mirror of
				https://github.com/godotengine/godot.git
				synced 2025-11-04 07:31:16 +00:00 
			
		
		
		
	The code is based on the current version of thirdparty/vhacd and modified to use Godot's types and code style. Additional changes: - backported and extended PagedAllocator to allow leaked objects - applied patch from https://github.com/bulletphysics/bullet3/pull/3037
		
			
				
	
	
		
			2290 lines
		
	
	
	
		
			57 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2290 lines
		
	
	
	
		
			57 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*************************************************************************/
 | 
						|
/*  convex_hull.cpp                                                      */
 | 
						|
/*************************************************************************/
 | 
						|
/*                       This file is part of:                           */
 | 
						|
/*                           GODOT ENGINE                                */
 | 
						|
/*                      https://godotengine.org                          */
 | 
						|
/*************************************************************************/
 | 
						|
/* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur.                 */
 | 
						|
/* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md).   */
 | 
						|
/*                                                                       */
 | 
						|
/* Permission is hereby granted, free of charge, to any person obtaining */
 | 
						|
/* a copy of this software and associated documentation files (the       */
 | 
						|
/* "Software"), to deal in the Software without restriction, including   */
 | 
						|
/* without limitation the rights to use, copy, modify, merge, publish,   */
 | 
						|
/* distribute, sublicense, and/or sell copies of the Software, and to    */
 | 
						|
/* permit persons to whom the Software is furnished to do so, subject to */
 | 
						|
/* the following conditions:                                             */
 | 
						|
/*                                                                       */
 | 
						|
/* The above copyright notice and this permission notice shall be        */
 | 
						|
/* included in all copies or substantial portions of the Software.       */
 | 
						|
/*                                                                       */
 | 
						|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */
 | 
						|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */
 | 
						|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
 | 
						|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */
 | 
						|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */
 | 
						|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */
 | 
						|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */
 | 
						|
/*************************************************************************/
 | 
						|
 | 
						|
/*
 | 
						|
 * Based on Godot's patched VHACD-version of Bullet's btConvexHullComputer.
 | 
						|
 * See /thirdparty/vhacd/btConvexHullComputer.cpp at 64403ddcab9f1dca2408f0a412a22d899708bbb1
 | 
						|
 * In turn, based on /src/LinearMath/btConvexHullComputer.cpp in <https://github.com/bulletphysics/bullet3>
 | 
						|
 * at 73b217fb07e7e3ce126caeb28ab3c9ddd0718467
 | 
						|
 *
 | 
						|
 * Changes:
 | 
						|
 * - int32_t is consistently used instead of int in some cases
 | 
						|
 * - integrated patch db0d6c92927f5a1358b887f2645c11f3014f0e8a from Bullet (CWE-190 integer overflow in btConvexHullComputer)
 | 
						|
 * - adapted to Godot's code style
 | 
						|
 * - replaced Bullet's types (e.g. vectors) with Godot's
 | 
						|
 * - replaced custom Pool implementation with PagedAllocator
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
Copyright (c) 2011 Ole Kniemeyer, MAXON, www.maxon.net
 | 
						|
 | 
						|
This software is provided 'as-is', without any express or implied warranty.
 | 
						|
In no event will the authors be held liable for any damages arising from the use of this software.
 | 
						|
Permission is granted to anyone to use this software for any purpose,
 | 
						|
including commercial applications, and to alter it and redistribute it freely,
 | 
						|
subject to the following restrictions:
 | 
						|
 | 
						|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | 
						|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | 
						|
3. This notice may not be removed or altered from any source distribution.
 | 
						|
*/
 | 
						|
 | 
						|
#include "convex_hull.h"
 | 
						|
 | 
						|
#include "core/error_macros.h"
 | 
						|
#include "core/math/aabb.h"
 | 
						|
#include "core/math/math_defs.h"
 | 
						|
#include "core/os/memory.h"
 | 
						|
#include "core/paged_allocator.h"
 | 
						|
 | 
						|
#include <string.h>
 | 
						|
 | 
						|
//#define DEBUG_CONVEX_HULL
 | 
						|
//#define SHOW_ITERATIONS
 | 
						|
 | 
						|
// -- GODOT start --
 | 
						|
// Assembly optimizations are not used at the moment.
 | 
						|
//#define USE_X86_64_ASM
 | 
						|
// -- GODOT end --
 | 
						|
 | 
						|
#ifdef DEBUG_ENABLED
 | 
						|
#define CHULL_ASSERT(m_cond)                                    \
 | 
						|
	do {                                                        \
 | 
						|
		if (unlikely(!(m_cond))) {                              \
 | 
						|
			ERR_PRINT("Assertion \"" _STR(m_cond) "\" failed.") \
 | 
						|
		}                                                       \
 | 
						|
	} while (0)
 | 
						|
#else
 | 
						|
#define CHULL_ASSERT(m_cond) \
 | 
						|
	do {                     \
 | 
						|
	} while (0)
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(DEBUG_CONVEX_HULL) || defined(SHOW_ITERATIONS)
 | 
						|
#include <stdio.h>
 | 
						|
#endif
 | 
						|
 | 
						|
// Convex hull implementation based on Preparata and Hong
 | 
						|
// Ole Kniemeyer, MAXON Computer GmbH
 | 
						|
class ConvexHullInternal {
 | 
						|
public:
 | 
						|
	class Point64 {
 | 
						|
	public:
 | 
						|
		int64_t x;
 | 
						|
		int64_t y;
 | 
						|
		int64_t z;
 | 
						|
 | 
						|
		Point64(int64_t p_x, int64_t p_y, int64_t p_z) {
 | 
						|
			x = p_x;
 | 
						|
			y = p_y;
 | 
						|
			z = p_z;
 | 
						|
		}
 | 
						|
 | 
						|
		bool is_zero() {
 | 
						|
			return (x == 0) && (y == 0) && (z == 0);
 | 
						|
		}
 | 
						|
 | 
						|
		int64_t dot(const Point64 &b) const {
 | 
						|
			return x * b.x + y * b.y + z * b.z;
 | 
						|
		}
 | 
						|
	};
 | 
						|
 | 
						|
	class Point32 {
 | 
						|
	public:
 | 
						|
		int32_t x = 0;
 | 
						|
		int32_t y = 0;
 | 
						|
		int32_t z = 0;
 | 
						|
		int32_t index = -1;
 | 
						|
 | 
						|
		Point32() {
 | 
						|
		}
 | 
						|
 | 
						|
		Point32(int32_t p_x, int32_t p_y, int32_t p_z) {
 | 
						|
			x = p_x;
 | 
						|
			y = p_y;
 | 
						|
			z = p_z;
 | 
						|
		}
 | 
						|
 | 
						|
		bool operator==(const Point32 &b) const {
 | 
						|
			return (x == b.x) && (y == b.y) && (z == b.z);
 | 
						|
		}
 | 
						|
 | 
						|
		bool operator!=(const Point32 &b) const {
 | 
						|
			return (x != b.x) || (y != b.y) || (z != b.z);
 | 
						|
		}
 | 
						|
 | 
						|
		bool is_zero() {
 | 
						|
			return (x == 0) && (y == 0) && (z == 0);
 | 
						|
		}
 | 
						|
 | 
						|
		Point64 cross(const Point32 &b) const {
 | 
						|
			return Point64((int64_t)y * b.z - (int64_t)z * b.y, (int64_t)z * b.x - (int64_t)x * b.z, (int64_t)x * b.y - (int64_t)y * b.x);
 | 
						|
		}
 | 
						|
 | 
						|
		Point64 cross(const Point64 &b) const {
 | 
						|
			return Point64(y * b.z - z * b.y, z * b.x - x * b.z, x * b.y - y * b.x);
 | 
						|
		}
 | 
						|
 | 
						|
		int64_t dot(const Point32 &b) const {
 | 
						|
			return (int64_t)x * b.x + (int64_t)y * b.y + (int64_t)z * b.z;
 | 
						|
		}
 | 
						|
 | 
						|
		int64_t dot(const Point64 &b) const {
 | 
						|
			return x * b.x + y * b.y + z * b.z;
 | 
						|
		}
 | 
						|
 | 
						|
		Point32 operator+(const Point32 &b) const {
 | 
						|
			return Point32(x + b.x, y + b.y, z + b.z);
 | 
						|
		}
 | 
						|
 | 
						|
		Point32 operator-(const Point32 &b) const {
 | 
						|
			return Point32(x - b.x, y - b.y, z - b.z);
 | 
						|
		}
 | 
						|
	};
 | 
						|
 | 
						|
	class Int128 {
 | 
						|
	public:
 | 
						|
		uint64_t low = 0;
 | 
						|
		uint64_t high = 0;
 | 
						|
 | 
						|
		Int128() {
 | 
						|
		}
 | 
						|
 | 
						|
		Int128(uint64_t p_low, uint64_t p_high) {
 | 
						|
			low = p_low;
 | 
						|
			high = p_high;
 | 
						|
		}
 | 
						|
 | 
						|
		Int128(uint64_t p_low) {
 | 
						|
			low = p_low;
 | 
						|
			high = 0;
 | 
						|
		}
 | 
						|
 | 
						|
		Int128(int64_t p_value) {
 | 
						|
			low = p_value;
 | 
						|
			if (p_value >= 0) {
 | 
						|
				high = 0;
 | 
						|
			} else {
 | 
						|
				high = (uint64_t)-1LL;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		static Int128 mul(int64_t a, int64_t b);
 | 
						|
 | 
						|
		static Int128 mul(uint64_t a, uint64_t b);
 | 
						|
 | 
						|
		Int128 operator-() const {
 | 
						|
			return Int128((uint64_t) - (int64_t)low, ~high + (low == 0));
 | 
						|
		}
 | 
						|
 | 
						|
		Int128 operator+(const Int128 &b) const {
 | 
						|
#ifdef USE_X86_64_ASM
 | 
						|
			Int128 result;
 | 
						|
			__asm__("addq %[bl], %[rl]\n\t"
 | 
						|
					"adcq %[bh], %[rh]\n\t"
 | 
						|
					: [rl] "=r"(result.low), [rh] "=r"(result.high)
 | 
						|
					: "0"(low), "1"(high), [bl] "g"(b.low), [bh] "g"(b.high)
 | 
						|
					: "cc");
 | 
						|
			return result;
 | 
						|
#else
 | 
						|
			uint64_t lo = low + b.low;
 | 
						|
			return Int128(lo, high + b.high + (lo < low));
 | 
						|
#endif
 | 
						|
		}
 | 
						|
 | 
						|
		Int128 operator-(const Int128 &b) const {
 | 
						|
#ifdef USE_X86_64_ASM
 | 
						|
			Int128 result;
 | 
						|
			__asm__("subq %[bl], %[rl]\n\t"
 | 
						|
					"sbbq %[bh], %[rh]\n\t"
 | 
						|
					: [rl] "=r"(result.low), [rh] "=r"(result.high)
 | 
						|
					: "0"(low), "1"(high), [bl] "g"(b.low), [bh] "g"(b.high)
 | 
						|
					: "cc");
 | 
						|
			return result;
 | 
						|
#else
 | 
						|
			return *this + -b;
 | 
						|
#endif
 | 
						|
		}
 | 
						|
 | 
						|
		Int128 &operator+=(const Int128 &b) {
 | 
						|
#ifdef USE_X86_64_ASM
 | 
						|
			__asm__("addq %[bl], %[rl]\n\t"
 | 
						|
					"adcq %[bh], %[rh]\n\t"
 | 
						|
