_RECORDING_ENABLED
 | |
|     ,m_pRecorder(VMA_NULL)
 | |
| #endif
 | |
| {
 | |
|     if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
 | |
|     {
 | |
|         m_UseKhrDedicatedAllocation = false;
 | |
|         m_UseKhrBindMemory2 = false;
 | |
|     }
 | |
| 
 | |
|     if(VMA_DEBUG_DETECT_CORRUPTION)
 | |
|     {
 | |
|         // Needs to be multiply of uint32_t size because we are going to write VMA_CORRUPTION_DETECTION_MAGIC_VALUE to it.
 | |
|         VMA_ASSERT(VMA_DEBUG_MARGIN % sizeof(uint32_t) == 0);
 | |
|     }
 | |
| 
 | |
|     VMA_ASSERT(pCreateInfo->physicalDevice && pCreateInfo->device);
 | |
| 
 | |
|     if(m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0))
 | |
|     {
 | |
| #if !(VMA_DEDICATED_ALLOCATION)
 | |
|         if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT) != 0)
 | |
|         {
 | |
|             VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT set but required extensions are disabled by preprocessor macros.");
 | |
|         }
 | |
| #endif
 | |
| #if !(VMA_BIND_MEMORY2)
 | |
|         if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT) != 0)
 | |
|         {
 | |
|             VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT set but required extension is disabled by preprocessor macros.");
 | |
|         }
 | |
| #endif
 | |
|     }
 | |
| #if !(VMA_MEMORY_BUDGET)
 | |
|     if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT) != 0)
 | |
|     {
 | |
|         VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT set but required extension is disabled by preprocessor macros.");
 | |
|     }
 | |
| #endif
 | |
| #if VMA_VULKAN_VERSION < 1001000
 | |
|     if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
 | |
|     {
 | |
|         VMA_ASSERT(0 && "vulkanApiVersion >= VK_API_VERSION_1_1 but required Vulkan version is disabled by preprocessor macros.");
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     memset(&m_DeviceMemoryCallbacks, 0 ,sizeof(m_DeviceMemoryCallbacks));
 | |
|     memset(&m_PhysicalDeviceProperties, 0, sizeof(m_PhysicalDeviceProperties));
 | |
|     memset(&m_MemProps, 0, sizeof(m_MemProps));
 | |
|         
 | |
|     memset(&m_pBlockVectors, 0, sizeof(m_pBlockVectors));
 | |
|     memset(&m_pDedicatedAllocations, 0, sizeof(m_pDedicatedAllocations));
 | |
|     memset(&m_VulkanFunctions, 0, sizeof(m_VulkanFunctions));
 | |
| 
 | |
|     if(pCreateInfo->pDeviceMemoryCallbacks != VMA_NULL)
 | |
|     {
 | |
|         m_DeviceMemoryCallbacks.pfnAllocate = pCreateInfo->pDeviceMemoryCallbacks->pfnAllocate;
 | |
|         m_DeviceMemoryCallbacks.pfnFree = pCreateInfo->pDeviceMemoryCallbacks->pfnFree;
 | |
|     }
 | |
| 
 | |
|     ImportVulkanFunctions(pCreateInfo->pVulkanFunctions);
 | |
| 
 | |
|     (*m_VulkanFunctions.vkGetPhysicalDeviceProperties)(m_PhysicalDevice, &m_PhysicalDeviceProperties);
 | |
|     (*m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties)(m_PhysicalDevice, &m_MemProps);
 | |
| 
 | |
|     VMA_ASSERT(VmaIsPow2(VMA_DEBUG_ALIGNMENT));
 | |
|     VMA_ASSERT(VmaIsPow2(VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY));
 | |
|     VMA_ASSERT(VmaIsPow2(m_PhysicalDeviceProperties.limits.bufferImageGranularity));
 | |
|     VMA_ASSERT(VmaIsPow2(m_PhysicalDeviceProperties.limits.nonCoherentAtomSize));
 | |
| 
 | |
|     m_PreferredLargeHeapBlockSize = (pCreateInfo->preferredLargeHeapBlockSize != 0) ?
 | |
|         pCreateInfo->preferredLargeHeapBlockSize : static_cast<VkDeviceSize>(VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE);
 | |
| 
 | |
|     if(pCreateInfo->pHeapSizeLimit != VMA_NULL)
 | |
|     {
 | |
|         for(uint32_t heapIndex = 0; heapIndex < GetMemoryHeapCount(); ++heapIndex)
 | |
|         {
 | |
|             const VkDeviceSize limit = pCreateInfo->pHeapSizeLimit[heapIndex];
 | |
|             if(limit != VK_WHOLE_SIZE)
 | |
|             {
 | |
|                 m_HeapSizeLimitMask |= 1u << heapIndex;
 | |
|                 if(limit < m_MemProps.memoryHeaps[heapIndex].size)
 | |
|                 {
 | |
|                     m_MemProps.memoryHeaps[heapIndex].size = limit;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
 | |
|     {
 | |
|         const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(memTypeIndex);
 | |
| 
 | |
|         m_pBlockVectors[memTypeIndex] = vma_new(this, VmaBlockVector)(
 | |
|             this,
 | |
|             VK_NULL_HANDLE, // hParentPool
 | |
|             memTypeIndex,
 | |
|             preferredBlockSize,
 | |
|             0,
 | |
|             SIZE_MAX,
 | |
|             GetBufferImageGranularity(),
 | |
|             pCreateInfo->frameInUseCount,
 | |
|             false, // explicitBlockSize
 | |
|             false); // linearAlgorithm
 | |
|         // No need to call m_pBlockVectors[memTypeIndex][blockVectorTypeIndex]->CreateMinBlocks here,
 | |
|         // becase minBlockCount is 0.
 | |
|         m_pDedicatedAllocations[memTypeIndex] = vma_new(this, AllocationVectorType)(VmaStlAllocator<VmaAllocation>(GetAllocationCallbacks()));
 | |
| 
 | |
|     }
 | |
| }
 | |
| 
 | |
| VkResult VmaAllocator_T::Init(const VmaAllocatorCreateInfo* pCreateInfo)
 | |
| {
 | |
|     VkResult res = VK_SUCCESS;
 | |
| 
 | |
|     if(pCreateInfo->pRecordSettings != VMA_NULL &&
 | |
|         !VmaStrIsEmpty(pCreateInfo->pRecordSettings->pFilePath))
 | |
|     {
 | |
| #if VMA_RECORDING_ENABLED
 | |
|         m_pRecorder = vma_new(this, VmaRecorder)();
 | |
|         res = m_pRecorder->Init(*pCreateInfo->pRecordSettings, m_UseMutex);
 | |
|         if(res != VK_SUCCESS)
 | |
|         {
 | |
|             return res;
 | |
|         }
 | |
|         m_pRecorder->WriteConfiguration(
 | |
|             m_PhysicalDeviceProperties,
 | |
|             m_MemProps,
 | |
|             m_VulkanApiVersion,
 | |
|             m_UseKhrDedicatedAllocation,
 | |
|             m_UseKhrBindMemory2,
 | |
|             m_UseExtMemoryBudget);
 | |
|         m_pRecorder->RecordCreateAllocator(GetCurrentFrameIndex());
 | |
| #else
 | |
|         VMA_ASSERT(0 && "VmaAllocatorCreateInfo::pRecordSettings used, but not supported due to VMA_RECORDING_ENABLED not defined to 1.");
 | |
|         return VK_ERROR_FEATURE_NOT_PRESENT;
 | |
| #endif
 | |
|     }
 | |
| 
 | |
| #if VMA_MEMORY_BUDGET
 | |
|     if(m_UseExtMemoryBudget)
 | |
|     {
 | |
|         UpdateVulkanBudget();
 | |
|     }
 | |
| #endif // #if VMA_MEMORY_BUDGET
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| VmaAllocator_T::~VmaAllocator_T()
 | |
| {
 | |
| #if VMA_RECORDING_ENABLED
 | |
|     if(m_pRecorder != VMA_NULL)
 | |
|     {
 | |
|         m_pRecorder->RecordDestroyAllocator(GetCurrentFrameIndex());
 | |
|         vma_delete(this, m_pRecorder);
 | |
|     }
 | |
| #endif
 | |
|     
 | |
|     VMA_ASSERT(m_Pools.empty());
 | |
| 
 | |
|     for(size_t i = GetMemoryTypeCount(); i--; )
 | |
|     {
 | |
|         if(m_pDedicatedAllocations[i] != VMA_NULL && !m_pDedicatedAllocations[i]->empty())
 | |
|         {
 | |
|             VMA_ASSERT(0 && "Unfreed dedicated allocations found.");
 | |
|         }
 | |
| 
 | |
|         vma_delete(this, m_pDedicatedAllocations[i]);
 | |
|         vma_delete(this, m_pBlockVectors[i]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaAllocator_T::ImportVulkanFunctions(const VmaVulkanFunctions* pVulkanFunctions)
 | |
| {
 | |
| #if VMA_STATIC_VULKAN_FUNCTIONS == 1
 | |
|     m_VulkanFunctions.vkGetPhysicalDeviceProperties = (PFN_vkGetPhysicalDeviceProperties)vkGetPhysicalDeviceProperties;
 | |
|     m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties = (PFN_vkGetPhysicalDeviceMemoryProperties)vkGetPhysicalDeviceMemoryProperties;
 | |
|     m_VulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkAllocateMemory;
 | |
|     m_VulkanFunctions.vkFreeMemory = (PFN_vkFreeMemory)vkFreeMemory;
 | |
|     m_VulkanFunctions.vkMapMemory = (PFN_vkMapMemory)vkMapMemory;
 | |
|     m_VulkanFunctions.vkUnmapMemory = (PFN_vkUnmapMemory)vkUnmapMemory;
 | |
|     m_VulkanFunctions.vkFlushMappedMemoryRanges = (PFN_vkFlushMappedMemoryRanges)vkFlushMappedMemoryRanges;
 | |
|     m_VulkanFunctions.vkInvalidateMappedMemoryRanges = (PFN_vkInvalidateMappedMemoryRanges)vkInvalidateMappedMemoryRanges;
 | |
|     m_VulkanFunctions.vkBindBufferMemory = (PFN_vkBindBufferMemory)vkBindBufferMemory;
 | |
|     m_VulkanFunctions.vkBindImageMemory = (PFN_vkBindImageMemory)vkBindImageMemory;
 | |
|     m_VulkanFunctions.vkGetBufferMemoryRequirements = (PFN_vkGetBufferMemoryRequirements)vkGetBufferMemoryRequirements;
 | |
|     m_VulkanFunctions.vkGetImageMemoryRequirements = (PFN_vkGetImageMemoryRequirements)vkGetImageMemoryRequirements;
 | |
|     m_VulkanFunctions.vkCreateBuffer = (PFN_vkCreateBuffer)vkCreateBuffer;
 | |
|     m_VulkanFunctions.vkDestroyBuffer = (PFN_vkDestroyBuffer)vkDestroyBuffer;
 | |
|     m_VulkanFunctions.vkCreateImage = (PFN_vkCreateImage)vkCreateImage;
 | |
|     m_VulkanFunctions.vkDestroyImage = (PFN_vkDestroyImage)vkDestroyImage;
 | |
|     m_VulkanFunctions.vkCmdCopyBuffer = (PFN_vkCmdCopyBuffer)vkCmdCopyBuffer;
 | |
| #if VMA_VULKAN_VERSION >= 1001000
 | |
|     if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
 | |
|     {
 | |
|         VMA_ASSERT(m_hInstance != VK_NULL_HANDLE);
 | |
|         m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR =
 | |
|             (PFN_vkGetBufferMemoryRequirements2KHR)vkGetDeviceProcAddr(m_hDevice, "vkGetBufferMemoryRequirements2");
 | |
|         m_VulkanFunctions.vkGetImageMemoryRequirements2KHR =
 | |
|             (PFN_vkGetImageMemoryRequirements2KHR)vkGetDeviceProcAddr(m_hDevice, "vkGetImageMemoryRequirements2");
 | |
|         m_VulkanFunctions.vkBindBufferMemory2KHR =
 | |
|             (PFN_vkBindBufferMemory2KHR)vkGetDeviceProcAddr(m_hDevice, "vkBindBufferMemory2");
 | |
|         m_VulkanFunctions.vkBindImageMemory2KHR =
 | |
|             (PFN_vkBindImageMemory2KHR)vkGetDeviceProcAddr(m_hDevice, "vkBindImageMemory2");
 | |
|         m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties2KHR =
 | |
|             (PFN_vkGetPhysicalDeviceMemoryProperties2KHR)vkGetInstanceProcAddr(m_hInstance, "vkGetPhysicalDeviceMemoryProperties2");
 | |
|     }
 | |
| #endif
 | |
| #if VMA_DEDICATED_ALLOCATION
 | |
|     if(m_UseKhrDedicatedAllocation)
 | |
|     {
 | |
|         m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR =
 | |
|             (PFN_vkGetBufferMemoryRequirements2KHR)vkGetDeviceProcAddr(m_hDevice, "vkGetBufferMemoryRequirements2KHR");
 | |
|         m_VulkanFunctions.vkGetImageMemoryRequirements2KHR =
 | |
|             (PFN_vkGetImageMemoryRequirements2KHR)vkGetDeviceProcAddr(m_hDevice, "vkGetImageMemoryRequirements2KHR");
 | |
|     }
 | |
| #endif
 | |
| #if VMA_BIND_MEMORY2
 | |
|     if(m_UseKhrBindMemory2)
 | |
|     {
 | |
|         m_VulkanFunctions.vkBindBufferMemory2KHR =
 | |
|             (PFN_vkBindBufferMemory2KHR)vkGetDeviceProcAddr(m_hDevice, "vkBindBufferMemory2KHR");
 | |
|         m_VulkanFunctions.vkBindImageMemory2KHR =
 | |
|             (PFN_vkBindImageMemory2KHR)vkGetDeviceProcAddr(m_hDevice, "vkBindImageMemory2KHR");
 | |
|     }
 | |
| #endif // #if VMA_BIND_MEMORY2
 | |
| #if VMA_MEMORY_BUDGET
 | |
|     if(m_UseExtMemoryBudget && m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0))
 | |
|     {
 | |
|         VMA_ASSERT(m_hInstance != VK_NULL_HANDLE);
 | |
|         m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties2KHR =
 | |
|             (PFN_vkGetPhysicalDeviceMemoryProperties2KHR)vkGetInstanceProcAddr(m_hInstance, "vkGetPhysicalDeviceMemoryProperties2KHR");
 | |
|     }
 | |
| #endif // #if VMA_MEMORY_BUDGET
 | |
| #endif // #if VMA_STATIC_VULKAN_FUNCTIONS == 1
 | |
| 
 | |
| #define VMA_COPY_IF_NOT_NULL(funcName) \
 | |
|     if(pVulkanFunctions->funcName != VMA_NULL) m_VulkanFunctions.funcName = pVulkanFunctions->funcName;
 | |
| 
 | |
|     if(pVulkanFunctions != VMA_NULL)
 | |
|     {
 | |
|         VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceProperties);
 | |
|         VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceMemoryProperties);
 | |
|         VMA_COPY_IF_NOT_NULL(vkAllocateMemory);
 | |
|         VMA_COPY_IF_NOT_NULL(vkFreeMemory);
 | |
|         VMA_COPY_IF_NOT_NULL(vkMapMemory);
 | |
|         VMA_COPY_IF_NOT_NULL(vkUnmapMemory);
 | |
|         VMA_COPY_IF_NOT_NULL(vkFlushMappedMemoryRanges);
 | |
|         VMA_COPY_IF_NOT_NULL(vkInvalidateMappedMemoryRanges);
 | |
|         VMA_COPY_IF_NOT_NULL(vkBindBufferMemory);
 | |
|         VMA_COPY_IF_NOT_NULL(vkBindImageMemory);
 | |
|         VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements);
 | |
|         VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements);
 | |
|         VMA_COPY_IF_NOT_NULL(vkCreateBuffer);
 | |
|         VMA_COPY_IF_NOT_NULL(vkDestroyBuffer);
 | |
|         VMA_COPY_IF_NOT_NULL(vkCreateImage);
 | |
|         VMA_COPY_IF_NOT_NULL(vkDestroyImage);
 | |
|         VMA_COPY_IF_NOT_NULL(vkCmdCopyBuffer);
 | |
| #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
 | |
|         VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements2KHR);
 | |
|         VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements2KHR);
 | |
| #endif
 | |
| #if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000
 | |
|         VMA_COPY_IF_NOT_NULL(vkBindBufferMemory2KHR);
 | |
|         VMA_COPY_IF_NOT_NULL(vkBindImageMemory2KHR);
 | |
| #endif
 | |
| #if VMA_MEMORY_BUDGET
 | |
|         VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceMemoryProperties2KHR);
 | |
| #endif
 | |
|     }
 | |
| 
 | |
| #undef VMA_COPY_IF_NOT_NULL
 | |
| 
 | |
|     // If these asserts are hit, you must either #define VMA_STATIC_VULKAN_FUNCTIONS 1
 | |
|     // or pass valid pointers as VmaAllocatorCreateInfo::pVulkanFunctions.
