godot/servers/rendering/rendering_shader_container.cpp
Stuart Carnie 65e8b0951b Renderer: Move reflect_spirv to RenderingShaderContainer
This change introduces a new protected type, `ReflectedShaderStage` to
`RenderingShaderContainer` that derived types use to access SPIR-V and
the reflected module, `SpvReflectShaderModule` allowing implementations
to use the reflection information to compile their platform-specific
module.

* Fixes memory leak in `reflect_spirv` that would not deallocate the
  `SpvReflectShaderModule` if an error occurred.
* Removes unnecessary allocation when creating `SpvReflectShaderModule`
  by passing `NO_COPY` flag to `spvReflectCreateShaderModule2`
  constructor function.
* Replaces `VectorView` with `Span` for consistency
* Fixes unnecessary allocations in D3D12 shader container in
  `_convert_spirv_to_nir` and `_convert_spirv_to_dxil` which implicitly
  converted the old `VectorView` to a `Vector`
2025-09-30 06:40:14 +10:00

832 lines
38 KiB
C++

/**************************************************************************/
/* rendering_shader_container.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "rendering_shader_container.h"
#include "core/io/compression.h"
#include "thirdparty/spirv-reflect/spirv_reflect.h"
static inline uint32_t aligned_to(uint32_t p_size, uint32_t p_alignment) {
if (p_size % p_alignment) {
return p_size + (p_alignment - (p_size % p_alignment));
} else {
return p_size;
}
}
RenderingShaderContainer::ReflectedShaderStage::ReflectedShaderStage() :
_module(memnew(SpvReflectShaderModule)) {
}
RenderingShaderContainer::ReflectedShaderStage::~ReflectedShaderStage() {
spvReflectDestroyShaderModule(_module);
memdelete(_module);
}
const SpvReflectShaderModule &RenderingShaderContainer::ReflectedShaderStage::module() const {
return *_module;
}
const Span<uint32_t> RenderingShaderContainer::ReflectedShaderStage::spirv() const {
return _spirv_data.span().reinterpret<uint32_t>();
}
uint32_t RenderingShaderContainer::_from_bytes_header_extra_data(const uint8_t *p_bytes) {
return 0;
}
uint32_t RenderingShaderContainer::_from_bytes_reflection_extra_data(const uint8_t *p_bytes) {
return 0;
}
uint32_t RenderingShaderContainer::_from_bytes_reflection_binding_uniform_extra_data_start(const uint8_t *p_bytes) {
return 0;
}
uint32_t RenderingShaderContainer::_from_bytes_reflection_binding_uniform_extra_data(const uint8_t *p_bytes, uint32_t p_index) {
return 0;
}
uint32_t RenderingShaderContainer::_from_bytes_reflection_specialization_extra_data_start(const uint8_t *p_bytes) {
return 0;
}
uint32_t RenderingShaderContainer::_from_bytes_reflection_specialization_extra_data(const uint8_t *p_bytes, uint32_t p_index) {
return 0;
}
uint32_t RenderingShaderContainer::_from_bytes_shader_extra_data_start(const uint8_t *p_bytes) {
return 0;
}
uint32_t RenderingShaderContainer::_from_bytes_shader_extra_data(const uint8_t *p_bytes, uint32_t p_index) {
return 0;
}
uint32_t RenderingShaderContainer::_from_bytes_footer_extra_data(const uint8_t *p_bytes) {
return 0;
}
uint32_t RenderingShaderContainer::_to_bytes_header_extra_data(uint8_t *) const {
return 0;
}
uint32_t RenderingShaderContainer::_to_bytes_reflection_extra_data(uint8_t *) const {
return 0;
}
uint32_t RenderingShaderContainer::_to_bytes_reflection_binding_uniform_extra_data(uint8_t *, uint32_t) const {
return 0;
}
uint32_t RenderingShaderContainer::_to_bytes_reflection_specialization_extra_data(uint8_t *, uint32_t) const {
return 0;
}
uint32_t RenderingShaderContainer::_to_bytes_shader_extra_data(uint8_t *, uint32_t) const {
return 0;
}
uint32_t RenderingShaderContainer::_to_bytes_footer_extra_data(uint8_t *) const {
return 0;
}
void RenderingShaderContainer::_set_from_shader_reflection_post(const RenderingDeviceCommons::ShaderReflection &p_reflection) {
// Do nothing.