					: [rl] "=r"(low), [rh] "=r"(high)
 | 
						|
					: "0"(low), "1"(high), [bl] "g"(b.low), [bh] "g"(b.high)
 | 
						|
					: "cc");
 | 
						|
#else
 | 
						|
			uint64_t lo = low + b.low;
 | 
						|
			if (lo < low) {
 | 
						|
				++high;
 | 
						|
			}
 | 
						|
			low = lo;
 | 
						|
			high += b.high;
 | 
						|
#endif
 | 
						|
			return *this;
 | 
						|
		}
 | 
						|
 | 
						|
		Int128 &operator++() {
 | 
						|
			if (++low == 0) {
 | 
						|
				++high;
 | 
						|
			}
 | 
						|
			return *this;
 | 
						|
		}
 | 
						|
 | 
						|
		Int128 operator*(int64_t b) const;
 | 
						|
 | 
						|
		real_t to_scalar() const {
 | 
						|
			return ((int64_t)high >= 0) ? real_t(high) * (real_t(0x100000000LL) * real_t(0x100000000LL)) + real_t(low) : -(-*this).to_scalar();
 | 
						|
		}
 | 
						|
 | 
						|
		int32_t get_sign() const {
 | 
						|
			return ((int64_t)high < 0) ? -1 : (high || low) ? 1 :
 | 
						|
																0;
 | 
						|
		}
 | 
						|
 | 
						|
		bool operator<(const Int128 &b) const {
 | 
						|
			return (high < b.high) || ((high == b.high) && (low < b.low));
 | 
						|
		}
 | 
						|
 | 
						|
		int32_t ucmp(const Int128 &b) const {
 | 
						|
			if (high < b.high) {
 | 
						|
				return -1;
 | 
						|
			}
 | 
						|
			if (high > b.high) {
 | 
						|
				return 1;
 | 
						|
			}
 | 
						|
			if (low < b.low) {
 | 
						|
				return -1;
 | 
						|
			}
 | 
						|
			if (low > b.low) {
 | 
						|
				return 1;
 | 
						|
			}
 | 
						|
			return 0;
 | 
						|
		}
 | 
						|
	};
 | 
						|
 | 
						|
	class Rational64 {
 | 
						|
	private:
 | 
						|
		uint64_t numerator;
 | 
						|
		uint64_t denominator;
 | 
						|
		int32_t sign;
 | 
						|
 | 
						|
	public:
 | 
						|
		Rational64(int64_t p_numerator, int64_t p_denominator) {
 | 
						|
			if (p_numerator > 0) {
 | 
						|
				sign = 1;
 | 
						|
				numerator = (uint64_t)p_numerator;
 | 
						|
			} else if (p_numerator < 0) {
 | 
						|
				sign = -1;
 | 
						|
				numerator = (uint64_t)-p_numerator;
 | 
						|
			} else {
 | 
						|
				sign = 0;
 | 
						|
				numerator = 0;
 | 
						|
			}
 | 
						|
			if (p_denominator > 0) {
 | 
						|
				denominator = (uint64_t)p_denominator;
 | 
						|
			} else if (p_denominator < 0) {
 | 
						|
				sign = -sign;
 | 
						|
				denominator = (uint64_t)-p_denominator;
 | 
						|
			} else {
 | 
						|
				denominator = 0;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		bool is_negative_infinity() const {
 | 
						|
			return (sign < 0) && (denominator == 0);
 | 
						|
		}
 | 
						|
 | 
						|
		bool is_nan() const {
 | 
						|
			return (sign == 0) && (denominator == 0);
 | 
						|
		}
 | 
						|
 | 
						|
		int32_t compare(const Rational64 &b) const;
 | 
						|
 | 
						|
		real_t to_scalar() const {
 | 
						|
			return sign * ((denominator == 0) ? FLT_MAX : (real_t)numerator / denominator);
 | 
						|
		}
 | 
						|
	};
 | 
						|
 | 
						|
	class Rational128 {
 | 
						|
	private:
 | 
						|
		Int128 numerator;
 | 
						|
		Int128 denominator;
 | 
						|
		int32_t sign;
 | 
						|
		bool is_int_64;
 | 
						|
 | 
						|
	public:
 | 
						|
		Rational128(int64_t p_value) {
 | 
						|
			if (p_value > 0) {
 | 
						|
				sign = 1;
 | 
						|
				this->numerator = p_value;
 | 
						|
			} else if (p_value < 0) {
 | 
						|
				sign = -1;
 | 
						|
				this->numerator = -p_value;
 | 
						|
			} else {
 | 
						|
				sign = 0;
 | 
						|
				this->numerator = (uint64_t)0;
 | 
						|
			}
 | 
						|
			this->denominator = (uint64_t)1;
 | 
						|
			is_int_64 = true;
 | 
						|
		}
 | 
						|
 | 
						|
		Rational128(const Int128 &p_numerator, const Int128 &p_denominator) {
 | 
						|
			sign = p_numerator.get_sign();
 | 
						|
			if (sign >= 0) {
 | 
						|
				this->numerator = p_numerator;
 | 
						|
			} else {
 | 
						|
				this->numerator = -p_numerator;
 | 
						|
			}
 | 
						|
			int32_t dsign = p_denominator.get_sign();
 | 
						|
			if (dsign >= 0) {
 | 
						|
				this->denominator = p_denominator;
 | 
						|
			} else {
 | 
						|
				sign = -sign;
 | 
						|
				this->denominator = -p_denominator;
 | 
						|
			}
 | 
						|
			is_int_64 = false;
 | 
						|
		}
 | 
						|
 | 
						|
		int32_t compare(const Rational128 &b) const;
 | 
						|
 | 
						|
		int32_t compare(int64_t b) const;
 | 
						|
 | 
						|
		real_t to_scalar() const {
 | 
						|
			return sign * ((denominator.get_sign() == 0) ? FLT_MAX : numerator.to_scalar() / denominator.to_scalar());
 | 
						|
		}
 | 
						|
	};
 | 
						|
 | 
						|
	class PointR128 {
 | 
						|
	public:
 | 
						|
		Int128 x;
 | 
						|
		Int128 y;
 | 
						|
		Int128 z;
 | 
						|
		Int128 denominator;
 | 
						|
 | 
						|
		PointR128() {
 | 
						|
		}
 | 
						|
 | 
						|
		PointR128(Int128 p_x, Int128 p_y, Int128 p_z, Int128 p_denominator) {
 | 
						|
			x = p_x;
 | 
						|
			y = p_y;
 | 
						|
			z = p_z;
 | 
						|
			denominator = p_denominator;
 | 
						|
		}
 | 
						|
 | 
						|
		real_t xvalue() const {
 | 
						|
			return x.to_scalar() / denominator.to_scalar();
 | 
						|
		}
 | 
						|
 | 
						|
		real_t yvalue() const {
 | 
						|
			return y.to_scalar() / denominator.to_scalar();
 | 
						|
		}
 | 
						|
 | 
						|
		real_t zvalue() const {
 | 
						|
			return z.to_scalar() / denominator.to_scalar();
 | 
						|
		}
 | 
						|
	};
 | 
						|
 | 
						|
	class Edge;
 | 
						|
	class Face;
 | 
						|
 | 
						|
	class Vertex {
 | 
						|
	public:
 | 
						|
		Vertex *next = nullptr;
 | 
						|
		Vertex *prev = nullptr;
 | 
						|
		Edge *edges = nullptr;
 | 
						|
		Face *first_nearby_face = nullptr;
 | 
						|
		Face *last_nearby_face = nullptr;
 | 
						|
		PointR128 point128;
 | 
						|
		Point32 point;
 | 
						|
		int32_t copy = -1;
 | 
						|
 | 
						|
		Vertex() {
 | 
						|
		}
 | 
						|
 | 
						|
#ifdef DEBUG_CONVEX_HULL
 | 
						|
		void print() {
 | 
						|
			printf("V%d (%d, %d, %d)", point.index, point.x, point.y, point.z);
 | 
						|
		}
 | 
						|
 | 
						|
		void print_graph();
 | 
						|
#endif
 | 
						|
 | 
						|
		Point32 operator-(const Vertex &b) const {
 | 
						|
			return point - b.point;
 | 
						|
		}
 | 
						|
 | 
						|
		Rational128 dot(const Point64 &b) const {
 | 
						|
			return (point.index >= 0) ? Rational128(point.dot(b)) : Rational128(point128.x * b.x + point128.y * b.y + point128.z * b.z, point128.denominator);
 | 
						|
		}
 | 
						|
 | 
						|
		real_t xvalue() const {
 | 
						|
			return (point.index >= 0) ? real_t(point.x) : point128.xvalue();
 | 
						|
		}
 | 
						|
 | 
						|
		real_t yvalue() const {
 | 
						|
			return (point.index >= 0) ? real_t(point.y) : point128.yvalue();
 | 
						|
		}
 | 
						|
 | 
						|
		real_t zvalue() const {
 | 
						|
			return (point.index >= 0) ? real_t(point.z) : point128.zvalue();
 | 
						|
		}
 | 
						|
 | 
						|
		void receive_nearby_faces(Vertex *p_src) {
 | 
						|
			if (last_nearby_face) {
 | 
						|
				last_nearby_face->next_with_same_nearby_vertex = p_src->first_nearby_face;
 | 
						|
			} else {
 | 
						|
				first_nearby_face = p_src->first_nearby_face;
 | 
						|
			}
 | 
						|
			if (p_src->last_nearby_face) {
 | 
						|
				last_nearby_face = p_src->last_nearby_face;
 | 
						|
			}
 | 
						|
			for (Face *f = p_src->first_nearby_face; f; f = f->next_with_same_nearby_vertex) {
 | 
						|
				CHULL_ASSERT(f->nearby_vertex == p_src);
 | 
						|
				f->nearby_vertex = this;
 | 
						|
			}
 | 
						|
			p_src->first_nearby_face = nullptr;
 | 
						|
			p_src->last_nearby_face = nullptr;
 | 
						|
		}
 | 
						|
	};
 | 
						|
 | 
						|
	class Edge {
 | 
						|
	public:
 | 
						|
		Edge *next = nullptr;
 | 
						|
		Edge *prev = nullptr;
 | 
						|
		Edge *reverse = nullptr;
 | 
						|
		Vertex *target = nullptr;
 | 
						|
		Face *face = nullptr;
 | 
						|
		int32_t copy = -1;
 | 
						|
 | 
						|
		void link(Edge *n) {
 | 
						|
			CHULL_ASSERT(reverse->target == n->reverse->target);
 | 
						|
			next = n;
 | 
						|
			n->prev = this;
 | 
						|
		}
 | 
						|
 | 
						|
#ifdef DEBUG_CONVEX_HULL
 | 
						|
		void print() {
 | 
						|
			printf("E%p : %d -> %d,  n=%p p=%p   (0 %d\t%d\t%d) -> (%d %d %d)", this, reverse->target->point.index, target->point.index, next, prev,
 | 
						|
					reverse->target->point.x, reverse->target->point.y, reverse->target->point.z, target->point.x, target->point.y, target->point.z);
 | 
						|
		}
 | 
						|
#endif
 | 
						|
	};
 | 
						|
 | 
						|
	class Face {
 | 
						|
	public:
 | 
						|
		Face *next = nullptr;
 | 
						|
		Vertex *nearby_vertex = nullptr;
 | 
						|
		Face *next_with_same_nearby_vertex = nullptr;
 | 
						|
		Point32 origin;
 | 
						|
		Point32 dir0;
 | 
						|
		Point32 dir1;
 | 
						|
 | 
						|
		Face() {
 | 
						|
		}
 | 
						|
 | 
						|
		void init(Vertex *p_a, Vertex *p_b, Vertex *p_c) {
 | 
						|
			nearby_vertex = p_a;
 | 
						|
			origin = p_a->point;
 | 
						|
			dir0 = *p_b - *p_a;
 | 
						|
			dir1 = *p_c - *p_a;
 | 
						|
			if (p_a->last_nearby_face) {
 | 
						|
				p_a->last_nearby_face->next_with_same_nearby_vertex = this;
 | 
						|
			} else {
 | 
						|
				p_a->first_nearby_face = this;
 | 
						|
			}
 | 
						|
			p_a->last_nearby_face = this;
 | 
						|
		}
 | 
						|
 | 
						|
		Point64 get_normal() {
 | 
						|
			return dir0.cross(dir1);
 | 
						|
		}
 | 
						|
	};
 | 
						|
 | 
						|
	template <typename UWord, typename UHWord>
 | 
						|
	class DMul {
 | 
						|
	private:
 | 
						|
		static uint32_t high(uint64_t p_value) {
 | 
						|
			return (uint32_t)(p_value >> 32);
 | 
						|
		}
 | 
						|
 | 
						|
		static uint32_t low(uint64_t p_value) {
 | 
						|
			return (uint32_t)p_value;
 | 
						|
		}
 | 
						|
 | 
						|
		static uint64_t mul(uint32_t a, uint32_t b) {
 | 
						|
			return (uint64_t)a * (uint64_t)b;
 | 
						|
		}
 | 
						|
 | 
						|
		static void shl_half(uint64_t &p_value) {
 | 
						|
			p_value <<= 32;
 | 
						|
		}
 | 
						|
 | 
						|
		static uint64_t high(Int128 p_value) {
 | 
						|
			return p_value.high;
 | 
						|
		}
 | 
						|
 | 
						|
		static uint64_t low(Int128 p_value) {
 | 
						|
			return p_value.low;
 | 
						|
		}
 | 
						|
 | 
						|
		static Int128 mul(uint64_t a, uint64_t b) {
 | 
						|
			return Int128::mul(a, b);
 | 
						|
		}
 | 
