mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-31 05:31:01 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1293 lines
		
	
	
	
		
			50 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1293 lines
		
	
	
	
		
			50 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /**************************************************************************/
 | |
| /*  rendering_device_vulkan.h                                             */
 | |
| /**************************************************************************/
 | |
| /*                         This file is part of:                          */
 | |
| /*                             GODOT ENGINE                               */
 | |
| /*                        https://godotengine.org                         */
 | |
| /**************************************************************************/
 | |
| /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
 | |
| /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur.                  */
 | |
| /*                                                                        */
 | |
| /* Permission is hereby granted, free of charge, to any person obtaining  */
 | |
| /* a copy of this software and associated documentation files (the        */
 | |
| /* "Software"), to deal in the Software without restriction, including    */
 | |
| /* without limitation the rights to use, copy, modify, merge, publish,    */
 | |
| /* distribute, sublicense, and/or sell copies of the Software, and to     */
 | |
| /* permit persons to whom the Software is furnished to do so, subject to  */
 | |
| /* the following conditions:                                              */
 | |
| /*                                                                        */
 | |
| /* The above copyright notice and this permission notice shall be         */
 | |
| /* included in all copies or substantial portions of the Software.        */
 | |
| /*                                                                        */
 | |
| /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,        */
 | |
| /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF     */
 | |
| /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
 | |
| /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY   */
 | |
| /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,   */
 | |
| /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE      */
 | |
| /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                 */
 | |
| /**************************************************************************/
 | |
| 
 | |
| #ifndef RENDERING_DEVICE_VULKAN_H
 | |
| #define RENDERING_DEVICE_VULKAN_H
 | |
| 
 | |
| #include "core/object/worker_thread_pool.h"
 | |
| #include "core/os/thread_safe.h"
 | |
| #include "core/templates/local_vector.h"
 | |
| #include "core/templates/oa_hash_map.h"
 | |
| #include "core/templates/rid_owner.h"
 | |
| #include "servers/rendering/rendering_device.h"
 | |
| 
 | |
| #ifdef DEBUG_ENABLED
 | |
| #ifndef _DEBUG
 | |
| #define _DEBUG
 | |
| #endif
 | |
| #endif
 | |
| #include "thirdparty/vulkan/vk_mem_alloc.h"
 | |
| 
 | |
| #ifdef USE_VOLK
 | |
| #include <volk.h>
 | |
| #else
 | |
| #include <vulkan/vulkan.h>
 | |
| #endif
 | |
| 
 | |
| class VulkanContext;
 | |
| 
 | |
| class RenderingDeviceVulkan : public RenderingDevice {
 | |
| 	_THREAD_SAFE_CLASS_
 | |
| 
 | |
| 	// Miscellaneous tables that map
 | |
| 	// our enums to enums used
 | |
| 	// by vulkan.
 | |
| 
 | |
| 	VkPhysicalDeviceLimits limits;
 | |
| 	static const VkFormat vulkan_formats[DATA_FORMAT_MAX];
 | |
| 	static const char *named_formats[DATA_FORMAT_MAX];
 | |
| 	static const VkCompareOp compare_operators[COMPARE_OP_MAX];
 | |
| 	static const VkStencilOp stencil_operations[STENCIL_OP_MAX];
 | |
| 	static const VkSampleCountFlagBits rasterization_sample_count[TEXTURE_SAMPLES_MAX];
 | |
| 	static const VkLogicOp logic_operations[RenderingDevice::LOGIC_OP_MAX];
 | |
| 	static const VkBlendFactor blend_factors[RenderingDevice::BLEND_FACTOR_MAX];
 | |
| 	static const VkBlendOp blend_operations[RenderingDevice::BLEND_OP_MAX];
 | |
| 	static const VkSamplerAddressMode address_modes[SAMPLER_REPEAT_MODE_MAX];
 | |
| 	static const VkBorderColor sampler_border_colors[SAMPLER_BORDER_COLOR_MAX];
 | |
| 	static const VkImageType vulkan_image_type[TEXTURE_TYPE_MAX];
 | |
| 
 | |
| 	// Functions used for format
 | |
| 	// validation, and ensures the
 | |
| 	// user passes valid data.
 | |
| 
 | |
| 	static int get_format_vertex_size(DataFormat p_format);
 | |
| 	static uint32_t get_image_format_pixel_size(DataFormat p_format);
 | |
| 	static void get_compressed_image_format_block_dimensions(DataFormat p_format, uint32_t &r_w, uint32_t &r_h);
 | |
| 	uint32_t get_compressed_image_format_block_byte_size(DataFormat p_format);
 | |
| 	static uint32_t get_compressed_image_format_pixel_rshift(DataFormat p_format);
 | |
| 	static uint32_t get_image_format_required_size(DataFormat p_format, uint32_t p_width, uint32_t p_height, uint32_t p_depth, uint32_t p_mipmaps, uint32_t *r_blockw = nullptr, uint32_t *r_blockh = nullptr, uint32_t *r_depth = nullptr);
 | |
| 	static uint32_t get_image_required_mipmaps(uint32_t p_width, uint32_t p_height, uint32_t p_depth);
 | |
| 	static bool format_has_stencil(DataFormat p_format);
 | |
| 
 | |
| 	/***************************/
 | |
| 	/**** ID INFRASTRUCTURE ****/
 | |
| 	/***************************/
 | |
| 
 | |
| 	enum IDType {
 | |
| 		ID_TYPE_FRAMEBUFFER_FORMAT,
 | |
| 		ID_TYPE_VERTEX_FORMAT,
 | |
| 		ID_TYPE_DRAW_LIST,
 | |
| 		ID_TYPE_SPLIT_DRAW_LIST,
 | |
| 		ID_TYPE_COMPUTE_LIST,
 | |
| 		ID_TYPE_MAX,
 | |
| 		ID_BASE_SHIFT = 58 // 5 bits for ID types.
 | |
| 	};
 | |
| 
 | |
| 	VkDevice device = VK_NULL_HANDLE;
 | |
| 
 | |
| 	HashMap<RID, HashSet<RID>> dependency_map; // IDs to IDs that depend on it.
 | |
| 	HashMap<RID, HashSet<RID>> reverse_dependency_map; // Same as above, but in reverse.
 | |
| 
 | |
| 	void _add_dependency(RID p_id, RID p_depends_on);
 | |
| 	void _free_dependencies(RID p_id);
 | |
| 
 | |
| 	/*****************/
 | |
| 	/**** TEXTURE ****/
 | |
| 	/*****************/
 | |
| 
 | |
| 	// In Vulkan, the concept of textures does not exist,
 | |
| 	// instead there is the image (the memory pretty much,
 | |
| 	// the view (how the memory is interpreted) and the
 | |
| 	// sampler (how it's sampled from the shader).
 | |
| 	//
 | |
| 	// Texture here includes the first two stages, but
 | |
| 	// It's possible to create textures sharing the image
 | |
| 	// but with different views. The main use case for this
 | |
| 	// is textures that can be read as both SRGB/Linear,
 | |
| 	// or slices of a texture (a mipmap, a layer, a 3D slice)
 | |
| 	// for a framebuffer to render into it.
 | |
| 
 | |
| 	struct Texture {
 | |
| 		VkImage image = VK_NULL_HANDLE;
 | |
| 		VmaAllocation allocation = nullptr;
 | |
| 		VmaAllocationInfo allocation_info;
 | |
| 		VkImageView view = VK_NULL_HANDLE;
 | |
| 
 | |
| 		TextureType type;
 | |
| 		DataFormat format;
 | |
| 		TextureSamples samples;
 | |
| 		uint32_t width = 0;
 | |
| 		uint32_t height = 0;
 | |
| 		uint32_t depth = 0;
 | |
| 		uint32_t layers = 0;
 | |
| 		uint32_t mipmaps = 0;
 | |
| 		uint32_t usage_flags = 0;
 | |
| 		uint32_t base_mipmap = 0;
 | |
| 		uint32_t base_layer = 0;
 | |
| 
 | |
| 		Vector<DataFormat> allowed_shared_formats;
 | |
| 
 | |
| 		VkImageLayout layout;
 | |
| 
 | |
| 		uint64_t used_in_frame = 0;
 | |
| 		bool used_in_transfer = false;
 | |
| 		bool used_in_raster = false;
 | |
| 		bool used_in_compute = false;
 | |
| 
 | |
| 		bool is_resolve_buffer = false;
 | |
| 
 | |
| 		uint32_t read_aspect_mask = 0;
 | |
| 		uint32_t barrier_aspect_mask = 0;
 | |
| 		bool bound = false; // Bound to framebffer.