}
Error RenderingShaderContainer::reflect_spirv(const String &p_shader_name, Span<RenderingDeviceCommons::ShaderStageSPIRVData> p_spirv, LocalVector<ReflectedShaderStage> &r_refl) {
using RDC = RenderingDeviceCommons;
RDC::ShaderReflection reflection;
const uint32_t spirv_size = p_spirv.size() + 0;
r_refl.resize(spirv_size);
for (uint32_t i = 0; i < spirv_size; i++) {
RDC::ShaderStage stage = p_spirv[i].shader_stage;
RDC::ShaderStage stage_flag = (RDC::ShaderStage)(1 << p_spirv[i].shader_stage);
r_refl[i].shader_stage = p_spirv[i].shader_stage;
r_refl[i]._spirv_data = p_spirv[i].spirv;
if (p_spirv[i].shader_stage == RDC::SHADER_STAGE_COMPUTE) {
reflection.is_compute = true;
ERR_FAIL_COND_V_MSG(spirv_size != 1, FAILED,
"Compute shaders can only receive one stage, dedicated to compute.");
}
ERR_FAIL_COND_V_MSG(reflection.stages_bits.has_flag(stage_flag), FAILED,
"Stage " + String(RDC::SHADER_STAGE_NAMES[p_spirv[i].shader_stage]) + " submitted more than once.");
{
SpvReflectShaderModule &module = *r_refl.ptr()[i]._module;
const uint8_t *spirv = p_spirv[i].spirv.ptr();
SpvReflectResult result = spvReflectCreateShaderModule2(SPV_REFLECT_MODULE_FLAG_NO_COPY, p_spirv[i].spirv.size(), spirv, &module);
ERR_FAIL_COND_V_MSG(result != SPV_REFLECT_RESULT_SUCCESS, FAILED,
"Reflection of SPIR-V shader stage '" + String(RDC::SHADER_STAGE_NAMES[p_spirv[i].shader_stage]) + "' failed parsing shader.");
for (uint32_t j = 0; j < module.capability_count; j++) {
if (module.capabilities[j].value == SpvCapabilityMultiView) {
reflection.has_multiview = true;
break;
}
}
if (reflection.is_compute) {
reflection.compute_local_size[0] = module.entry_points->local_size.x;
reflection.compute_local_size[1] = module.entry_points->local_size.y;
reflection.compute_local_size[2] = module.entry_points->local_size.z;
}
uint32_t binding_count = 0;
result = spvReflectEnumerateDescriptorBindings(&module, &binding_count, nullptr);
ERR_FAIL_COND_V_MSG(result != SPV_REFLECT_RESULT_SUCCESS, FAILED,
"Reflection of SPIR-V shader stage '" + String(RDC::SHADER_STAGE_NAMES[p_spirv[i].shader_stage]) + "' failed enumerating descriptor bindings.");
if (binding_count > 0) {
// Parse bindings.
Vector<SpvReflectDescriptorBinding *> bindings;
bindings.resize(binding_count);
result = spvReflectEnumerateDescriptorBindings(&module, &binding_count, bindings.ptrw());
ERR_FAIL_COND_V_MSG(result != SPV_REFLECT_RESULT_SUCCESS, FAILED,
"Reflection of SPIR-V shader stage '" + String(RDC::SHADER_STAGE_NAMES[p_spirv[i].shader_stage]) + "' failed getting descriptor bindings.");
for (uint32_t j = 0; j < binding_count; j++) {
const SpvReflectDescriptorBinding &binding = *bindings[j];
RDC::ShaderUniform uniform;
bool need_array_dimensions = false;
bool need_block_size = false;
bool may_be_writable = false;
switch (binding.descriptor_type) {
case SPV_REFLECT_DESCRIPTOR_TYPE_SAMPLER: {
uniform.type = RDC::UNIFORM_TYPE_SAMPLER;
need_array_dimensions = true;
} break;
case SPV_REFLECT_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: {
uniform.type = RDC::UNIFORM_TYPE_SAMPLER_WITH_TEXTURE;
need_array_dimensions = true;
} break;
case SPV_REFLECT_DESCRIPTOR_TYPE_SAMPLED_IMAGE: {
uniform.type = RDC::UNIFORM_TYPE_TEXTURE;
need_array_dimensions = true;
} break;
case SPV_REFLECT_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
uniform.type = RDC::UNIFORM_TYPE_IMAGE;
need_array_dimensions = true;
may_be_writable = true;
} break;
case SPV_REFLECT_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: {
uniform.type = RDC::UNIFORM_TYPE_TEXTURE_BUFFER;
need_array_dimensions = true;
} break;
case SPV_REFLECT_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER: {
uniform.type = RDC::UNIFORM_TYPE_IMAGE_BUFFER;
need_array_dimensions = true;
may_be_writable = true;
} break;
case SPV_REFLECT_DESCRIPTOR_TYPE_UNIFORM_BUFFER: {
uniform.type = RDC::UNIFORM_TYPE_UNIFORM_BUFFER;
need_block_size = true;
} break;
case SPV_REFLECT_DESCRIPTOR_TYPE_STORAGE_BUFFER: {
uniform.type = RDC::UNIFORM_TYPE_STORAGE_BUFFER;
need_block_size = true;
may_be_writable = true;
} break;
case SPV_REFLECT_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: {
ERR_PRINT("Dynamic uniform buffer not supported.");
continue;
} break;
case SPV_REFLECT_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
ERR_PRINT("Dynamic storage buffer not supported.");
continue;
} break;
case SPV_REFLECT_DESCRIPTOR_TYPE_INPUT_ATTACHMENT: {
uniform.type = RDC::UNIFORM_TYPE_INPUT_ATTACHMENT;
need_array_dimensions = true;
} break;
case SPV_REFLECT_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR: {
ERR_PRINT("Acceleration structure not supported.");
continue;
} break;
}
if (need_array_dimensions) {
if (binding.array.dims_count == 0) {
uniform.length = 1;
} else {
for (uint32_t k = 0; k < binding.array.dims_count; k++) {
if (k == 0) {
uniform.length = binding.array.dims[0];
} else {
uniform.length *= binding.array.dims[k];
}
}
}
} else if (need_block_size) {
uniform.length = binding.block.size;
} else {
uniform.length = 0;
}
if (may_be_writable) {
if (binding.descriptor_type == SPV_REFLECT_DESCRIPTOR_TYPE_STORAGE_IMAGE) {
uniform.writable = !(binding.decoration_flags & SPV_REFLECT_DECORATION_NON_WRITABLE);
} else {
uniform.writable = !(binding.decoration_flags & SPV_REFLECT_DECORATION_NON_WRITABLE) && !(binding.block.decoration_flags & SPV_REFLECT_DECORATION_NON_WRITABLE);
}
} else {
uniform.writable = false;
}
uniform.binding = binding.binding;
uint32_t set = binding.set;
ERR_FAIL_COND_V_MSG(set >= RDC::MAX_UNIFORM_SETS, FAILED,
"On shader stage '" + String(RDC::SHADER_STAGE_NAMES[stage]) + "', uniform '" + binding.name + "' uses a set (" + itos(set) + ") index larger than what is supported (" + itos(RDC::MAX_UNIFORM_SETS) + ").");
if (set < (uint32_t)reflection.uniform_sets.size()) {
// Check if this already exists.