						|
 | 
						|
		static void shl_half(Int128 &p_value) {
 | 
						|
			p_value.high = p_value.low;
 | 
						|
			p_value.low = 0;
 | 
						|
		}
 | 
						|
 | 
						|
	public:
 | 
						|
		static void mul(UWord p_a, UWord p_b, UWord &r_low, UWord &r_high) {
 | 
						|
			UWord p00 = mul(low(p_a), low(p_b));
 | 
						|
			UWord p01 = mul(low(p_a), high(p_b));
 | 
						|
			UWord p10 = mul(high(p_a), low(p_b));
 | 
						|
			UWord p11 = mul(high(p_a), high(p_b));
 | 
						|
			UWord p0110 = UWord(low(p01)) + UWord(low(p10));
 | 
						|
			p11 += high(p01);
 | 
						|
			p11 += high(p10);
 | 
						|
			p11 += high(p0110);
 | 
						|
			shl_half(p0110);
 | 
						|
			p00 += p0110;
 | 
						|
			if (p00 < p0110) {
 | 
						|
				++p11;
 | 
						|
			}
 | 
						|
			r_low = p00;
 | 
						|
			r_high = p11;
 | 
						|
		}
 | 
						|
	};
 | 
						|
 | 
						|
private:
 | 
						|
	class IntermediateHull {
 | 
						|
	public:
 | 
						|
		Vertex *min_xy = nullptr;
 | 
						|
		Vertex *max_xy = nullptr;
 | 
						|
		Vertex *min_yx = nullptr;
 | 
						|
		Vertex *max_yx = nullptr;
 | 
						|
 | 
						|
		IntermediateHull() {
 | 
						|
		}
 | 
						|
 | 
						|
		void print();
 | 
						|
	};
 | 
						|
 | 
						|
	enum Orientation { NONE,
 | 
						|
		CLOCKWISE,
 | 
						|
		COUNTER_CLOCKWISE };
 | 
						|
 | 
						|
	Vector3 scaling;
 | 
						|
	Vector3 center;
 | 
						|
	PagedAllocator<Vertex> vertex_pool;
 | 
						|
	PagedAllocator<Edge> edge_pool;
 | 
						|
	PagedAllocator<Face> face_pool;
 | 
						|
	LocalVector<Vertex *> original_vertices;
 | 
						|
	int32_t merge_stamp = 0;
 | 
						|
	int32_t min_axis = 0;
 | 
						|
	int32_t med_axis = 0;
 | 
						|
	int32_t max_axis = 0;
 | 
						|
	int32_t used_edge_pairs = 0;
 | 
						|
	int32_t max_used_edge_pairs = 0;
 | 
						|
 | 
						|
	static Orientation get_orientation(const Edge *p_prev, const Edge *p_next, const Point32 &p_s, const Point32 &p_t);
 | 
						|
	Edge *find_max_angle(bool p_ccw, const Vertex *p_start, const Point32 &p_s, const Point64 &p_rxs, const Point64 &p_ssxrxs, Rational64 &p_min_cot);
 | 
						|
	void find_edge_for_coplanar_faces(Vertex *p_c0, Vertex *p_c1, Edge *&p_e0, Edge *&p_e1, Vertex *p_stop0, Vertex *p_stop1);
 | 
						|
 | 
						|
	Edge *new_edge_pair(Vertex *p_from, Vertex *p_to);
 | 
						|
 | 
						|
	void remove_edge_pair(Edge *p_edge) {
 | 
						|
		Edge *n = p_edge->next;
 | 
						|
		Edge *r = p_edge->reverse;
 | 
						|
 | 
						|
		CHULL_ASSERT(p_edge->target && r->target);
 | 
						|
 | 
						|
		if (n != p_edge) {
 | 
						|
			n->prev = p_edge->prev;
 | 
						|
			p_edge->prev->next = n;
 | 
						|
			r->target->edges = n;
 | 
						|
		} else {
 | 
						|
			r->target->edges = nullptr;
 | 
						|
		}
 | 
						|
 | 
						|
		n = r->next;
 | 
						|
 | 
						|
		if (n != r) {
 | 
						|
			n->prev = r->prev;
 | 
						|
			r->prev->next = n;
 | 
						|
			p_edge->target->edges = n;
 | 
						|
		} else {
 | 
						|
			p_edge->target->edges = nullptr;
 | 
						|
		}
 | 
						|
 | 
						|
		edge_pool.free(p_edge);
 | 
						|
		edge_pool.free(r);
 | 
						|
		used_edge_pairs--;
 | 
						|
	}
 | 
						|
 | 
						|
	void compute_internal(int32_t p_start, int32_t p_end, IntermediateHull &r_result);
 | 
						|
 | 
						|
	bool merge_projection(IntermediateHull &p_h0, IntermediateHull &p_h1, Vertex *&r_c0, Vertex *&r_c1);
 | 
						|
 | 
						|
	void merge(IntermediateHull &p_h0, IntermediateHull &p_h1);
 | 
						|
 | 
						|
	Vector3 to_gd_vector(const Point32 &p_v);
 | 
						|
 | 
						|
	Vector3 get_gd_normal(Face *p_face);
 | 
						|
 | 
						|
	bool shift_face(Face *p_face, real_t p_amount, LocalVector<Vertex *> p_stack);
 | 
						|
 | 
						|
public:
 | 
						|
	~ConvexHullInternal() {
 | 
						|
		vertex_pool.reset(true);
 | 
						|
		edge_pool.reset(true);
 | 
						|
		face_pool.reset(true);
 | 
						|
	}
 | 
						|
 | 
						|
	Vertex *vertex_list;
 | 
						|
 | 
						|
	void compute(const Vector3 *p_coords, int32_t p_count);
 | 
						|
 | 
						|
	Vector3 get_coordinates(const Vertex *p_v);
 | 
						|
 | 
						|
	real_t shrink(real_t amount, real_t p_clamp_amount);
 | 
						|
};
 | 
						|
 | 
						|
ConvexHullInternal::Int128 ConvexHullInternal::Int128::operator*(int64_t b) const {
 | 
						|
	bool negative = (int64_t)high < 0;
 | 
						|
	Int128 a = negative ? -*this : *this;
 | 
						|
	if (b < 0) {
 | 
						|
		negative = !negative;
 | 
						|
		b = -b;
 | 
						|
	}
 | 
						|
	Int128 result = mul(a.low, (uint64_t)b);
 | 
						|
	result.high += a.high * (uint64_t)b;
 | 
						|
	return negative ? -result : result;
 | 
						|
}
 | 
						|
 | 
						|
ConvexHullInternal::Int128 ConvexHullInternal::Int128::mul(int64_t a, int64_t b) {
 | 
						|
	Int128 result;
 | 
						|
 | 
						|
#ifdef USE_X86_64_ASM
 | 
						|
	__asm__("imulq %[b]"
 | 
						|
			: "=a"(result.low), "=d"(result.high)
 | 
						|
			: "0"(a), [b] "r"(b)
 | 
						|
			: "cc");
 | 
						|
	return result;
 | 
						|
 | 
						|
#else
 | 
						|
	bool negative = a < 0;
 | 
						|
	if (negative) {
 | 
						|
		a = -a;
 | 
						|
	}
 | 
						|
	if (b < 0) {
 | 
						|
		negative = !negative;
 | 
						|
		b = -b;
 | 
						|
	}
 | 
						|
	DMul<uint64_t, uint32_t>::mul((uint64_t)a, (uint64_t)b, result.low, result.high);
 | 
						|
	return negative ? -result : result;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
ConvexHullInternal::Int128 ConvexHullInternal::Int128::mul(uint64_t a, uint64_t b) {
 | 
						|
	Int128 result;
 | 
						|
 | 
						|
#ifdef USE_X86_64_ASM
 | 
						|
	__asm__("mulq %[b]"
 | 
						|
			: "=a"(result.low), "=d"(result.high)
 | 
						|
			: "0"(a), [b] "r"(b)
 | 
						|
			: "cc");
 | 
						|
 | 
						|
#else
 | 
						|
	DMul<uint64_t, uint32_t>::mul(a, b, result.low, result.high);
 | 
						|
#endif
 | 
						|
 | 
						|
	return result;
 | 
						|
}
 | 
						|
 | 
						|
int32_t ConvexHullInternal::Rational64::compare(const Rational64 &b) const {
 | 
						|
	if (sign != b.sign) {
 | 
						|
		return sign - b.sign;
 | 
						|
	} else if (sign == 0) {
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	//	return (numerator * b.denominator > b.numerator * denominator) ? sign : (numerator * b.denominator < b.numerator * denominator) ? -sign : 0;
 | 
						|
 | 
						|
#ifdef USE_X86_64_ASM
 | 
						|
 | 
						|
	int32_t result;
 | 
						|
	int64_t tmp;
 | 
						|
	int64_t dummy;
 | 
						|
	__asm__("mulq %[bn]\n\t"
 | 
						|
			"movq %%rax, %[tmp]\n\t"
 | 
						|
			"movq %%rdx, %%rbx\n\t"
 | 
						|
			"movq %[tn], %%rax\n\t"
 | 
						|
			"mulq %[bd]\n\t"
 | 
						|
			"subq %[tmp], %%rax\n\t"
 | 
						|
			"sbbq %%rbx, %%rdx\n\t" // rdx:rax contains 128-bit-difference "numerator*b.denominator - b.numerator*denominator"
 | 
						|
			"setnsb %%bh\n\t" // bh=1 if difference is non-negative, bh=0 otherwise
 | 
						|
			"orq %%rdx, %%rax\n\t"
 | 
						|
			"setnzb %%bl\n\t" // bl=1 if difference if non-zero, bl=0 if it is zero
 | 
						|
			"decb %%bh\n\t" // now bx=0x0000 if difference is zero, 0xff01 if it is negative, 0x0001 if it is positive (i.e., same sign as difference)
 | 
						|
			"shll $16, %%ebx\n\t" // ebx has same sign as difference
 | 
						|
			: "=&b"(result), [tmp] "=&r"(tmp), "=a"(dummy)
 | 
						|
			: "a"(denominator), [bn] "g"(b.numerator), [tn] "g"(numerator), [bd] "g"(b.denominator)
 | 
						|
			: "%rdx", "cc");
 | 
						|
	return result ? result ^ sign // if sign is +1, only bit 0 of result is inverted, which does not change the sign of result (and cannot result in zero)
 | 
						|
					// if sign is -1, all bits of result are inverted, which changes the sign of result (and again cannot result in zero)
 | 
						|
					:
 | 
						|
					  0;
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
	return sign * Int128::mul(numerator, b.denominator).ucmp(Int128::mul(denominator, b.numerator));
 | 
						|
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
int32_t ConvexHullInternal::Rational128::compare(const Rational128 &b) const {
 | 
						|
	if (sign != b.sign) {
 | 
						|
		return sign - b.sign;
 | 
						|
	} else if (sign == 0) {
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	if (is_int_64) {
 | 
						|
		return -b.compare(sign * (int64_t)numerator.low);
 | 
						|
	}
 | 
						|
 | 
						|
	Int128 nbd_low, nbd_high, dbn_low, dbn_high;
 | 
						|
	DMul<Int128, uint64_t>::mul(numerator, b.denominator, nbd_low, nbd_high);
 | 
						|
	DMul<Int128, uint64_t>::mul(denominator, b.numerator, dbn_low, dbn_high);
 | 
						|
 | 
						|
	int32_t cmp = nbd_high.ucmp(dbn_high);
 | 
						|
	if (cmp) {
 | 
						|
		return cmp * sign;
 | 
						|
	}
 | 
						|
	return nbd_low.ucmp(dbn_low) * sign;
 | 
						|
}
 | 
						|
 | 
						|
int32_t ConvexHullInternal::Rational128::compare(int64_t b) const {
 | 
						|
	if (is_int_64) {
 | 
						|
		int64_t a = sign * (int64_t)numerator.low;
 | 
						|
		return (a > b) ? 1 : (a < b) ? -1 :
 | 
						|
										 0;
 | 
						|
	}
 | 
						|
	if (b > 0) {
 | 
						|
		if (sign <= 0) {
 | 
						|
			return -1;
 | 
						|
		}
 | 
						|
	} else if (b < 0) {
 | 
						|
		if (sign >= 0) {
 | 
						|
			return 1;
 | 
						|
		}
 | 
						|
		b = -b;
 | 
						|
	} else {
 | 
						|
		return sign;
 | 
						|
	}
 | 
						|
 | 
						|
	return numerator.ucmp(denominator * b) * sign;
 | 
						|
}
 | 
						|
 | 
						|
ConvexHullInternal::Edge *ConvexHullInternal::new_edge_pair(Vertex *p_from, Vertex *p_to) {
 | 
						|
	CHULL_ASSERT(p_from && p_to);
 | 
						|
	Edge *e = edge_pool.alloc();
 | 
						|
	Edge *r = edge_pool.alloc();
 | 
						|
	e->reverse = r;
 | 
						|
	r->reverse = e;
 | 
						|
	e->copy = merge_stamp;
 | 
						|
	r->copy = merge_stamp;
 | 
						|
	e->target = p_to;
 | 
						|
	r->target = p_from;
 | 
						|
	e->face = nullptr;
 | 
						|
	r->face = nullptr;
 | 
						|
	used_edge_pairs++;
 | 
						|
	if (used_edge_pairs > max_used_edge_pairs) {
 | 
						|
		max_used_edge_pairs = used_edge_pairs;
 | 
						|
	}
 | 
						|
	return e;
 | 
						|
}
 | 
						|
 | 
						|
bool ConvexHullInternal::merge_projection(IntermediateHull &r_h0, IntermediateHull &r_h1, Vertex *&r_c0, Vertex *&r_c1) {
 | 
						|
	Vertex *v0 = r_h0.max_yx;
 | 
						|
	Vertex *v1 = r_h1.min_yx;
 | 
						|
	if ((v0->point.x == v1->point.x) && (v0->point.y == v1->point.y)) {
 | 
						|
		CHULL_ASSERT(v0->point.z < v1->point.z);
 | 
						|
		Vertex *v1p = v1->prev;
 | 
						|
		if (v1p == v1) {
 | 