 | |
| 		RID owner;
 | |
| 	};
 | |
| 
 | |
| 	RID_Owner<Texture, true> texture_owner;
 | |
| 	uint32_t texture_upload_region_size_px = 0;
 | |
| 
 | |
| 	Vector<uint8_t> _texture_get_data_from_image(Texture *tex, VkImage p_image, VmaAllocation p_allocation, uint32_t p_layer, bool p_2d = false);
 | |
| 	Error _texture_update(RID p_texture, uint32_t p_layer, const Vector<uint8_t> &p_data, BitField<BarrierMask> p_post_barrier, bool p_use_setup_queue);
 | |
| 
 | |
| 	/*****************/
 | |
| 	/**** SAMPLER ****/
 | |
| 	/*****************/
 | |
| 
 | |
| 	RID_Owner<VkSampler> sampler_owner;
 | |
| 
 | |
| 	/***************************/
 | |
| 	/**** BUFFER MANAGEMENT ****/
 | |
| 	/***************************/
 | |
| 
 | |
| 	// These are temporary buffers on CPU memory that hold
 | |
| 	// the information until the CPU fetches it and places it
 | |
| 	// either on GPU buffers, or images (textures). It ensures
 | |
| 	// updates are properly synchronized with whatever the
 | |
| 	// GPU is doing.
 | |
| 	//
 | |
| 	// The logic here is as follows, only 3 of these
 | |
| 	// blocks are created at the beginning (one per frame)
 | |
| 	// they can each belong to a frame (assigned to current when
 | |
| 	// used) and they can only be reused after the same frame is
 | |
| 	// recycled.
 | |
| 	//
 | |
| 	// When CPU requires to allocate more than what is available,
 | |
| 	// more of these buffers are created. If a limit is reached,
 | |
| 	// then a fence will ensure will wait for blocks allocated
 | |
| 	// in previous frames are processed. If that fails, then
 | |
| 	// another fence will ensure everything pending for the current
 | |
| 	// frame is processed (effectively stalling).
 | |
| 	//
 | |
| 	// See the comments in the code to understand better how it works.
 | |
| 
 | |
| 	struct StagingBufferBlock {
 | |
| 		VkBuffer buffer = VK_NULL_HANDLE;
 | |
| 		VmaAllocation allocation = nullptr;
 | |
| 		uint64_t frame_used = 0;
 | |
| 		uint32_t fill_amount = 0;
 | |
| 	};
 | |
| 
 | |
| 	Vector<StagingBufferBlock> staging_buffer_blocks;
 | |
| 	int staging_buffer_current = 0;
 | |
| 	uint32_t staging_buffer_block_size = 0;
 | |
| 	uint64_t staging_buffer_max_size = 0;
 | |
| 	bool staging_buffer_used = false;
 | |
| 
 | |
| 	Error _staging_buffer_allocate(uint32_t p_amount, uint32_t p_required_align, uint32_t &r_alloc_offset, uint32_t &r_alloc_size, bool p_can_segment = true);
 | |
| 	Error _insert_staging_block();
 | |
| 
 | |
| 	struct Buffer {
 | |
| 		uint32_t size = 0;
 | |
| 		uint32_t usage = 0;
 | |
| 		VkBuffer buffer = VK_NULL_HANDLE;
 | |
| 		VmaAllocation allocation = nullptr;
 | |
| 		VkDescriptorBufferInfo buffer_info; // Used for binding.
 | |
| 		Buffer() {
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	Error _buffer_allocate(Buffer *p_buffer, uint32_t p_size, uint32_t p_usage, VmaMemoryUsage p_mem_usage, VmaAllocationCreateFlags p_mem_flags);
 | |
| 	Error _buffer_free(Buffer *p_buffer);
 | |
| 	Error _buffer_update(Buffer *p_buffer, size_t p_offset, const uint8_t *p_data, size_t p_data_size, bool p_use_draw_command_buffer = false, uint32_t p_required_align = 32);
 | |
| 
 | |
| 	void _full_barrier(bool p_sync_with_draw);
 | |
| 	void _memory_barrier(VkPipelineStageFlags p_src_stage_mask, VkPipelineStageFlags p_dst_stage_mask, VkAccessFlags p_src_access, VkAccessFlags p_dst_access, bool p_sync_with_draw);
 | |
| 	void _buffer_memory_barrier(VkBuffer buffer, uint64_t p_from, uint64_t p_size, VkPipelineStageFlags p_src_stage_mask, VkPipelineStageFlags p_dst_stage_mask, VkAccessFlags p_src_access, VkAccessFlags p_dst_access, bool p_sync_with_draw);
 | |
| 
 | |
| 	/*********************/
 | |
| 	/**** FRAMEBUFFER ****/
 | |
| 	/*********************/
 | |
| 
 | |
| 	// In Vulkan, framebuffers work similar to how they
 | |
| 	// do in OpenGL, with the exception that
 | |
| 	// the "format" (vkRenderPass) is not dynamic
 | |
| 	// and must be more or less the same as the one
 | |
| 	// used for the render pipelines.
 | |
| 
 | |
| 	struct FramebufferFormatKey {
 | |
| 		Vector<AttachmentFormat> attachments;
 | |
| 		Vector<FramebufferPass> passes;
 | |
| 		uint32_t view_count = 1;
 | |
| 
 | |
| 		bool operator<(const FramebufferFormatKey &p_key) const {
 | |
| 			if (view_count != p_key.view_count) {
 | |
| 				return view_count < p_key.view_count;
 | |
| 			}
 | |
| 
 | |
| 			uint32_t pass_size = passes.size();
 | |
| 			uint32_t key_pass_size = p_key.passes.size();
 | |
| 			if (pass_size != key_pass_size) {
 | |
| 				return pass_size < key_pass_size;
 | |
| 			}
 | |
| 			const FramebufferPass *pass_ptr = passes.ptr();
 | |
| 			const FramebufferPass *key_pass_ptr = p_key.passes.ptr();
 | |
| 
 | |
| 			for (uint32_t i = 0; i < pass_size; i++) {
 | |
| 				{ // Compare color attachments.
 | |
| 					uint32_t attachment_size = pass_ptr[i].color_attachments.size();
 | |
| 					uint32_t key_attachment_size = key_pass_ptr[i].color_attachments.size();
 | |
| 					if (attachment_size != key_attachment_size) {
 | |
| 						return attachment_size < key_attachment_size;
 | |
| 					}
 | |
| 					const int32_t *pass_attachment_ptr = pass_ptr[i].color_attachments.ptr();
 | |
| 					const int32_t *key_pass_attachment_ptr = key_pass_ptr[i].color_attachments.ptr();
 | |
| 
 | |
| 					for (uint32_t j = 0; j < attachment_size; j++) {
 | |
| 						if (pass_attachment_ptr[j] != key_pass_attachment_ptr[j]) {
 | |
| 							return pass_attachment_ptr[j] < key_pass_attachment_ptr[j];
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 				{ // Compare input attachments.