bool exists = false;
for (int k = 0; k < reflection.uniform_sets[set].size(); k++) {
if (reflection.uniform_sets[set][k].binding == uniform.binding) {
// Already exists, verify that it's the same type.
ERR_FAIL_COND_V_MSG(reflection.uniform_sets[set][k].type != uniform.type, FAILED,
"On shader stage '" + String(RDC::SHADER_STAGE_NAMES[stage]) + "', uniform '" + binding.name + "' trying to reuse location for set=" + itos(set) + ", binding=" + itos(uniform.binding) + " with different uniform type.");
// Also, verify that it's the same size.
ERR_FAIL_COND_V_MSG(reflection.uniform_sets[set][k].length != uniform.length, FAILED,
"On shader stage '" + String(RDC::SHADER_STAGE_NAMES[stage]) + "', uniform '" + binding.name + "' trying to reuse location for set=" + itos(set) + ", binding=" + itos(uniform.binding) + " with different uniform size.");
// Also, verify that it has the same writability.
ERR_FAIL_COND_V_MSG(reflection.uniform_sets[set][k].writable != uniform.writable, FAILED,
"On shader stage '" + String(RDC::SHADER_STAGE_NAMES[stage]) + "', uniform '" + binding.name + "' trying to reuse location for set=" + itos(set) + ", binding=" + itos(uniform.binding) + " with different writability.");
// Just append stage mask and return.
reflection.uniform_sets.write[set].write[k].stages.set_flag(stage_flag);
exists = true;
break;
}
}
if (exists) {
continue; // Merged.
}
}
uniform.stages.set_flag(stage_flag);
if (set >= (uint32_t)reflection.uniform_sets.size()) {
reflection.uniform_sets.resize(set + 1);
}
reflection.uniform_sets.write[set].push_back(uniform);
}
}
{
// Specialization constants.
uint32_t sc_count = 0;
result = spvReflectEnumerateSpecializationConstants(&module, &sc_count, nullptr);
ERR_FAIL_COND_V_MSG(result != SPV_REFLECT_RESULT_SUCCESS, FAILED,
"Reflection of SPIR-V shader stage '" + String(RDC::SHADER_STAGE_NAMES[p_spirv[i].shader_stage]) + "' failed enumerating specialization constants.");
if (sc_count) {
Vector<SpvReflectSpecializationConstant *> spec_constants;
spec_constants.resize(sc_count);
result = spvReflectEnumerateSpecializationConstants(&module, &sc_count, spec_constants.ptrw());
ERR_FAIL_COND_V_MSG(result != SPV_REFLECT_RESULT_SUCCESS, FAILED,
"Reflection of SPIR-V shader stage '" + String(RDC::SHADER_STAGE_NAMES[p_spirv[i].shader_stage]) + "' failed obtaining specialization constants.");
for (uint32_t j = 0; j < sc_count; j++) {
int32_t existing = -1;
RDC::ShaderSpecializationConstant sconst;
SpvReflectSpecializationConstant *spc = spec_constants[j];
sconst.constant_id = spc->constant_id;
sconst.int_value = 0; // Clear previous value JIC.