						|
			r_c0 = v0;
 | 
						|
			if (v1->edges) {
 | 
						|
				CHULL_ASSERT(v1->edges->next == v1->edges);
 | 
						|
				v1 = v1->edges->target;
 | 
						|
				CHULL_ASSERT(v1->edges->next == v1->edges);
 | 
						|
			}
 | 
						|
			r_c1 = v1;
 | 
						|
			return false;
 | 
						|
		}
 | 
						|
		Vertex *v1n = v1->next;
 | 
						|
		v1p->next = v1n;
 | 
						|
		v1n->prev = v1p;
 | 
						|
		if (v1 == r_h1.min_xy) {
 | 
						|
			if ((v1n->point.x < v1p->point.x) || ((v1n->point.x == v1p->point.x) && (v1n->point.y < v1p->point.y))) {
 | 
						|
				r_h1.min_xy = v1n;
 | 
						|
			} else {
 | 
						|
				r_h1.min_xy = v1p;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if (v1 == r_h1.max_xy) {
 | 
						|
			if ((v1n->point.x > v1p->point.x) || ((v1n->point.x == v1p->point.x) && (v1n->point.y > v1p->point.y))) {
 | 
						|
				r_h1.max_xy = v1n;
 | 
						|
			} else {
 | 
						|
				r_h1.max_xy = v1p;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	v0 = r_h0.max_xy;
 | 
						|
	v1 = r_h1.max_xy;
 | 
						|
	Vertex *v00 = nullptr;
 | 
						|
	Vertex *v10 = nullptr;
 | 
						|
	int32_t sign = 1;
 | 
						|
 | 
						|
	for (int32_t side = 0; side <= 1; side++) {
 | 
						|
		int32_t dx = (v1->point.x - v0->point.x) * sign;
 | 
						|
		if (dx > 0) {
 | 
						|
			while (true) {
 | 
						|
				int32_t dy = v1->point.y - v0->point.y;
 | 
						|
 | 
						|
				Vertex *w0 = side ? v0->next : v0->prev;
 | 
						|
				if (w0 != v0) {
 | 
						|
					int32_t dx0 = (w0->point.x - v0->point.x) * sign;
 | 
						|
					int32_t dy0 = w0->point.y - v0->point.y;
 | 
						|
					if ((dy0 <= 0) && ((dx0 == 0) || ((dx0 < 0) && (dy0 * dx <= dy * dx0)))) {
 | 
						|
						v0 = w0;
 | 
						|
						dx = (v1->point.x - v0->point.x) * sign;
 | 
						|
						continue;
 | 
						|
					}
 | 
						|
				}
 | 
						|
 | 
						|
				Vertex *w1 = side ? v1->next : v1->prev;
 | 
						|
				if (w1 != v1) {
 | 
						|
					int32_t dx1 = (w1->point.x - v1->point.x) * sign;
 | 
						|
					int32_t dy1 = w1->point.y - v1->point.y;
 | 
						|
					int32_t dxn = (w1->point.x - v0->point.x) * sign;
 | 
						|
					if ((dxn > 0) && (dy1 < 0) && ((dx1 == 0) || ((dx1 < 0) && (dy1 * dx < dy * dx1)))) {
 | 
						|
						v1 = w1;
 | 
						|
						dx = dxn;
 | 
						|
						continue;
 | 
						|
					}
 | 
						|
				}
 | 
						|
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		} else if (dx < 0) {
 | 
						|
			while (true) {
 | 
						|
				int32_t dy = v1->point.y - v0->point.y;
 | 
						|
 | 
						|
				Vertex *w1 = side ? v1->prev : v1->next;
 | 
						|
				if (w1 != v1) {
 | 
						|
					int32_t dx1 = (w1->point.x - v1->point.x) * sign;
 | 
						|
					int32_t dy1 = w1->point.y - v1->point.y;
 | 
						|
					if ((dy1 >= 0) && ((dx1 == 0) || ((dx1 < 0) && (dy1 * dx <= dy * dx1)))) {
 | 
						|
						v1 = w1;
 | 
						|
						dx = (v1->point.x - v0->point.x) * sign;
 | 
						|
						continue;
 | 
						|
					}
 | 
						|
				}
 | 
						|
 | 
						|
				Vertex *w0 = side ? v0->prev : v0->next;
 | 
						|
				if (w0 != v0) {
 | 
						|
					int32_t dx0 = (w0->point.x - v0->point.x) * sign;
 | 
						|
					int32_t dy0 = w0->point.y - v0->point.y;
 | 
						|
					int32_t dxn = (v1->point.x - w0->point.x) * sign;
 | 
						|
					if ((dxn < 0) && (dy0 > 0) && ((dx0 == 0) || ((dx0 < 0) && (dy0 * dx < dy * dx0)))) {
 | 
						|
						v0 = w0;
 | 
						|
						dx = dxn;
 | 
						|
						continue;
 | 
						|
					}
 | 
						|
				}
 | 
						|
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		} else {
 | 
						|
			int32_t x = v0->point.x;
 | 
						|
			int32_t y0 = v0->point.y;
 | 
						|
			Vertex *w0 = v0;
 | 
						|
			Vertex *t;
 | 
						|
			while (((t = side ? w0->next : w0->prev) != v0) && (t->point.x == x) && (t->point.y <= y0)) {
 | 
						|
				w0 = t;
 | 
						|
				y0 = t->point.y;
 | 
						|
			}
 | 
						|
			v0 = w0;
 | 
						|
 | 
						|
			int32_t y1 = v1->point.y;
 | 
						|
			Vertex *w1 = v1;
 | 
						|
			while (((t = side ? w1->prev : w1->next) != v1) && (t->point.x == x) && (t->point.y >= y1)) {
 | 
						|
				w1 = t;
 | 
						|
				y1 = t->point.y;
 | 
						|
			}
 | 
						|
			v1 = w1;
 | 
						|
		}
 | 
						|
 | 
						|
		if (side == 0) {
 | 
						|
			v00 = v0;
 | 
						|
			v10 = v1;
 | 
						|
 | 
						|
			v0 = r_h0.min_xy;
 | 
						|
			v1 = r_h1.min_xy;
 | 
						|
			sign = -1;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	v0->prev = v1;
 | 
						|
	v1->next = v0;
 | 
						|
 | 
						|
	v00->next = v10;
 | 
						|
	v10->prev = v00;
 | 
						|
 | 
						|
	if (r_h1.min_xy->point.x < r_h0.min_xy->point.x) {
 | 
						|
		r_h0.min_xy = r_h1.min_xy;
 | 
						|
	}
 | 
						|
	if (r_h1.max_xy->point.x >= r_h0.max_xy->point.x) {
 | 
						|
		r_h0.max_xy = r_h1.max_xy;
 | 
						|
	}
 | 
						|
 | 
						|
	r_h0.max_yx = r_h1.max_yx;
 | 
						|
 | 
						|
	r_c0 = v00;
 | 
						|
	r_c1 = v10;
 | 
						|
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
void ConvexHullInternal::compute_internal(int32_t p_start, int32_t p_end, IntermediateHull &r_result) {
 | 
						|
	int32_t n = p_end - p_start;
 | 
						|
	switch (n) {
 | 
						|
		case 0:
 | 
						|
			r_result.min_xy = nullptr;
 | 
						|
			r_result.max_xy = nullptr;
 | 
						|
			r_result.min_yx = nullptr;
 | 
						|
			r_result.max_yx = nullptr;
 | 
						|
			return;
 | 
						|
		case 2: {
 | 
						|
			Vertex *v = original_vertices[p_start];
 | 
						|
			Vertex *w = original_vertices[p_start + 1];
 | 
						|
			if (v->point != w->point) {
 | 
						|
				int32_t dx = v->point.x - w->point.x;
 | 
						|
				int32_t dy = v->point.y - w->point.y;
 | 
						|
 | 
						|
				if ((dx == 0) && (dy == 0)) {
 | 
						|
					if (v->point.z > w->point.z) {
 | 
						|
						Vertex *t = w;
 | 
						|
						w = v;
 | 
						|
						v = t;
 | 
						|
					}
 | 
						|
					CHULL_ASSERT(v->point.z < w->point.z);
 | 
						|
					v->next = v;
 | 
						|
					v->prev = v;
 | 
						|
					r_result.min_xy = v;
 | 
						|
					r_result.max_xy = v;
 | 
						|
					r_result.min_yx = v;
 | 
						|
					r_result.max_yx = v;
 | 
						|
				} else {
 | 
						|
					v->next = w;
 | 
						|
					v->prev = w;
 | 
						|
					w->next = v;
 | 
						|
					w->prev = v;
 | 
						|
 | 
						|
					if ((dx < 0) || ((dx == 0) && (dy < 0))) {
 | 
						|
						r_result.min_xy = v;
 | 
						|
						r_result.max_xy = w;
 | 
						|
					} else {
 | 
						|
						r_result.min_xy = w;
 | 
						|
						r_result.max_xy = v;
 | 
						|
					}
 | 
						|
 | 
						|
					if ((dy < 0) || ((dy == 0) && (dx < 0))) {
 | 
						|
						r_result.min_yx = v;
 | 
						|
						r_result.max_yx = w;
 | 
						|
					} else {
 | 
						|
						r_result.min_yx = w;
 | 
						|
						r_result.max_yx = v;
 | 
						|
					}
 | 
						|
				}
 | 
						|
 | 
						|
				Edge *e = new_edge_pair(v, w);
 | 
						|
				e->link(e);
 | 
						|
				v->edges = e;
 | 
						|
 | 
						|
				e = e->reverse;
 | 
						|
				e->link(e);
 | 
						|
				w->edges = e;
 | 
						|
 | 
						|
				return;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		// lint -fallthrough
 | 
						|
		case 1: {
 | 
						|
			Vertex *v = original_vertices[p_start];
 | 
						|
			v->edges = nullptr;
 | 
						|
			v->next = v;
 | 
						|
			v->prev = v;
 | 
						|
 | 
						|
			r_result.min_xy = v;
 | 
						|
			r_result.max_xy = v;
 | 
						|
			r_result.min_yx = v;
 | 
						|
			r_result.max_yx = v;
 | 
						|
 | 
						|
			return;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	int32_t split0 = p_start + n / 2;
 | 
						|
	Point32 p = original_vertices[split0 - 1]->point;
 | 
						|
	int32_t split1 = split0;
 | 
						|
	while ((split1 < p_end) && (original_vertices[split1]->point == p)) {
 | 
						|
		split1++;
 | 
						|
	}
 | 
						|
	compute_internal(p_start, split0, r_result);
 | 
						|
	IntermediateHull hull1;
 | 
						|
	compute_internal(split1, p_end, hull1);
 | 
						|
#ifdef DEBUG_CONVEX_HULL
 | 
						|
	printf("\n\nMerge\n");
 | 
						|
	r_result.print();
 | 
						|
	hull1.print();
 | 
						|
#endif
 | 
						|
	merge(r_result, hull1);
 | 
						|
#ifdef DEBUG_CONVEX_HULL
 | 
						|
	printf("\n  Result\n");
 | 
						|
	r_result.print();
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
#ifdef DEBUG_CONVEX_HULL
 | 
						|
void ConvexHullInternal::IntermediateHull::print() {
 | 
						|
	printf("    Hull\n");
 | 
						|
	for (Vertex *v = min_xy; v;) {
 | 
						|
		printf("      ");
 | 
						|
		v->print();
 | 
						|
		if (v == max_xy) {
 | 
						|
			printf(" max_xy");
 | 
						|
		}
 | 
						|
		if (v == min_yx) {
 | 
						|
			printf(" min_yx");
 | 
						|
		}
 | 
						|
		if (v == max_yx) {
 | 
						|
			printf(" max_yx");
 | 
						|
		}
 | 
						|
		if (v->next->prev != v) {
 | 
						|
			printf(" Inconsistency");
 | 
						|
		}
 | 
						|
		printf("\n");
 | 
						|
		v = v->next;
 | 
						|
		if (v == min_xy) {
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (min_xy) {
 | 
						|
		min_xy->copy = (min_xy->copy == -1) ? -2 : -1;
 | 
						|
		min_xy->print_graph();
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void ConvexHullInternal::Vertex::print_graph() {
 | 
						|
	print();
 | 
						|
	printf("\nEdges\n");
 | 
						|
	Edge *e = edges;
 | 
						|
	if (e) {
 | 
						|
		do {
 | 
						|
			e->print();
 | 
						|
			printf("\n");
 | 
						|
			e = e->next;
 | 
						|
		} while (e != edges);
 | 
						|
		do {
 | 
						|
			Vertex *v = e->target;
 | 
						|
			if (v->copy != copy) {
 | 
						|
				v->copy = copy;
 | 
						|
				v->print_graph();
 | 
						|
			}
 | 
						|
			e = e->next;
 | 
						|
		} while (e != edges);
 | 
						|
	}
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
ConvexHullInternal::Orientation ConvexHullInternal::get_orientation(const Edge *p_prev, const Edge *p_next, const Point32 &p_s, const Point32 &p_t) {
 | 
						|
	CHULL_ASSERT(p_prev->reverse->target == p_next->reverse->target);
 | 
						|
	if (p_prev->next == p_next) {
 | 
						|
		if (p_prev->prev == p_next) {
 | 
						|
			Point64 n = p_t.cross(p_s);
 | 
						|
			Point64 m = (*p_prev->target - *p_next->reverse->target).cross(*p_next->target - *p_next->reverse->target);
 | 
						|
			CHULL_ASSERT(!m.is_zero());
 | 
						|
			int64_t dot = n.dot(m);
 | 
						|
			CHULL_ASSERT(dot != 0);
 | 
						|
			return (dot > 0) ? COUNTER_CLOCKWISE : CLOCKWISE;
 | 
						|
		}
 | 
						|
		return COUNTER_CLOCKWISE;
 | 
						|