 | |
| 					uint32_t attachment_size = pass_ptr[i].input_attachments.size();
 | |
| 					uint32_t key_attachment_size = key_pass_ptr[i].input_attachments.size();
 | |
| 					if (attachment_size != key_attachment_size) {
 | |
| 						return attachment_size < key_attachment_size;
 | |
| 					}
 | |
| 					const int32_t *pass_attachment_ptr = pass_ptr[i].input_attachments.ptr();
 | |
| 					const int32_t *key_pass_attachment_ptr = key_pass_ptr[i].input_attachments.ptr();
 | |
| 
 | |
| 					for (uint32_t j = 0; j < attachment_size; j++) {
 | |
| 						if (pass_attachment_ptr[j] != key_pass_attachment_ptr[j]) {
 | |
| 							return pass_attachment_ptr[j] < key_pass_attachment_ptr[j];
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 				{ // Compare resolve attachments.
 | |
| 					uint32_t attachment_size = pass_ptr[i].resolve_attachments.size();
 | |
| 					uint32_t key_attachment_size = key_pass_ptr[i].resolve_attachments.size();
 | |
| 					if (attachment_size != key_attachment_size) {
 | |
| 						return attachment_size < key_attachment_size;
 | |
| 					}
 | |
| 					const int32_t *pass_attachment_ptr = pass_ptr[i].resolve_attachments.ptr();
 | |
| 					const int32_t *key_pass_attachment_ptr = key_pass_ptr[i].resolve_attachments.ptr();
 | |
| 
 | |
| 					for (uint32_t j = 0; j < attachment_size; j++) {
 | |
| 						if (pass_attachment_ptr[j] != key_pass_attachment_ptr[j]) {
 | |
| 							return pass_attachment_ptr[j] < key_pass_attachment_ptr[j];
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 				{ // Compare preserve attachments.
 | |
| 					uint32_t attachment_size = pass_ptr[i].preserve_attachments.size();
 | |
| 					uint32_t key_attachment_size = key_pass_ptr[i].preserve_attachments.size();
 | |
| 					if (attachment_size != key_attachment_size) {
 | |
| 						return attachment_size < key_attachment_size;
 | |
| 					}
 | |
| 					const int32_t *pass_attachment_ptr = pass_ptr[i].preserve_attachments.ptr();
 | |
| 					const int32_t *key_pass_attachment_ptr = key_pass_ptr[i].preserve_attachments.ptr();
 | |
| 
 | |
| 					for (uint32_t j = 0; j < attachment_size; j++) {
 | |
| 						if (pass_attachment_ptr[j] != key_pass_attachment_ptr[j]) {
 | |
| 							return pass_attachment_ptr[j] < key_pass_attachment_ptr[j];
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 				if (pass_ptr[i].depth_attachment != key_pass_ptr[i].depth_attachment) {
 | |
| 					return pass_ptr[i].depth_attachment < key_pass_ptr[i].depth_attachment;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			int as = attachments.size();
 | |
| 			int bs = p_key.attachments.size();
 | |
| 			if (as != bs) {
 | |
| 				return as < bs;
 | |
| 			}
 | |
| 
 | |
| 			const AttachmentFormat *af_a = attachments.ptr();
 | |
| 			const AttachmentFormat *af_b = p_key.attachments.ptr();
 | |
| 			for (int i = 0; i < as; i++) {
 | |
| 				const AttachmentFormat &a = af_a[i];
 | |
| 				const AttachmentFormat &b = af_b[i];
 | |
| 				if (a.format != b.format) {
 | |
| 					return a.format < b.format;
 | |
| 				}
 | |
| 				if (a.samples != b.samples) {
 | |
| 					return a.samples < b.samples;
 | |
| 				}
 | |
| 				if (a.usage_flags != b.usage_flags) {
 | |
| 					return a.usage_flags < b.usage_flags;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			return false; // Equal.
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	VkRenderPass _render_pass_create(const Vector<AttachmentFormat> &p_attachments, const Vector<FramebufferPass> &p_passes, InitialAction p_initial_action, FinalAction p_final_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, uint32_t p_view_count = 1, Vector<TextureSamples> *r_samples = nullptr);
 | |
| 	// This is a cache and it's never freed, it ensures
 | |
| 	// IDs for a given format are always unique.
 | |
| 	RBMap<FramebufferFormatKey, FramebufferFormatID> framebuffer_format_cache;
 | |
| 	struct FramebufferFormat {
 | |
| 		const RBMap<FramebufferFormatKey, FramebufferFormatID>::Element *E;
 | |
| 		VkRenderPass render_pass = VK_NULL_HANDLE; // Here for constructing shaders, never used, see section (7.2. Render Pass Compatibility from Vulkan spec).
 | |
| 		Vector<TextureSamples> pass_samples;
 | |
| 		uint32_t view_count = 1; // Number of views.
 | |
| 	};
 | |
| 
 | |
| 	HashMap<FramebufferFormatID, FramebufferFormat> framebuffer_formats;
 | |
| 
 | |
| 	struct Framebuffer {
 | |
| 		FramebufferFormatID format_id = 0;
 | |
| 		struct VersionKey {
 | |
| 			InitialAction initial_color_action;
 | |
| 			FinalAction final_color_action;
 | |
| 			InitialAction initial_depth_action;
 | |
| 			FinalAction final_depth_action;
 | |
| 			uint32_t view_count;
 | |
| 
 | |
| 			bool operator<(const VersionKey &p_key) const {
 | |
| 				if (initial_color_action == p_key.initial_color_action) {
 | |
| 					if (final_color_action == p_key.final_color_action) {
 | |
| 						if (initial_depth_action == p_key.initial_depth_action) {
 | |
| 							if (final_depth_action == p_key.final_depth_action) {
 | |
| 								return view_count < p_key.view_count;
 | |
| 							} else {
 | |
| 								return final_depth_action < p_key.final_depth_action;
 | |
| 							}
 | |
| 						} else {
 | |
| 							return initial_depth_action < p_key.initial_depth_action;
 | |
| 						}
 | |
| 					} else {
 | |
| 						return final_color_action < p_key.final_color_action;
 | |
| 					}
 | |
| 				} else {
 | |
| 					return initial_color_action < p_key.initial_color_action;
 | |
| 				}
 | |
| 			}
 | |
| 		};
 | |
| 
 | |
| 		uint32_t storage_mask = 0;
 | |
| 		Vector<RID> texture_ids;
 | |
| 		InvalidationCallback invalidated_callback = nullptr;
 | |
| 		void *invalidated_callback_userdata = nullptr;
 | |
| 
 | |
| 		struct Version {
 | |
| 			VkFramebuffer framebuffer = VK_NULL_HANDLE;
 | |
| 			VkRenderPass render_pass = VK_NULL_HANDLE; // This one is owned.
 | |
| 			uint32_t subpass_count = 1;
 | |
| 		};
 | |
| 
 | |
| 		RBMap<VersionKey, Version> framebuffers;
 | |
| 		Size2 size;
 | |
| 		uint32_t view_count;
 | |
| 	};
 | |
| 
 | |
| 	RID_Owner<Framebuffer, true> framebuffer_owner;
 | |
| 
 | |
| 	/***********************/
 | |
| 	/**** VERTEX BUFFER ****/
 | |
| 	/***********************/
 | |
| 
 | |
| 	// Vertex buffers in Vulkan are similar to how
 | |
| 	// they work in OpenGL, except that instead of
 | |
| 	// an attribute index, there is a buffer binding
 | |
| 	// index (for binding the buffers in real-time)
 | |
| 	// and a location index (what is used in the shader).
 | |
| 	//
 | |
| 	// This mapping is done here internally, and it's not
 | |
| 	// exposed.
 | |
| 
 | |
| 	RID_Owner<Buffer, true> vertex_buffer_owner;
 | |
| 
 | |
| 	struct VertexDescriptionKey {
 | |
| 		Vector<VertexAttribute> vertex_formats;
 | |
| 		bool operator==(const VertexDescriptionKey &p_key) const {
 | |
| 			int vdc = vertex_formats.size();
 | |
| 			int vdck = p_key.vertex_formats.size();
 | |
| 
 | |
| 			if (vdc != vdck) {
 | |
| 				return false;
 | |
| 			} else {
 | |
| 				const VertexAttribute *a_ptr = vertex_formats.ptr();
 | |
| 				const VertexAttribute *b_ptr = p_key.vertex_formats.ptr();
 | |
| 				for (int i = 0; i < vdc; i++) {
 | |
| 					const VertexAttribute &a = a_ptr[i];
 | |
| 					const VertexAttribute &b = b_ptr[i];
 | |
| 
 | |
| 					if (a.location != b.location) {
 | |
| 						return false;
 | |
| 					}
 | |
| 					if (a.offset != b.offset) {
 | |
| 						return false;
 | |
| 					}
 | |
| 					if (a.format != b.format) {
 | |
| 						return false;
 | |
| 					}
 | |
| 					if (a.stride != b.stride) {
 | |
| 						return false;
 | |
| 					}
 | |
| 					if (a.frequency != b.frequency) {
 | |
| 						return false;
 | |
| 					}
 | |
| 				}
 | |
| 				return true; // They are equal.