switch (spc->constant_type) {
case SPV_REFLECT_SPECIALIZATION_CONSTANT_BOOL: {
sconst.type = RDC::PIPELINE_SPECIALIZATION_CONSTANT_TYPE_BOOL;
sconst.bool_value = spc->default_value.int_bool_value != 0;
} break;
case SPV_REFLECT_SPECIALIZATION_CONSTANT_INT: {
sconst.type = RDC::PIPELINE_SPECIALIZATION_CONSTANT_TYPE_INT;
sconst.int_value = spc->default_value.int_bool_value;
} break;
case SPV_REFLECT_SPECIALIZATION_CONSTANT_FLOAT: {
sconst.type = RDC::PIPELINE_SPECIALIZATION_CONSTANT_TYPE_FLOAT;
sconst.float_value = spc->default_value.float_value;
} break;
}
sconst.stages.set_flag(stage_flag);
for (int k = 0; k < reflection.specialization_constants.size(); k++) {
if (reflection.specialization_constants[k].constant_id == sconst.constant_id) {
ERR_FAIL_COND_V_MSG(reflection.specialization_constants[k].type != sconst.type, FAILED, "More than one specialization constant used for id (" + itos(sconst.constant_id) + "), but their types differ.");
ERR_FAIL_COND_V_MSG(reflection.specialization_constants[k].int_value != sconst.int_value, FAILED, "More than one specialization constant used for id (" + itos(sconst.constant_id) + "), but their default values differ.");
existing = k;
break;
}
}
if (existing >= 0) {
reflection.specialization_constants.write[existing].stages.set_flag(stage_flag);
} else {
reflection.specialization_constants.push_back(sconst);
}
}
reflection.specialization_constants.sort();
}
}
if (stage == RDC::SHADER_STAGE_VERTEX || stage == RDC::SHADER_STAGE_FRAGMENT) {
uint32_t iv_count = 0;
result = spvReflectEnumerateInputVariables(&module, &iv_count, nullptr);
ERR_FAIL_COND_V_MSG(result != SPV_REFLECT_RESULT_SUCCESS, FAILED,
"Reflection of SPIR-V shader stage '" + String(RDC::SHADER_STAGE_NAMES[p_spirv[i].shader_stage]) + "' failed enumerating input variables.");
if (iv_count) {
Vector<SpvReflectInterfaceVariable *> input_vars;
input_vars.resize(iv_count);
result = spvReflectEnumerateInputVariables(&module, &iv_count, input_vars.ptrw());
ERR_FAIL_COND_V_MSG(result != SPV_REFLECT_RESULT_SUCCESS, FAILED,
"Reflection of SPIR-V shader stage '" + String(RDC::SHADER_STAGE_NAMES[p_spirv[i].shader_stage]) + "' failed obtaining input variables.");
for (const SpvReflectInterfaceVariable *v : input_vars) {
if (!v) {
continue;
}
if (stage == RDC::SHADER_STAGE_VERTEX) {
if (v->decoration_flags == 0) { // Regular input.
reflection.vertex_input_mask |= (((uint64_t)1) << v->location);
}
}
if (v->built_in == SpvBuiltInViewIndex) {
reflection.has_multiview = true;
}
}
}
}
if (stage == RDC::SHADER_STAGE_FRAGMENT) {
uint32_t ov_count = 0;
result = spvReflectEnumerateOutputVariables(&module, &ov_count, nullptr);
ERR_FAIL_COND_V_MSG(result != SPV_REFLECT_RESULT_SUCCESS, FAILED,
"Reflection of SPIR-V shader stage '" + String(RDC::SHADER_STAGE_NAMES[p_spirv[i].shader_stage]) + "' failed enumerating output variables.");
if (ov_count) {
Vector<SpvReflectInterfaceVariable *> output_vars;
output_vars.resize(ov_count);
result = spvReflectEnumerateOutputVariables(&module, &ov_count, output_vars.ptrw());
ERR_FAIL_COND_V_MSG(result != SPV_REFLECT_RESULT_SUCCESS, FAILED,
"Reflection of SPIR-V shader stage '" + String(RDC::SHADER_STAGE_NAMES[p_spirv[i].shader_stage]) + "' failed obtaining output variables.");
for (const SpvReflectInterfaceVariable *refvar : output_vars) {
if (!refvar) {
continue;
}
if (refvar->built_in != SpvBuiltInFragDepth) {
reflection.fragment_output_mask |= 1 << refvar->location;
}
}
}
}
uint32_t pc_count = 0;
result = spvReflectEnumeratePushConstantBlocks(&module, &pc_count, nullptr);
ERR_FAIL_COND_V_MSG(result != SPV_REFLECT_RESULT_SUCCESS, FAILED,
"Reflection of SPIR-V shader stage '" + String(RDC::SHADER_STAGE_NAMES[p_spirv[i].shader_stage]) + "' failed enumerating push constants.");
if (pc_count) {
ERR_FAIL_COND_V_MSG(pc_count > 1, FAILED,
"Reflection of SPIR-V shader stage '" + String(RDC::SHADER_STAGE_NAMES[p_spirv[i].shader_stage]) + "': Only one push constant is supported, which should be the same across shader stages.");
Vector<SpvReflectBlockVariable *> pconstants;
pconstants.resize(pc_count);
result = spvReflectEnumeratePushConstantBlocks(&module, &pc_count, pconstants.ptrw());
ERR_FAIL_COND_V_MSG(result != SPV_REFLECT_RESULT_SUCCESS, FAILED,
"Reflection of SPIR-V shader stage '" + String(RDC::SHADER_STAGE_NAMES[p_spirv[i].shader_stage]) + "' failed obtaining push constants.");
#if 0
if (pconstants[0] == nullptr) {
Ref<FileAccess> f = FileAccess::open("res://popo.spv", FileAccess::WRITE);
f->store_buffer((const uint8_t *)&SpirV[0], SpirV.size() * sizeof(uint32_t));
}
#endif
ERR_FAIL_COND_V_MSG(reflection.push_constant_size && reflection.push_constant_size != pconstants[0]->size, FAILED,
"Reflection of SPIR-V shader stage '" + String(RDC::SHADER_STAGE_NAMES[p_spirv[i].shader_stage]) + "': Push constant block must be the same across shader stages.");
reflection.push_constant_size = pconstants[0]->size;
reflection.push_constant_stages.set_flag(stage_flag);
//print_line("Stage: " + String(RDC::SHADER_STAGE_NAMES[stage]) + " push constant of size=" + itos(push_constant.push_constant_size));
}
}
reflection.stages_bits.set_flag(stage_flag);
}
// Sort all uniform_sets by binding.