 | |
|     VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceProperties != VMA_NULL);
 | |
|     VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties != VMA_NULL);
 | |
|     VMA_ASSERT(m_VulkanFunctions.vkAllocateMemory != VMA_NULL);
 | |
|     VMA_ASSERT(m_VulkanFunctions.vkFreeMemory != VMA_NULL);
 | |
|     VMA_ASSERT(m_VulkanFunctions.vkMapMemory != VMA_NULL);
 | |
|     VMA_ASSERT(m_VulkanFunctions.vkUnmapMemory != VMA_NULL);
 | |
|     VMA_ASSERT(m_VulkanFunctions.vkFlushMappedMemoryRanges != VMA_NULL);
 | |
|     VMA_ASSERT(m_VulkanFunctions.vkInvalidateMappedMemoryRanges != VMA_NULL);
 | |
|     VMA_ASSERT(m_VulkanFunctions.vkBindBufferMemory != VMA_NULL);
 | |
|     VMA_ASSERT(m_VulkanFunctions.vkBindImageMemory != VMA_NULL);
 | |
|     VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements != VMA_NULL);
 | |
|     VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements != VMA_NULL);
 | |
|     VMA_ASSERT(m_VulkanFunctions.vkCreateBuffer != VMA_NULL);
 | |
|     VMA_ASSERT(m_VulkanFunctions.vkDestroyBuffer != VMA_NULL);
 | |
|     VMA_ASSERT(m_VulkanFunctions.vkCreateImage != VMA_NULL);
 | |
|     VMA_ASSERT(m_VulkanFunctions.vkDestroyImage != VMA_NULL);
 | |
|     VMA_ASSERT(m_VulkanFunctions.vkCmdCopyBuffer != VMA_NULL);
 | |
| #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
 | |
|     if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0) || m_UseKhrDedicatedAllocation)
 | |
|     {
 | |
|         VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR != VMA_NULL);
 | |
|         VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements2KHR != VMA_NULL);
 | |
|     }
 | |
| #endif
 | |
| #if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000
 | |
|     if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0) || m_UseKhrBindMemory2)
 | |
|     {
 | |
|         VMA_ASSERT(m_VulkanFunctions.vkBindBufferMemory2KHR != VMA_NULL);
 | |
|         VMA_ASSERT(m_VulkanFunctions.vkBindImageMemory2KHR != VMA_NULL);
 | |
|     }
 | |
| #endif
 | |
| #if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000
 | |
|     if(m_UseExtMemoryBudget || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
 | |
|     {
 | |
|         VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties2KHR != VMA_NULL);
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| VkDeviceSize VmaAllocator_T::CalcPreferredBlockSize(uint32_t memTypeIndex)
 | |
| {
 | |
|     const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex);
 | |
|     const VkDeviceSize heapSize = m_MemProps.memoryHeaps[heapIndex].size;
 | |
|     const bool isSmallHeap = heapSize <= VMA_SMALL_HEAP_MAX_SIZE;
 | |
|     return VmaAlignUp(isSmallHeap ? (heapSize / 8) : m_PreferredLargeHeapBlockSize, (VkDeviceSize)32);
 | |
| }
 | |
| 
 | |
| VkResult VmaAllocator_T::AllocateMemoryOfType(
 | |
|     VkDeviceSize size,
 | |
|     VkDeviceSize alignment,
 | |
|     bool dedicatedAllocation,
 | |
|     VkBuffer dedicatedBuffer,
 | |
|     VkImage dedicatedImage,
 | |
|     const VmaAllocationCreateInfo& createInfo,
 | |
|     uint32_t memTypeIndex,
 | |
|     VmaSuballocationType suballocType,
 | |
|     size_t allocationCount,
 | |
|     VmaAllocation* pAllocations)
 | |
| {
 | |
|     VMA_ASSERT(pAllocations != VMA_NULL);
 | |
|     VMA_DEBUG_LOG("  AllocateMemory: MemoryTypeIndex=%u, AllocationCount=%zu, Size=%llu", memTypeIndex, allocationCount, size);
 | |
| 
 | |
|     VmaAllocationCreateInfo finalCreateInfo = createInfo;
 | |
| 
 | |
|     // If memory type is not HOST_VISIBLE, disable MAPPED.
 | |
|     if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 &&
 | |
|         (m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0)
 | |
|     {
 | |
|         finalCreateInfo.flags &= ~VMA_ALLOCATION_CREATE_MAPPED_BIT;
 | |
|     }
 | |
|     // If memory is lazily allocated, it should be always dedicated.
 | |
|     if(finalCreateInfo.usage == VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED)
 | |
|     {
 | |
|         finalCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
 | |
|     }
 | |
| 
 | |
|     VmaBlockVector* const blockVector = m_pBlockVectors[memTypeIndex];
 | |
|     VMA_ASSERT(blockVector);
 | |
| 
 | |
|     const VkDeviceSize preferredBlockSize = blockVector->GetPreferredBlockSize();
 | |
|     bool preferDedicatedMemory =
 | |
|         VMA_DEBUG_ALWAYS_DEDICATED_MEMORY ||
 | |
|         dedicatedAllocation ||
 | |
|         // Heuristics: Allocate dedicated memory if requested size if greater than half of preferred block size.
 | |
|         size > preferredBlockSize / 2;
 | |
| 
 | |
|     if(preferDedicatedMemory &&
 | |
|         (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0 &&
 | |
|         finalCreateInfo.pool == VK_NULL_HANDLE)
 | |
|     {
 | |
|         finalCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
 | |
|     }
 | |
| 
 | |
|     if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0)
 | |
|     {
 | |
|         if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0)
 | |
|         {
 | |
|             return VK_ERROR_OUT_OF_DEVICE_MEMORY;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             return AllocateDedicatedMemory(
 | |
|                 size,
 | |
|                 suballocType,
 | |
|                 memTypeIndex,
 | |
|                 (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT) != 0,
 | |
|                 (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0,
 | |
|                 (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0,
 | |
|                 finalCreateInfo.pUserData,
 | |
|                 dedicatedBuffer,
 | |
|                 dedicatedImage,
 | |
|                 allocationCount,
 | |
|                 pAllocations);
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         VkResult res = blockVector->Allocate(
 | |
|             m_CurrentFrameIndex.load(),
 | |
|             size,
 | |
|             alignment,
 | |
|             finalCreateInfo,
 | |
|             suballocType,
 | |
|             allocationCount,
 | |
|             pAllocations);
 | |
|         if(res == VK_SUCCESS)
 | |
|         {
 | |
|             return res;
 | |
|         }
 | |
| 
 | |
|         // 5. Try dedicated memory.
 | |
|         if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0)
 | |
|         {
 | |
|             return VK_ERROR_OUT_OF_DEVICE_MEMORY;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             res = AllocateDedicatedMemory(
 | |
|                 size,
 | |
|                 suballocType,
 | |
|                 memTypeIndex,
 | |
|                 (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT) != 0,
 | |
|                 (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0,
 | |
|                 (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0,
 | |
|                 finalCreateInfo.pUserData,
 | |
|                 dedicatedBuffer,
 | |
|                 dedicatedImage,
 | |
|                 allocationCount,
 | |
|                 pAllocations);
 | |
|             if(res == VK_SUCCESS)
 | |
|             {
 | |
|                 // Succeeded: AllocateDedicatedMemory function already filld pMemory, nothing more to do here.
 | |
|                 VMA_DEBUG_LOG("    Allocated as DedicatedMemory");
 | |
|                 return VK_SUCCESS;
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 // Everything failed: Return error code.
 | |
|                 VMA_DEBUG_LOG("    vkAllocateMemory FAILED");
 | |
|                 return res;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| VkResult VmaAllocator_T::AllocateDedicatedMemory(
 | |
|     VkDeviceSize size,
 | |
|     VmaSuballocationType suballocType,
 | |
|     uint32_t memTypeIndex,
 | |
|     bool withinBudget,
 | |
|     bool map,
 | |
|     bool isUserDataString,
 | |
|     void* pUserData,
 | |
|     VkBuffer dedicatedBuffer,
 | |
|     VkImage dedicatedImage,
 | |
|     size_t allocationCount,
 | |
|     VmaAllocation* pAllocations)
 | |
| {
 | |
|     VMA_ASSERT(allocationCount > 0 && pAllocations);
 | |
| 
 | |
|     if(withinBudget)
 | |
|     {
 | |
|         const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex);
 | |
|         VmaBudget heapBudget = {};
 | |
|         GetBudget(&heapBudget, heapIndex, 1);
 | |
|         if(heapBudget.usage + size * allocationCount > heapBudget.budget)
 | |
|         {
 | |
|             return VK_ERROR_OUT_OF_DEVICE_MEMORY;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO };
 | |
|     allocInfo.memoryTypeIndex = memTypeIndex;
 | |
|     allocInfo.allocationSize = size;
 | |
| 
 | |
| #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
 | |
|     VkMemoryDedicatedAllocateInfoKHR dedicatedAllocInfo = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO_KHR };
 | |
|     if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
 | |
|     {
 | |
|         if(dedicatedBuffer != VK_NULL_HANDLE)
 | |
|         {
 | |
|             VMA_ASSERT(dedicatedImage == VK_NULL_HANDLE);
 | |
|             dedicatedAllocInfo.buffer = dedicatedBuffer;
 | |
|             allocInfo.pNext = &dedicatedAllocInfo;
 | |
|         }
 | |
|         else if(dedicatedImage != VK_NULL_HANDLE)
 | |
|         {
 | |
|             dedicatedAllocInfo.image = dedicatedImage;
 | |
|             allocInfo.pNext = &dedicatedAllocInfo;
 | |
|         }
 | |
|     }
 | |
| #endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
 | |
| 
 | |
|     size_t allocIndex;
 | |
|     VkResult res = VK_SUCCESS;
 | |
|     for(allocIndex = 0; allocIndex < allocationCount; ++allocIndex)
 | |
|     {
 | |
|         res = AllocateDedicatedMemoryPage(
 | |
|             size,
 | |
|             suballocType,
 | |
|             memTypeIndex,
 | |
|             allocInfo,
 | |
|             map,
 | |
|             isUserDataString,
 | |
|             pUserData,
 | |
|             pAllocations + allocIndex);
 | |
|         if(res != VK_SUCCESS)
 | |
|         {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if(res == VK_SUCCESS)
 | |
|     {
 | |
|         // Register them in m_pDedicatedAllocations.
 | |
|         {
 | |
|             VmaMutexLockWrite lock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex);
 | |
|             AllocationVectorType* pDedicatedAllocations = m_pDedicatedAllocations[memTypeIndex];
 | |
|             VMA_ASSERT(pDedicatedAllocations);
 | |
|             for(allocIndex = 0; allocIndex < allocationCount; ++allocIndex)
 | |
|             {
 | |
|                 VmaVectorInsertSorted<VmaPointerLess>(*pDedicatedAllocations, pAllocations[allocIndex]);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         VMA_DEBUG_LOG("    Allocated DedicatedMemory Count=%zu, MemoryTypeIndex=#%u", allocationCount, memTypeIndex);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         // Free all already created allocations.
 | |
|         while(allocIndex--)
 | |
|         {
 | |
|             VmaAllocation currAlloc = pAllocations[allocIndex];
 | |
|             VkDeviceMemory hMemory = currAlloc->GetMemory();
 | |
|     
 | |
|             /*
 | |
|             There is no need to call this, because Vulkan spec allows to skip vkUnmapMemory
 | |
|             before vkFreeMemory.
 | |
| 
 | |
|             if(currAlloc->GetMappedData() != VMA_NULL)
 | |
|             {
 | |
|                 (*m_VulkanFunctions.vkUnmapMemory)(m_hDevice, hMemory);
 | |
|             }
 | |
|             */
 | |
|     
 | |
|             FreeVulkanMemory(memTypeIndex, currAlloc->GetSize(), hMemory);
 | |
|             m_Budget.RemoveAllocation(MemoryTypeIndexToHeapIndex(memTypeIndex), currAlloc->GetSize());
 | |
|             currAlloc->SetUserData(this, VMA_NULL);
 | |
|             currAlloc->Dtor();
 | |
|             m_AllocationObjectAllocator.Free(currAlloc);
 | |
|         }
 | |
| 
 | |
|         memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount);
 | |
|     }
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| VkResult VmaAllocator_T::AllocateDedicatedMemoryPage(
 | |
|     VkDeviceSize size,
 | |
|     VmaSuballocationType suballocType,
 | |
|     uint32_t memTypeIndex,
 | |
|     const VkMemoryAllocateInfo& allocInfo,
 | |
|     bool map,
 | |
|     bool isUserDataString,
 | |
|     void* pUserData,
 | |
|     VmaAllocation* pAllocation)
 | |
| {
 | |
|     VkDeviceMemory hMemory = VK_NULL_HANDLE;
 | |
|     VkResult res = AllocateVulkanMemory(&allocInfo, &hMemory);
 | |
|     if(res < 0)
 | |
|     {
 | |
|         VMA_DEBUG_LOG("    vkAllocateMemory FAILED");
 | |
|         return res;
 | |
|     }
 | |
| 
 | |
|     void* pMappedData = VMA_NULL;
 | |
|     if(map)
 | |
|     {
 | |
|         res = (*m_VulkanFunctions.vkMapMemory)(
 | |
|             m_hDevice,
 | |
|             hMemory,
 | |
|             0,
 | |
|             VK_WHOLE_SIZE,
 | |
|             0,
 | |
|             &pMappedData);
 | |
|         if(res < 0)
 | |
|         {
 | |
|             VMA_DEBUG_LOG("    vkMapMemory FAILED");
 | |
|             FreeVulkanMemory(memTypeIndex, size, hMemory);
 | |
|             return res;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     *pAllocation = m_AllocationObjectAllocator.Allocate();
 | |
|     (*pAllocation)->Ctor(m_CurrentFrameIndex.load(), isUserDataString);
 | |
|     (*pAllocation)->InitDedicatedAllocation(memTypeIndex, hMemory, suballocType, pMappedData, size);
 | |
|     (*pAllocation)->SetUserData(this, pUserData);
 | |
|     m_Budget.AddAllocation(MemoryTypeIndexToHeapIndex(memTypeIndex), size);
 | |
|     if(VMA_DEBUG_INITIALIZE_ALLOCATIONS)
 | |
|     {
 | |
|         FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED);
 | |
|     }
 | |
| 
 | |
|     return VK_SUCCESS;
 | |
| }
 | |
| 
 | |
| void VmaAllocator_T::GetBufferMemoryRequirements(
 | |
|     VkBuffer hBuffer,
 | |
|     VkMemoryRequirements& memReq,
 | |
|     bool& requiresDedicatedAllocation,
 | |
|     bool& prefersDedicatedAllocation) const
 | |
| {
 | |
| #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
 | |
|     if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
 | |
|     {
 | |
|         VkBufferMemoryRequirementsInfo2KHR memReqInfo = { VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2_KHR };
 | |
|         memReqInfo.buffer = hBuffer;
 | |
| 
 | |
|         VkMemoryDedicatedRequirementsKHR memDedicatedReq = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR };
 | |
| 
 | |
|         VkMemoryRequirements2KHR memReq2 = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR };
 | |
|         memReq2.pNext = &memDedicatedReq;
 | |
| 
 | |
|         (*m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2);
 | |
| 
 | |
|         memReq = memReq2.memoryRequirements;
 | |
|         requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE);
 | |
|         prefersDedicatedAllocation  = (memDedicatedReq.prefersDedicatedAllocation  != VK_FALSE);
 | |
|     }
 | |
|     else
 | |
| #endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
 | |
|     {
 | |
|         (*m_VulkanFunctions.vkGetBufferMemoryRequirements)(m_hDevice, hBuffer, &memReq);
 | |
|         requiresDedicatedAllocation = false;
 | |
|         prefersDedicatedAllocation  = false;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaAllocator_T::GetImageMemoryRequirements(
 | |
|     VkImage hImage,
 | |
|     VkMemoryRequirements& memReq,
 | |
|     bool& requiresDedicatedAllocation,
 | |
|     bool& prefersDedicatedAllocation) const
 | |
| {
 | |
| #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
 | |
|     if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
 | |
|     {
 | |
|         VkImageMemoryRequirementsInfo2KHR memReqInfo = { VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2_KHR };
 | |
|         memReqInfo.image = hImage;
 | |
| 
 | |
|         VkMemoryDedicatedRequirementsKHR memDedicatedReq = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR };
 | |
| 
 | |
|         VkMemoryRequirements2KHR memReq2 = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR };
 | |
|         memReq2.pNext = &memDedicatedReq;
 | |
| 
 | |
|         (*m_VulkanFunctions.vkGetImageMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2);
 | |
| 
 | |
|         memReq = memReq2.memoryRequirements;
 | |
|         requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE);
 | |
|         prefersDedicatedAllocation  = (memDedicatedReq.prefersDedicatedAllocation  != VK_FALSE);
 | |
|     }
 | |
|     else
 | |
| #endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
 | |
|     {
 | |
|         (*m_VulkanFunctions.vkGetImageMemoryRequirements)(m_hDevice, hImage, &memReq);
 | |
|         requiresDedicatedAllocation = false;
 | |
|         prefersDedicatedAllocation  = false;
 | |
|     }
 | |
| }
 | |
| 
 | |
| VkResult VmaAllocator_T::AllocateMemory(
 | |
|     const VkMemoryRequirements& vkMemReq,
 | |
|     bool requiresDedicatedAllocation,
 | |
|     bool prefersDedicatedAllocation,
 | |
|     VkBuffer dedicatedBuffer,
 | |
|     VkImage dedicatedImage,
 | |
|     const VmaAllocationCreateInfo& createInfo,
 | |
|     VmaSuballocationType suballocType,
 | |
|     size_t allocationCount,
 | |
|     VmaAllocation* pAllocations)
 | |
| {
 | |
|     memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount);
 | |
| 
 | |
|     VMA_ASSERT(VmaIsPow2(vkMemReq.alignment));
 | |
| 
 | |
|     if(vkMemReq.size == 0)
 | |
|     {
 | |
|         return VK_ERROR_VALIDATION_FAILED_EXT;
 | |
|     }
 | |
|     if((createInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0 &&
 | |
|         (createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0)
 | |
|     {
 | |
|         VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT together with VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT makes no sense.");
 | |
|         return VK_ERROR_OUT_OF_DEVICE_MEMORY;
 | |
|     }
 | |
|     if((createInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 &&
 | |
|         (createInfo.flags & VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT) != 0)
 | |
|     {
 | |
|         VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_MAPPED_BIT together with VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT is invalid.");
 | |
|         return VK_ERROR_OUT_OF_DEVICE_MEMORY;
 | |
|     }
 | |
|     if(requiresDedicatedAllocation)
 | |
|     {
 | |
|         if((createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0)
 | |
|         {
 | |
|             VMA_ASSERT(0 && "VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT specified while dedicated allocation is required.");
 | |
|             return VK_ERROR_OUT_OF_DEVICE_MEMORY;
 | |
|         }
 | |
|         if(createInfo.pool != VK_NULL_HANDLE)
 | |
|         {
 | |
|             VMA_ASSERT(0 && "Pool specified while dedicated allocation is required.");
 | |
|             return VK_ERROR_OUT_OF_DEVICE_MEMORY;
 | |
|         }
 | |
|     }
 | |
|     if((createInfo.pool != VK_NULL_HANDLE) &&
 | |
|         ((createInfo.flags & (VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT)) != 0))
 | |
|     {
 | |
|         VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT when pool != null is invalid.");
 | |
|         return VK_ERROR_OUT_OF_DEVICE_MEMORY;
 | |
|     }
 | |
| 
 | |
|     if(createInfo.pool != VK_NULL_HANDLE)
 | |
|     {
 | |
|         const VkDeviceSize alignmentForPool = VMA_MAX(
 | |
|             vkMemReq.alignment,
 | |
|             GetMemoryTypeMinAlignment(createInfo.pool->m_BlockVector.GetMemoryTypeIndex()));
 | |
| 
 | |
|         VmaAllocationCreateInfo createInfoForPool = createInfo;
 | |
|         // If memory type is not HOST_VISIBLE, disable MAPPED.