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		uint32_t hash() const {
 | |
| 			int vdc = vertex_formats.size();
 | |
| 			uint32_t h = hash_murmur3_one_32(vdc);
 | |
| 			const VertexAttribute *ptr = vertex_formats.ptr();
 | |
| 			for (int i = 0; i < vdc; i++) {
 | |
| 				const VertexAttribute &vd = ptr[i];
 | |
| 				h = hash_murmur3_one_32(vd.location, h);
 | |
| 				h = hash_murmur3_one_32(vd.offset, h);
 | |
| 				h = hash_murmur3_one_32(vd.format, h);
 | |
| 				h = hash_murmur3_one_32(vd.stride, h);
 | |
| 				h = hash_murmur3_one_32(vd.frequency, h);
 | |
| 			}
 | |
| 			return hash_fmix32(h);
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	struct VertexDescriptionHash {
 | |
| 		static _FORCE_INLINE_ uint32_t hash(const VertexDescriptionKey &p_key) {
 | |
| 			return p_key.hash();
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	// This is a cache and it's never freed, it ensures that
 | |
| 	// ID used for a specific format always remain the same.
 | |
| 	HashMap<VertexDescriptionKey, VertexFormatID, VertexDescriptionHash> vertex_format_cache;
 | |
| 
 | |
| 	struct VertexDescriptionCache {
 | |
| 		Vector<VertexAttribute> vertex_formats;
 | |
| 		VkVertexInputBindingDescription *bindings = nullptr;
 | |
| 		VkVertexInputAttributeDescription *attributes = nullptr;
 | |
| 		VkPipelineVertexInputStateCreateInfo create_info;
 | |
| 	};
 | |
| 
 | |
| 	HashMap<VertexFormatID, VertexDescriptionCache> vertex_formats;
 | |
| 
 | |
| 	struct VertexArray {
 | |
| 		RID buffer;
 | |
| 		VertexFormatID description = 0;
 | |
| 		int vertex_count = 0;
 | |
| 		uint32_t max_instances_allowed = 0;
 | |
| 
 | |
| 		Vector<VkBuffer> buffers; // Not owned, just referenced.
 | |
| 		Vector<VkDeviceSize> offsets;
 | |
| 	};
 | |
| 
 | |
| 	RID_Owner<VertexArray, true> vertex_array_owner;
 | |
| 
 | |
| 	struct IndexBuffer : public Buffer {
 | |
| 		uint32_t max_index = 0; // Used for validation.
 | |
| 		uint32_t index_count = 0;
 | |
| 		VkIndexType index_type = VK_INDEX_TYPE_NONE_NV;
 | |
| 		bool supports_restart_indices = false;
 | |
| 	};
 | |
| 
 | |
| 	RID_Owner<IndexBuffer, true> index_buffer_owner;
 | |
| 
 | |
| 	struct IndexArray {
 | |
| 		uint32_t max_index = 0; // Remember the maximum index here too, for validation.
 | |
| 		VkBuffer buffer; // Not owned, inherited from index buffer.
 | |
| 		uint32_t offset = 0;
 | |
| 		uint32_t indices = 0;
 | |
| 		VkIndexType index_type = VK_INDEX_TYPE_NONE_NV;
 | |
| 		bool supports_restart_indices = false;
 | |
| 	};
 | |
| 
 | |
| 	RID_Owner<IndexArray, true> index_array_owner;
 | |
| 
 | |
| 	/****************/
 | |
| 	/**** SHADER ****/
 | |
| 	/****************/
 | |
| 
 | |
| 	// Vulkan specifies a really complex behavior for the application
 | |
| 	// in order to tell when descriptor sets need to be re-bound (or not).
 | |
| 	// "When binding a descriptor set (see Descriptor Set Binding) to set
 | |
| 	//  number N, if the previously bound descriptor sets for sets zero
 | |
| 	//  through N-1 were all bound using compatible pipeline layouts,
 | |
| 	//  then performing this binding does not disturb any of the lower numbered sets.
 | |
| 	//  If, additionally, the previous bound descriptor set for set N was
 | |
| 	//  bound using a pipeline layout compatible for set N, then the bindings
 | |
| 	//  in sets numbered greater than N are also not disturbed."
 | |
| 	// As a result, we need to figure out quickly when something is no longer "compatible".
 | |
| 	// in order to avoid costly rebinds.
 | |
| 
 | |
| 	struct UniformInfo {
 | |
| 		UniformType type = UniformType::UNIFORM_TYPE_MAX;
 | |
| 		bool writable = false;
 | |
| 		int binding = 0;
 | |
| 		uint32_t stages = 0;
 | |
| 		int length = 0; // Size of arrays (in total elements), or ubos (in bytes * total elements).
 | |
| 
 | |
| 		bool operator!=(const UniformInfo &p_info) const {
 | |
| 			return (binding != p_info.binding || type != p_info.type || writable != p_info.writable || stages != p_info.stages || length != p_info.length);
 | |
| 		}
 | |
| 
 | |
| 		bool operator<(const UniformInfo &p_info) const {
 | |
| 			if (binding != p_info.binding) {
 | |
| 				return binding < p_info.binding;
 | |
| 			}
 | |
| 			if (type != p_info.type) {
 | |
| 				return type < p_info.type;
 | |
| 			}
 | |
| 			if (writable != p_info.writable) {
 | |
| 				return writable < p_info.writable;
 | |
| 			}
 | |
| 			if (stages != p_info.stages) {
 | |
| 				return stages < p_info.stages;
 | |
| 			}
 | |
| 			return length < p_info.length;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	struct UniformSetFormat {
 | |
| 		Vector<UniformInfo> uniform_info;
 | |
| 		bool operator<(const UniformSetFormat &p_format) const {
 | |
| 			uint32_t size = uniform_info.size();
 | |
| 			uint32_t psize = p_format.uniform_info.size();
 | |
| 
 | |
| 			if (size != psize) {
 | |
| 				return size < psize;
 | |
| 			}
 | |
| 
 | |
| 			const UniformInfo *infoptr = uniform_info.ptr();
 | |
| 			const UniformInfo *pinfoptr = p_format.uniform_info.ptr();
 | |
| 
 | |
| 			for (uint32_t i = 0; i < size; i++) {
 | |
| 				if (infoptr[i] != pinfoptr[i]) {
 | |
| 					return infoptr[i] < pinfoptr[i];
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			return false;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	// Always grows, never shrinks, ensuring unique IDs, but we assume
 | |
| 	// the amount of formats will never be a problem, as the amount of shaders
 | |
| 	// in a game is limited.
 | |
| 	RBMap<UniformSetFormat, uint32_t> uniform_set_format_cache;
 | |
| 
 | |
| 	// Shaders in Vulkan are just pretty much
 | |
| 	// precompiled blocks of SPIR-V bytecode. They
 | |
| 	// are most likely not really compiled to host
 | |
| 	// assembly until a pipeline is created.
 | |
| 	//
 | |
| 	// When supplying the shaders, this implementation
 | |
| 	// will use the reflection abilities of glslang to
 | |
| 	// understand and cache everything required to
 | |
| 	// create and use the descriptor sets (Vulkan's
 | |
| 	// biggest pain).