for (uint32_t i = 0; i < reflection.uniform_sets.size(); i++) {
reflection.uniform_sets.write[i].sort();
}
set_from_shader_reflection(reflection);
return OK;
}
void RenderingShaderContainer::set_from_shader_reflection(const RenderingDeviceCommons::ShaderReflection &p_reflection) {
reflection_binding_set_uniforms_count.clear();
reflection_binding_set_uniforms_data.clear();
reflection_specialization_data.clear();
reflection_shader_stages.clear();
reflection_data.vertex_input_mask = p_reflection.vertex_input_mask;
reflection_data.fragment_output_mask = p_reflection.fragment_output_mask;
reflection_data.specialization_constants_count = p_reflection.specialization_constants.size();
reflection_data.is_compute = p_reflection.is_compute;
reflection_data.has_multiview = p_reflection.has_multiview;
reflection_data.compute_local_size[0] = p_reflection.compute_local_size[0];
reflection_data.compute_local_size[1] = p_reflection.compute_local_size[1];
reflection_data.compute_local_size[2] = p_reflection.compute_local_size[2];
reflection_data.set_count = p_reflection.uniform_sets.size();
reflection_data.push_constant_size = p_reflection.push_constant_size;
reflection_data.push_constant_stages_mask = uint32_t(p_reflection.push_constant_stages);
reflection_data.shader_name_len = shader_name.length();
ReflectionBindingData binding_data;
for (const Vector<RenderingDeviceCommons::ShaderUniform> &uniform_set : p_reflection.uniform_sets) {
for (const RenderingDeviceCommons::ShaderUniform &uniform : uniform_set) {
binding_data.type = uint32_t(uniform.type);
binding_data.binding = uniform.binding;
binding_data.stages = uint32_t(uniform.stages);
binding_data.length = uniform.length;
binding_data.writable = uint32_t(uniform.writable);
reflection_binding_set_uniforms_data.push_back(binding_data);
}
reflection_binding_set_uniforms_count.push_back(uniform_set.size());
}
ReflectionSpecializationData specialization_data;
for (const RenderingDeviceCommons::ShaderSpecializationConstant &spec : p_reflection.specialization_constants) {
specialization_data.type = uint32_t(spec.type);
specialization_data.constant_id = spec.constant_id;
specialization_data.int_value = spec.int_value;
specialization_data.stage_flags = uint32_t(spec.stages);
reflection_specialization_data.push_back(specialization_data);
}
for (uint32_t i = 0; i < RenderingDeviceCommons::SHADER_STAGE_MAX; i++) {
if (p_reflection.stages_bits.has_flag(RenderingDeviceCommons::ShaderStage(1U << i))) {
reflection_shader_stages.push_back(RenderingDeviceCommons::ShaderStage(i));
}
}
reflection_data.stage_count = reflection_shader_stages.size();
_set_from_shader_reflection_post(p_reflection);
}
bool RenderingShaderContainer::set_code_from_spirv(const String &p_shader_name, Span<RenderingDeviceCommons::ShaderStageSPIRVData> p_spirv) {
LocalVector<ReflectedShaderStage> spirv;
ERR_FAIL_COND_V(reflect_spirv(p_shader_name, p_spirv, spirv) != OK, false);
return _set_code_from_spirv(spirv.span());
}
RenderingDeviceCommons::ShaderReflection RenderingShaderContainer::get_shader_reflection() const {
RenderingDeviceCommons::ShaderReflection shader_refl;
shader_refl.push_constant_size = reflection_data.push_constant_size;
shader_refl.push_constant_stages = reflection_data.push_constant_stages_mask;
shader_refl.vertex_input_mask = reflection_data.vertex_input_mask;
shader_refl.fragment_output_mask = reflection_data.fragment_output_mask;
shader_refl.is_compute = reflection_data.is_compute;
shader_refl.has_multiview = reflection_data.has_multiview;
shader_refl.compute_local_size[0] = reflection_data.compute_local_size[0];
shader_refl.compute_local_size[1] = reflection_data.compute_local_size[1];
shader_refl.compute_local_size[2] = reflection_data.compute_local_size[2];
shader_refl.uniform_sets.resize(reflection_data.set_count);
shader_refl.specialization_constants.resize(reflection_data.specialization_constants_count);
shader_refl.stages_vector.resize(reflection_data.stage_count);
DEV_ASSERT(reflection_binding_set_uniforms_count.size() == reflection_data.set_count && "The amount of elements in the reflection and the shader container can't be different.");
uint32_t uniform_index = 0;
for (uint32_t i = 0; i < reflection_data.set_count; i++) {
Vector<RenderingDeviceCommons::ShaderUniform> &uniform_set = shader_refl.uniform_sets.ptrw()[i];
uint32_t uniforms_count = reflection_binding_set_uniforms_count[i];
uniform_set.resize(uniforms_count);
for (uint32_t j = 0; j < uniforms_count; j++) {
const ReflectionBindingData &binding = reflection_binding_set_uniforms_data[uniform_index++];
RenderingDeviceCommons::ShaderUniform &uniform = uniform_set.ptrw()[j];
uniform.type = RenderingDeviceCommons::UniformType(binding.type);
uniform.writable = binding.writable;
uniform.length = binding.length;
uniform.binding = binding.binding;
uniform.stages = binding.stages;
}
}
shader_refl.specialization_constants.resize(reflection_data.specialization_constants_count);
for (uint32_t i = 0; i < reflection_data.specialization_constants_count; i++) {
const ReflectionSpecializationData &spec = reflection_specialization_data[i];
RenderingDeviceCommons::ShaderSpecializationConstant &sc = shader_refl.specialization_constants.ptrw()[i];
sc.type = RenderingDeviceCommons::PipelineSpecializationConstantType(spec.type);
sc.constant_id = spec.constant_id;
sc.int_value = spec.int_value;
sc.stages = spec.stage_flags;
}
shader_refl.stages_vector.resize(reflection_data.stage_count);
for (uint32_t i = 0; i < reflection_data.stage_count; i++) {
shader_refl.stages_vector.set(i, reflection_shader_stages[i]);
shader_refl.stages_bits.set_flag(RenderingDeviceCommons::ShaderStage(1U << reflection_shader_stages[i]));
}
return shader_refl;
}
bool RenderingShaderContainer::from_bytes(const PackedByteArray &p_bytes) {
const uint64_t alignment = sizeof(uint32_t);
const uint8_t *bytes_ptr = p_bytes.ptr();
uint64_t bytes_offset = 0;
// Read container header.