 | |
|         if((createInfoForPool.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 &&
 | |
|             (m_MemProps.memoryTypes[createInfo.pool->m_BlockVector.GetMemoryTypeIndex()].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0)
 | |
|         {
 | |
|             createInfoForPool.flags &= ~VMA_ALLOCATION_CREATE_MAPPED_BIT;
 | |
|         }
 | |
| 
 | |
|         return createInfo.pool->m_BlockVector.Allocate(
 | |
|             m_CurrentFrameIndex.load(),
 | |
|             vkMemReq.size,
 | |
|             alignmentForPool,
 | |
|             createInfoForPool,
 | |
|             suballocType,
 | |
|             allocationCount,
 | |
|             pAllocations);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         // Bit mask of memory Vulkan types acceptable for this allocation.
 | |
|         uint32_t memoryTypeBits = vkMemReq.memoryTypeBits;
 | |
|         uint32_t memTypeIndex = UINT32_MAX;
 | |
|         VkResult res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfo, &memTypeIndex);
 | |
|         if(res == VK_SUCCESS)
 | |
|         {
 | |
|             VkDeviceSize alignmentForMemType = VMA_MAX(
 | |
|                 vkMemReq.alignment,
 | |
|                 GetMemoryTypeMinAlignment(memTypeIndex));
 | |
| 
 | |
|             res = AllocateMemoryOfType(
 | |
|                 vkMemReq.size,
 | |
|                 alignmentForMemType,
 | |
|                 requiresDedicatedAllocation || prefersDedicatedAllocation,
 | |
|                 dedicatedBuffer,
 | |
|                 dedicatedImage,
 | |
|                 createInfo,
 | |
|                 memTypeIndex,
 | |
|                 suballocType,
 | |
|                 allocationCount,
 | |
|                 pAllocations);
 | |
|             // Succeeded on first try.
 | |
|             if(res == VK_SUCCESS)
 | |
|             {
 | |
|                 return res;
 | |
|             }
 | |
|             // Allocation from this memory type failed. Try other compatible memory types.
 | |
|             else
 | |
|             {
 | |
|                 for(;;)
 | |
|                 {
 | |
|                     // Remove old memTypeIndex from list of possibilities.
 | |
|                     memoryTypeBits &= ~(1u << memTypeIndex);
 | |
|                     // Find alternative memTypeIndex.
 | |
|                     res = vmaFindMemoryTypeIndex(this, memoryTypeBits, &createInfo, &memTypeIndex);
 | |
|                     if(res == VK_SUCCESS)
 | |
|                     {
 | |
|                         alignmentForMemType = VMA_MAX(
 | |
|                             vkMemReq.alignment,
 | |
|                             GetMemoryTypeMinAlignment(memTypeIndex));
 | |
|                         
 | |
|                         res = AllocateMemoryOfType(
 | |
|                             vkMemReq.size,
 | |
|                             alignmentForMemType,
 | |
|                             requiresDedicatedAllocation || prefersDedicatedAllocation,
 | |
|                             dedicatedBuffer,
 | |
|                             dedicatedImage,
 | |
|                             createInfo,
 | |
|                             memTypeIndex,
 | |
|                             suballocType,
 | |
|                             allocationCount,
 | |
|                             pAllocations);
 | |
|                         // Allocation from this alternative memory type succeeded.
 | |
|                         if(res == VK_SUCCESS)
 | |
|                         {
 | |
|                             return res;
 | |
|                         }
 | |
|                         // else: Allocation from this memory type failed. Try next one - next loop iteration.
 | |
|                     }
 | |
|                     // No other matching memory type index could be found.
 | |
|                     else
 | |
|                     {
 | |
|                         // Not returning res, which is VK_ERROR_FEATURE_NOT_PRESENT, because we already failed to allocate once.
 | |
|                         return VK_ERROR_OUT_OF_DEVICE_MEMORY;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         // Can't find any single memory type maching requirements. res is VK_ERROR_FEATURE_NOT_PRESENT.
 | |
|         else
 | |
|             return res;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaAllocator_T::FreeMemory(
 | |
|     size_t allocationCount,
 | |
|     const VmaAllocation* pAllocations)
 | |
| {
 | |
|     VMA_ASSERT(pAllocations);
 | |
| 
 | |
|     for(size_t allocIndex = allocationCount; allocIndex--; )
 | |
|     {
 | |
|         VmaAllocation allocation = pAllocations[allocIndex];
 | |
| 
 | |
|         if(allocation != VK_NULL_HANDLE)
 | |
|         {
 | |
|             if(TouchAllocation(allocation))
 | |
|             {
 | |
|                 if(VMA_DEBUG_INITIALIZE_ALLOCATIONS)
 | |
|                 {
 | |
|                     FillAllocation(allocation, VMA_ALLOCATION_FILL_PATTERN_DESTROYED);
 | |
|                 }
 | |
| 
 | |
|                 switch(allocation->GetType())
 | |
|                 {
 | |
|                 case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
 | |
|                     {
 | |
|                         VmaBlockVector* pBlockVector = VMA_NULL;
 | |
|                         VmaPool hPool = allocation->GetBlock()->GetParentPool();
 | |
|                         if(hPool != VK_NULL_HANDLE)
 | |
|                         {
 | |
|                             pBlockVector = &hPool->m_BlockVector;
 | |
|                         }
 | |
|                         else
 | |
|                         {
 | |
|                             const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex();
 | |
|                             pBlockVector = m_pBlockVectors[memTypeIndex];
 | |
|                         }
 | |
|                         pBlockVector->Free(allocation);
 | |
|                     }
 | |
|                     break;
 | |
|                 case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
 | |
|                     FreeDedicatedMemory(allocation);
 | |
|                     break;
 | |
|                 default:
 | |
|                     VMA_ASSERT(0);
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // Do this regardless of whether the allocation is lost. Lost allocations still account to Budget.AllocationBytes.
 | |
|             m_Budget.RemoveAllocation(MemoryTypeIndexToHeapIndex(allocation->GetMemoryTypeIndex()), allocation->GetSize());
 | |
|             allocation->SetUserData(this, VMA_NULL);
 | |
|             allocation->Dtor();
 | |
|             m_AllocationObjectAllocator.Free(allocation);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| VkResult VmaAllocator_T::ResizeAllocation(
 | |
|     const VmaAllocation alloc,
 | |
|     VkDeviceSize newSize)
 | |
| {
 | |
|     // This function is deprecated and so it does nothing. It's left for backward compatibility.
 | |
|     if(newSize == 0 || alloc->GetLastUseFrameIndex() == VMA_FRAME_INDEX_LOST)
 | |
|     {
 | |
|         return VK_ERROR_VALIDATION_FAILED_EXT;
 | |
|     }
 | |
|     if(newSize == alloc->GetSize())
 | |
|     {
 | |
|         return VK_SUCCESS;
 | |
|     }
 | |
|     return VK_ERROR_OUT_OF_POOL_MEMORY;
 | |
| }
 | |
| 
 | |
| void VmaAllocator_T::CalculateStats(VmaStats* pStats)
 | |
| {
 | |
|     // Initialize.
 | |
|     InitStatInfo(pStats->total);
 | |
|     for(size_t i = 0; i < VK_MAX_MEMORY_TYPES; ++i)
 | |
|         InitStatInfo(pStats->memoryType[i]);
 | |
|     for(size_t i = 0; i < VK_MAX_MEMORY_HEAPS; ++i)
 | |
|         InitStatInfo(pStats->memoryHeap[i]);
 | |
|     
 | |
|     // Process default pools.
 | |
|     for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
 | |
|     {
 | |
|         VmaBlockVector* const pBlockVector = m_pBlockVectors[memTypeIndex];
 | |
|         VMA_ASSERT(pBlockVector);
 | |
|         pBlockVector->AddStats(pStats);
 | |
|     }
 | |
| 
 | |
|     // Process custom pools.
 | |
|     {
 | |
|         VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex);
 | |
|         for(size_t poolIndex = 0, poolCount = m_Pools.size(); poolIndex < poolCount; ++poolIndex)
 | |
|         {
 | |
|             m_Pools[poolIndex]->m_BlockVector.AddStats(pStats);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Process dedicated allocations.
 | |
|     for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
 | |
|     {
 | |
|         const uint32_t memHeapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex);
 | |
|         VmaMutexLockRead dedicatedAllocationsLock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex);
 | |
|         AllocationVectorType* const pDedicatedAllocVector = m_pDedicatedAllocations[memTypeIndex];
 | |
|         VMA_ASSERT(pDedicatedAllocVector);
 | |
|         for(size_t allocIndex = 0, allocCount = pDedicatedAllocVector->size(); allocIndex < allocCount; ++allocIndex)
 | |
|         {
 | |
|             VmaStatInfo allocationStatInfo;
 | |
|             (*pDedicatedAllocVector)[allocIndex]->DedicatedAllocCalcStatsInfo(allocationStatInfo);
 | |
|             VmaAddStatInfo(pStats->total, allocationStatInfo);
 | |
|             VmaAddStatInfo(pStats->memoryType[memTypeIndex], allocationStatInfo);
 | |
|             VmaAddStatInfo(pStats->memoryHeap[memHeapIndex], allocationStatInfo);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Postprocess.
 | |
|     VmaPostprocessCalcStatInfo(pStats->total);
 | |
|     for(size_t i = 0; i < GetMemoryTypeCount(); ++i)
 | |
|         VmaPostprocessCalcStatInfo(pStats->memoryType[i]);
 | |
|     for(size_t i = 0; i < GetMemoryHeapCount(); ++i)
 | |
|         VmaPostprocessCalcStatInfo(pStats->memoryHeap[i]);
 | |
| }
 | |
| 
 | |
| void VmaAllocator_T::GetBudget(VmaBudget* outBudget, uint32_t firstHeap, uint32_t heapCount)
 | |
| {
 | |
| #if VMA_MEMORY_BUDGET
 | |
|     if(m_UseExtMemoryBudget)
 | |
|     {
 | |
|         if(m_Budget.m_OperationsSinceBudgetFetch < 30)
 | |
|         {
 | |
|             VmaMutexLockRead lockRead(m_Budget.m_BudgetMutex, m_UseMutex);
 | |
|             for(uint32_t i = 0; i < heapCount; ++i, ++outBudget)
 | |
|             {
 | |
|                 const uint32_t heapIndex = firstHeap + i;
 | |
| 
 | |
|                 outBudget->blockBytes = m_Budget.m_BlockBytes[heapIndex];
 | |
|                 outBudget->allocationBytes = m_Budget.m_AllocationBytes[heapIndex];
 | |
| 
 | |
|                 if(m_Budget.m_VulkanUsage[heapIndex] + outBudget->blockBytes > m_Budget.m_BlockBytesAtBudgetFetch[heapIndex])
 | |
|                 {
 | |
|                     outBudget->usage = m_Budget.m_VulkanUsage[heapIndex] +
 | |
|                         outBudget->blockBytes - m_Budget.m_BlockBytesAtBudgetFetch[heapIndex];
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     outBudget->usage = 0;
 | |
|                 }
 | |
| 
 | |
|                 // Have to take MIN with heap size because explicit HeapSizeLimit is included in it.
 | |
|                 outBudget->budget = VMA_MIN(
 | |
|                     m_Budget.m_VulkanBudget[heapIndex], m_MemProps.memoryHeaps[heapIndex].size);
 | |
|             }
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             UpdateVulkanBudget(); // Outside of mutex lock
 | |
|             GetBudget(outBudget, firstHeap, heapCount); // Recursion
 | |
|         }
 | |
|     }
 | |
|     else
 | |
| #endif
 | |
|     {
 | |
|         for(uint32_t i = 0; i < heapCount; ++i, ++outBudget)
 | |
|         {
 | |
|             const uint32_t heapIndex = firstHeap + i;
 | |
| 
 | |
|             outBudget->blockBytes = m_Budget.m_BlockBytes[heapIndex];
 | |
|             outBudget->allocationBytes = m_Budget.m_AllocationBytes[heapIndex];
 | |
| 
 | |
|             outBudget->usage = outBudget->blockBytes;
 | |
|             outBudget->budget = m_MemProps.memoryHeaps[heapIndex].size * 8 / 10; // 80% heuristics.