 | |
| 	//
 | |
| 	// Additionally, hashes are created for every set
 | |
| 	// to do quick validation and ensuring the user
 | |
| 	// does not submit something invalid.
 | |
| 
 | |
| 	struct Shader {
 | |
| 		struct Set {
 | |
| 			Vector<UniformInfo> uniform_info;
 | |
| 			VkDescriptorSetLayout descriptor_set_layout = VK_NULL_HANDLE;
 | |
| 		};
 | |
| 
 | |
| 		uint64_t vertex_input_mask = 0; // Inputs used, this is mostly for validation.
 | |
| 		uint32_t fragment_output_mask = 0;
 | |
| 
 | |
| 		struct PushConstant {
 | |
| 			uint32_t size = 0;
 | |
| 			uint32_t vk_stages_mask = 0;
 | |
| 		};
 | |
| 
 | |
| 		PushConstant push_constant;
 | |
| 
 | |
| 		uint32_t compute_local_size[3] = { 0, 0, 0 };
 | |
| 
 | |
| 		struct SpecializationConstant {
 | |
| 			PipelineSpecializationConstant constant;
 | |
| 			uint32_t stage_flags = 0;
 | |
| 		};
 | |
| 
 | |
| 		bool is_compute = false;
 | |
| 		Vector<Set> sets;
 | |
| 		Vector<uint32_t> set_formats;
 | |
| 		Vector<VkPipelineShaderStageCreateInfo> pipeline_stages;
 | |
| 		Vector<SpecializationConstant> specialization_constants;
 | |
| 		VkPipelineLayout pipeline_layout = VK_NULL_HANDLE;
 | |
| 		String name; // Used for debug.
 | |
| 	};
 | |
| 
 | |
| 	String _shader_uniform_debug(RID p_shader, int p_set = -1);
 | |
| 
 | |
| 	RID_Owner<Shader, true> shader_owner;
 | |
| 
 | |
| 	/******************/
 | |
| 	/**** UNIFORMS ****/
 | |
| 	/******************/
 | |
| 
 | |
| 	// Descriptor sets require allocation from a pool.
 | |
| 	// The documentation on how to use pools properly
 | |
| 	// is scarce, and the documentation is strange.
 | |
| 	//
 | |
| 	// Basically, you can mix and match pools as you
 | |
| 	// like, but you'll run into fragmentation issues.
 | |
| 	// Because of this, the recommended approach is to
 | |
| 	// create a pool for every descriptor set type, as
 | |
| 	// this prevents fragmentation.
 | |
| 	//
 | |
| 	// This is implemented here as a having a list of
 | |
| 	// pools (each can contain up to 64 sets) for each
 | |
| 	// set layout. The amount of sets for each type
 | |
| 	// is used as the key.
 | |
| 
 | |
| 	enum {
 | |
| 		MAX_DESCRIPTOR_POOL_ELEMENT = 65535
 | |
| 	};
 | |
| 
 | |
| 	struct DescriptorPoolKey {
 | |
| 		union {
 | |
| 			struct {
 | |
| 				uint16_t uniform_type[UNIFORM_TYPE_MAX]; // Using 16 bits because, for sending arrays, each element is a pool set.
 | |
| 			};
 | |
| 			struct {
 | |
| 				uint64_t key1;
 | |
| 				uint64_t key2;
 | |
| 				uint64_t key3;
 | |
| 			};
 | |
| 		};
 | |
| 		bool operator<(const DescriptorPoolKey &p_key) const {
 | |
| 			if (key1 != p_key.key1) {
 | |
| 				return key1 < p_key.key1;
 | |
| 			}
 | |
| 			if (key2 != p_key.key2) {
 | |
| 				return key2 < p_key.key2;
 | |
| 			}
 | |
| 
 | |
| 			return key3 < p_key.key3;
 | |
| 		}
 | |
| 		DescriptorPoolKey() {
 | |
| 			key1 = 0;
 | |
| 			key2 = 0;
 | |
| 			key3 = 0;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	struct DescriptorPool {
 | |
| 		VkDescriptorPool pool;
 | |
| 		uint32_t usage;
 | |
| 	};
 | |
| 
 | |
| 	RBMap<DescriptorPoolKey, HashSet<DescriptorPool *>> descriptor_pools;
 | |
| 	uint32_t max_descriptors_per_pool = 0;
 | |
| 
 | |
| 	DescriptorPool *_descriptor_pool_allocate(const DescriptorPoolKey &p_key);
 | |
| 	void _descriptor_pool_free(const DescriptorPoolKey &p_key, DescriptorPool *p_pool);
 | |
| 
 | |
| 	RID_Owner<Buffer, true> uniform_buffer_owner;
 | |
| 	RID_Owner<Buffer, true> storage_buffer_owner;
 | |
| 
 | |
| 	// Texture buffer needs a view.
 | |
| 	struct TextureBuffer {
 | |
| 		Buffer buffer;
 | |
| 		VkBufferView view = VK_NULL_HANDLE;
 | |
| 	};
 | |
| 
 | |
| 	RID_Owner<TextureBuffer, true> texture_buffer_owner;
 | |
| 
 | |
| 	// This structure contains the descriptor set. They _need_ to be allocated
 | |
| 	// for a shader (and will be erased when this shader is erased), but should
 | |
| 	// work for other shaders as long as the hash matches. This covers using
 | |
| 	// them in shader variants.
 | |
| 	//
 | |
| 	// Keep also in mind that you can share buffers between descriptor sets, so
 | |
| 	// the above restriction is not too serious.
 | |
| 
 | |
| 	struct UniformSet {
 | |
| 		uint32_t format = 0;
 | |
| 		RID shader_id;
 | |
| 		uint32_t shader_set = 0;
 | |
| 		DescriptorPool *pool = nullptr;
 | |
| 		DescriptorPoolKey pool_key;
 | |
| 		VkDescriptorSet descriptor_set = VK_NULL_HANDLE;
 | |
| 		//VkPipelineLayout pipeline_layout; // Not owned, inherited from shader.
 | |
| 		struct AttachableTexture {
 | |
| 			uint32_t bind;
 | |
| 			RID texture;
 | |
| 		};
 | |
| 
 | |
| 		LocalVector<AttachableTexture> attachable_textures; // Used for validation.
 | |
| 		Vector<Texture *> mutable_sampled_textures; // Used for layout change.
 | |
| 		Vector<Texture *> mutable_storage_textures; // Used for layout change.
 | |
| 		InvalidationCallback invalidated_callback = nullptr;
 | |
| 		void *invalidated_callback_userdata = nullptr;
 | |
| 	};
 | |
| 
 | |
| 	RID_Owner<UniformSet, true> uniform_set_owner;
 | |
| 
 | |
| 	/*******************/
 | |
| 	/**** PIPELINES ****/
 | |
| 	/*******************/
 | |
| 
 | |
| 	// Render pipeline contains ALL the
 | |
| 	// information required for drawing.
 | |
| 	// This includes all the rasterizer state
 | |
| 	// as well as shader used, framebuffer format,
 | |
| 	// etc.
 | |
| 	// While the pipeline is just a single object
 | |
| 	// (VkPipeline) a lot of values are also saved
 | |
| 	// here to do validation (vulkan does none by
 | |
| 	// default) and warn the user if something
 | |
| 	// was not supplied as intended.
 | |
| 
 | |
| 	struct RenderPipeline {
 | |
| 		// Cached values for validation.
 | |
| #ifdef DEBUG_ENABLED
 | |
| 		struct Validation {
 | |
| 			FramebufferFormatID framebuffer_format = 0;
 | |
| 			uint32_t render_pass = 0;
 | |
| 			uint32_t dynamic_state = 0;
 | |
| 			VertexFormatID vertex_format = 0;
 | |
| 			bool uses_restart_indices = false;
 | |
| 			uint32_t primitive_minimum = 0;
 | |
| 			uint32_t primitive_divisor = 0;
 | |
| 		} validation;
 | |
| #endif
 | |
| 		// Actual pipeline.