	} else if (p_prev->prev == p_next) {
 | 
						|
		return CLOCKWISE;
 | 
						|
	} else {
 | 
						|
		return NONE;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
ConvexHullInternal::Edge *ConvexHullInternal::find_max_angle(bool p_ccw, const Vertex *p_start, const Point32 &p_s, const Point64 &p_rxs, const Point64 &p_sxrxs, Rational64 &p_min_cot) {
 | 
						|
	Edge *min_edge = nullptr;
 | 
						|
 | 
						|
#ifdef DEBUG_CONVEX_HULL
 | 
						|
	printf("find max edge for %d\n", p_start->point.index);
 | 
						|
#endif
 | 
						|
	Edge *e = p_start->edges;
 | 
						|
	if (e) {
 | 
						|
		do {
 | 
						|
			if (e->copy > merge_stamp) {
 | 
						|
				Point32 t = *e->target - *p_start;
 | 
						|
				Rational64 cot(t.dot(p_sxrxs), t.dot(p_rxs));
 | 
						|
#ifdef DEBUG_CONVEX_HULL
 | 
						|
				printf("      Angle is %f (%d) for ", Math::atan(cot.to_scalar()), (int32_t)cot.is_nan());
 | 
						|
				e->print();
 | 
						|
#endif
 | 
						|
				if (cot.is_nan()) {
 | 
						|
					CHULL_ASSERT(p_ccw ? (t.dot(p_s) < 0) : (t.dot(p_s) > 0));
 | 
						|
				} else {
 | 
						|
					int32_t cmp;
 | 
						|
					if (min_edge == nullptr) {
 | 
						|
						p_min_cot = cot;
 | 
						|
						min_edge = e;
 | 
						|
					} else if ((cmp = cot.compare(p_min_cot)) < 0) {
 | 
						|
						p_min_cot = cot;
 | 
						|
						min_edge = e;
 | 
						|
					} else if ((cmp == 0) && (p_ccw == (get_orientation(min_edge, e, p_s, t) == COUNTER_CLOCKWISE))) {
 | 
						|
						min_edge = e;
 | 
						|
					}
 | 
						|
				}
 | 
						|
#ifdef DEBUG_CONVEX_HULL
 | 
						|
				printf("\n");
 | 
						|
#endif
 | 
						|
			}
 | 
						|
			e = e->next;
 | 
						|
		} while (e != p_start->edges);
 | 
						|
	}
 | 
						|
	return min_edge;
 | 
						|
}
 | 
						|
 | 
						|
void ConvexHullInternal::find_edge_for_coplanar_faces(Vertex *p_c0, Vertex *p_c1, Edge *&p_e0, Edge *&p_e1, Vertex *p_stop0, Vertex *p_stop1) {
 | 
						|
	Edge *start0 = p_e0;
 | 
						|
	Edge *start1 = p_e1;
 | 
						|
	Point32 et0 = start0 ? start0->target->point : p_c0->point;
 | 
						|
	Point32 et1 = start1 ? start1->target->point : p_c1->point;
 | 
						|
	Point32 s = p_c1->point - p_c0->point;
 | 
						|
	Point64 normal = ((start0 ? start0 : start1)->target->point - p_c0->point).cross(s);
 | 
						|
	int64_t dist = p_c0->point.dot(normal);
 | 
						|
	CHULL_ASSERT(!start1 || (start1->target->point.dot(normal) == dist));
 | 
						|
	Point64 perp = s.cross(normal);
 | 
						|
	CHULL_ASSERT(!perp.is_zero());
 | 
						|
 | 
						|
#ifdef DEBUG_CONVEX_HULL
 | 
						|
	printf("   Advancing %d %d  (%p %p, %d %d)\n", p_c0->point.index, p_c1->point.index, start0, start1, start0 ? start0->target->point.index : -1, start1 ? start1->target->point.index : -1);
 | 
						|
#endif
 | 
						|
 | 
						|
	int64_t max_dot0 = et0.dot(perp);
 | 
						|
	if (p_e0) {
 | 
						|
		while (p_e0->target != p_stop0) {
 | 
						|
			Edge *e = p_e0->reverse->prev;
 | 
						|
			if (e->target->point.dot(normal) < dist) {
 | 
						|
				break;
 | 
						|
			}
 | 
						|
			CHULL_ASSERT(e->target->point.dot(normal) == dist);
 | 
						|
			if (e->copy == merge_stamp) {
 | 
						|
				break;
 | 
						|
			}
 | 
						|
			int64_t dot = e->target->point.dot(perp);
 | 
						|
			if (dot <= max_dot0) {
 | 
						|
				break;
 | 
						|
			}
 | 
						|
			max_dot0 = dot;
 | 
						|
			p_e0 = e;
 | 
						|
			et0 = e->target->point;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	int64_t max_dot1 = et1.dot(perp);
 | 
						|
	if (p_e1) {
 | 
						|
		while (p_e1->target != p_stop1) {
 | 
						|
			Edge *e = p_e1->reverse->next;
 | 
						|
			if (e->target->point.dot(normal) < dist) {
 | 
						|
				break;
 | 
						|
			}
 | 
						|
			CHULL_ASSERT(e->target->point.dot(normal) == dist);
 | 
						|
			if (e->copy == merge_stamp) {
 | 
						|
				break;
 | 
						|
			}
 | 
						|
			int64_t dot = e->target->point.dot(perp);
 | 
						|
			if (dot <= max_dot1) {
 | 
						|
				break;
 | 
						|
			}
 | 
						|
			max_dot1 = dot;
 | 
						|
			p_e1 = e;
 | 
						|
			et1 = e->target->point;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
#ifdef DEBUG_CONVEX_HULL
 | 
						|
	printf("   Starting at %d %d\n", et0.index, et1.index);
 | 
						|
#endif
 | 
						|
 | 
						|
	int64_t dx = max_dot1 - max_dot0;
 | 
						|
	if (dx > 0) {
 | 
						|
		while (true) {
 | 
						|
			int64_t dy = (et1 - et0).dot(s);
 | 
						|
 | 
						|
			if (p_e0 && (p_e0->target != p_stop0)) {
 | 
						|
				Edge *f0 = p_e0->next->reverse;
 | 
						|
				if (f0->copy > merge_stamp) {
 | 
						|
					int64_t dx0 = (f0->target->point - et0).dot(perp);
 | 
						|
					int64_t dy0 = (f0->target->point - et0).dot(s);
 | 
						|
					if ((dx0 == 0) ? (dy0 < 0) : ((dx0 < 0) && (Rational64(dy0, dx0).compare(Rational64(dy, dx)) >= 0))) {
 | 
						|
						et0 = f0->target->point;
 | 
						|
						dx = (et1 - et0).dot(perp);
 | 
						|
						p_e0 = (p_e0 == start0) ? nullptr : f0;
 | 
						|
						continue;
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			if (p_e1 && (p_e1->target != p_stop1)) {
 | 
						|
				Edge *f1 = p_e1->reverse->next;
 | 
						|
				if (f1->copy > merge_stamp) {
 | 
						|
					Point32 d1 = f1->target->point - et1;
 | 
						|
					if (d1.dot(normal) == 0) {
 | 
						|
						int64_t dx1 = d1.dot(perp);
 | 
						|
						int64_t dy1 = d1.dot(s);
 | 
						|
						int64_t dxn = (f1->target->point - et0).dot(perp);
 | 
						|
						if ((dxn > 0) && ((dx1 == 0) ? (dy1 < 0) : ((dx1 < 0) && (Rational64(dy1, dx1).compare(Rational64(dy, dx)) > 0)))) {
 | 
						|
							p_e1 = f1;
 | 
						|
							et1 = p_e1->target->point;
 | 
						|
							dx = dxn;
 | 
						|
							continue;
 | 
						|
						}
 | 
						|
					} else {
 | 
						|
						CHULL_ASSERT((p_e1 == start1) && (d1.dot(normal) < 0));
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	} else if (dx < 0) {
 | 
						|
		while (true) {
 | 
						|
			int64_t dy = (et1 - et0).dot(s);
 | 
						|
 | 
						|
			if (p_e1 && (p_e1->target != p_stop1)) {
 | 
						|
				Edge *f1 = p_e1->prev->reverse;
 | 
						|
				if (f1->copy > merge_stamp) {
 | 
						|
					int64_t dx1 = (f1->target->point - et1).dot(perp);
 | 
						|
					int64_t dy1 = (f1->target->point - et1).dot(s);
 | 
						|
					if ((dx1 == 0) ? (dy1 > 0) : ((dx1 < 0) && (Rational64(dy1, dx1).compare(Rational64(dy, dx)) <= 0))) {
 | 
						|
						et1 = f1->target->point;
 | 
						|
						dx = (et1 - et0).dot(perp);
 | 
						|
						p_e1 = (p_e1 == start1) ? nullptr : f1;
 | 
						|
						continue;
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			if (p_e0 && (p_e0->target != p_stop0)) {
 | 
						|
				Edge *f0 = p_e0->reverse->prev;
 | 
						|
				if (f0->copy > merge_stamp) {
 | 
						|
					Point32 d0 = f0->target->point - et0;
 | 
						|
					if (d0.dot(normal) == 0) {
 | 
						|
						int64_t dx0 = d0.dot(perp);
 | 
						|
						int64_t dy0 = d0.dot(s);
 | 
						|
						int64_t dxn = (et1 - f0->target->point).dot(perp);
 | 
						|
						if ((dxn < 0) && ((dx0 == 0) ? (dy0 > 0) : ((dx0 < 0) && (Rational64(dy0, dx0).compare(Rational64(dy, dx)) < 0)))) {
 | 
						|
							p_e0 = f0;
 | 
						|
							et0 = p_e0->target->point;
 | 
						|
							dx = dxn;
 | 
						|
							continue;
 | 
						|
						}
 | 
						|
					} else {
 | 
						|
						CHULL_ASSERT((p_e0 == start0) && (d0.dot(normal) < 0));
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
#ifdef DEBUG_CONVEX_HULL
 | 
						|
	printf("   Advanced edges to %d %d\n", et0.index, et1.index);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
void ConvexHullInternal::merge(IntermediateHull &p_h0, IntermediateHull &p_h1) {
 | 
						|
	if (!p_h1.max_xy) {
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	if (!p_h0.max_xy) {
 | 
						|
		p_h0 = p_h1;
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	merge_stamp--;
 | 
						|
 | 
						|
	Vertex *c0 = nullptr;
 | 
						|
	Edge *to_prev0 = nullptr;
 | 
						|
	Edge *first_new0 = nullptr;
 | 
						|
	Edge *pending_head0 = nullptr;
 | 
						|
	Edge *pending_tail0 = nullptr;
 | 
						|
	Vertex *c1 = nullptr;
 | 
						|
	Edge *to_prev1 = nullptr;
 | 
						|
	Edge *first_new1 = nullptr;
 | 
						|
	Edge *pending_head1 = nullptr;
 | 
						|
	Edge *pending_tail1 = nullptr;
 | 
						|
	Point32 prev_point;
 | 
						|
 | 
						|
	if (merge_projection(p_h0, p_h1, c0, c1)) {
 | 
						|
		Point32 s = *c1 - *c0;
 | 
						|
		Point64 normal = Point32(0, 0, -1).cross(s);
 | 
						|
		Point64 t = s.cross(normal);
 | 
						|
		CHULL_ASSERT(!t.is_zero());
 | 
						|
 | 
						|
		Edge *e = c0->edges;
 | 
						|
		Edge *start0 = nullptr;
 | 
						|
		if (e) {
 | 
						|
			do {
 | 
						|
				int64_t dot = (*e->target - *c0).dot(normal);
 | 
						|
				CHULL_ASSERT(dot <= 0);
 | 
						|
				if ((dot == 0) && ((*e->target - *c0).dot(t) > 0)) {
 | 
						|
					if (!start0 || (get_orientation(start0, e, s, Point32(0, 0, -1)) == CLOCKWISE)) {
 | 
						|
						start0 = e;
 | 
						|
					}
 | 
						|
				}
 | 
						|
				e = e->next;
 | 
						|
			} while (e != c0->edges);
 | 
						|
		}
 | 
						|
 | 
						|
		e = c1->edges;
 | 
						|
		Edge *start1 = nullptr;
 | 
						|
		if (e) {
 | 
						|
			do {
 | 
						|
				int64_t dot = (*e->target - *c1).dot(normal);
 | 
						|
				CHULL_ASSERT(dot <= 0);
 | 
						|
				if ((dot == 0) && ((*e->target - *c1).dot(t) > 0)) {
 | 
						|
					if (!start1 || (get_orientation(start1, e, s, Point32(0, 0, -1)) == COUNTER_CLOCKWISE)) {
 | 
						|
						start1 = e;
 | 
						|
					}
 | 
						|
				}
 | 
						|
				e = e->next;
 | 
						|
			} while (e != c1->edges);
 | 
						|
		}
 | 
						|
 | 
						|
		if (start0 || start1) {
 | 
						|
			find_edge_for_coplanar_faces(c0, c1, start0, start1, nullptr, nullptr);
 | 
						|
			if (start0) {
 | 
						|
				c0 = start0->target;
 | 
						|
			}
 | 
						|
			if (start1) {
 | 
						|
				c1 = start1->target;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		prev_point = c1->point;
 | 
						|
		prev_point.z++;
 | 
						|
	} else {
 | 
						|
		prev_point = c1->point;
 | 
						|
		prev_point.x++;
 | 
						|
	}
 | 
						|
 | 
						|
	Vertex *first0 = c0;
 | 
						|
	Vertex *first1 = c1;
 | 
						|
	bool first_run = true;
 | 
						|
 | 
						|
	while (true) {
 | 
						|
		Point32 s = *c1 - *c0;
 | 
						|
		Point32 r = prev_point - c0->point;
 | 
						|
		Point64 rxs = r.cross(s);
 | 
						|
		Point64 sxrxs = s.cross(rxs);
 | 
						|
 | 
						|