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static const uint32_t VMA_VENDOR_ID_AMD = 4098;
 | |
| 
 | |
| VkResult VmaAllocator_T::DefragmentationBegin(
 | |
|     const VmaDefragmentationInfo2& info,
 | |
|     VmaDefragmentationStats* pStats,
 | |
|     VmaDefragmentationContext* pContext)
 | |
| {
 | |
|     if(info.pAllocationsChanged != VMA_NULL)
 | |
|     {
 | |
|         memset(info.pAllocationsChanged, 0, info.allocationCount * sizeof(VkBool32));
 | |
|     }
 | |
| 
 | |
|     *pContext = vma_new(this, VmaDefragmentationContext_T)(
 | |
|         this, m_CurrentFrameIndex.load(), info.flags, pStats);
 | |
| 
 | |
|     (*pContext)->AddPools(info.poolCount, info.pPools);
 | |
|     (*pContext)->AddAllocations(
 | |
|         info.allocationCount, info.pAllocations, info.pAllocationsChanged);
 | |
| 
 | |
|     VkResult res = (*pContext)->Defragment(
 | |
|         info.maxCpuBytesToMove, info.maxCpuAllocationsToMove,
 | |
|         info.maxGpuBytesToMove, info.maxGpuAllocationsToMove,
 | |
|         info.commandBuffer, pStats);
 | |
| 
 | |
|     if(res != VK_NOT_READY)
 | |
|     {
 | |
|         vma_delete(this, *pContext);
 | |
|         *pContext = VMA_NULL;
 | |
|     }
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| VkResult VmaAllocator_T::DefragmentationEnd(
 | |
|     VmaDefragmentationContext context)
 | |
| {
 | |
|     vma_delete(this, context);
 | |
|     return VK_SUCCESS;
 | |
| }
 | |
| 
 | |
| void VmaAllocator_T::GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo)
 | |
| {
 | |
|     if(hAllocation->CanBecomeLost())
 | |
|     {
 | |
|         /*
 | |
|         Warning: This is a carefully designed algorithm.
 | |
|         Do not modify unless you really know what you're doing :)
 | |
|         */
 | |
|         const uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load();
 | |
|         uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex();
 | |
|         for(;;)
 | |
|         {
 | |
|             if(localLastUseFrameIndex == VMA_FRAME_INDEX_LOST)
 | |
|             {
 | |
|                 pAllocationInfo->memoryType = UINT32_MAX;
 | |
|                 pAllocationInfo->deviceMemory = VK_NULL_HANDLE;
 | |
|                 pAllocationInfo->offset = 0;
 | |
|                 pAllocationInfo->size = hAllocation->GetSize();
 | |
|                 pAllocationInfo->pMappedData = VMA_NULL;
 | |
|                 pAllocationInfo->pUserData = hAllocation->GetUserData();
 | |
|                 return;
 | |
|             }
 | |
|             else if(localLastUseFrameIndex == localCurrFrameIndex)
 | |
|             {
 | |
|                 pAllocationInfo->memoryType = hAllocation->GetMemoryTypeIndex();
 | |
|                 pAllocationInfo->deviceMemory = hAllocation->GetMemory();
 | |
|                 pAllocationInfo->offset = hAllocation->GetOffset();
 | |
|                 pAllocationInfo->size = hAllocation->GetSize();
 | |
|                 pAllocationInfo->pMappedData = VMA_NULL;
 | |
|                 pAllocationInfo->pUserData = hAllocation->GetUserData();
 | |
|                 return;
 | |
|             }
 | |
|             else // Last use time earlier than current time.
 | |
|             {
 | |
|                 if(hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex))
 | |
|                 {
 | |
|                     localLastUseFrameIndex = localCurrFrameIndex;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
|         uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load();
 | |
|         uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex();
 | |
|         for(;;)
 | |
|         {
 | |
|             VMA_ASSERT(localLastUseFrameIndex != VMA_FRAME_INDEX_LOST);
 | |
|             if(localLastUseFrameIndex == localCurrFrameIndex)
 | |
|             {
 | |
|                 break;
 | |
|             }
 | |
|             else // Last use time earlier than current time.
 | |
|             {
 | |
|                 if(hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex))
 | |
|                 {
 | |
|                     localLastUseFrameIndex = localCurrFrameIndex;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| #endif
 | |
| 
 | |
|         pAllocationInfo->memoryType = hAllocation->GetMemoryTypeIndex();
 | |
|         pAllocationInfo->deviceMemory = hAllocation->GetMemory();
 | |
|         pAllocationInfo->offset = hAllocation->GetOffset();
 | |
|         pAllocationInfo->size = hAllocation->GetSize();
 | |
|         pAllocationInfo->pMappedData = hAllocation->GetMappedData();
 | |
|         pAllocationInfo->pUserData = hAllocation->GetUserData();
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool VmaAllocator_T::TouchAllocation(VmaAllocation hAllocation)
 | |
| {
 | |
|     // This is a stripped-down version of VmaAllocator_T::GetAllocationInfo.
 | |
|     if(hAllocation->CanBecomeLost())
 | |
|     {
 | |
|         uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load();
 | |
|         uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex();
 | |
|         for(;;)
 | |
|         {
 | |
|             if(localLastUseFrameIndex == VMA_FRAME_INDEX_LOST)
 | |
|             {
 | |
|                 return false;
 | |
|             }
 | |
|             else if(localLastUseFrameIndex == localCurrFrameIndex)
 | |
|             {
 | |
|                 return true;
 | |
|             }
 | |
|             else // Last use time earlier than current time.
 | |
|             {
 | |
|                 if(hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex))
 | |
|                 {
 | |
|                     localLastUseFrameIndex = localCurrFrameIndex;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
|         uint32_t localCurrFrameIndex = m_CurrentFrameIndex.load();
 | |
|         uint32_t localLastUseFrameIndex = hAllocation->GetLastUseFrameIndex();
 | |
|         for(;;)
 | |
|         {
 | |
|             VMA_ASSERT(localLastUseFrameIndex != VMA_FRAME_INDEX_LOST);
 | |
|             if(localLastUseFrameIndex == localCurrFrameIndex)
 | |
|             {
 | |
|                 break;
 | |
|             }
 | |
|             else // Last use time earlier than current time.
 | |
|             {
 | |
|                 if(hAllocation->CompareExchangeLastUseFrameIndex(localLastUseFrameIndex, localCurrFrameIndex))
 | |
|                 {
 | |
|                     localLastUseFrameIndex = localCurrFrameIndex;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| #endif
 | |
| 
 | |
|         return true;
 | |
|     }
 | |
| }
 | |
| 
 | |
| VkResult VmaAllocator_T::CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool)
 | |
| {
 | |
|     VMA_DEBUG_LOG("  CreatePool: MemoryTypeIndex=%u, flags=%u", pCreateInfo->memoryTypeIndex, pCreateInfo->flags);
 | |
| 
 | |
|     VmaPoolCreateInfo newCreateInfo = *pCreateInfo;
 | |
| 
 | |
|     if(newCreateInfo.maxBlockCount == 0)
 | |
|     {
 | |
|         newCreateInfo.maxBlockCount = SIZE_MAX;
 | |
|     }
 | |
|     if(newCreateInfo.minBlockCount > newCreateInfo.maxBlockCount)
 | |
|     {
 | |
|         return VK_ERROR_INITIALIZATION_FAILED;
 | |
|     }
 | |
| 
 | |
|     const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(newCreateInfo.memoryTypeIndex);
 | |
| 
 | |
|     *pPool = vma_new(this, VmaPool_T)(this, newCreateInfo, preferredBlockSize);
 | |
| 
 | |
|     VkResult res = (*pPool)->m_BlockVector.CreateMinBlocks();
 | |
|     if(res != VK_SUCCESS)
 | |
|     {
 | |
|         vma_delete(this, *pPool);
 | |
|         *pPool = VMA_NULL;
 | |
|         return res;
 | |
|     }
 | |
| 
 | |
|     // Add to m_Pools.
 | |
|     {
 | |
|         VmaMutexLockWrite lock(m_PoolsMutex, m_UseMutex);
 | |
|         (*pPool)->SetId(m_NextPoolId++);
 | |
|         VmaVectorInsertSorted<VmaPointerLess>(m_Pools, *pPool);
 | |
|     }
 | |
| 
 | |
|     return VK_SUCCESS;
 | |
| }
 | |
| 
 | |
| void VmaAllocator_T::DestroyPool(VmaPool pool)
 | |
| {
 | |
|     // Remove from m_Pools.
 | |
|     {
 | |
|         VmaMutexLockWrite lock(m_PoolsMutex, m_UseMutex);
 | |
|         bool success = VmaVectorRemoveSorted<VmaPointerLess>(m_Pools, pool);
 | |
|         VMA_ASSERT(success && "Pool not found in Allocator.");
 | |
|     }
 | |
| 
 | |
|     vma_delete(this, pool);
 | |
| }
 | |
| 
 | |
| void VmaAllocator_T::GetPoolStats(VmaPool pool, VmaPoolStats* pPoolStats)
 | |
| {
 | |
|     pool->m_BlockVector.GetPoolStats(pPoolStats);
 | |
| }
 | |
| 
 | |
| void VmaAllocator_T::SetCurrentFrameIndex(uint32_t frameIndex)
 | |
| {
 | |
|     m_CurrentFrameIndex.store(frameIndex);
 | |
| 
 | |
| #if VMA_MEMORY_BUDGET
 | |
|     if(m_UseExtMemoryBudget)
 | |
|     {
 | |
|         UpdateVulkanBudget();
 | |
|     }
 | |
| #endif // #if VMA_MEMORY_BUDGET
 | |
| }
 | |
| 
 | |
| void VmaAllocator_T::MakePoolAllocationsLost(
 | |
|     VmaPool hPool,
 | |
|     size_t* pLostAllocationCount)
 | |
| {
 | |
|     hPool->m_BlockVector.MakePoolAllocationsLost(
 | |
|         m_CurrentFrameIndex.load(),
 | |
|         pLostAllocationCount);
 | |
| }
 | |
| 
 | |
| VkResult VmaAllocator_T::CheckPoolCorruption(VmaPool hPool)
 | |
| {
 | |
|     return hPool->m_BlockVector.CheckCorruption();
 | |
| }
 | |
| 
 | |
| VkResult VmaAllocator_T::CheckCorruption(uint32_t memoryTypeBits)
 | |
| {
 | |
|     VkResult finalRes = VK_ERROR_FEATURE_NOT_PRESENT;
 | |
| 
 | |
|     // Process default pools.
 | |
|     for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
 | |
|     {
 | |
|         if(((1u << memTypeIndex) & memoryTypeBits) != 0)
 | |
|         {
 | |
|             VmaBlockVector* const pBlockVector = m_pBlockVectors[memTypeIndex];
 | |
|             VMA_ASSERT(pBlockVector);
 | |
|             VkResult localRes = pBlockVector->CheckCorruption();
 | |
|             switch(localRes)
 | |
|             {
 | |
|             case VK_ERROR_FEATURE_NOT_PRESENT:
 | |
|                 break;
 | |
|             case VK_SUCCESS:
 | |
|                 finalRes = VK_SUCCESS;
 | |
|                 break;
 | |
|             default:
 | |
|                 return localRes;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Process custom pools.
 | |
|     {
 | |
|         VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex);
 | |
|         for(size_t poolIndex = 0, poolCount = m_Pools.size(); poolIndex < poolCount; ++poolIndex)
 | |
|         {
 | |
|             if(((1u << m_Pools[poolIndex]->m_BlockVector.GetMemoryTypeIndex()) & memoryTypeBits) != 0)
 | |
|             {
 | |
|                 VkResult localRes = m_Pools[poolIndex]->m_BlockVector.CheckCorruption();
 | |
|                 switch(localRes)
 | |
|                 {
 | |
|                 case VK_ERROR_FEATURE_NOT_PRESENT:
 | |
|                     break;
 | |
|                 case VK_SUCCESS:
 | |
|                     finalRes = VK_SUCCESS;
 | |
|                     break;
 | |
|                 default:
 | |
|                     return localRes;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return finalRes;
 | |
| }
 | |
| 
 | |
| void VmaAllocator_T::CreateLostAllocation(VmaAllocation* pAllocation)
 | |
| {
 | |
|     *pAllocation = m_AllocationObjectAllocator.Allocate();
 | |
|     (*pAllocation)->Ctor(VMA_FRAME_INDEX_LOST, false);
 | |
|     (*pAllocation)->InitLost();
 | |
| }
 | |
| 
 | |
| VkResult VmaAllocator_T::AllocateVulkanMemory(const VkMemoryAllocateInfo* pAllocateInfo, VkDeviceMemory* pMemory)
 | |
| {
 | |
|     const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(pAllocateInfo->memoryTypeIndex);
 | |
| 
 | |
|     // HeapSizeLimit is in effect for this heap.
 | |
|     if((m_HeapSizeLimitMask & (1u << heapIndex)) != 0)
 | |
|     {
 | |
|         const VkDeviceSize heapSize = m_MemProps.memoryHeaps[heapIndex].size;
 | |
|         VkDeviceSize blockBytes = m_Budget.m_BlockBytes[heapIndex];
 | |
|         for(;;)
 | |
|         {
 | |
|             const VkDeviceSize blockBytesAfterAllocation = blockBytes + pAllocateInfo->allocationSize;
 | |
|             if(blockBytesAfterAllocation > heapSize)
 | |
|             {
 | |
|                 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
 | |
|             }
 | |
|             if(m_Budget.m_BlockBytes[heapIndex].compare_exchange_strong(blockBytes, blockBytesAfterAllocation))
 | |
|             {
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         m_Budget.m_BlockBytes[heapIndex] += pAllocateInfo->allocationSize;
 | |
|     }
 | |
| 
 | |
|     // VULKAN CALL vkAllocateMemory.
 | |
|     VkResult res = (*m_VulkanFunctions.vkAllocateMemory)(m_hDevice, pAllocateInfo, GetAllocationCallbacks(), pMemory);
 | |
| 
 | |
|     if(res == VK_SUCCESS)
 | |
|     {
 | |
| #if VMA_MEMORY_BUDGET
 | |
|         ++m_Budget.m_OperationsSinceBudgetFetch;
 | |
| #endif
 | |
| 
 | |
|         // Informative callback.
 | |
|         if(m_DeviceMemoryCallbacks.pfnAllocate != VMA_NULL)
 | |
|         {
 | |
|             (*m_DeviceMemoryCallbacks.pfnAllocate)(this, pAllocateInfo->memoryTypeIndex, *pMemory, pAllocateInfo->allocationSize);
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         m_Budget.m_BlockBytes[heapIndex] -= pAllocateInfo->allocationSize;
 | |
|     }
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| void VmaAllocator_T::FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory)
 | |
| {
 | |
|     // Informative callback.
 | |
|     if(m_DeviceMemoryCallbacks.pfnFree != VMA_NULL)
 | |
|     {
 | |
|         (*m_DeviceMemoryCallbacks.pfnFree)(this, memoryType, hMemory, size);
 | |
|     }
 | |
| 
 | |
|     // VULKAN CALL vkFreeMemory.