 | |
| 		RID shader;
 | |
| 		Vector<uint32_t> set_formats;
 | |
| 		VkPipelineLayout pipeline_layout = VK_NULL_HANDLE; // Not owned, needed for push constants.
 | |
| 		VkPipeline pipeline = VK_NULL_HANDLE;
 | |
| 		uint32_t push_constant_size = 0;
 | |
| 		uint32_t push_constant_stages_mask = 0;
 | |
| 	};
 | |
| 
 | |
| 	RID_Owner<RenderPipeline, true> render_pipeline_owner;
 | |
| 
 | |
| 	struct PipelineCacheHeader {
 | |
| 		uint32_t magic;
 | |
| 		uint32_t data_size;
 | |
| 		uint64_t data_hash;
 | |
| 		uint32_t vendor_id;
 | |
| 		uint32_t device_id;
 | |
| 		uint32_t driver_version;
 | |
| 		uint8_t uuid[VK_UUID_SIZE];
 | |
| 		uint8_t driver_abi;
 | |
| 	};
 | |
| 
 | |
| 	struct PipelineCache {
 | |
| 		String file_path;
 | |
| 		PipelineCacheHeader header = {};
 | |
| 		size_t current_size = 0;
 | |
| 		LocalVector<uint8_t> buffer;
 | |
| 		VkPipelineCache cache_object = VK_NULL_HANDLE;
 | |
| 	};
 | |
| 
 | |
| 	PipelineCache pipelines_cache;
 | |
| 
 | |
| 	WorkerThreadPool::TaskID pipelines_cache_save_task = WorkerThreadPool::INVALID_TASK_ID;
 | |
| 
 | |
| 	void _load_pipeline_cache();
 | |
| 	void _update_pipeline_cache(bool p_closing = false);
 | |
| 	static void _save_pipeline_cache(void *p_data);
 | |
| 
 | |
| 	struct ComputePipeline {
 | |
| 		RID shader;
 | |
| 		Vector<uint32_t> set_formats;
 | |
| 		VkPipelineLayout pipeline_layout = VK_NULL_HANDLE; // Not owned, needed for push constants.
 | |
| 		VkPipeline pipeline = VK_NULL_HANDLE;
 | |
| 		uint32_t push_constant_size = 0;
 | |
| 		uint32_t push_constant_stages_mask = 0;
 | |
| 		uint32_t local_group_size[3] = { 0, 0, 0 };
 | |
| 	};
 | |
| 
 | |
| 	RID_Owner<ComputePipeline, true> compute_pipeline_owner;
 | |
| 
 | |
| 	/*******************/
 | |
| 	/**** DRAW LIST ****/
 | |
| 	/*******************/
 | |
| 
 | |
| 	// Draw list contains both the command buffer
 | |
| 	// used for drawing as well as a LOT of
 | |
| 	// information used for validation. This
 | |
| 	// validation is cheap so most of it can
 | |
| 	// also run in release builds.
 | |
| 
 | |
| 	// When using split command lists, this is
 | |
| 	// implemented internally using secondary command
 | |
| 	// buffers. As they can be created in threads,
 | |
| 	// each needs its own command pool.
 | |
| 
 | |
| 	struct SplitDrawListAllocator {
 | |
| 		VkCommandPool command_pool = VK_NULL_HANDLE;
 | |
| 		Vector<VkCommandBuffer> command_buffers; // One for each frame.
 | |
| 	};
 | |
| 
 | |
| 	Vector<SplitDrawListAllocator> split_draw_list_allocators;
 | |
| 
 | |
| 	struct DrawList {
 | |
| 		VkCommandBuffer command_buffer = VK_NULL_HANDLE; // If persistent, this is owned, otherwise it's shared with the ringbuffer.
 | |
| 		Rect2i viewport;
 | |
| 		bool viewport_set = false;
 | |
| 
 | |
| 		struct SetState {
 | |
| 			uint32_t pipeline_expected_format = 0;
 | |
| 			uint32_t uniform_set_format = 0;
 | |
| 			VkDescriptorSet descriptor_set = VK_NULL_HANDLE;
 | |
| 			RID uniform_set;
 | |
| 			bool bound = false;
 | |
| 		};
 | |
| 
 | |
| 		struct State {
 | |
| 			SetState sets[MAX_UNIFORM_SETS];
 | |
| 			uint32_t set_count = 0;
 | |
| 			RID pipeline;
 | |
| 			RID pipeline_shader;
 | |
| 			VkPipelineLayout pipeline_layout = VK_NULL_HANDLE;
 | |
| 			RID vertex_array;
 | |
| 			RID index_array;
 | |
| 			uint32_t pipeline_push_constant_stages = 0;
 | |
| 		} state;
 | |
| 
 | |
| #ifdef DEBUG_ENABLED
 | |
| 		struct Validation {
 | |
| 			bool active = true; // Means command buffer was not closed, so you can keep adding things.
 | |
| 			// Actual render pass values.
 | |
| 			uint32_t dynamic_state = 0;
 | |
| 			VertexFormatID vertex_format = INVALID_ID;
 | |
| 			uint32_t vertex_array_size = 0;
 | |
| 			uint32_t vertex_max_instances_allowed = 0xFFFFFFFF;
 | |
| 			bool index_buffer_uses_restart_indices = false;
 | |
| 			uint32_t index_array_size = 0;
 | |
| 			uint32_t index_array_max_index = 0;
 | |
| 			uint32_t index_array_offset = 0;
 | |
| 			Vector<uint32_t> set_formats;
 | |
| 			Vector<bool> set_bound;
 | |
| 			Vector<RID> set_rids;
 | |
| 			// Last pipeline set values.
 | |
| 			bool pipeline_active = false;
 | |
| 			uint32_t pipeline_dynamic_state = 0;
 | |
| 			VertexFormatID pipeline_vertex_format = INVALID_ID;
 | |
| 			RID pipeline_shader;
 | |
| 			bool pipeline_uses_restart_indices = false;
 | |
| 			uint32_t pipeline_primitive_divisor = 0;
 | |
| 			uint32_t pipeline_primitive_minimum = 0;
 | |
| 			uint32_t pipeline_push_constant_size = 0;
 | |
| 			bool pipeline_push_constant_supplied = false;
 | |
| 		} validation;
 | |
| #else
 | |
| 		struct Validation {
 | |
| 			uint32_t vertex_array_size = 0;
 | |
| 			uint32_t index_array_size = 0;
 | |
| 			uint32_t index_array_offset;
 | |
| 		} validation;
 | |
| #endif
 | |
| 	};
 | |
| 
 | |
| 	DrawList *draw_list = nullptr; // One for regular draw lists, multiple for split.
 | |
| 	uint32_t draw_list_subpass_count = 0;
 | |
| 	uint32_t draw_list_count = 0;
 | |
| 	VkRenderPass draw_list_render_pass = VK_NULL_HANDLE;
 | |
| 	VkFramebuffer draw_list_vkframebuffer = VK_NULL_HANDLE;
 | |
| #ifdef DEBUG_ENABLED
 | |
| 	FramebufferFormatID draw_list_framebuffer_format = INVALID_ID;
 | |
| #endif
 | |
| 	uint32_t draw_list_current_subpass = 0;
 | |
| 
 | |
| 	bool draw_list_split = false;
 | |
| 	Vector<RID> draw_list_bound_textures;
 | |
| 	Vector<RID> draw_list_storage_textures;
 | |
| 	bool draw_list_unbind_color_textures = false;
 | |
| 	bool draw_list_unbind_depth_textures = false;
 | |
| 
 | |
| 	void _draw_list_insert_clear_region(DrawList *p_draw_list, Framebuffer *p_framebuffer, Point2i p_viewport_offset, Point2i p_viewport_size, bool p_clear_color, const Vector<Color> &p_clear_colors, bool p_clear_depth, float p_depth, uint32_t p_stencil);
 | |
| 	Error _draw_list_setup_framebuffer(Framebuffer *p_framebuffer, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, VkFramebuffer *r_framebuffer, VkRenderPass *r_render_pass, uint32_t *r_subpass_count);
 | |
| 	Error _draw_list_render_pass_begin(Framebuffer *framebuffer, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector<Color> &p_clear_colors, float p_clear_depth, uint32_t p_clear_stencil, Point2i viewport_offset, Point2i viewport_size, VkFramebuffer vkframebuffer, VkRenderPass render_pass, VkCommandBuffer command_buffer, VkSubpassContents subpass_contents, const Vector<RID> &p_storage_textures);
 | |
| 	_FORCE_INLINE_ DrawList *_get_draw_list_ptr(DrawListID p_id);
 | |
| 	Buffer *_get_buffer_from_owner(RID p_buffer, VkPipelineStageFlags &dst_stage_mask, VkAccessFlags &dst_access, BitField<BarrierMask> p_post_barrier);
 | |
| 	Error _draw_list_allocate(const Rect2i &p_viewport, uint32_t p_splits, uint32_t p_subpass);
 | |
| 	void _draw_list_free(Rect2i *r_last_viewport = nullptr);
 | |
| 
 | |
| 	/**********************/
 | |
| 	/**** COMPUTE LIST ****/
 | |
| 	/**********************/
 | |
| 
 | |
| 	struct ComputeList {
 | |
| 		VkCommandBuffer command_buffer = VK_NULL_HANDLE; // If persistent, this is owned, otherwise it's shared with the ringbuffer.