ERR_FAIL_COND_V_MSG(int64_t(bytes_offset + sizeof(ContainerHeader)) > p_bytes.size(), false, "Not enough bytes for a container header in shader container.");
const ContainerHeader &container_header = *(const ContainerHeader *)(&bytes_ptr[bytes_offset]);
bytes_offset += sizeof(ContainerHeader);
bytes_offset += _from_bytes_header_extra_data(&bytes_ptr[bytes_offset]);
ERR_FAIL_COND_V_MSG(container_header.magic_number != CONTAINER_MAGIC_NUMBER, false, "Incorrect magic number in shader container.");
ERR_FAIL_COND_V_MSG(container_header.version > CONTAINER_VERSION, false, "Unsupported version in shader container.");
ERR_FAIL_COND_V_MSG(container_header.format != _format(), false, "Incorrect format in shader container.");
ERR_FAIL_COND_V_MSG(container_header.format_version > _format_version(), false, "Unsupported format version in shader container.");
// Adjust shaders to the size indicated by the container header.
shaders.resize(container_header.shader_count);
// Read reflection data.
ERR_FAIL_COND_V_MSG(int64_t(bytes_offset + sizeof(ReflectionData)) > p_bytes.size(), false, "Not enough bytes for reflection data in shader container.");
reflection_data = *(const ReflectionData *)(&bytes_ptr[bytes_offset]);
bytes_offset += sizeof(ReflectionData);
bytes_offset += _from_bytes_reflection_extra_data(&bytes_ptr[bytes_offset]);
// Read shader name.
ERR_FAIL_COND_V_MSG(int64_t(bytes_offset + reflection_data.shader_name_len) > p_bytes.size(), false, "Not enough bytes for shader name in shader container.");
if (reflection_data.shader_name_len > 0) {
String shader_name_str;
shader_name_str.append_utf8((const char *)(&bytes_ptr[bytes_offset]), reflection_data.shader_name_len);
shader_name = shader_name_str.utf8();
bytes_offset = aligned_to(bytes_offset + reflection_data.shader_name_len, alignment);
} else {
shader_name = CharString();
}
reflection_binding_set_uniforms_count.resize(reflection_data.set_count);
reflection_binding_set_uniforms_data.clear();
uint32_t uniform_index = 0;
for (uint32_t i = 0; i < reflection_data.set_count; i++) {
ERR_FAIL_COND_V_MSG(int64_t(bytes_offset + sizeof(uint32_t)) > p_bytes.size(), false, "Not enough bytes for uniform set count in shader container.");
uint32_t uniforms_count = *(uint32_t *)(&bytes_ptr[bytes_offset]);
reflection_binding_set_uniforms_count.ptrw()[i] = uniforms_count;
bytes_offset += sizeof(uint32_t);
reflection_binding_set_uniforms_data.resize(reflection_binding_set_uniforms_data.size() + uniforms_count);
bytes_offset += _from_bytes_reflection_binding_uniform_extra_data_start(&bytes_ptr[bytes_offset]);
for (uint32_t j = 0; j < uniforms_count; j++) {
ERR_FAIL_COND_V_MSG(int64_t(bytes_offset + sizeof(ReflectionBindingData)) > p_bytes.size(), false, "Not enough bytes for uniform in shader container.");
memcpy(&reflection_binding_set_uniforms_data.ptrw()[uniform_index], &bytes_ptr[bytes_offset], sizeof(ReflectionBindingData));
bytes_offset += sizeof(ReflectionBindingData);
bytes_offset += _from_bytes_reflection_binding_uniform_extra_data(&bytes_ptr[bytes_offset], uniform_index);
uniform_index++;
}
}
reflection_specialization_data.resize(reflection_data.specialization_constants_count);
bytes_offset += _from_bytes_reflection_specialization_extra_data_start(&bytes_ptr[bytes_offset]);
for (uint32_t i = 0; i < reflection_data.specialization_constants_count; i++) {
ERR_FAIL_COND_V_MSG(int64_t(bytes_offset + sizeof(ReflectionSpecializationData)) > p_bytes.size(), false, "Not enough bytes for specialization in shader container.");
memcpy(&reflection_specialization_data.ptrw()[i], &bytes_ptr[bytes_offset], sizeof(ReflectionSpecializationData));
bytes_offset += sizeof(ReflectionSpecializationData);
bytes_offset += _from_bytes_reflection_specialization_extra_data(&bytes_ptr[bytes_offset], i);
}
const uint32_t stage_count = reflection_data.stage_count;
if (stage_count > 0) {
ERR_FAIL_COND_V_MSG(int64_t(bytes_offset + stage_count * sizeof(RenderingDeviceCommons::ShaderStage)) > p_bytes.size(), false, "Not enough bytes for stages in shader container.");
reflection_shader_stages.resize(stage_count);
bytes_offset += _from_bytes_shader_extra_data_start(&bytes_ptr[bytes_offset]);
memcpy(reflection_shader_stages.ptrw(), &bytes_ptr[bytes_offset], stage_count * sizeof(RenderingDeviceCommons::ShaderStage));
bytes_offset += stage_count * sizeof(RenderingDeviceCommons::ShaderStage);
}
// Read shaders.