#ifdef DEBUG_CONVEX_HULL
 | 
						|
		printf("\n  Checking %d %d\n", c0->point.index, c1->point.index);
 | 
						|
#endif
 | 
						|
		Rational64 min_cot0(0, 0);
 | 
						|
		Edge *min0 = find_max_angle(false, c0, s, rxs, sxrxs, min_cot0);
 | 
						|
		Rational64 min_cot1(0, 0);
 | 
						|
		Edge *min1 = find_max_angle(true, c1, s, rxs, sxrxs, min_cot1);
 | 
						|
		if (!min0 && !min1) {
 | 
						|
			Edge *e = new_edge_pair(c0, c1);
 | 
						|
			e->link(e);
 | 
						|
			c0->edges = e;
 | 
						|
 | 
						|
			e = e->reverse;
 | 
						|
			e->link(e);
 | 
						|
			c1->edges = e;
 | 
						|
			return;
 | 
						|
		} else {
 | 
						|
			int32_t cmp = !min0 ? 1 : !min1 ? -1 :
 | 
						|
												min_cot0.compare(min_cot1);
 | 
						|
#ifdef DEBUG_CONVEX_HULL
 | 
						|
			printf("    -> Result %d\n", cmp);
 | 
						|
#endif
 | 
						|
			if (first_run || ((cmp >= 0) ? !min_cot1.is_negative_infinity() : !min_cot0.is_negative_infinity())) {
 | 
						|
				Edge *e = new_edge_pair(c0, c1);
 | 
						|
				if (pending_tail0) {
 | 
						|
					pending_tail0->prev = e;
 | 
						|
				} else {
 | 
						|
					pending_head0 = e;
 | 
						|
				}
 | 
						|
				e->next = pending_tail0;
 | 
						|
				pending_tail0 = e;
 | 
						|
 | 
						|
				e = e->reverse;
 | 
						|
				if (pending_tail1) {
 | 
						|
					pending_tail1->next = e;
 | 
						|
				} else {
 | 
						|
					pending_head1 = e;
 | 
						|
				}
 | 
						|
				e->prev = pending_tail1;
 | 
						|
				pending_tail1 = e;
 | 
						|
			}
 | 
						|
 | 
						|
			Edge *e0 = min0;
 | 
						|
			Edge *e1 = min1;
 | 
						|
 | 
						|
#ifdef DEBUG_CONVEX_HULL
 | 
						|
			printf("   Found min edges to %d %d\n", e0 ? e0->target->point.index : -1, e1 ? e1->target->point.index : -1);
 | 
						|
#endif
 | 
						|
 | 
						|
			if (cmp == 0) {
 | 
						|
				find_edge_for_coplanar_faces(c0, c1, e0, e1, nullptr, nullptr);
 | 
						|
			}
 | 
						|
 | 
						|
			if ((cmp >= 0) && e1) {
 | 
						|
				if (to_prev1) {
 | 
						|
					for (Edge *e = to_prev1->next, *n = nullptr; e != min1; e = n) {
 | 
						|
						n = e->next;
 | 
						|
						remove_edge_pair(e);
 | 
						|
					}
 | 
						|
				}
 | 
						|
 | 
						|
				if (pending_tail1) {
 | 
						|
					if (to_prev1) {
 | 
						|
						to_prev1->link(pending_head1);
 | 
						|
					} else {
 | 
						|
						min1->prev->link(pending_head1);
 | 
						|
						first_new1 = pending_head1;
 | 
						|
					}
 | 
						|
					pending_tail1->link(min1);
 | 
						|
					pending_head1 = nullptr;
 | 
						|
					pending_tail1 = nullptr;
 | 
						|
				} else if (!to_prev1) {
 | 
						|
					first_new1 = min1;
 | 
						|
				}
 | 
						|
 | 
						|
				prev_point = c1->point;
 | 
						|
				c1 = e1->target;
 | 
						|
				to_prev1 = e1->reverse;
 | 
						|
			}
 | 
						|
 | 
						|
			if ((cmp <= 0) && e0) {
 | 
						|
				if (to_prev0) {
 | 
						|
					for (Edge *e = to_prev0->prev, *n = nullptr; e != min0; e = n) {
 | 
						|
						n = e->prev;
 | 
						|
						remove_edge_pair(e);
 | 
						|
					}
 | 
						|
				}
 | 
						|
 | 
						|
				if (pending_tail0) {
 | 
						|
					if (to_prev0) {
 | 
						|
						pending_head0->link(to_prev0);
 | 
						|
					} else {
 | 
						|
						pending_head0->link(min0->next);
 | 
						|
						first_new0 = pending_head0;
 | 
						|
					}
 | 
						|
					min0->link(pending_tail0);
 | 
						|
					pending_head0 = nullptr;
 | 
						|
					pending_tail0 = nullptr;
 | 
						|
				} else if (!to_prev0) {
 | 
						|
					first_new0 = min0;
 | 
						|
				}
 | 
						|
 | 
						|
				prev_point = c0->point;
 | 
						|
				c0 = e0->target;
 | 
						|
				to_prev0 = e0->reverse;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		if ((c0 == first0) && (c1 == first1)) {
 | 
						|
			if (to_prev0 == nullptr) {
 | 
						|
				pending_head0->link(pending_tail0);
 | 
						|
				c0->edges = pending_tail0;
 | 
						|
			} else {
 | 
						|
				for (Edge *e = to_prev0->prev, *n = nullptr; e != first_new0; e = n) {
 | 
						|
					n = e->prev;
 | 
						|
					remove_edge_pair(e);
 | 
						|
				}
 | 
						|
				if (pending_tail0) {
 | 
						|
					pending_head0->link(to_prev0);
 | 
						|
					first_new0->link(pending_tail0);
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			if (to_prev1 == nullptr) {
 | 
						|
				pending_tail1->link(pending_head1);
 | 
						|
				c1->edges = pending_tail1;
 | 
						|
			} else {
 | 
						|
				for (Edge *e = to_prev1->next, *n = nullptr; e != first_new1; e = n) {
 | 
						|
					n = e->next;
 | 
						|
					remove_edge_pair(e);
 | 
						|
				}
 | 
						|
				if (pending_tail1) {
 | 
						|
					to_prev1->link(pending_head1);
 | 
						|
					pending_tail1->link(first_new1);
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			return;
 | 
						|
		}
 | 
						|
 | 
						|
		first_run = false;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
struct PointComparator {
 | 
						|
	_FORCE_INLINE_ bool operator()(const ConvexHullInternal::Point32 &p, const ConvexHullInternal::Point32 &q) const {
 | 
						|
		return (p.y < q.y) || ((p.y == q.y) && ((p.x < q.x) || ((p.x == q.x) && (p.z < q.z))));
 | 
						|
	}
 | 
						|
};
 | 
						|
 | 
						|
void ConvexHullInternal::compute(const Vector3 *p_coords, int32_t p_count) {
 | 
						|
	AABB aabb;
 | 
						|
	for (int32_t i = 0; i < p_count; i++) {
 | 
						|
		Vector3 p = p_coords[i];
 | 
						|
		if (i == 0) {
 | 
						|
			aabb.position = p;
 | 
						|
		} else {
 | 
						|
			aabb.expand_to(p);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	Vector3 s = aabb.size;
 | 
						|
	max_axis = s.max_axis();
 | 
						|
	min_axis = s.min_axis();
 | 
						|
	if (min_axis == max_axis) {
 | 
						|
		min_axis = (max_axis + 1) % 3;
 | 
						|
	}
 | 
						|
	med_axis = 3 - max_axis - min_axis;
 | 
						|
 | 
						|
	s /= real_t(10216);
 | 
						|
	if (((med_axis + 1) % 3) != max_axis) {
 | 
						|
		s *= -1;
 | 
						|
	}
 | 
						|
	scaling = s;
 | 
						|
 | 
						|
	if (s[0] != 0) {
 | 
						|
		s[0] = real_t(1) / s[0];
 | 
						|
	}
 | 
						|
	if (s[1] != 0) {
 | 
						|
		s[1] = real_t(1) / s[1];
 | 
						|
	}
 | 
						|
	if (s[2] != 0) {
 | 
						|
		s[2] = real_t(1) / s[2];
 | 
						|
	}
 | 
						|
 | 
						|
	center = aabb.position;
 | 
						|
 | 
						|
	LocalVector<Point32> points;
 | 
						|
	points.resize(p_count);
 | 
						|
	for (int32_t i = 0; i < p_count; i++) {
 | 
						|
		Vector3 p = p_coords[i];
 | 
						|
		p = (p - center) * s;
 | 
						|
		points[i].x = (int32_t)p[med_axis];
 | 
						|
		points[i].y = (int32_t)p[max_axis];
 | 
						|
		points[i].z = (int32_t)p[min_axis];
 | 
						|
		points[i].index = i;
 | 
						|
	}
 | 
						|
 | 
						|
	points.sort_custom<PointComparator>();
 | 
						|
 | 
						|
	vertex_pool.reset(true);
 | 
						|
	original_vertices.resize(p_count);
 | 
						|
	for (int32_t i = 0; i < p_count; i++) {
 | 
						|
		Vertex *v = vertex_pool.alloc();
 | 
						|
		v->edges = nullptr;
 | 
						|
		v->point = points[i];
 | 
						|
		v->copy = -1;
 | 
						|
		original_vertices[i] = v;
 | 
						|
	}
 | 
						|
 | 
						|
	points.clear();
 | 
						|
 | 
						|
	edge_pool.reset(true);
 | 
						|
 | 
						|
	used_edge_pairs = 0;
 | 
						|
	max_used_edge_pairs = 0;
 | 
						|
 | 
						|
	merge_stamp = -3;
 | 
						|
 | 
						|
	IntermediateHull hull;
 | 
						|
	compute_internal(0, p_count, hull);
 | 
						|
	vertex_list = hull.min_xy;
 | 
						|
#ifdef DEBUG_CONVEX_HULL
 | 
						|
	printf("max. edges %d (3v = %d)", max_used_edge_pairs, 3 * p_count);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
Vector3 ConvexHullInternal::to_gd_vector(const Point32 &p_v) {
 | 
						|
	Vector3 p;
 | 
						|
	p[med_axis] = real_t(p_v.x);
 | 
						|
	p[max_axis] = real_t(p_v.y);
 | 
						|
	p[min_axis] = real_t(p_v.z);
 | 
						|
	return p * scaling;
 | 
						|
}
 | 
						|
 | 
						|
Vector3 ConvexHullInternal::get_gd_normal(Face *p_face) {
 | 
						|
	return to_gd_vector(p_face->dir0).cross(to_gd_vector(p_face->dir1)).normalized();
 | 
						|
}
 | 
						|
 | 
						|
Vector3 ConvexHullInternal::get_coordinates(const Vertex *p_v) {
 | 
						|
	Vector3 p;
 | 
						|
	p[med_axis] = p_v->xvalue();
 | 
						|
	p[max_axis] = p_v->yvalue();
 | 
						|
	p[min_axis] = p_v->zvalue();
 | 
						|
	return p * scaling + center;
 | 
						|
}
 | 
						|
 | 
						|
real_t ConvexHullInternal::shrink(real_t p_amount, real_t p_clamp_amount) {
 | 
						|
	if (!vertex_list) {
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	int32_t stamp = --merge_stamp;
 | 
						|
	LocalVector<Vertex *> stack;
 | 
						|
	vertex_list->copy = stamp;
 | 
						|
	stack.push_back(vertex_list);
 | 
						|
	LocalVector<Face *> faces;
 | 
						|
 | 
						|
	Point32 ref = vertex_list->point;
 | 
						|
	Int128 hull_center_x(0, 0);
 | 
						|
	Int128 hull_center_y(0, 0);
 | 
						|
	Int128 hull_center_z(0, 0);
 | 
						|
	Int128 volume(0, 0);
 | 
						|
 | 
						|
	while (stack.size() > 0) {
 | 
						|
		Vertex *v = stack[stack.size() - 1];
 | 
						|
		stack.remove(stack.size() - 1);
 | 
						|
		Edge *e = v->edges;
 | 
						|
		if (e) {
 | 
						|
			do {
 | 
						|
				if (e->target->copy != stamp) {
 | 
						|
					e->target->copy = stamp;
 | 
						|
					stack.push_back(e->target);
 | 
						|
				}
 | 
						|
				if (e->copy != stamp) {
 | 
						|
					Face *face = face_pool.alloc();
 | 
						|
					face->init(e->target, e->reverse->prev->target, v);
 | 
						|
					faces.push_back(face);
 | 
						|
					Edge *f = e;
 | 
						|
 | 
						|
					Vertex *a = nullptr;
 | 
						|
					Vertex *b = nullptr;
 | 
						|
					do {
 | 
						|
						if (a && b) {
 | 
						|
							int64_t vol = (v->point - ref).dot((a->point - ref).cross(b->point - ref));
 | 
						|
							CHULL_ASSERT(vol >= 0);
 | 
						|
							Point32 c = v->point + a->point + b->point + ref;
 | 
						|
							hull_center_x += vol * c.x;
 | 
						|
							hull_center_y += vol * c.y;
 | 
						|
							hull_center_z += vol * c.z;
 | 
						|
							volume += vol;
 | 
						|
						}
 | 
						|
 | 
						|
						CHULL_ASSERT(f->copy != stamp);
 | 
						|
						f->copy = stamp;
 | 
						|
						f->face = face;
 | 
						|
 | 
						|
						a = b;
 | 
						|
						b = f->target;
 | 
						|
 | 
						|
						f = f->reverse->prev;
 | 
						|
					} while (f != e);
 | 
						|
				}
 | 
						|
				e = e->next;
 | 
						|