 | |
|     (*m_VulkanFunctions.vkFreeMemory)(m_hDevice, hMemory, GetAllocationCallbacks());
 | |
| 
 | |
|     m_Budget.m_BlockBytes[MemoryTypeIndexToHeapIndex(memoryType)] -= size;
 | |
| }
 | |
| 
 | |
| VkResult VmaAllocator_T::BindVulkanBuffer(
 | |
|     VkDeviceMemory memory,
 | |
|     VkDeviceSize memoryOffset,
 | |
|     VkBuffer buffer,
 | |
|     const void* pNext)
 | |
| {
 | |
|     if(pNext != VMA_NULL)
 | |
|     {
 | |
| #if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2
 | |
|         if((m_UseKhrBindMemory2 || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) &&
 | |
|             m_VulkanFunctions.vkBindBufferMemory2KHR != VMA_NULL)
 | |
|         {
 | |
|             VkBindBufferMemoryInfoKHR bindBufferMemoryInfo = { VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO_KHR };
 | |
|             bindBufferMemoryInfo.pNext = pNext;
 | |
|             bindBufferMemoryInfo.buffer = buffer;
 | |
|             bindBufferMemoryInfo.memory = memory;
 | |
|             bindBufferMemoryInfo.memoryOffset = memoryOffset;
 | |
|             return (*m_VulkanFunctions.vkBindBufferMemory2KHR)(m_hDevice, 1, &bindBufferMemoryInfo);
 | |
|         }
 | |
|         else
 | |
| #endif // #if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2
 | |
|         {
 | |
|             return VK_ERROR_EXTENSION_NOT_PRESENT;
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         return (*m_VulkanFunctions.vkBindBufferMemory)(m_hDevice, buffer, memory, memoryOffset);
 | |
|     }
 | |
| }
 | |
| 
 | |
| VkResult VmaAllocator_T::BindVulkanImage(
 | |
|     VkDeviceMemory memory,
 | |
|     VkDeviceSize memoryOffset,
 | |
|     VkImage image,
 | |
|     const void* pNext)
 | |
| {
 | |
|     if(pNext != VMA_NULL)
 | |
|     {
 | |
| #if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2
 | |
|         if((m_UseKhrBindMemory2 || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) &&
 | |
|             m_VulkanFunctions.vkBindImageMemory2KHR != VMA_NULL)
 | |
|         {
 | |
|             VkBindImageMemoryInfoKHR bindBufferMemoryInfo = { VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO_KHR };
 | |
|             bindBufferMemoryInfo.pNext = pNext;
 | |
|             bindBufferMemoryInfo.image = image;
 | |
|             bindBufferMemoryInfo.memory = memory;
 | |
|             bindBufferMemoryInfo.memoryOffset = memoryOffset;
 | |
|             return (*m_VulkanFunctions.vkBindImageMemory2KHR)(m_hDevice, 1, &bindBufferMemoryInfo);
 | |
|         }
 | |
|         else
 | |
| #endif // #if VMA_BIND_MEMORY2
 | |
|         {
 | |
|             return VK_ERROR_EXTENSION_NOT_PRESENT;
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         return (*m_VulkanFunctions.vkBindImageMemory)(m_hDevice, image, memory, memoryOffset);
 | |
|     }
 | |
| }
 | |
| 
 | |
| VkResult VmaAllocator_T::Map(VmaAllocation hAllocation, void** ppData)
 | |
| {
 | |
|     if(hAllocation->CanBecomeLost())
 | |
|     {
 | |
|         return VK_ERROR_MEMORY_MAP_FAILED;
 | |
|     }
 | |
| 
 | |
|     switch(hAllocation->GetType())
 | |
|     {
 | |
|     case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
 | |
|         {
 | |
|             VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock();
 | |
|             char *pBytes = VMA_NULL;
 | |
|             VkResult res = pBlock->Map(this, 1, (void**)&pBytes);
 | |
|             if(res == VK_SUCCESS)
 | |
|             {
 | |
|                 *ppData = pBytes + (ptrdiff_t)hAllocation->GetOffset();
 | |
|                 hAllocation->BlockAllocMap();
 | |
|             }
 | |
|             return res;
 | |
|         }
 | |
|     case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
 | |
|         return hAllocation->DedicatedAllocMap(this, ppData);
 | |
|     default:
 | |
|         VMA_ASSERT(0);
 | |
|         return VK_ERROR_MEMORY_MAP_FAILED;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaAllocator_T::Unmap(VmaAllocation hAllocation)
 | |
| {
 | |
|     switch(hAllocation->GetType())
 | |
|     {
 | |
|     case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
 | |
|         {
 | |
|             VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock();
 | |
|             hAllocation->BlockAllocUnmap();
 | |
|             pBlock->Unmap(this, 1);
 | |
|         }
 | |
|         break;
 | |
|     case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
 | |
|         hAllocation->DedicatedAllocUnmap(this);
 | |
|         break;
 | |
|     default:
 | |
|         VMA_ASSERT(0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| VkResult VmaAllocator_T::BindBufferMemory(
 | |
|     VmaAllocation hAllocation,
 | |
|     VkDeviceSize allocationLocalOffset,
 | |
|     VkBuffer hBuffer,
 | |
|     const void* pNext)
 | |
| {
 | |
|     VkResult res = VK_SUCCESS;
 | |
|     switch(hAllocation->GetType())
 | |
|     {
 | |
|     case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
 | |
|         res = BindVulkanBuffer(hAllocation->GetMemory(), allocationLocalOffset, hBuffer, pNext);
 | |
|         break;
 | |
|     case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
 | |
|     {
 | |
|         VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock();
 | |
|         VMA_ASSERT(pBlock && "Binding buffer to allocation that doesn't belong to any block. Is the allocation lost?");
 | |
|         res = pBlock->BindBufferMemory(this, hAllocation, allocationLocalOffset, hBuffer, pNext);
 | |
|         break;
 | |
|     }
 | |
|     default:
 | |
|         VMA_ASSERT(0);
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| VkResult VmaAllocator_T::BindImageMemory(
 | |
|     VmaAllocation hAllocation,
 | |
|     VkDeviceSize allocationLocalOffset,
 | |
|     VkImage hImage,
 | |
|     const void* pNext)
 | |
| {
 | |
|     VkResult res = VK_SUCCESS;
 | |
|     switch(hAllocation->GetType())
 | |
|     {
 | |
|     case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
 | |
|         res = BindVulkanImage(hAllocation->GetMemory(), allocationLocalOffset, hImage, pNext);
 | |
|         break;
 | |
|     case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
 | |
|     {
 | |
|         VmaDeviceMemoryBlock* pBlock = hAllocation->GetBlock();
 | |
|         VMA_ASSERT(pBlock && "Binding image to allocation that doesn't belong to any block. Is the allocation lost?");
 | |
|         res = pBlock->BindImageMemory(this, hAllocation, allocationLocalOffset, hImage, pNext);
 | |
|         break;
 | |
|     }
 | |
|     default:
 | |
|         VMA_ASSERT(0);
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| void VmaAllocator_T::FlushOrInvalidateAllocation(
 | |
|     VmaAllocation hAllocation,
 | |
|     VkDeviceSize offset, VkDeviceSize size,
 | |
|     VMA_CACHE_OPERATION op)
 | |
| {
 | |
|     const uint32_t memTypeIndex = hAllocation->GetMemoryTypeIndex();
 | |
|     if(size > 0 && IsMemoryTypeNonCoherent(memTypeIndex))
 | |
|     {
 | |
|         const VkDeviceSize allocationSize = hAllocation->GetSize();
 | |
|         VMA_ASSERT(offset <= allocationSize);
 | |
| 
 | |
|         const VkDeviceSize nonCoherentAtomSize = m_PhysicalDeviceProperties.limits.nonCoherentAtomSize;
 | |
| 
 | |
|         VkMappedMemoryRange memRange = { VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE };
 | |
|         memRange.memory = hAllocation->GetMemory();
 | |
|         
 | |
|         switch(hAllocation->GetType())
 | |
|         {
 | |
|         case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
 | |
|             memRange.offset = VmaAlignDown(offset, nonCoherentAtomSize);
 | |
|             if(size == VK_WHOLE_SIZE)
 | |
|             {
 | |
|                 memRange.size = allocationSize - memRange.offset;
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 VMA_ASSERT(offset + size <= allocationSize);
 | |
|                 memRange.size = VMA_MIN(
 | |
|                     VmaAlignUp(size + (offset - memRange.offset), nonCoherentAtomSize),
 | |
|                     allocationSize - memRange.offset);
 | |
|             }
 | |
|             break;
 | |
| 
 | |
|         case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
 | |
|         {
 | |
|             // 1. Still within this allocation.
 | |
|             memRange.offset = VmaAlignDown(offset, nonCoherentAtomSize);
 | |
|             if(size == VK_WHOLE_SIZE)
 | |
|             {
 | |
|                 size = allocationSize - offset;
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 VMA_ASSERT(offset + size <= allocationSize);
 | |
|             }
 | |
|             memRange.size = VmaAlignUp(size + (offset - memRange.offset), nonCoherentAtomSize);
 | |
| 
 | |
|             // 2. Adjust to whole block.
 | |
|             const VkDeviceSize allocationOffset = hAllocation->GetOffset();
 | |
|             VMA_ASSERT(allocationOffset % nonCoherentAtomSize == 0);
 | |
|             const VkDeviceSize blockSize = hAllocation->GetBlock()->m_pMetadata->GetSize();
 | |
|             memRange.offset += allocationOffset;
 | |
|             memRange.size = VMA_MIN(memRange.size, blockSize - memRange.offset);
 | |
|             
 | |
|             break;
 | |
|         }
 | |
|         
 | |
|         default:
 | |
|             VMA_ASSERT(0);
 | |
|         }
 | |
| 
 | |
|         switch(op)
 | |
|         {
 | |
|         case VMA_CACHE_FLUSH:
 | |
|             (*GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hDevice, 1, &memRange);
 | |
|             break;
 | |
|         case VMA_CACHE_INVALIDATE:
 | |
|             (*GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hDevice, 1, &memRange);
 | |
|             break;
 | |
|         default:
 | |
|             VMA_ASSERT(0);
 | |
|         }
 | |
|     }
 | |
|     // else: Just ignore this call.
 | |
| }
 | |
| 
 | |
| void VmaAllocator_T::FreeDedicatedMemory(const VmaAllocation allocation)
 | |
| {
 | |
|     VMA_ASSERT(allocation && allocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED);
 | |
| 
 | |
|     const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex();
 | |
|     {
 | |
|         VmaMutexLockWrite lock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex);
 | |
|         AllocationVectorType* const pDedicatedAllocations = m_pDedicatedAllocations[memTypeIndex];
 | |
|         VMA_ASSERT(pDedicatedAllocations);
 | |
|         bool success = VmaVectorRemoveSorted<VmaPointerLess>(*pDedicatedAllocations, allocation);
 | |
|         VMA_ASSERT(success);
 | |
|     }
 | |
| 
 | |
|     VkDeviceMemory hMemory = allocation->GetMemory();
 | |
|     
 | |
|     /*
 | |
|     There is no need to call this, because Vulkan spec allows to skip vkUnmapMemory
 | |
|     before vkFreeMemory.
 | |
| 
 | |
|     if(allocation->GetMappedData() != VMA_NULL)
 | |
|     {
 | |
|         (*m_VulkanFunctions.vkUnmapMemory)(m_hDevice, hMemory);
 | |
|     }
 | |
|     */
 | |
|     
 | |
|     FreeVulkanMemory(memTypeIndex, allocation->GetSize(), hMemory);
 | |
| 
 | |
|     VMA_DEBUG_LOG("    Freed DedicatedMemory MemoryTypeIndex=%u", memTypeIndex);
 | |
| }
 | |
| 
 | |
| uint32_t VmaAllocator_T::CalculateGpuDefragmentationMemoryTypeBits() const
 | |
| {
 | |
|     VkBufferCreateInfo dummyBufCreateInfo;
 | |
|     VmaFillGpuDefragmentationBufferCreateInfo(dummyBufCreateInfo);
 | |
| 
 | |
|     uint32_t memoryTypeBits = 0;
 | |
| 
 | |
|     // Create buffer.
 | |
|     VkBuffer buf = VK_NULL_HANDLE;
 | |
|     VkResult res = (*GetVulkanFunctions().vkCreateBuffer)(
 | |
|         m_hDevice, &dummyBufCreateInfo, GetAllocationCallbacks(), &buf);
 | |
|     if(res == VK_SUCCESS)
 | |
|     {
 | |
|         // Query for supported memory types.
 | |
|         VkMemoryRequirements memReq;
 | |
|         (*GetVulkanFunctions().vkGetBufferMemoryRequirements)(m_hDevice, buf, &memReq);
 | |
|         memoryTypeBits = memReq.memoryTypeBits;
 | |
| 
 | |
|         // Destroy buffer.
 | |
|         (*GetVulkanFunctions().vkDestroyBuffer)(m_hDevice, buf, GetAllocationCallbacks());
 | |
|     }
 | |
| 
 | |
|     return memoryTypeBits;
 | |
| }
 | |
| 
 | |
| #if VMA_MEMORY_BUDGET
 | |
| 
 | |
| void VmaAllocator_T::UpdateVulkanBudget()
 | |
| {
 | |
|     VMA_ASSERT(m_UseExtMemoryBudget);
 | |
| 
 | |
|     VkPhysicalDeviceMemoryProperties2KHR memProps = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PROPERTIES_2_KHR };
 | |
| 
 | |
|     VkPhysicalDeviceMemoryBudgetPropertiesEXT budgetProps = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT };
 | |
|     memProps.pNext = &budgetProps;
 | |
| 
 | |
|     GetVulkanFunctions().vkGetPhysicalDeviceMemoryProperties2KHR(m_PhysicalDevice, &memProps);
 | |
| 
 | |
|     {
 | |
|         VmaMutexLockWrite lockWrite(m_Budget.m_BudgetMutex, m_UseMutex);
 | |
| 
 | |
|         for(uint32_t heapIndex = 0; heapIndex < GetMemoryHeapCount(); ++heapIndex)
 | |
|         {
 | |
|             m_Budget.m_VulkanUsage[heapIndex] = budgetProps.heapUsage[heapIndex];
 | |
|             m_Budget.m_VulkanBudget[heapIndex] = budgetProps.heapBudget[heapIndex];
 | |
|             m_Budget.m_BlockBytesAtBudgetFetch[heapIndex] = m_Budget.m_BlockBytes[heapIndex].load();
 | |
|         }
 | |
|         m_Budget.m_OperationsSinceBudgetFetch = 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #endif // #if VMA_MEMORY_BUDGET
 | |
| 
 | |
| void VmaAllocator_T::FillAllocation(const VmaAllocation hAllocation, uint8_t pattern)
 | |
| {
 | |
|     if(VMA_DEBUG_INITIALIZE_ALLOCATIONS &&
 | |
|         !hAllocation->CanBecomeLost() &&
 | |
|         (m_MemProps.memoryTypes[hAllocation->GetMemoryTypeIndex()].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0)
 | |
|     {
 | |
|         void* pData = VMA_NULL;
 | |
|         VkResult res = Map(hAllocation, &pData);
 | |
|         if(res == VK_SUCCESS)
 | |
|         {
 | |
|             memset(pData, (int)pattern, (size_t)hAllocation->GetSize());
 | |
|             FlushOrInvalidateAllocation(hAllocation, 0, VK_WHOLE_SIZE, VMA_CACHE_FLUSH);
 | |
|             Unmap(hAllocation);
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             VMA_ASSERT(0 && "VMA_DEBUG_INITIALIZE_ALLOCATIONS is enabled, but couldn't map memory to fill allocation.");
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| uint32_t VmaAllocator_T::GetGpuDefragmentationMemoryTypeBits()
 | |
| {
 | |
|     uint32_t memoryTypeBits = m_GpuDefragmentationMemoryTypeBits.load();
 | |
|     if(memoryTypeBits == UINT32_MAX)
 | |
|     {
 | |
|         memoryTypeBits = CalculateGpuDefragmentationMemoryTypeBits();
 | |
|         m_GpuDefragmentationMemoryTypeBits.store(memoryTypeBits);
 | |
|     }
 | |
|     return memoryTypeBits;
 | |
| }
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
| 
 | |
| void VmaAllocator_T::PrintDetailedMap(VmaJsonWriter& json)
 | |
| {
 | |
|     bool dedicatedAllocationsStarted = false;
 | |
|     for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
 | |
|     {
 | |
|         VmaMutexLockRead dedicatedAllocationsLock(m_DedicatedAllocationsMutex[memTypeIndex], m_UseMutex);
 | |
|         AllocationVectorType* const pDedicatedAllocVector = m_pDedicatedAllocations[memTypeIndex];
 | |
|         VMA_ASSERT(pDedicatedAllocVector);
 | |
|         if(pDedicatedAllocVector->empty() == false)
 | |
|         {
 | |
|             if(dedicatedAllocationsStarted == false)
 | |
|             {
 | |
|                 dedicatedAllocationsStarted = true;
 | |
|                 json.WriteString("DedicatedAllocations");
 | |
|                 json.BeginObject();
 | |
|             }
 | |
| 
 | |
|             json.BeginString("Type ");
 | |
|             json.ContinueString(memTypeIndex);
 | |
|             json.EndString();
 | |
|                 
 | |
|             json.BeginArray();
 | |
| 
 | |
|             for(size_t i = 0; i < pDedicatedAllocVector->size(); ++i)
 | |
|             {
 | |
|                 json.BeginObject(true);
 | |
|                 const VmaAllocation hAlloc = (*pDedicatedAllocVector)[i];
 | |
|                 hAlloc->PrintParameters(json);
 | |
|                 json.EndObject();
 | |
|             }
 | |
| 
 | |
|             json.EndArray();
 | |
|         }
 | |
|     }
 | |
|     if(dedicatedAllocationsStarted)
 | |
|     {
 | |
|         json.EndObject();
 | |
|     }
 | |
| 
 | |
|     {
 | |
|         bool allocationsStarted = false;
 | |
|         for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
 | |
|         {
 | |
|             if(m_pBlockVectors[memTypeIndex]->IsEmpty() == false)
 | |
|             {
 | |
|                 if(allocationsStarted == false)
 | |
|                 {
 | |
|                     allocationsStarted = true;
 | |
|                     json.WriteString("DefaultPools");
 | |
|                     json.BeginObject();
 | |
|                 }
 | |
| 
 | |
|                 json.BeginString("Type ");
 | |
|                 json.ContinueString(memTypeIndex);
 | |
|                 json.EndString();
 | |
| 
 | |
|                 m_pBlockVectors[memTypeIndex]->PrintDetailedMap(json);
 | |
|             }
 | |
|         }
 | |
|         if(allocationsStarted)
 | |
|         {
 | |
|             json.EndObject();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Custom pools
 | |
|     {
 | |