for (int64_t i = 0; i < shaders.size(); i++) {
ERR_FAIL_COND_V_MSG(int64_t(bytes_offset + sizeof(ShaderHeader)) > p_bytes.size(), false, "Not enough bytes for shader header in shader container.");
const ShaderHeader &header = *(const ShaderHeader *)(&bytes_ptr[bytes_offset]);
bytes_offset += sizeof(ShaderHeader);
ERR_FAIL_COND_V_MSG(int64_t(bytes_offset + header.code_compressed_size) > p_bytes.size(), false, "Not enough bytes for a shader in shader container.");
Shader &shader = shaders.ptrw()[i];
shader.shader_stage = RenderingDeviceCommons::ShaderStage(header.shader_stage);
shader.code_compression_flags = header.code_compression_flags;
shader.code_decompressed_size = header.code_decompressed_size;
shader.code_compressed_bytes.resize(header.code_compressed_size);
memcpy(shader.code_compressed_bytes.ptrw(), &bytes_ptr[bytes_offset], header.code_compressed_size);
bytes_offset = aligned_to(bytes_offset + header.code_compressed_size, alignment);
bytes_offset += _from_bytes_shader_extra_data(&bytes_ptr[bytes_offset], i);
}
bytes_offset += _from_bytes_footer_extra_data(&bytes_ptr[bytes_offset]);
ERR_FAIL_COND_V_MSG(bytes_offset != (uint64_t)p_bytes.size(), false, "Amount of bytes in the container does not match the amount of bytes read.");
return true;
}
PackedByteArray RenderingShaderContainer::to_bytes() const {
// Compute the exact size the container will require for writing everything out.
const uint64_t alignment = sizeof(uint32_t);
uint64_t total_size = 0;
total_size += sizeof(ContainerHeader) + _to_bytes_header_extra_data(nullptr);
total_size += sizeof(ReflectionData) + _to_bytes_reflection_extra_data(nullptr);
total_size += aligned_to(reflection_data.shader_name_len, alignment);
total_size += reflection_binding_set_uniforms_count.size() * sizeof(uint32_t);
total_size += reflection_binding_set_uniforms_data.size() * sizeof(ReflectionBindingData);
total_size += reflection_specialization_data.size() * sizeof(ReflectionSpecializationData);
total_size += reflection_shader_stages.size() * sizeof(RenderingDeviceCommons::ShaderStage);
for (uint32_t i = 0; i < reflection_binding_set_uniforms_data.size(); i++) {
total_size += _to_bytes_reflection_binding_uniform_extra_data(nullptr, i);
}
for (uint32_t i = 0; i < reflection_specialization_data.size(); i++) {
total_size += _to_bytes_reflection_specialization_extra_data(nullptr, i);
}
for (uint32_t i = 0; i < shaders.size(); i++) {
total_size += sizeof(ShaderHeader);
total_size += shaders[i].code_compressed_bytes.size();
total_size = aligned_to(total_size, alignment);
total_size += _to_bytes_shader_extra_data(nullptr, i);
}
total_size += _to_bytes_footer_extra_data(nullptr);
// Create the array that will hold all of the data.
PackedByteArray bytes;
bytes.resize_initialized(total_size);
// Write out the data to the array.