			} while (e != v->edges);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (volume.get_sign() <= 0) {
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	Vector3 hull_center;
 | 
						|
	hull_center[med_axis] = hull_center_x.to_scalar();
 | 
						|
	hull_center[max_axis] = hull_center_y.to_scalar();
 | 
						|
	hull_center[min_axis] = hull_center_z.to_scalar();
 | 
						|
	hull_center /= 4 * volume.to_scalar();
 | 
						|
	hull_center *= scaling;
 | 
						|
 | 
						|
	int32_t face_count = faces.size();
 | 
						|
 | 
						|
	if (p_clamp_amount > 0) {
 | 
						|
		real_t min_dist = FLT_MAX;
 | 
						|
		for (int32_t i = 0; i < face_count; i++) {
 | 
						|
			Vector3 normal = get_gd_normal(faces[i]);
 | 
						|
			real_t dist = normal.dot(to_gd_vector(faces[i]->origin) - hull_center);
 | 
						|
			if (dist < min_dist) {
 | 
						|
				min_dist = dist;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		if (min_dist <= 0) {
 | 
						|
			return 0;
 | 
						|
		}
 | 
						|
 | 
						|
		p_amount = MIN(p_amount, min_dist * p_clamp_amount);
 | 
						|
	}
 | 
						|
 | 
						|
	uint32_t seed = 243703;
 | 
						|
	for (int32_t i = 0; i < face_count; i++, seed = 1664525 * seed + 1013904223) {
 | 
						|
		SWAP(faces[i], faces[seed % face_count]);
 | 
						|
	}
 | 
						|
 | 
						|
	for (int32_t i = 0; i < face_count; i++) {
 | 
						|
		if (!shift_face(faces[i], p_amount, stack)) {
 | 
						|
			return -p_amount;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return p_amount;
 | 
						|
}
 | 
						|
 | 
						|
bool ConvexHullInternal::shift_face(Face *p_face, real_t p_amount, LocalVector<Vertex *> p_stack) {
 | 
						|
	Vector3 orig_shift = get_gd_normal(p_face) * -p_amount;
 | 
						|
	if (scaling[0] != 0) {
 | 
						|
		orig_shift[0] /= scaling[0];
 | 
						|
	}
 | 
						|
	if (scaling[1] != 0) {
 | 
						|
		orig_shift[1] /= scaling[1];
 | 
						|
	}
 | 
						|
	if (scaling[2] != 0) {
 | 
						|
		orig_shift[2] /= scaling[2];
 | 
						|
	}
 | 
						|
	Point32 shift((int32_t)orig_shift[med_axis], (int32_t)orig_shift[max_axis], (int32_t)orig_shift[min_axis]);
 | 
						|
	if (shift.is_zero()) {
 | 
						|
		return true;
 | 
						|
	}
 | 
						|
	Point64 normal = p_face->get_normal();
 | 
						|
#ifdef DEBUG_CONVEX_HULL
 | 
						|
	printf("\nShrinking p_face (%d %d %d) (%d %d %d) (%d %d %d) by (%d %d %d)\n",
 | 
						|
			p_face->origin.x, p_face->origin.y, p_face->origin.z, p_face->dir0.x, p_face->dir0.y, p_face->dir0.z, p_face->dir1.x, p_face->dir1.y, p_face->dir1.z, shift.x, shift.y, shift.z);
 | 
						|
#endif
 | 
						|
	int64_t orig_dot = p_face->origin.dot(normal);
 | 
						|
	Point32 shifted_origin = p_face->origin + shift;
 | 
						|
	int64_t shifted_dot = shifted_origin.dot(normal);
 | 
						|
	CHULL_ASSERT(shifted_dot <= orig_dot);
 | 
						|
	if (shifted_dot >= orig_dot) {
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
 | 
						|
	Edge *intersection = nullptr;
 | 
						|
 | 
						|
	Edge *start_edge = p_face->nearby_vertex->edges;
 | 
						|
#ifdef DEBUG_CONVEX_HULL
 | 
						|
	printf("Start edge is ");
 | 
						|
	start_edge->print();
 | 
						|
	printf(", normal is (%lld %lld %lld), shifted dot is %lld\n", normal.x, normal.y, normal.z, shifted_dot);
 | 
						|
#endif
 | 
						|
	Rational128 opt_dot = p_face->nearby_vertex->dot(normal);
 | 
						|
	int32_t cmp = opt_dot.compare(shifted_dot);
 | 
						|
#ifdef SHOW_ITERATIONS
 | 
						|
	int32_t n = 0;
 | 
						|
#endif
 | 
						|
	if (cmp >= 0) {
 | 
						|
		Edge *e = start_edge;
 | 
						|
		do {
 | 
						|
#ifdef SHOW_ITERATIONS
 | 
						|
			n++;
 | 
						|
#endif
 | 
						|
			Rational128 dot = e->target->dot(normal);
 | 
						|
			CHULL_ASSERT(dot.compare(orig_dot) <= 0);
 | 
						|
#ifdef DEBUG_CONVEX_HULL
 | 
						|
			printf("Moving downwards, edge is ");
 | 
						|
			e->print();
 | 
						|
			printf(", dot is %f (%f %lld)\n", (float)dot.to_scalar(), (float)opt_dot.to_scalar(), shifted_dot);
 | 
						|
#endif
 | 
						|
			if (dot.compare(opt_dot) < 0) {
 | 
						|
				int32_t c = dot.compare(shifted_dot);
 | 
						|
				opt_dot = dot;
 | 
						|
				e = e->reverse;
 | 
						|
				start_edge = e;
 | 
						|
				if (c < 0) {
 | 
						|
					intersection = e;
 | 
						|
					break;
 | 
						|
				}
 | 
						|
				cmp = c;
 | 
						|
			}
 | 
						|
			e = e->prev;
 | 
						|
		} while (e != start_edge);
 | 
						|
 | 
						|
		if (!intersection) {
 | 
						|
			return false;
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		Edge *e = start_edge;
 | 
						|
		do {
 | 
						|
#ifdef SHOW_ITERATIONS
 | 
						|
			n++;
 | 
						|
#endif
 | 
						|
			Rational128 dot = e->target->dot(normal);
 | 
						|
			CHULL_ASSERT(dot.compare(orig_dot) <= 0);
 | 
						|
#ifdef DEBUG_CONVEX_HULL
 | 
						|
			printf("Moving upwards, edge is ");
 | 
						|
			e->print();
 | 
						|
			printf(", dot is %f (%f %lld)\n", (float)dot.to_scalar(), (float)opt_dot.to_scalar(), shifted_dot);
 | 
						|
#endif
 | 
						|
			if (dot.compare(opt_dot) > 0) {
 | 
						|
				cmp = dot.compare(shifted_dot);
 | 
						|
				if (cmp >= 0) {
 | 
						|
					intersection = e;
 | 
						|
					break;
 | 
						|
				}
 | 
						|
				opt_dot = dot;
 | 
						|
				e = e->reverse;
 | 
						|
				start_edge = e;
 | 
						|
			}
 | 
						|
			e = e->prev;
 | 
						|
		} while (e != start_edge);
 | 
						|
 | 
						|
		if (!intersection) {
 | 
						|
			return true;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
#ifdef SHOW_ITERATIONS
 | 
						|
	printf("Needed %d iterations to find initial intersection\n", n);
 | 
						|
#endif
 | 
						|
 | 
						|
	if (cmp == 0) {
 | 
						|
		Edge *e = intersection->reverse->next;
 | 
						|
#ifdef SHOW_ITERATIONS
 | 
						|
		n = 0;
 | 
						|
#endif
 | 
						|
		while (e->target->dot(normal).compare(shifted_dot) <= 0) {
 | 
						|
#ifdef SHOW_ITERATIONS
 | 
						|
			n++;
 | 
						|
#endif
 | 
						|
			e = e->next;
 | 
						|
			if (e == intersection->reverse) {
 | 
						|
				return true;
 | 
						|
			}
 | 
						|
#ifdef DEBUG_CONVEX_HULL
 | 
						|
			printf("Checking for outwards edge, current edge is ");
 | 
						|
			e->print();
 | 
						|
			printf("\n");
 | 
						|
#endif
 | 
						|
		}
 | 
						|
#ifdef SHOW_ITERATIONS
 | 
						|
		printf("Needed %d iterations to check for complete containment\n", n);
 | 
						|
#endif
 | 
						|
	}
 | 
						|
 | 
						|
	Edge *first_intersection = nullptr;
 | 
						|
	Edge *face_edge = nullptr;
 | 
						|
	Edge *first_face_edge = nullptr;
 | 
						|
 | 
						|
#ifdef SHOW_ITERATIONS
 | 
						|
	int32_t m = 0;
 | 
						|
#endif
 | 
						|
	while (true) {
 | 
						|
#ifdef SHOW_ITERATIONS
 | 
						|
		m++;
 | 
						|
#endif
 | 
						|
#ifdef DEBUG_CONVEX_HULL
 | 
						|
		printf("Intersecting edge is ");
 | 
						|
		intersection->print();
 | 
						|
		printf("\n");
 | 
						|
#endif
 | 
						|
		if (cmp == 0) {
 | 
						|
			Edge *e = intersection->reverse->next;
 | 
						|
			start_edge = e;
 | 
						|
#ifdef SHOW_ITERATIONS
 | 
						|
			n = 0;
 | 
						|
#endif
 | 
						|
			while (true) {
 | 
						|
#ifdef SHOW_ITERATIONS
 | 
						|
				n++;
 | 
						|
#endif
 | 
						|
				if (e->target->dot(normal).compare(shifted_dot) >= 0) {
 | 
						|
					break;
 | 
						|
				}
 | 
						|
				intersection = e->reverse;
 | 
						|
				e = e->next;
 | 
						|
				if (e == start_edge) {
 | 
						|
					return true;
 | 
						|
				}
 | 
						|
			}
 | 
						|
#ifdef SHOW_ITERATIONS
 | 
						|
			printf("Needed %d iterations to advance intersection\n", n);
 | 
						|
#endif
 | 
						|
		}
 | 
						|
 | 
						|
#ifdef DEBUG_CONVEX_HULL
 | 
						|
		printf("Advanced intersecting edge to ");
 | 
						|
		intersection->print();
 | 
						|
		printf(", cmp = %d\n", cmp);
 | 
						|
#endif
 | 
						|
 | 
						|
		if (!first_intersection) {
 | 
						|
			first_intersection = intersection;
 | 
						|
		} else if (intersection == first_intersection) {
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		int32_t prev_cmp = cmp;
 | 
						|
		Edge *prev_intersection = intersection;
 | 
						|
		Edge *prev_face_edge = face_edge;
 | 
						|
 | 
						|
		Edge *e = intersection->reverse;
 | 
						|
#ifdef SHOW_ITERATIONS
 | 
						|
		n = 0;
 | 
						|
#endif
 | 
						|
		while (true) {
 | 
						|
#ifdef SHOW_ITERATIONS
 | 
						|
			n++;
 | 
						|
#endif
 | 
						|
			e = e->reverse->prev;
 | 
						|
			CHULL_ASSERT(e != intersection->reverse);
 | 
						|
			cmp = e->target->dot(normal).compare(shifted_dot);
 | 
						|
#ifdef DEBUG_CONVEX_HULL
 | 
						|
			printf("Testing edge ");
 | 
						|
			e->print();
 | 
						|
			printf(" -> cmp = %d\n", cmp);
 | 
						|
#endif
 | 
						|
			if (cmp >= 0) {
 | 
						|
				intersection = e;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
#ifdef SHOW_ITERATIONS
 | 
						|
		printf("Needed %d iterations to find other intersection of p_face\n", n);
 | 
						|
#endif
 | 
						|
 | 
						|
		if (cmp > 0) {
 | 
						|
			Vertex *removed = intersection->target;
 | 
						|
			e = intersection->reverse;
 | 
						|
			if (e->prev == e) {
 | 
						|
				removed->edges = nullptr;
 | 
						|
			} else {
 | 
						|
				removed->edges = e->prev;
 | 
						|
				e->prev->link(e->next);
 | 
						|
				e->link(e);
 | 
						|
			}
 | 
						|
#ifdef DEBUG_CONVEX_HULL
 | 
						|
			printf("1: Removed part contains (%d %d %d)\n", removed->point.x, removed->point.y, removed->point.z);
 | 
						|
#endif
 | 
						|
 | 
						|
			Point64 n0 = intersection->face->get_normal();
 | 
						|
			Point64 n1 = intersection->reverse->face->get_normal();
 | 
						|
			int64_t m00 = p_face->dir0.dot(n0);
 | 
						|
			int64_t m01 = p_face->dir1.dot(n0);
 | 
						|
			int64_t m10 = p_face->dir0.dot(n1);
 | 
						|
			int64_t m11 = p_face->dir1.dot(n1);
 | 
						|
			int64_t r0 = (intersection->face->origin - shifted_origin).dot(n0);
 | 
						|
			int64_t r1 = (intersection->reverse->face->origin - shifted_origin).dot(n1);
 | 
						|
			Int128 det = Int128::mul(m00, m11) - Int128::mul(m01, m10);
 | 
						|
			CHULL_ASSERT(det.get_sign() != 0);
 | 
						|
			Vertex *v = vertex_pool.alloc();
 | 
						|
			v->point.index = -1;
 | 
						|
			v->copy = -1;
 | 
						|
			v->point128 = PointR128(Int128::mul(p_face->dir0.x * r0, m11) - Int128::mul(p_face->dir0.x * r1, m01) + Int128::mul(p_face->dir1.x * r1, m00) - Int128::mul(p_face->dir1.x * r0, m10) + det * shifted_origin.x,
 | 
						|