|         VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex);
 | |
|         const size_t poolCount = m_Pools.size();
 | |
|         if(poolCount > 0)
 | |
|         {
 | |
|             json.WriteString("Pools");
 | |
|             json.BeginObject();
 | |
|             for(size_t poolIndex = 0; poolIndex < poolCount; ++poolIndex)
 | |
|             {
 | |
|                 json.BeginString();
 | |
|                 json.ContinueString(m_Pools[poolIndex]->GetId());
 | |
|                 json.EndString();
 | |
| 
 | |
|                 m_Pools[poolIndex]->m_BlockVector.PrintDetailedMap(json);
 | |
|             }
 | |
|             json.EndObject();
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #endif // #if VMA_STATS_STRING_ENABLED
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| // Public interface
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAllocator(
 | |
|     const VmaAllocatorCreateInfo* pCreateInfo,
 | |
|     VmaAllocator* pAllocator)
 | |
| {
 | |
|     VMA_ASSERT(pCreateInfo && pAllocator);
 | |
|     VMA_ASSERT(pCreateInfo->vulkanApiVersion == 0 ||
 | |
|         (VK_VERSION_MAJOR(pCreateInfo->vulkanApiVersion) == 1 && VK_VERSION_MINOR(pCreateInfo->vulkanApiVersion) <= 1));
 | |
|     VMA_DEBUG_LOG("vmaCreateAllocator");
 | |
|     *pAllocator = vma_new(pCreateInfo->pAllocationCallbacks, VmaAllocator_T)(pCreateInfo);
 | |
|     return (*pAllocator)->Init(pCreateInfo);
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaDestroyAllocator(
 | |
|     VmaAllocator allocator)
 | |
| {
 | |
|     if(allocator != VK_NULL_HANDLE)
 | |
|     {
 | |
|         VMA_DEBUG_LOG("vmaDestroyAllocator");
 | |
|         VkAllocationCallbacks allocationCallbacks = allocator->m_AllocationCallbacks;
 | |
|         vma_delete(&allocationCallbacks, allocator);
 | |
|     }
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaGetPhysicalDeviceProperties(
 | |
|     VmaAllocator allocator,
 | |
|     const VkPhysicalDeviceProperties **ppPhysicalDeviceProperties)
 | |
| {
 | |
|     VMA_ASSERT(allocator && ppPhysicalDeviceProperties);
 | |
|     *ppPhysicalDeviceProperties = &allocator->m_PhysicalDeviceProperties;
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryProperties(
 | |
|     VmaAllocator allocator,
 | |
|     const VkPhysicalDeviceMemoryProperties** ppPhysicalDeviceMemoryProperties)
 | |
| {
 | |
|     VMA_ASSERT(allocator && ppPhysicalDeviceMemoryProperties);
 | |
|     *ppPhysicalDeviceMemoryProperties = &allocator->m_MemProps;
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryTypeProperties(
 | |
|     VmaAllocator allocator,
 | |
|     uint32_t memoryTypeIndex,
 | |
|     VkMemoryPropertyFlags* pFlags)
 | |
| {
 | |
|     VMA_ASSERT(allocator && pFlags);
 | |
|     VMA_ASSERT(memoryTypeIndex < allocator->GetMemoryTypeCount());
 | |
|     *pFlags = allocator->m_MemProps.memoryTypes[memoryTypeIndex].propertyFlags;
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaSetCurrentFrameIndex(
 | |
|     VmaAllocator allocator,
 | |
|     uint32_t frameIndex)
 | |
| {
 | |
|     VMA_ASSERT(allocator);
 | |
|     VMA_ASSERT(frameIndex != VMA_FRAME_INDEX_LOST);
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     allocator->SetCurrentFrameIndex(frameIndex);
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaCalculateStats(
 | |
|     VmaAllocator allocator,
 | |
|     VmaStats* pStats)
 | |
| {
 | |
|     VMA_ASSERT(allocator && pStats);
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
|     allocator->CalculateStats(pStats);
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaGetBudget(
 | |
|     VmaAllocator allocator,
 | |
|     VmaBudget* pBudget)
 | |
| {
 | |
|     VMA_ASSERT(allocator && pBudget);
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
|     allocator->GetBudget(pBudget, 0, allocator->GetMemoryHeapCount());
 | |
| }
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaBuildStatsString(
 | |
|     VmaAllocator allocator,
 | |
|     char** ppStatsString,
 | |
|     VkBool32 detailedMap)
 | |
| {
 | |
|     VMA_ASSERT(allocator && ppStatsString);
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     VmaStringBuilder sb(allocator);
 | |
|     {
 | |
|         VmaJsonWriter json(allocator->GetAllocationCallbacks(), sb);
 | |
|         json.BeginObject();
 | |
| 
 | |
|         VmaBudget budget[VK_MAX_MEMORY_HEAPS];
 | |
|         allocator->GetBudget(budget, 0, allocator->GetMemoryHeapCount());
 | |
| 
 | |
|         VmaStats stats;
 | |
|         allocator->CalculateStats(&stats);
 | |
| 
 | |
|         json.WriteString("Total");
 | |
|         VmaPrintStatInfo(json, stats.total);
 | |
|     
 | |
|         for(uint32_t heapIndex = 0; heapIndex < allocator->GetMemoryHeapCount(); ++heapIndex)
 | |
|         {
 | |
|             json.BeginString("Heap ");
 | |
|             json.ContinueString(heapIndex);
 | |
|             json.EndString();
 | |
|             json.BeginObject();
 | |
| 
 | |
|             json.WriteString("Size");
 | |
|             json.WriteNumber(allocator->m_MemProps.memoryHeaps[heapIndex].size);
 | |
| 
 | |
|             json.WriteString("Flags");
 | |
|             json.BeginArray(true);
 | |
|             if((allocator->m_MemProps.memoryHeaps[heapIndex].flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) != 0)
 | |
|             {
 | |
|                 json.WriteString("DEVICE_LOCAL");
 | |
|             }
 | |
|             json.EndArray();
 | |
| 
 | |
|             json.WriteString("Budget");
 | |
|             json.BeginObject();
 | |
|             {
 | |
|                 json.WriteString("BlockBytes");
 | |
|                 json.WriteNumber(budget[heapIndex].blockBytes);
 | |
|                 json.WriteString("AllocationBytes");
 | |
|                 json.WriteNumber(budget[heapIndex].allocationBytes);
 | |
|                 json.WriteString("Usage");
 | |
|                 json.WriteNumber(budget[heapIndex].usage);
 | |
|                 json.WriteString("Budget");
 | |
|                 json.WriteNumber(budget[heapIndex].budget);
 | |
|             }
 | |
|             json.EndObject();
 | |
| 
 | |
|             if(stats.memoryHeap[heapIndex].blockCount > 0)
 | |
|             {
 | |
|                 json.WriteString("Stats");
 | |
|                 VmaPrintStatInfo(json, stats.memoryHeap[heapIndex]);
 | |
|             }
 | |
| 
 | |
|             for(uint32_t typeIndex = 0; typeIndex < allocator->GetMemoryTypeCount(); ++typeIndex)
 | |
|             {
 | |
|                 if(allocator->MemoryTypeIndexToHeapIndex(typeIndex) == heapIndex)
 | |
|                 {
 | |
|                     json.BeginString("Type ");
 | |
|                     json.ContinueString(typeIndex);
 | |
|                     json.EndString();
 | |
| 
 | |
|                     json.BeginObject();
 | |
| 
 | |
|                     json.WriteString("Flags");
 | |
|                     json.BeginArray(true);
 | |
|                     VkMemoryPropertyFlags flags = allocator->m_MemProps.memoryTypes[typeIndex].propertyFlags;
 | |
|                     if((flags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) != 0)
 | |
|                     {
 | |
|                         json.WriteString("DEVICE_LOCAL");
 | |
|                     }
 | |
|                     if((flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0)
 | |
|                     {
 | |
|                         json.WriteString("HOST_VISIBLE");
 | |
|                     }
 | |
|                     if((flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT) != 0)
 | |
|                     {
 | |
|                         json.WriteString("HOST_COHERENT");
 | |
|                     }
 | |
|                     if((flags & VK_MEMORY_PROPERTY_HOST_CACHED_BIT) != 0)
 | |
|                     {
 | |
|                         json.WriteString("HOST_CACHED");
 | |
|                     }
 | |
|                     if((flags & VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT) != 0)
 | |
|                     {
 | |
|                         json.WriteString("LAZILY_ALLOCATED");
 | |
|                     }
 | |
|                     json.EndArray();
 | |
| 
 | |
|                     if(stats.memoryType[typeIndex].blockCount > 0)
 | |
|                     {
 | |
|                         json.WriteString("Stats");
 | |
|                         VmaPrintStatInfo(json, stats.memoryType[typeIndex]);
 | |
|                     }
 | |
| 
 | |
|                     json.EndObject();
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             json.EndObject();
 | |
|         }
 | |
|         if(detailedMap == VK_TRUE)
 | |
|         {
 | |
|             allocator->PrintDetailedMap(json);
 | |
|         }
 | |
| 
 | |
|         json.EndObject();
 | |
|     }
 | |
| 
 | |
|     const size_t len = sb.GetLength();
 | |
|     char* const pChars = vma_new_array(allocator, char, len + 1);
 | |
|     if(len > 0)
 | |
|     {
 | |
|         memcpy(pChars, sb.GetData(), len);
 | |
|     }
 | |
|     pChars[len] = '\0';
 | |
|     *ppStatsString = pChars;
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaFreeStatsString(
 | |
|     VmaAllocator allocator,
 | |
|     char* pStatsString)
 | |
| {
 | |
|     if(pStatsString != VMA_NULL)
 | |
|     {
 | |
|         VMA_ASSERT(allocator);
 | |
|         size_t len = strlen(pStatsString);
 | |
|         vma_delete_array(allocator, pStatsString, len + 1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #endif // #if VMA_STATS_STRING_ENABLED
 | |
| 
 | |
| /*
 | |
| This function is not protected by any mutex because it just reads immutable data.
 | |
| */
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndex(
 | |
|     VmaAllocator allocator,
 | |
|     uint32_t memoryTypeBits,
 | |
|     const VmaAllocationCreateInfo* pAllocationCreateInfo,
 | |
|     uint32_t* pMemoryTypeIndex)
 | |
| {
 | |
|     VMA_ASSERT(allocator != VK_NULL_HANDLE);
 | |
|     VMA_ASSERT(pAllocationCreateInfo != VMA_NULL);
 | |
|     VMA_ASSERT(pMemoryTypeIndex != VMA_NULL);
 | |
| 
 | |
|     if(pAllocationCreateInfo->memoryTypeBits != 0)
 | |
|     {
 | |
|         memoryTypeBits &= pAllocationCreateInfo->memoryTypeBits;
 | |
|     }
 | |
|     
 | |
|     uint32_t requiredFlags = pAllocationCreateInfo->requiredFlags;
 | |
|     uint32_t preferredFlags = pAllocationCreateInfo->preferredFlags;
 | |
|     uint32_t notPreferredFlags = 0;
 | |
| 
 | |
|     // Convert usage to requiredFlags and preferredFlags.
 | |
|     switch(pAllocationCreateInfo->usage)
 | |
|     {
 | |
|     case VMA_MEMORY_USAGE_UNKNOWN:
 | |
|         break;
 | |
|     case VMA_MEMORY_USAGE_GPU_ONLY:
 | |
|         if(!allocator->IsIntegratedGpu() || (preferredFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0)
 | |
|         {
 | |
|             preferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
 | |
|         }
 | |
|         break;
 | |
|     case VMA_MEMORY_USAGE_CPU_ONLY:
 | |
|         requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
 | |
|         break;
 | |
|     case VMA_MEMORY_USAGE_CPU_TO_GPU:
 | |
|         requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
 | |
|         if(!allocator->IsIntegratedGpu() || (preferredFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0)
 | |
|         {
 | |
|             preferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
 | |
|         }
 | |
|         break;
 | |
|     case VMA_MEMORY_USAGE_GPU_TO_CPU:
 | |
|         requiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
 | |
|         preferredFlags |= VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
 | |
|         break;
 | |
|     case VMA_MEMORY_USAGE_CPU_COPY:
 | |
|         notPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
 | |
|         break;
 | |
|     case VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED:
 | |
|         requiredFlags |= VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT;
 | |
|         break;
 | |
|     default:
 | |
|         VMA_ASSERT(0);
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     *pMemoryTypeIndex = UINT32_MAX;
 | |
|     uint32_t minCost = UINT32_MAX;
 | |
|     for(uint32_t memTypeIndex = 0, memTypeBit = 1;
 | |
|         memTypeIndex < allocator->GetMemoryTypeCount();
 | |
|         ++memTypeIndex, memTypeBit <<= 1)
 | |
|     {
 | |
|         // This memory type is acceptable according to memoryTypeBits bitmask.
 | |
|         if((memTypeBit & memoryTypeBits) != 0)
 | |
|         {
 | |
|             const VkMemoryPropertyFlags currFlags =
 | |
|                 allocator->m_MemProps.memoryTypes[memTypeIndex].propertyFlags;
 | |
|             // This memory type contains requiredFlags.
 | |
|             if((requiredFlags & ~currFlags) == 0)
 | |
|             {
 | |
|                 // Calculate cost as number of bits from preferredFlags not present in this memory type.
 | |
|                 uint32_t currCost = VmaCountBitsSet(preferredFlags & ~currFlags) +
 | |
|                     VmaCountBitsSet(currFlags & notPreferredFlags);
 | |
|                 // Remember memory type with lowest cost.
 | |
|                 if(currCost < minCost)
 | |
|                 {
 | |
|                     *pMemoryTypeIndex = memTypeIndex;
 | |
|                     if(currCost == 0)
 | |
|                     {
 | |
|                         return VK_SUCCESS;
 | |
|                     }
 | |
|                     minCost = currCost;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return (*pMemoryTypeIndex != UINT32_MAX) ? VK_SUCCESS : VK_ERROR_FEATURE_NOT_PRESENT;
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForBufferInfo(
 | |
|     VmaAllocator allocator,
 | |
|     const VkBufferCreateInfo* pBufferCreateInfo,
 | |
|     const VmaAllocationCreateInfo* pAllocationCreateInfo,
 | |
|     uint32_t* pMemoryTypeIndex)
 | |
| {
 | |
|     VMA_ASSERT(allocator != VK_NULL_HANDLE);
 | |
|     VMA_ASSERT(pBufferCreateInfo != VMA_NULL);
 | |
|     VMA_ASSERT(pAllocationCreateInfo != VMA_NULL);
 | |
|     VMA_ASSERT(pMemoryTypeIndex != VMA_NULL);
 | |
| 
 | |
|     const VkDevice hDev = allocator->m_hDevice;
 | |
|     VkBuffer hBuffer = VK_NULL_HANDLE;
 | |
|     VkResult res = allocator->GetVulkanFunctions().vkCreateBuffer(
 | |
|         hDev, pBufferCreateInfo, allocator->GetAllocationCallbacks(), &hBuffer);
 | |
|     if(res == VK_SUCCESS)
 | |
|     {
 | |
|         VkMemoryRequirements memReq = {};
 | |
|         allocator->GetVulkanFunctions().vkGetBufferMemoryRequirements(
 | |
|             hDev, hBuffer, &memReq);
 | |
| 
 | |
|         res = vmaFindMemoryTypeIndex(
 | |
|             allocator,
 | |
|             memReq.memoryTypeBits,
 | |
|             pAllocationCreateInfo,
 | |
|             pMemoryTypeIndex);
 | |
| 
 | |
|         allocator->GetVulkanFunctions().vkDestroyBuffer(
 | |
|             hDev, hBuffer, allocator->GetAllocationCallbacks());
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForImageInfo(
 | |
|     VmaAllocator allocator,
 | |
|     const VkImageCreateInfo* pImageCreateInfo,
 | |
|     const VmaAllocationCreateInfo* pAllocationCreateInfo,
 | |
|     uint32_t* pMemoryTypeIndex)
 | |
| {
 | |
|     VMA_ASSERT(allocator != VK_NULL_HANDLE);
 | |
|     VMA_ASSERT(pImageCreateInfo != VMA_NULL);
 | |
|     VMA_ASSERT(pAllocationCreateInfo != VMA_NULL);
 | |
|     VMA_ASSERT(pMemoryTypeIndex != VMA_NULL);
 | |
| 
 | |
|     const VkDevice hDev = allocator->m_hDevice;
 | |
|     VkImage hImage = VK_NULL_HANDLE;
 | |
|     VkResult res = allocator->GetVulkanFunctions().vkCreateImage(
 | |
|         hDev, pImageCreateInfo, allocator->GetAllocationCallbacks(), &hImage);
 | |
|     if(res == VK_SUCCESS)
 | |
|     {
 | |
|         VkMemoryRequirements memReq = {};
 | |
|         allocator->GetVulkanFunctions().vkGetImageMemoryRequirements(
 | |
|             hDev, hImage, &memReq);
 | |
| 
 | |
|         res = vmaFindMemoryTypeIndex(
 | |
|             allocator,
 | |
|             memReq.memoryTypeBits,
 | |
|             pAllocationCreateInfo,
 | |
|             pMemoryTypeIndex);
 | |
| 
 | |
|         allocator->GetVulkanFunctions().vkDestroyImage(
 | |
|             hDev, hImage, allocator->GetAllocationCallbacks());
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreatePool(
 | |
| 	VmaAllocator allocator,
 | |
| 	const VmaPoolCreateInfo* pCreateInfo,
 | |
| 	VmaPool* pPool)
 | |
| {
 | |
|     VMA_ASSERT(allocator && pCreateInfo && pPool);
 | |
|     
 | |
|     VMA_DEBUG_LOG("vmaCreatePool");
 | |
|     
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
|     
 | |
|     VkResult res = allocator->CreatePool(pCreateInfo, pPool);
 | |
|     
 | |
| #if VMA_RECORDING_ENABLED
 | |
|     if(allocator->GetRecorder() != VMA_NULL)
 | |
|     {
 | |
|         allocator->GetRecorder()->RecordCreatePool(allocator->GetCurrentFrameIndex(), *pCreateInfo, *pPool);
 | |
|     }
 | |
| #endif
 | |
|     
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaDestroyPool(
 | |
|     VmaAllocator allocator,
 | |
|     VmaPool pool)
 | |
| {
 | |
|     VMA_ASSERT(allocator);
 | |
|     
 | |
|     if(pool == VK_NULL_HANDLE)
 | |
|     {
 | |
|         return;
 | |
|     }
 | |
|     
 | |
|     VMA_DEBUG_LOG("vmaDestroyPool");