 | |
| 
 | |
| 		struct SetState {
 | |
| 			uint32_t pipeline_expected_format = 0;
 | |
| 			uint32_t uniform_set_format = 0;
 | |
| 			VkDescriptorSet descriptor_set = VK_NULL_HANDLE;
 | |
| 			RID uniform_set;
 | |
| 			bool bound = false;
 | |
| 		};
 | |
| 
 | |
| 		struct State {
 | |
| 			HashSet<Texture *> textures_to_sampled_layout;
 | |
| 			SetState sets[MAX_UNIFORM_SETS];
 | |
| 			uint32_t set_count = 0;
 | |
| 			RID pipeline;
 | |
| 			RID pipeline_shader;
 | |
| 			uint32_t local_group_size[3] = { 0, 0, 0 };
 | |
| 			VkPipelineLayout pipeline_layout = VK_NULL_HANDLE;
 | |
| 			uint32_t pipeline_push_constant_stages = 0;
 | |
| 			bool allow_draw_overlap;
 | |
| 		} state;
 | |
| 
 | |
| #ifdef DEBUG_ENABLED
 | |
| 		struct Validation {
 | |
| 			bool active = true; // Means command buffer was not closed, so you can keep adding things.
 | |
| 			Vector<uint32_t> set_formats;
 | |
| 			Vector<bool> set_bound;
 | |
| 			Vector<RID> set_rids;
 | |
| 			// Last pipeline set values.
 | |
| 			bool pipeline_active = false;
 | |
| 			RID pipeline_shader;
 | |
| 			uint32_t invalid_set_from = 0;
 | |
| 			uint32_t pipeline_push_constant_size = 0;
 | |
| 			bool pipeline_push_constant_supplied = false;
 | |
| 		} validation;
 | |
| #endif
 | |
| 	};
 | |
| 
 | |
| 	ComputeList *compute_list = nullptr;
 | |
| 
 | |
| 	void _compute_list_add_barrier(BitField<BarrierMask> p_post_barrier, uint32_t p_barrier_flags, uint32_t p_access_flags);
 | |
| 
 | |
| 	/**************************/
 | |
| 	/**** FRAME MANAGEMENT ****/
 | |
| 	/**************************/
 | |
| 
 | |
| 	// This is the frame structure. There are normally
 | |
| 	// 3 of these (used for triple buffering), or 2
 | |
| 	// (double buffering). They are cycled constantly.
 | |
| 	//
 | |
| 	// It contains two command buffers, one that is
 | |
| 	// used internally for setting up (creating stuff)
 | |
| 	// and another used mostly for drawing.
 | |
| 	//
 | |
| 	// They also contains a list of things that need
 | |
| 	// to be disposed of when deleted, which can't
 | |
| 	// happen immediately due to the asynchronous
 | |
| 	// nature of the GPU. They will get deleted
 | |
| 	// when the frame is cycled.
 | |
| 
 | |
| 	struct Frame {
 | |
| 		// List in usage order, from last to free to first to free.
 | |
| 		List<Buffer> buffers_to_dispose_of;
 | |
| 		List<Texture> textures_to_dispose_of;
 | |
| 		List<Framebuffer> framebuffers_to_dispose_of;
 | |
| 		List<VkSampler> samplers_to_dispose_of;
 | |
| 		List<Shader> shaders_to_dispose_of;
 | |
| 		List<VkBufferView> buffer_views_to_dispose_of;
 | |
| 		List<UniformSet> uniform_sets_to_dispose_of;
 | |
| 		List<RenderPipeline> render_pipelines_to_dispose_of;
 | |
| 		List<ComputePipeline> compute_pipelines_to_dispose_of;
 | |
| 
 | |
| 		VkCommandPool command_pool = VK_NULL_HANDLE;
 | |
| 		// Used for filling up newly created buffers with data provided on creation.
 | |
| 		// Primarily intended to be accessed by worker threads.
 | |
| 		// Ideally this cmd buffer should use an async transfer queue.
 | |
| 		VkCommandBuffer setup_command_buffer = VK_NULL_HANDLE;
 | |
| 		// The main cmd buffer for drawing and compute.
 | |
| 		// Primarily intended to be used by the main thread to do most stuff.
 | |
| 		VkCommandBuffer draw_command_buffer = VK_NULL_HANDLE;
 | |
| 
 | |
| 		struct Timestamp {
 | |
| 			String description;
 | |
| 			uint64_t value = 0;
 | |
| 		};
 | |
| 
 | |
| 		VkQueryPool timestamp_pool;
 | |
| 
 | |
| 		TightLocalVector<String> timestamp_names;
 | |
| 		TightLocalVector<uint64_t> timestamp_cpu_values;
 | |
| 		uint32_t timestamp_count = 0;
 | |
| 		TightLocalVector<String> timestamp_result_names;
 | |
| 		TightLocalVector<uint64_t> timestamp_cpu_result_values;
 | |
| 		TightLocalVector<uint64_t> timestamp_result_values;
 | |
| 		uint32_t timestamp_result_count = 0;
 | |
| 		uint64_t index = 0;
 | |
| 	};
 | |
| 
 | |
| 	uint32_t max_timestamp_query_elements = 0;
 | |
| 
 | |
| 	TightLocalVector<Frame> frames; // Frames available, for main device they are cycled (usually 3), for local devices only 1.
 | |
| 	int frame = 0; // Current frame.
 | |
| 	int frame_count = 0; // Total amount of frames.