uint64_t bytes_offset = 0;
uint8_t *bytes_ptr = bytes.ptrw();
ContainerHeader &container_header = *(ContainerHeader *)(&bytes_ptr[bytes_offset]);
container_header.magic_number = CONTAINER_MAGIC_NUMBER;
container_header.version = CONTAINER_VERSION;
container_header.format = _format();
container_header.format_version = _format_version();
container_header.shader_count = shaders.size();
bytes_offset += sizeof(ContainerHeader);
bytes_offset += _to_bytes_header_extra_data(&bytes_ptr[bytes_offset]);
memcpy(&bytes_ptr[bytes_offset], &reflection_data, sizeof(ReflectionData));
bytes_offset += sizeof(ReflectionData);
bytes_offset += _to_bytes_reflection_extra_data(&bytes_ptr[bytes_offset]);
if (shader_name.size() > 0) {
memcpy(&bytes_ptr[bytes_offset], shader_name.ptr(), reflection_data.shader_name_len);
bytes_offset = aligned_to(bytes_offset + reflection_data.shader_name_len, alignment);
}
uint32_t uniform_index = 0;
for (uint32_t uniform_count : reflection_binding_set_uniforms_count) {
memcpy(&bytes_ptr[bytes_offset], &uniform_count, sizeof(uniform_count));
bytes_offset += sizeof(uint32_t);
for (uint32_t i = 0; i < uniform_count; i++) {
memcpy(&bytes_ptr[bytes_offset], &reflection_binding_set_uniforms_data[uniform_index], sizeof(ReflectionBindingData));
bytes_offset += sizeof(ReflectionBindingData);
bytes_offset += _to_bytes_reflection_binding_uniform_extra_data(&bytes_ptr[bytes_offset], uniform_index);
uniform_index++;
}
}
for (uint32_t i = 0; i < reflection_specialization_data.size(); i++) {
memcpy(&bytes_ptr[bytes_offset], &reflection_specialization_data.ptr()[i], sizeof(ReflectionSpecializationData));
bytes_offset += sizeof(ReflectionSpecializationData);
bytes_offset += _to_bytes_reflection_specialization_extra_data(&bytes_ptr[bytes_offset], i);
}
if (!reflection_shader_stages.is_empty()) {
uint32_t stage_count = reflection_shader_stages.size();
memcpy(&bytes_ptr[bytes_offset], reflection_shader_stages.ptr(), stage_count * sizeof(RenderingDeviceCommons::ShaderStage));
bytes_offset += stage_count * sizeof(RenderingDeviceCommons::ShaderStage);
}
for (uint32_t i = 0; i < shaders.size(); i++) {
const Shader &shader = shaders[i];
ShaderHeader &header = *(ShaderHeader *)(&bytes.ptr()[bytes_offset]);
header.shader_stage = shader.shader_stage;
header.code_compressed_size = uint32_t(shader.code_compressed_bytes.size());
header.code_compression_flags = shader.code_compression_flags;
header.code_decompressed_size = shader.code_decompressed_size;
bytes_offset += sizeof(ShaderHeader);
memcpy(&bytes.ptrw()[bytes_offset], shader.code_compressed_bytes.ptr(), shader.code_compressed_bytes.size());
bytes_offset = aligned_to(bytes_offset + shader.code_compressed_bytes.size(), alignment);
bytes_offset += _to_bytes_shader_extra_data(&bytes_ptr[bytes_offset], i);
}
bytes_offset += _to_bytes_footer_extra_data(&bytes_ptr[bytes_offset]);
ERR_FAIL_COND_V_MSG(bytes_offset != total_size, PackedByteArray(), "Amount of bytes written does not match the amount of bytes reserved for the container.");
return bytes;
}
bool RenderingShaderContainer::compress_code(const uint8_t *p_decompressed_bytes, uint32_t p_decompressed_size, uint8_t *p_compressed_bytes, uint32_t *r_compressed_size, uint32_t *r_compressed_flags) const {
DEV_ASSERT(p_decompressed_bytes != nullptr);
DEV_ASSERT(p_decompressed_size > 0);
DEV_ASSERT(p_compressed_bytes != nullptr);
DEV_ASSERT(r_compressed_size != nullptr);
DEV_ASSERT(r_compressed_flags != nullptr);
*r_compressed_flags = 0;
PackedByteArray zstd_bytes;
const int64_t zstd_max_bytes = Compression::get_max_compressed_buffer_size(p_decompressed_size, Compression::MODE_ZSTD);
zstd_bytes.resize(zstd_max_bytes);
const int64_t zstd_size = Compression::compress(zstd_bytes.ptrw(), p_decompressed_bytes, p_decompressed_size, Compression::MODE_ZSTD);
if (zstd_size > 0 && (uint32_t)(zstd_size) < p_decompressed_size) {
// Only choose Zstd if it results in actual compression.
memcpy(p_compressed_bytes, zstd_bytes.ptr(), zstd_size);
*r_compressed_size = zstd_size;
*r_compressed_flags |= COMPRESSION_FLAG_ZSTD;
} else {
// Just copy the input to the output directly.
memcpy(p_compressed_bytes, p_decompressed_bytes, p_decompressed_size);
*r_compressed_size = p_decompressed_size;
}
return true;
}
bool RenderingShaderContainer::decompress_code(const uint8_t *p_compressed_bytes, uint32_t p_compressed_size, uint32_t p_compressed_flags, uint8_t *p_decompressed_bytes, uint32_t p_decompressed_size) const {
DEV_ASSERT(p_compressed_bytes != nullptr);
DEV_ASSERT(p_compressed_size > 0);
DEV_ASSERT(p_decompressed_bytes != nullptr);
DEV_ASSERT(p_decompressed_size > 0);
bool uses_zstd = p_compressed_flags & COMPRESSION_FLAG_ZSTD;
if (uses_zstd) {
if (!Compression::decompress(p_decompressed_bytes, p_decompressed_size, p_compressed_bytes, p_compressed_size, Compression::MODE_ZSTD)) {
ERR_FAIL_V_MSG(false, "Malformed zstd input for decompressing shader code.");
}
} else {
memcpy(p_decompressed_bytes, p_compressed_bytes, MIN(p_compressed_size, p_decompressed_size));
}
return true;
}
RenderingShaderContainer::RenderingShaderContainer() {}
RenderingShaderContainer::~RenderingShaderContainer() {}