 | |
|     
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
|     
 | |
| #if VMA_RECORDING_ENABLED
 | |
|     if(allocator->GetRecorder() != VMA_NULL)
 | |
|     {
 | |
|         allocator->GetRecorder()->RecordDestroyPool(allocator->GetCurrentFrameIndex(), pool);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     allocator->DestroyPool(pool);
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolStats(
 | |
|     VmaAllocator allocator,
 | |
|     VmaPool pool,
 | |
|     VmaPoolStats* pPoolStats)
 | |
| {
 | |
|     VMA_ASSERT(allocator && pool && pPoolStats);
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     allocator->GetPoolStats(pool, pPoolStats);
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaMakePoolAllocationsLost(
 | |
|     VmaAllocator allocator,
 | |
|     VmaPool pool,
 | |
|     size_t* pLostAllocationCount)
 | |
| {
 | |
|     VMA_ASSERT(allocator && pool);
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
| #if VMA_RECORDING_ENABLED
 | |
|     if(allocator->GetRecorder() != VMA_NULL)
 | |
|     {
 | |
|         allocator->GetRecorder()->RecordMakePoolAllocationsLost(allocator->GetCurrentFrameIndex(), pool);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     allocator->MakePoolAllocationsLost(pool, pLostAllocationCount);
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckPoolCorruption(VmaAllocator allocator, VmaPool pool)
 | |
| {
 | |
|     VMA_ASSERT(allocator && pool);
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     VMA_DEBUG_LOG("vmaCheckPoolCorruption");
 | |
| 
 | |
|     return allocator->CheckPoolCorruption(pool);
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolName(
 | |
|     VmaAllocator allocator,
 | |
|     VmaPool pool,
 | |
|     const char** ppName)
 | |
| {
 | |
|     VMA_ASSERT(allocator && pool);
 | |
|     
 | |
|     VMA_DEBUG_LOG("vmaGetPoolName");
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     *ppName = pool->GetName();
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaSetPoolName(
 | |
|     VmaAllocator allocator,
 | |
|     VmaPool pool,
 | |
|     const char* pName)
 | |
| {
 | |
|     VMA_ASSERT(allocator && pool);
 | |
| 
 | |
|     VMA_DEBUG_LOG("vmaSetPoolName");
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     pool->SetName(pName);
 | |
| 
 | |
| #if VMA_RECORDING_ENABLED
 | |
|     if(allocator->GetRecorder() != VMA_NULL)
 | |
|     {
 | |
|         allocator->GetRecorder()->RecordSetPoolName(allocator->GetCurrentFrameIndex(), pool, pName);
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemory(
 | |
|     VmaAllocator allocator,
 | |
|     const VkMemoryRequirements* pVkMemoryRequirements,
 | |
|     const VmaAllocationCreateInfo* pCreateInfo,
 | |
|     VmaAllocation* pAllocation,
 | |
|     VmaAllocationInfo* pAllocationInfo)
 | |
| {
 | |
|     VMA_ASSERT(allocator && pVkMemoryRequirements && pCreateInfo && pAllocation);
 | |
| 
 | |
|     VMA_DEBUG_LOG("vmaAllocateMemory");
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
| 	VkResult result = allocator->AllocateMemory(
 | |
|         *pVkMemoryRequirements,
 | |
|         false, // requiresDedicatedAllocation
 | |
|         false, // prefersDedicatedAllocation
 | |
|         VK_NULL_HANDLE, // dedicatedBuffer
 | |
|         VK_NULL_HANDLE, // dedicatedImage
 | |
|         *pCreateInfo,
 | |
|         VMA_SUBALLOCATION_TYPE_UNKNOWN,
 | |
|         1, // allocationCount
 | |
|         pAllocation);
 | |
| 
 | |
| #if VMA_RECORDING_ENABLED
 | |
|     if(allocator->GetRecorder() != VMA_NULL)
 | |
|     {
 | |
|         allocator->GetRecorder()->RecordAllocateMemory(
 | |
|             allocator->GetCurrentFrameIndex(),
 | |
|             *pVkMemoryRequirements,
 | |
|             *pCreateInfo,
 | |
|             *pAllocation);
 | |
|     }
 | |
| #endif
 | |
|         
 | |
|     if(pAllocationInfo != VMA_NULL && result == VK_SUCCESS)
 | |
|     {
 | |
|         allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
 | |
|     }
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryPages(
 | |
|     VmaAllocator allocator,
 | |
|     const VkMemoryRequirements* pVkMemoryRequirements,
 | |
|     const VmaAllocationCreateInfo* pCreateInfo,
 | |
|     size_t allocationCount,
 | |
|     VmaAllocation* pAllocations,
 | |
|     VmaAllocationInfo* pAllocationInfo)
 | |
| {
 | |
|     if(allocationCount == 0)
 | |
|     {
 | |
|         return VK_SUCCESS;
 | |
|     }
 | |
| 
 | |
|     VMA_ASSERT(allocator && pVkMemoryRequirements && pCreateInfo && pAllocations);
 | |
| 
 | |
|     VMA_DEBUG_LOG("vmaAllocateMemoryPages");
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
| 	VkResult result = allocator->AllocateMemory(
 | |
|         *pVkMemoryRequirements,
 | |
|         false, // requiresDedicatedAllocation
 | |
|         false, // prefersDedicatedAllocation
 | |
|         VK_NULL_HANDLE, // dedicatedBuffer
 | |
|         VK_NULL_HANDLE, // dedicatedImage
 | |
|         *pCreateInfo,
 | |
|         VMA_SUBALLOCATION_TYPE_UNKNOWN,
 | |
|         allocationCount,
 | |
|         pAllocations);
 | |
| 
 | |
| #if VMA_RECORDING_ENABLED
 | |
|     if(allocator->GetRecorder() != VMA_NULL)
 | |
|     {
 | |
|         allocator->GetRecorder()->RecordAllocateMemoryPages(
 | |
|             allocator->GetCurrentFrameIndex(),
 | |
|             *pVkMemoryRequirements,
 | |
|             *pCreateInfo,
 | |
|             (uint64_t)allocationCount,
 | |
|             pAllocations);
 | |
|     }
 | |
| #endif
 | |
|         
 | |
|     if(pAllocationInfo != VMA_NULL && result == VK_SUCCESS)
 | |
|     {
 | |
|         for(size_t i = 0; i < allocationCount; ++i)
 | |
|         {
 | |
|             allocator->GetAllocationInfo(pAllocations[i], pAllocationInfo + i);
 | |
|         }
 | |
|     }
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForBuffer(
 | |
|     VmaAllocator allocator,
 | |
|     VkBuffer buffer,
 | |
|     const VmaAllocationCreateInfo* pCreateInfo,
 | |
|     VmaAllocation* pAllocation,
 | |
|     VmaAllocationInfo* pAllocationInfo)
 | |
| {
 | |
|     VMA_ASSERT(allocator && buffer != VK_NULL_HANDLE && pCreateInfo && pAllocation);
 | |
| 
 | |
|     VMA_DEBUG_LOG("vmaAllocateMemoryForBuffer");
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     VkMemoryRequirements vkMemReq = {};
 | |
|     bool requiresDedicatedAllocation = false;
 | |
|     bool prefersDedicatedAllocation = false;
 | |
|     allocator->GetBufferMemoryRequirements(buffer, vkMemReq,
 | |
|         requiresDedicatedAllocation,
 | |
|         prefersDedicatedAllocation);
 | |
| 
 | |
|     VkResult result = allocator->AllocateMemory(
 | |
|         vkMemReq,
 | |
|         requiresDedicatedAllocation,
 | |
|         prefersDedicatedAllocation,
 | |
|         buffer, // dedicatedBuffer
 | |
|         VK_NULL_HANDLE, // dedicatedImage
 | |
|         *pCreateInfo,
 | |
|         VMA_SUBALLOCATION_TYPE_BUFFER,
 | |
|         1, // allocationCount
 | |
|         pAllocation);
 | |
| 
 | |
| #if VMA_RECORDING_ENABLED
 | |
|     if(allocator->GetRecorder() != VMA_NULL)
 | |
|     {
 | |
|         allocator->GetRecorder()->RecordAllocateMemoryForBuffer(
 | |
|             allocator->GetCurrentFrameIndex(),
 | |
|             vkMemReq,
 | |
|             requiresDedicatedAllocation,
 | |
|             prefersDedicatedAllocation,
 | |
|             *pCreateInfo,
 | |
|             *pAllocation);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     if(pAllocationInfo && result == VK_SUCCESS)
 | |
|     {
 | |
|         allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
 | |
|     }
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForImage(
 | |
|     VmaAllocator allocator,
 | |
|     VkImage image,
 | |
|     const VmaAllocationCreateInfo* pCreateInfo,
 | |
|     VmaAllocation* pAllocation,
 | |
|     VmaAllocationInfo* pAllocationInfo)
 | |
| {
 | |
|     VMA_ASSERT(allocator && image != VK_NULL_HANDLE && pCreateInfo && pAllocation);
 | |
| 
 | |
|     VMA_DEBUG_LOG("vmaAllocateMemoryForImage");
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     VkMemoryRequirements vkMemReq = {};
 | |
|     bool requiresDedicatedAllocation = false;
 | |
|     bool prefersDedicatedAllocation  = false;
 | |
|     allocator->GetImageMemoryRequirements(image, vkMemReq,
 | |
|         requiresDedicatedAllocation, prefersDedicatedAllocation);
 | |
| 
 | |
|     VkResult result = allocator->AllocateMemory(
 | |
|         vkMemReq,
 | |
|         requiresDedicatedAllocation,
 | |
|         prefersDedicatedAllocation,
 | |
|         VK_NULL_HANDLE, // dedicatedBuffer
 | |
|         image, // dedicatedImage
 | |
|         *pCreateInfo,
 | |
|         VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN,
 | |
|         1, // allocationCount
 | |
|         pAllocation);
 | |
| 
 | |
| #if VMA_RECORDING_ENABLED
 | |
|     if(allocator->GetRecorder() != VMA_NULL)
 | |
|     {
 | |
|         allocator->GetRecorder()->RecordAllocateMemoryForImage(
 | |
|             allocator->GetCurrentFrameIndex(),
 | |
|             vkMemReq,
 | |
|             requiresDedicatedAllocation,
 | |
|             prefersDedicatedAllocation,
 | |
|             *pCreateInfo,
 | |
|             *pAllocation);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     if(pAllocationInfo && result == VK_SUCCESS)
 | |
|     {
 | |
|         allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
 | |
|     }
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemory(
 | |
|     VmaAllocator allocator,
 | |
|     VmaAllocation allocation)
 | |
| {
 | |
|     VMA_ASSERT(allocator);
 | |
|     
 | |
|     if(allocation == VK_NULL_HANDLE)
 | |
|     {
 | |
|         return;
 | |
|     }
 | |
|     
 | |
|     VMA_DEBUG_LOG("vmaFreeMemory");
 | |
|     
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
| #if VMA_RECORDING_ENABLED
 | |
|     if(allocator->GetRecorder() != VMA_NULL)
 | |
|     {
 | |
|         allocator->GetRecorder()->RecordFreeMemory(
 | |
|             allocator->GetCurrentFrameIndex(),
 | |
|             allocation);
 | |
|     }
 | |
| #endif
 | |
|     
 | |
|     allocator->FreeMemory(
 | |
|         1, // allocationCount
 | |
|         &allocation);
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemoryPages(
 | |
|     VmaAllocator allocator,
 | |
|     size_t allocationCount,
 | |
|     VmaAllocation* pAllocations)
 | |
| {
 | |
|     if(allocationCount == 0)
 | |
|     {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     VMA_ASSERT(allocator);
 | |
|     
 | |
|     VMA_DEBUG_LOG("vmaFreeMemoryPages");
 | |
|     
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
| #if VMA_RECORDING_ENABLED
 | |
|     if(allocator->GetRecorder() != VMA_NULL)
 | |
|     {
 | |
|         allocator->GetRecorder()->RecordFreeMemoryPages(
 | |
|             allocator->GetCurrentFrameIndex(),
 | |
|             (uint64_t)allocationCount,
 | |
|             pAllocations);
 | |
|     }
 | |
| #endif
 | |
|     
 | |
|     allocator->FreeMemory(allocationCount, pAllocations);
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaResizeAllocation(
 | |
|     VmaAllocator allocator,
 | |
|     VmaAllocation allocation,
 | |
|     VkDeviceSize newSize)
 | |
| {
 | |
|     VMA_ASSERT(allocator && allocation);
 | |
|     
 | |
|     VMA_DEBUG_LOG("vmaResizeAllocation");
 | |
|     
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     return allocator->ResizeAllocation(allocation, newSize);
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationInfo(
 | |
|     VmaAllocator allocator,
 | |
|     VmaAllocation allocation,
 | |
|     VmaAllocationInfo* pAllocationInfo)
 | |
| {
 | |
|     VMA_ASSERT(allocator && allocation && pAllocationInfo);
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
| #if VMA_RECORDING_ENABLED
 | |
|     if(allocator->GetRecorder() != VMA_NULL)
 | |
|     {
 | |
|         allocator->GetRecorder()->RecordGetAllocationInfo(
 | |
|             allocator->GetCurrentFrameIndex(),
 | |
|             allocation);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     allocator->GetAllocationInfo(allocation, pAllocationInfo);
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkBool32 VMA_CALL_POST vmaTouchAllocation(
 | |
|     VmaAllocator allocator,
 | |
|     VmaAllocation allocation)
 | |
| {
 | |
|     VMA_ASSERT(allocator && allocation);
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
| #if VMA_RECORDING_ENABLED
 | |
|     if(allocator->GetRecorder() != VMA_NULL)
 | |
|     {
 | |
|         allocator->GetRecorder()->RecordTouchAllocation(
 | |
|             allocator->GetCurrentFrameIndex(),
 | |
|             allocation);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     return allocator->TouchAllocation(allocation);
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationUserData(
 | |
|     VmaAllocator allocator,
 | |
|     VmaAllocation allocation,
 | |
|     void* pUserData)
 | |
| {
 | |
|     VMA_ASSERT(allocator && allocation);
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     allocation->SetUserData(allocator, pUserData);
 | |
| 
 | |
| #if VMA_RECORDING_ENABLED
 | |
|     if(allocator->GetRecorder() != VMA_NULL)
 | |
|     {
 | |
|         allocator->GetRecorder()->RecordSetAllocationUserData(
 | |
|             allocator->GetCurrentFrameIndex(),
 | |
|             allocation,
 | |
|             pUserData);
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaCreateLostAllocation(
 | |
|     VmaAllocator allocator,
 | |
|     VmaAllocation* pAllocation)
 | |
| {
 | |
|     VMA_ASSERT(allocator && pAllocation);
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK;
 | |
| 
 | |
|     allocator->CreateLostAllocation(pAllocation);
 | |
| 
 | |
| #if VMA_RECORDING_ENABLED
 | |
|     if(allocator->GetRecorder() != VMA_NULL)
 | |
|     {
 | |
|         allocator->GetRecorder()->RecordCreateLostAllocation(
 | |
|             allocator->GetCurrentFrameIndex(),
 | |
|             *pAllocation);
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaMapMemory(
 | |
|     VmaAllocator allocator,
 | |
|     VmaAllocation allocation,
 | |
|     void** ppData)
 | |
| {
 | |
|     VMA_ASSERT(allocator && allocation && ppData);
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     VkResult res = allocator->Map(allocation, ppData);
 | |
| 
 | |
| #if VMA_RECORDING_ENABLED
 | |
|     if(allocator->GetRecorder() != VMA_NULL)
 | |
|     {
 | |
|         allocator->GetRecorder()->RecordMapMemory(
 | |
|             allocator->GetCurrentFrameIndex(),
 | |
|             allocation);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaUnmapMemory(
 | |
|     VmaAllocator allocator,
 | |
|     VmaAllocation allocation)
 | |
| {
 | |
|     VMA_ASSERT(allocator && allocation);
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
| #if VMA_RECORDING_ENABLED
 | |
|     if(allocator->GetRecorder() != VMA_NULL)
 | |
|     {
 | |
|         allocator->GetRecorder()->RecordUnmapMemory(
 | |
|             allocator->GetCurrentFrameIndex(),
 | |
|             allocation);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     allocator->Unmap(allocation);
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaFlushAllocation(VmaAllocator allocator, VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size)
 | |
| {
 | |
|     VMA_ASSERT(allocator && allocation);
 | |
| 
 | |
|     VMA_DEBUG_LOG("vmaFlushAllocation");
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     allocator->FlushOrInvalidateAllocation(allocation, offset, size, VMA_CACHE_FLUSH);
 | |
| 
 | |
| #if VMA_RECORDING_ENABLED
 | |
|     if(allocator->GetRecorder() != VMA_NULL)
 | |
|     {
 | |
|         allocator->GetRecorder()->RecordFlushAllocation(
 | |
|             allocator->GetCurrentFrameIndex(),
 | |
|             allocation, offset, size);
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaInvalidateAllocation(VmaAllocator allocator, VmaAllocation allocation, VkDeviceSize offset, VkDeviceSize size)
 | |
| {
 | |
|     VMA_ASSERT(allocator && allocation);
 | |
| 
 | |
|     VMA_DEBUG_LOG("vmaInvalidateAllocation");
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     allocator->FlushOrInvalidateAllocation(allocation, offset, size, VMA_CACHE_INVALIDATE);
 | |
| 
 | |
| #if VMA_RECORDING_ENABLED
 | |
|     if(allocator->GetRecorder() != VMA_NULL)
 | |
|     {
 | |
|         allocator->GetRecorder()->RecordInvalidateAllocation(
 | |
|             allocator->GetCurrentFrameIndex(),
 | |
|             allocation, offset, size);
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckCorruption(VmaAllocator allocator, uint32_t memoryTypeBits)
 | |
| {
 | |
|     VMA_ASSERT(allocator);
 | |
| 
 | |
|     VMA_DEBUG_LOG("vmaCheckCorruption");
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     return allocator->CheckCorruption(memoryTypeBits);
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragment(
 | |
|     VmaAllocator allocator,
 | |
|     VmaAllocation* pAllocations,
 | |
|     size_t allocationCount,
 | |
|     VkBool32* pAllocationsChanged,
 | |
|     const VmaDefragmentationInfo *pDefragmentationInfo,
 | |
|     VmaDefragmentationStats* pDefragmentationStats)
 | |
| {
 | |
|     // Deprecated interface, reimplemented using new one.