					Int128::mul(p_face->dir0.y * r0, m11) - Int128::mul(p_face->dir0.y * r1, m01) + Int128::mul(p_face->dir1.y * r1, m00) - Int128::mul(p_face->dir1.y * r0, m10) + det * shifted_origin.y,
 | 
						|
					Int128::mul(p_face->dir0.z * r0, m11) - Int128::mul(p_face->dir0.z * r1, m01) + Int128::mul(p_face->dir1.z * r1, m00) - Int128::mul(p_face->dir1.z * r0, m10) + det * shifted_origin.z,
 | 
						|
					det);
 | 
						|
			v->point.x = (int32_t)v->point128.xvalue();
 | 
						|
			v->point.y = (int32_t)v->point128.yvalue();
 | 
						|
			v->point.z = (int32_t)v->point128.zvalue();
 | 
						|
			intersection->target = v;
 | 
						|
			v->edges = e;
 | 
						|
 | 
						|
			p_stack.push_back(v);
 | 
						|
			p_stack.push_back(removed);
 | 
						|
			p_stack.push_back(nullptr);
 | 
						|
		}
 | 
						|
 | 
						|
		if (cmp || prev_cmp || (prev_intersection->reverse->next->target != intersection->target)) {
 | 
						|
			face_edge = new_edge_pair(prev_intersection->target, intersection->target);
 | 
						|
			if (prev_cmp == 0) {
 | 
						|
				face_edge->link(prev_intersection->reverse->next);
 | 
						|
			}
 | 
						|
			if ((prev_cmp == 0) || prev_face_edge) {
 | 
						|
				prev_intersection->reverse->link(face_edge);
 | 
						|
			}
 | 
						|
			if (cmp == 0) {
 | 
						|
				intersection->reverse->prev->link(face_edge->reverse);
 | 
						|
			}
 | 
						|
			face_edge->reverse->link(intersection->reverse);
 | 
						|
		} else {
 | 
						|
			face_edge = prev_intersection->reverse->next;
 | 
						|
		}
 | 
						|
 | 
						|
		if (prev_face_edge) {
 | 
						|
			if (prev_cmp > 0) {
 | 
						|
				face_edge->link(prev_face_edge->reverse);
 | 
						|
			} else if (face_edge != prev_face_edge->reverse) {
 | 
						|
				p_stack.push_back(prev_face_edge->target);
 | 
						|
				while (face_edge->next != prev_face_edge->reverse) {
 | 
						|
					Vertex *removed = face_edge->next->target;
 | 
						|
					remove_edge_pair(face_edge->next);
 | 
						|
					p_stack.push_back(removed);
 | 
						|
#ifdef DEBUG_CONVEX_HULL
 | 
						|
					printf("2: Removed part contains (%d %d %d)\n", removed->point.x, removed->point.y, removed->point.z);
 | 
						|
#endif
 | 
						|
				}
 | 
						|
				p_stack.push_back(nullptr);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		face_edge->face = p_face;
 | 
						|
		face_edge->reverse->face = intersection->face;
 | 
						|
 | 
						|
		if (!first_face_edge) {
 | 
						|
			first_face_edge = face_edge;
 | 
						|
		}
 | 
						|
	}
 | 
						|
#ifdef SHOW_ITERATIONS
 | 
						|
	printf("Needed %d iterations to process all intersections\n", m);
 | 
						|
#endif
 | 
						|
 | 
						|
	if (cmp > 0) {
 | 
						|
		first_face_edge->reverse->target = face_edge->target;
 | 
						|
		first_intersection->reverse->link(first_face_edge);
 | 
						|
		first_face_edge->link(face_edge->reverse);
 | 
						|
	} else if (first_face_edge != face_edge->reverse) {
 | 
						|
		p_stack.push_back(face_edge->target);
 | 
						|
		while (first_face_edge->next != face_edge->reverse) {
 | 
						|
			Vertex *removed = first_face_edge->next->target;
 | 
						|
			remove_edge_pair(first_face_edge->next);
 | 
						|
			p_stack.push_back(removed);
 | 
						|
#ifdef DEBUG_CONVEX_HULL
 | 
						|
			printf("3: Removed part contains (%d %d %d)\n", removed->point.x, removed->point.y, removed->point.z);
 | 
						|
#endif
 | 
						|
		}
 | 
						|
		p_stack.push_back(nullptr);
 | 
						|
	}
 | 
						|
 | 
						|
	CHULL_ASSERT(p_stack.size() > 0);
 | 
						|
	vertex_list = p_stack[0];
 | 
						|
 | 
						|
#ifdef DEBUG_CONVEX_HULL
 | 
						|
	printf("Removing part\n");
 | 
						|
#endif
 | 
						|
#ifdef SHOW_ITERATIONS
 | 
						|
	n = 0;
 | 
						|
#endif
 | 
						|
	uint32_t pos = 0;
 | 
						|
	while (pos < p_stack.size()) {
 | 
						|
		uint32_t end = p_stack.size();
 | 
						|
		while (pos < end) {
 | 
						|
			Vertex *kept = p_stack[pos++];
 | 
						|
#ifdef DEBUG_CONVEX_HULL
 | 
						|
			kept->print();
 | 
						|
#endif
 | 
						|
			bool deeper = false;
 | 
						|
			Vertex *removed;
 | 
						|
			while ((removed = p_stack[pos++]) != nullptr) {
 | 
						|
#ifdef SHOW_ITERATIONS
 | 
						|
				n++;
 | 
						|
#endif
 | 
						|
				kept->receive_nearby_faces(removed);
 | 
						|
				while (removed->edges) {
 | 
						|
					if (!deeper) {
 | 
						|
						deeper = true;
 | 
						|
						p_stack.push_back(kept);
 | 
						|
					}
 | 
						|
					p_stack.push_back(removed->edges->target);
 | 
						|
					remove_edge_pair(removed->edges);
 | 
						|
				}
 | 
						|
			}
 | 
						|
			if (deeper) {
 | 
						|
				p_stack.push_back(nullptr);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
#ifdef SHOW_ITERATIONS
 | 
						|
	printf("Needed %d iterations to remove part\n", n);
 | 
						|
#endif
 | 
						|
 | 
						|
	p_stack.resize(0);
 | 
						|
	p_face->origin = shifted_origin;
 | 
						|
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
static int32_t get_vertex_copy(ConvexHullInternal::Vertex *p_vertex, LocalVector<ConvexHullInternal::Vertex *> &p_vertices) {
 | 
						|
	int32_t index = p_vertex->copy;
 | 
						|
	if (index < 0) {
 | 
						|
		index = p_vertices.size();
 | 
						|
		p_vertex->copy = index;
 | 
						|
		p_vertices.push_back(p_vertex);
 | 
						|
#ifdef DEBUG_CONVEX_HULL
 | 
						|
		printf("Vertex %d gets index *%d\n", p_vertex->point.index, index);
 | 
						|
#endif
 | 
						|
	}
 | 
						|
	return index;
 | 
						|
}
 | 
						|
 | 
						|
real_t ConvexHullComputer::compute(const Vector3 *p_coords, int32_t p_count, real_t p_shrink, real_t p_shrink_clamp) {
 | 
						|
	if (p_count <= 0) {
 | 
						|
		vertices.clear();
 | 
						|
		edges.clear();
 | 
						|
		faces.clear();
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	ConvexHullInternal hull;
 | 
						|
	hull.compute(p_coords, p_count);
 | 
						|
 | 
						|
	real_t shift = 0;
 | 
						|
	if ((p_shrink > 0) && ((shift = hull.shrink(p_shrink, p_shrink_clamp)) < 0)) {
 | 
						|
		vertices.clear();
 | 
						|
		edges.clear();
 | 
						|
		faces.clear();
 | 
						|
		return shift;
 | 
						|
	}
 | 
						|
 | 
						|
	vertices.resize(0);
 | 
						|
	edges.resize(0);
 | 
						|
	faces.resize(0);
 | 
						|
 | 
						|
	LocalVector<ConvexHullInternal::Vertex *> old_vertices;
 | 
						|
	get_vertex_copy(hull.vertex_list, old_vertices);
 | 
						|
	int32_t copied = 0;
 | 
						|
	while (copied < (int32_t)old_vertices.size()) {
 | 
						|
		ConvexHullInternal::Vertex *v = old_vertices[copied];
 | 
						|
		vertices.push_back(hull.get_coordinates(v));
 | 
						|
		ConvexHullInternal::Edge *first_edge = v->edges;
 | 
						|
		if (first_edge) {
 | 
						|
			int32_t first_copy = -1;
 | 
						|
			int32_t prev_copy = -1;
 | 
						|
			ConvexHullInternal::Edge *e = first_edge;
 | 
						|
			do {
 | 
						|
				if (e->copy < 0) {
 | 
						|
					int32_t s = edges.size();
 | 
						|
					edges.push_back(Edge());
 | 
						|
					edges.push_back(Edge());
 | 
						|
					Edge *c = &edges[s];
 | 
						|
					Edge *r = &edges[s + 1];
 | 
						|
					e->copy = s;
 | 
						|
					e->reverse->copy = s + 1;
 | 
						|
					c->reverse = 1;
 | 
						|
					r->reverse = -1;
 | 
						|
					c->target_vertex = get_vertex_copy(e->target, old_vertices);
 | 
						|
					r->target_vertex = copied;
 | 
						|
#ifdef DEBUG_CONVEX_HULL
 | 
						|
					printf("      CREATE: Vertex *%d has edge to *%d\n", copied, c->get_target_vertex());
 | 
						|
#endif
 | 
						|
				}
 | 
						|
				if (prev_copy >= 0) {
 | 
						|
					edges[e->copy].next = prev_copy - e->copy;
 | 
						|
				} else {
 | 
						|
					first_copy = e->copy;
 | 
						|
				}
 | 
						|
				prev_copy = e->copy;
 | 
						|
				e = e->next;
 | 
						|
			} while (e != first_edge);
 | 
						|
			edges[first_copy].next = prev_copy - first_copy;
 | 
						|
		}
 | 
						|
		copied++;
 | 
						|
	}
 | 
						|
 | 
						|
	for (int32_t i = 0; i < copied; i++) {
 | 
						|
		ConvexHullInternal::Vertex *v = old_vertices[i];
 | 
						|
		ConvexHullInternal::Edge *first_edge = v->edges;
 | 
						|
		if (first_edge) {
 | 
						|
			ConvexHullInternal::Edge *e = first_edge;
 | 
						|
			do {
 | 
						|
				if (e->copy >= 0) {
 | 
						|
#ifdef DEBUG_CONVEX_HULL
 | 
						|
					printf("Vertex *%d has edge to *%d\n", i, edges[e->copy].get_target_vertex());
 | 
						|
#endif
 | 
						|
					faces.push_back(e->copy);
 | 
						|
					ConvexHullInternal::Edge *f = e;
 | 
						|
					do {
 | 
						|
#ifdef DEBUG_CONVEX_HULL
 | 
						|
						printf("   Face *%d\n", edges[f->copy].get_target_vertex());
 | 
						|
#endif
 | 
						|
						f->copy = -1;
 | 
						|
						f = f->reverse->prev;
 | 
						|
					} while (f != e);
 | 
						|
				}
 | 
						|
				e = e->next;
 | 
						|
			} while (e != first_edge);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return shift;
 | 
						|
}
 | 
						|
 | 
						|
Error ConvexHullComputer::convex_hull(const Vector<Vector3> &p_points, Geometry::MeshData &r_mesh) {
 | 
						|
	r_mesh = Geometry::MeshData(); // clear
 | 
						|
 | 
						|
	if (p_points.size() == 0) {
 | 
						|
		return FAILED; // matches QuickHull
 | 
						|
	}
 | 
						|
 | 
						|
	ConvexHullComputer ch;
 | 
						|
	ch.compute(p_points.ptr(), p_points.size(), -1.0, -1.0);
 | 
						|
 | 
						|
	r_mesh.vertices = ch.vertices;
 | 
						|
 | 
						|
	r_mesh.edges.resize(ch.edges.size());
 | 
						|
	for (uint32_t i = 0; i < ch.edges.size(); i++) {
 | 
						|
		r_mesh.edges.write[i].a = (&ch.edges[i])->get_source_vertex();
 | 
						|
		r_mesh.edges.write[i].b = (&ch.edges[i])->get_target_vertex();
 | 
						|
	}
 | 
						|
 | 
						|
	r_mesh.faces.resize(ch.faces.size());
 | 
						|
	for (uint32_t i = 0; i < ch.faces.size(); i++) {
 | 
						|
		const Edge *e_start = &ch.edges[ch.faces[i]];
 | 
						|
		const Edge *e = e_start;
 | 
						|
		Geometry::MeshData::Face &face = r_mesh.faces.write[i];
 | 
						|
 | 
						|
		do {
 | 
						|
			face.indices.push_back(e->get_target_vertex());
 | 
						|
 | 
						|
			e = e->get_next_edge_of_face();
 | 
						|
		} while (e != e_start);
 | 
						|
 | 
						|
		// compute normal
 | 
						|
		if (face.indices.size() >= 3) {
 | 
						|
			face.plane = Plane(r_mesh.vertices[face.indices[0]], r_mesh.vertices[face.indices[2]], r_mesh.vertices[face.indices[1]]);
 | 
						|
		} else {
 | 
						|
			WARN_PRINT("Too few vertices per face.");
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return OK;
 | 
						|
}
 |