 | |
| 
 | |
|     VmaDefragmentationInfo2 info2 = {};
 | |
|     info2.allocationCount = (uint32_t)allocationCount;
 | |
|     info2.pAllocations = pAllocations;
 | |
|     info2.pAllocationsChanged = pAllocationsChanged;
 | |
|     if(pDefragmentationInfo != VMA_NULL)
 | |
|     {
 | |
|         info2.maxCpuAllocationsToMove = pDefragmentationInfo->maxAllocationsToMove;
 | |
|         info2.maxCpuBytesToMove = pDefragmentationInfo->maxBytesToMove;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         info2.maxCpuAllocationsToMove = UINT32_MAX;
 | |
|         info2.maxCpuBytesToMove = VK_WHOLE_SIZE;
 | |
|     }
 | |
|     // info2.flags, maxGpuAllocationsToMove, maxGpuBytesToMove, commandBuffer deliberately left zero.
 | |
| 
 | |
|     VmaDefragmentationContext ctx;
 | |
|     VkResult res = vmaDefragmentationBegin(allocator, &info2, pDefragmentationStats, &ctx);
 | |
|     if(res == VK_NOT_READY)
 | |
|     {
 | |
|         res = vmaDefragmentationEnd( allocator, ctx);
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragmentationBegin(
 | |
|     VmaAllocator allocator,
 | |
|     const VmaDefragmentationInfo2* pInfo,
 | |
|     VmaDefragmentationStats* pStats,
 | |
|     VmaDefragmentationContext *pContext)
 | |
| {
 | |
|     VMA_ASSERT(allocator && pInfo && pContext);
 | |
| 
 | |
|     // Degenerate case: Nothing to defragment.
 | |
|     if(pInfo->allocationCount == 0 && pInfo->poolCount == 0)
 | |
|     {
 | |
|         return VK_SUCCESS;
 | |
|     }
 | |
| 
 | |
|     VMA_ASSERT(pInfo->allocationCount == 0 || pInfo->pAllocations != VMA_NULL);
 | |
|     VMA_ASSERT(pInfo->poolCount == 0 || pInfo->pPools != VMA_NULL);
 | |
|     VMA_HEAVY_ASSERT(VmaValidatePointerArray(pInfo->allocationCount, pInfo->pAllocations));
 | |
|     VMA_HEAVY_ASSERT(VmaValidatePointerArray(pInfo->poolCount, pInfo->pPools));
 | |
| 
 | |
|     VMA_DEBUG_LOG("vmaDefragmentationBegin");
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     VkResult res = allocator->DefragmentationBegin(*pInfo, pStats, pContext);
 | |
| 
 | |
| #if VMA_RECORDING_ENABLED
 | |
|     if(allocator->GetRecorder() != VMA_NULL)
 | |
|     {
 | |
|         allocator->GetRecorder()->RecordDefragmentationBegin(
 | |
|             allocator->GetCurrentFrameIndex(), *pInfo, *pContext);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaDefragmentationEnd(
 | |
|     VmaAllocator allocator,
 | |
|     VmaDefragmentationContext context)
 | |
| {
 | |
|     VMA_ASSERT(allocator);
 | |
| 
 | |
|     VMA_DEBUG_LOG("vmaDefragmentationEnd");
 | |
| 
 | |
|     if(context != VK_NULL_HANDLE)
 | |
|     {
 | |
|         VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
| #if VMA_RECORDING_ENABLED
 | |
|         if(allocator->GetRecorder() != VMA_NULL)
 | |
|         {
 | |
|             allocator->GetRecorder()->RecordDefragmentationEnd(
 | |
|                 allocator->GetCurrentFrameIndex(), context);
 | |
|         }
 | |
| #endif
 | |
| 
 | |
|         return allocator->DefragmentationEnd(context);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         return VK_SUCCESS;
 | |
|     }
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory(
 | |
|     VmaAllocator allocator,
 | |
|     VmaAllocation allocation,
 | |
|     VkBuffer buffer)
 | |
| {
 | |
|     VMA_ASSERT(allocator && allocation && buffer);
 | |
| 
 | |
|     VMA_DEBUG_LOG("vmaBindBufferMemory");
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     return allocator->BindBufferMemory(allocation, 0, buffer, VMA_NULL);
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory2(
 | |
|     VmaAllocator allocator,
 | |
|     VmaAllocation allocation,
 | |
|     VkDeviceSize allocationLocalOffset,
 | |
|     VkBuffer buffer,
 | |
|     const void* pNext)
 | |
| {
 | |
|     VMA_ASSERT(allocator && allocation && buffer);
 | |
| 
 | |
|     VMA_DEBUG_LOG("vmaBindBufferMemory2");
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     return allocator->BindBufferMemory(allocation, allocationLocalOffset, buffer, pNext);
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory(
 | |
|     VmaAllocator allocator,
 | |
|     VmaAllocation allocation,
 | |
|     VkImage image)
 | |
| {
 | |
|     VMA_ASSERT(allocator && allocation && image);
 | |
| 
 | |
|     VMA_DEBUG_LOG("vmaBindImageMemory");
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     return allocator->BindImageMemory(allocation, 0, image, VMA_NULL);
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory2(
 | |
|     VmaAllocator allocator,
 | |
|     VmaAllocation allocation,
 | |
|     VkDeviceSize allocationLocalOffset,
 | |
|     VkImage image,
 | |
|     const void* pNext)
 | |
| {
 | |
|     VMA_ASSERT(allocator && allocation && image);
 | |
| 
 | |
|     VMA_DEBUG_LOG("vmaBindImageMemory2");
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|         return allocator->BindImageMemory(allocation, allocationLocalOffset, image, pNext);
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBuffer(
 | |
|     VmaAllocator allocator,
 | |
|     const VkBufferCreateInfo* pBufferCreateInfo,
 | |
|     const VmaAllocationCreateInfo* pAllocationCreateInfo,
 | |
|     VkBuffer* pBuffer,
 | |
|     VmaAllocation* pAllocation,
 | |
|     VmaAllocationInfo* pAllocationInfo)
 | |
| {
 | |
|     VMA_ASSERT(allocator && pBufferCreateInfo && pAllocationCreateInfo && pBuffer && pAllocation);
 | |
| 
 | |
|     if(pBufferCreateInfo->size == 0)
 | |
|     {
 | |
|         return VK_ERROR_VALIDATION_FAILED_EXT;
 | |
|     }
 | |
|     
 | |
|     VMA_DEBUG_LOG("vmaCreateBuffer");
 | |
|     
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     *pBuffer = VK_NULL_HANDLE;
 | |
|     *pAllocation = VK_NULL_HANDLE;
 | |
| 
 | |
|     // 1. Create VkBuffer.
 | |
|     VkResult res = (*allocator->GetVulkanFunctions().vkCreateBuffer)(
 | |
|         allocator->m_hDevice,
 | |
|         pBufferCreateInfo,
 | |
|         allocator->GetAllocationCallbacks(),
 | |
|         pBuffer);
 | |
|     if(res >= 0)
 | |
|     {
 | |
|         // 2. vkGetBufferMemoryRequirements.
 | |
|         VkMemoryRequirements vkMemReq = {};
 | |
|         bool requiresDedicatedAllocation = false;
 | |
|         bool prefersDedicatedAllocation  = false;
 | |
|         allocator->GetBufferMemoryRequirements(*pBuffer, vkMemReq,
 | |
|             requiresDedicatedAllocation, prefersDedicatedAllocation);
 | |
| 
 | |
|         // 3. Allocate memory using allocator.
 | |
|         res = allocator->AllocateMemory(
 | |
|             vkMemReq,
 | |
|             requiresDedicatedAllocation,
 | |
|             prefersDedicatedAllocation,
 | |
|             *pBuffer, // dedicatedBuffer
 | |
|             VK_NULL_HANDLE, // dedicatedImage
 | |
|             *pAllocationCreateInfo,
 | |
|             VMA_SUBALLOCATION_TYPE_BUFFER,
 | |
|             1, // allocationCount
 | |
|             pAllocation);
 | |
| 
 | |
| #if VMA_RECORDING_ENABLED
 | |
|         if(allocator->GetRecorder() != VMA_NULL)
 | |
|         {
 | |
|             allocator->GetRecorder()->RecordCreateBuffer(
 | |
|                 allocator->GetCurrentFrameIndex(),
 | |
|                 *pBufferCreateInfo,
 | |
|                 *pAllocationCreateInfo,
 | |
|                 *pAllocation);
 | |
|         }
 | |
| #endif
 | |
| 
 | |
|         if(res >= 0)
 | |
|         {
 | |
|             // 3. Bind buffer with memory.
 | |
|             if((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0)
 | |
|             {
 | |
|                 res = allocator->BindBufferMemory(*pAllocation, 0, *pBuffer, VMA_NULL);
 | |
|             }
 | |
|             if(res >= 0)
 | |
|             {
 | |
|                 // All steps succeeded.
 | |
|                 #if VMA_STATS_STRING_ENABLED
 | |
|                     (*pAllocation)->InitBufferImageUsage(pBufferCreateInfo->usage);
 | |
|                 #endif
 | |
|                 if(pAllocationInfo != VMA_NULL)
 | |
|                 {
 | |
|                     allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
 | |
|                 }
 | |
| 
 | |
|                 return VK_SUCCESS;
 | |
|             }
 | |
|             allocator->FreeMemory(
 | |
|                 1, // allocationCount
 | |
|                 pAllocation);
 | |
|             *pAllocation = VK_NULL_HANDLE;
 | |
|             (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks());
 | |
|             *pBuffer = VK_NULL_HANDLE;
 | |
|             return res;
 | |
|         }
 | |
|         (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks());
 | |
|         *pBuffer = VK_NULL_HANDLE;
 | |
|         return res;
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaDestroyBuffer(
 | |
|     VmaAllocator allocator,
 | |
|     VkBuffer buffer,
 | |
|     VmaAllocation allocation)
 | |
| {
 | |
|     VMA_ASSERT(allocator);
 | |
| 
 | |
|     if(buffer == VK_NULL_HANDLE && allocation == VK_NULL_HANDLE)
 | |
|     {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     VMA_DEBUG_LOG("vmaDestroyBuffer");
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
| #if VMA_RECORDING_ENABLED
 | |
|     if(allocator->GetRecorder() != VMA_NULL)
 | |
|     {
 | |
|         allocator->GetRecorder()->RecordDestroyBuffer(
 | |
|             allocator->GetCurrentFrameIndex(),
 | |
|             allocation);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     if(buffer != VK_NULL_HANDLE)
 | |
|     {
 | |
|         (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, buffer, allocator->GetAllocationCallbacks());
 | |
|     }
 | |
| 
 | |
|     if(allocation != VK_NULL_HANDLE)
 | |
|     {
 | |
|         allocator->FreeMemory(
 | |
|             1, // allocationCount
 | |
|             &allocation);
 | |
|     }
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateImage(
 | |
|     VmaAllocator allocator,
 | |
|     const VkImageCreateInfo* pImageCreateInfo,
 | |
|     const VmaAllocationCreateInfo* pAllocationCreateInfo,
 | |
|     VkImage* pImage,
 | |
|     VmaAllocation* pAllocation,
 | |
|     VmaAllocationInfo* pAllocationInfo)
 | |
| {
 | |
|     VMA_ASSERT(allocator && pImageCreateInfo && pAllocationCreateInfo && pImage && pAllocation);
 | |
| 
 | |
|     if(pImageCreateInfo->extent.width == 0 ||
 | |
|         pImageCreateInfo->extent.height == 0 ||
 | |
|         pImageCreateInfo->extent.depth == 0 ||
 | |
|         pImageCreateInfo->mipLevels == 0 ||
 | |
|         pImageCreateInfo->arrayLayers == 0)
 | |
|     {
 | |
|         return VK_ERROR_VALIDATION_FAILED_EXT;
 | |
|     }
 | |
| 
 | |
|     VMA_DEBUG_LOG("vmaCreateImage");
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     *pImage = VK_NULL_HANDLE;
 | |
|     *pAllocation = VK_NULL_HANDLE;
 | |
| 
 | |
|     // 1. Create VkImage.
 | |
|     VkResult res = (*allocator->GetVulkanFunctions().vkCreateImage)(
 | |
|         allocator->m_hDevice,
 | |
|         pImageCreateInfo,
 | |
|         allocator->GetAllocationCallbacks(),
 | |
|         pImage);
 | |
|     if(res >= 0)
 | |
|     {
 | |
|         VmaSuballocationType suballocType = pImageCreateInfo->tiling == VK_IMAGE_TILING_OPTIMAL ?
 | |
|             VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL :
 | |
|             VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR;
 | |
|         
 | |
|         // 2. Allocate memory using allocator.
 | |
|         VkMemoryRequirements vkMemReq = {};
 | |
|         bool requiresDedicatedAllocation = false;
 | |
|         bool prefersDedicatedAllocation  = false;
 | |
|         allocator->GetImageMemoryRequirements(*pImage, vkMemReq,
 | |
|             requiresDedicatedAllocation, prefersDedicatedAllocation);
 | |
| 
 | |
|         res = allocator->AllocateMemory(
 | |
|             vkMemReq,
 | |
|             requiresDedicatedAllocation,
 | |
|             prefersDedicatedAllocation,
 | |
|             VK_NULL_HANDLE, // dedicatedBuffer
 | |
|             *pImage, // dedicatedImage
 | |
|             *pAllocationCreateInfo,
 | |
|             suballocType,
 | |
|             1, // allocationCount
 | |
|             pAllocation);
 | |
| 
 | |
| #if VMA_RECORDING_ENABLED
 | |
|         if(allocator->GetRecorder() != VMA_NULL)
 | |
|         {
 | |
|             allocator->GetRecorder()->RecordCreateImage(
 | |
|                 allocator->GetCurrentFrameIndex(),
 | |
|                 *pImageCreateInfo,
 | |
|                 *pAllocationCreateInfo,
 | |
|                 *pAllocation);
 | |
|         }
 | |
| #endif
 | |
| 
 | |
|         if(res >= 0)
 | |
|         {
 | |
|             // 3. Bind image with memory.
 | |
|             if((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0)
 | |
|             {
 | |
|                 res = allocator->BindImageMemory(*pAllocation, 0, *pImage, VMA_NULL);
 | |
|             }
 | |
|             if(res >= 0)
 | |
|             {
 | |
|                 // All steps succeeded.
 | |
|                 #if VMA_STATS_STRING_ENABLED
 | |
|                     (*pAllocation)->InitBufferImageUsage(pImageCreateInfo->usage);
 | |
|                 #endif
 | |
|                 if(pAllocationInfo != VMA_NULL)
 | |
|                 {
 | |
|                     allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
 | |
|                 }
 | |
| 
 | |
|                 return VK_SUCCESS;
 | |
|             }
 | |
|             allocator->FreeMemory(
 | |
|                 1, // allocationCount
 | |
|                 pAllocation);
 | |
|             *pAllocation = VK_NULL_HANDLE;
 | |
|             (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks());
 | |
|             *pImage = VK_NULL_HANDLE;
 | |
|             return res;
 | |
|         }
 | |
|         (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks());
 | |
|         *pImage = VK_NULL_HANDLE;
 | |
|         return res;
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaDestroyImage(
 | |
|     VmaAllocator allocator,
 | |
|     VkImage image,
 | |
|     VmaAllocation allocation)
 | |
| {
 | |
|     VMA_ASSERT(allocator);
 | |
| 
 | |
|     if(image == VK_NULL_HANDLE && allocation == VK_NULL_HANDLE)
 | |
|     {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     VMA_DEBUG_LOG("vmaDestroyImage");
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
| #if VMA_RECORDING_ENABLED
 | |
|     if(allocator->GetRecorder() != VMA_NULL)
 | |
|     {
 | |
|         allocator->GetRecorder()->RecordDestroyImage(
 | |
|             allocator->GetCurrentFrameIndex(),
 | |
|             allocation);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     if(image != VK_NULL_HANDLE)
 | |
|     {
 | |
|         (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, image, allocator->GetAllocationCallbacks());
 | |
|     }
 | |
|     if(allocation != VK_NULL_HANDLE)
 | |
|     {
 | |
|         allocator->FreeMemory(
 | |
|             1, // allocationCount
 | |
|             &allocation);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #endif // #ifdef VMA_IMPLEMENTATION
 |