 | |
| 	uint64_t frames_drawn = 0;
 | |
| 	RID local_device;
 | |
| 	bool local_device_processing = false;
 | |
| 
 | |
| 	void _free_pending_resources(int p_frame);
 | |
| 
 | |
| 	VmaAllocator allocator = nullptr;
 | |
| 	HashMap<uint32_t, VmaPool> small_allocs_pools;
 | |
| 	VmaPool _find_or_create_small_allocs_pool(uint32_t p_mem_type_index);
 | |
| 
 | |
| 	VulkanContext *context = nullptr;
 | |
| 
 | |
| 	uint64_t image_memory = 0;
 | |
| 	uint64_t buffer_memory = 0;
 | |
| 
 | |
| 	void _free_internal(RID p_id);
 | |
| 	void _flush(bool p_current_frame);
 | |
| 
 | |
| 	bool screen_prepared = false;
 | |
| 
 | |
| 	template <class T>
 | |
| 	void _free_rids(T &p_owner, const char *p_type);
 | |
| 
 | |
| 	void _finalize_command_bufers();
 | |
| 	void _begin_frame();
 | |
| 
 | |
| #ifdef DEV_ENABLED
 | |
| 	HashMap<RID, String> resource_names;
 | |
| #endif
 | |
| 
 | |
| 	VkSampleCountFlagBits _ensure_supported_sample_count(TextureSamples p_requested_sample_count) const;
 | |
| 
 | |
| public:
 | |
| 	virtual RID texture_create(const TextureFormat &p_format, const TextureView &p_view, const Vector<Vector<uint8_t>> &p_data = Vector<Vector<uint8_t>>());
 | |
| 	virtual RID texture_create_shared(const TextureView &p_view, RID p_with_texture);
 | |
| 	virtual RID texture_create_from_extension(TextureType p_type, DataFormat p_format, TextureSamples p_samples, BitField<RenderingDevice::TextureUsageBits> p_flags, uint64_t p_image, uint64_t p_width, uint64_t p_height, uint64_t p_depth, uint64_t p_layers);
 | |
| 
 | |
| 	virtual RID texture_create_shared_from_slice(const TextureView &p_view, RID p_with_texture, uint32_t p_layer, uint32_t p_mipmap, uint32_t p_mipmaps = 1, TextureSliceType p_slice_type = TEXTURE_SLICE_2D, uint32_t p_layers = 0);
 | |
| 	virtual Error texture_update(RID p_texture, uint32_t p_layer, const Vector<uint8_t> &p_data, BitField<BarrierMask> p_post_barrier = BARRIER_MASK_ALL_BARRIERS);
 | |
| 	virtual Vector<uint8_t> texture_get_data(RID p_texture, uint32_t p_layer);
 | |
| 
 | |
| 	virtual bool texture_is_format_supported_for_usage(DataFormat p_format, BitField<RenderingDevice::TextureUsageBits> p_usage) const;
 | |
| 	virtual bool texture_is_shared(RID p_texture);
 | |
| 	virtual bool texture_is_valid(RID p_texture);
 | |
| 	virtual TextureFormat texture_get_format(RID p_texture);
 | |
| 	virtual Size2i texture_size(RID p_texture);
 | |
| 	virtual uint64_t texture_get_native_handle(RID p_texture);
 | |
| 
 | |
| 	virtual Error texture_copy(RID p_from_texture, RID p_to_texture, const Vector3 &p_from, const Vector3 &p_to, const Vector3 &p_size, uint32_t p_src_mipmap, uint32_t p_dst_mipmap, uint32_t p_src_layer, uint32_t p_dst_layer, BitField<BarrierMask> p_post_barrier = BARRIER_MASK_ALL_BARRIERS);
 | |
| 	virtual Error texture_clear(RID p_texture, const Color &p_color, uint32_t p_base_mipmap, uint32_t p_mipmaps, uint32_t p_base_layer, uint32_t p_layers, BitField<BarrierMask> p_post_barrier = BARRIER_MASK_ALL_BARRIERS);
 | |
| 	virtual Error texture_resolve_multisample(RID p_from_texture, RID p_to_texture, BitField<BarrierMask> p_post_barrier = BARRIER_MASK_ALL_BARRIERS);
 | |
| 
 | |
| 	/*********************/
 | |
| 	/**** FRAMEBUFFER ****/
 | |
| 	/*********************/
 | |
| 
 | |
| 	virtual FramebufferFormatID framebuffer_format_create(const Vector<AttachmentFormat> &p_format, uint32_t p_view_count = 1);
 | |
| 	virtual FramebufferFormatID framebuffer_format_create_multipass(const Vector<AttachmentFormat> &p_attachments, const Vector<FramebufferPass> &p_passes, uint32_t p_view_count = 1);
 | |
| 	virtual FramebufferFormatID framebuffer_format_create_empty(TextureSamples p_samples = TEXTURE_SAMPLES_1);
 | |
| 	virtual TextureSamples framebuffer_format_get_texture_samples(FramebufferFormatID p_format, uint32_t p_pass = 0);
 | |
| 
 | |
| 	virtual RID framebuffer_create(const Vector<RID> &p_texture_attachments, FramebufferFormatID p_format_check = INVALID_ID, uint32_t p_view_count = 1);
 | |
| 	virtual RID framebuffer_create_multipass(const Vector<RID> &p_texture_attachments, const Vector<FramebufferPass> &p_passes, FramebufferFormatID p_format_check = INVALID_ID, uint32_t p_view_count = 1);
 | |
| 	virtual RID framebuffer_create_empty(const Size2i &p_size, TextureSamples p_samples = TEXTURE_SAMPLES_1, FramebufferFormatID p_format_check = INVALID_ID);
 | |
| 	virtual bool framebuffer_is_valid(RID p_framebuffer) const;
 | |
| 	virtual void framebuffer_set_invalidation_callback(RID p_framebuffer, InvalidationCallback p_callback, void *p_userdata);
 | |
| 
 | |
| 	virtual FramebufferFormatID framebuffer_get_format(RID p_framebuffer);
 | |
| 
 | |
| 	/*****************/
 | |
| 	/**** SAMPLER ****/
 | |
| 	/*****************/
 | |
| 
 | |
| 	virtual RID sampler_create(const SamplerState &p_state);
 | |
| 	virtual bool sampler_is_format_supported_for_filter(DataFormat p_format, SamplerFilter p_sampler_filter) const;
 | |
| 
 | |
| 	/**********************/
 | |
| 	/**** VERTEX ARRAY ****/
 | |
| 	/**********************/
 | |
| 
 | |
| 	virtual RID vertex_buffer_create(uint32_t p_size_bytes, const Vector<uint8_t> &p_data = Vector<uint8_t>(), bool p_use_as_storage = false);
 | |
| 
 | |
| 	// Internally reference counted, this ID is warranted to be unique for the same description, but needs to be freed as many times as it was allocated.
 | |
| 	virtual VertexFormatID vertex_format_create(const Vector<VertexAttribute> &p_vertex_formats);
 | |
| 	virtual RID vertex_array_create(uint32_t p_vertex_count, VertexFormatID p_vertex_format, const Vector<RID> &p_src_buffers, const Vector<uint64_t> &p_offsets = Vector<uint64_t>());
 | |
| 
 | |
| 	virtual RID index_buffer_create(uint32_t p_size_indices, IndexBufferFormat p_format, const Vector<uint8_t> &p_data = Vector<uint8_t>(), bool p_use_restart_indices = false);
 | |
| 
 | |
| 	virtual RID index_array_create(RID p_index_buffer, uint32_t p_index_offset, uint32_t p_index_count);
 | |
| 
 | |
| 	/****************/
 | |
| 	/**** SHADER ****/
 | |
| 	/****************/
 | |
| 
 | |
| 	virtual String shader_get_binary_cache_key() const;
 | |
| 	virtual Vector<uint8_t> shader_compile_binary_from_spirv(const Vector<ShaderStageSPIRVData> &p_spirv, const String &p_shader_name = "");
 | |
| 
 | |
| 	virtual RID shader_create_from_bytecode(const Vector<uint8_t> &p_shader_binary, RID p_placeholder = RID());
 | |
| 	virtual RID shader_create_placeholder();
 | |
| 
 | |
| 	virtual uint64_t shader_get_vertex_input_attribute_mask(RID p_shader);
 | |
| 
 | |
| 	/*****************/
 | |
| 	/**** UNIFORM ****/
 | |
| 	/*****************/
 | |
| 
 | |
| 	virtual RID uniform_buffer_create(uint32_t p_size_bytes, const Vector<uint8_t> &p_data = Vector<uint8_t>());
 | |
| 	virtual RID storage_buffer_create(uint32_t p_size_bytes, const Vector<uint8_t> &p_data = Vector<uint8_t>(), BitField<StorageBufferUsage> p_usage = 0);
 | |
| 	virtual RID texture_buffer_create(uint32_t p_size_elements, DataFormat p_format, const Vector<uint8_t> &p_data = Vector<uint8_t>());
 | |
| 
 | |
| 	virtual RID uniform_set_create(const Vector<Uniform> &p_uniforms, RID p_shader, uint32_t p_shader_set);
 | |
| 	virtual bool uniform_set_is_valid(RID p_uniform_set);
 | |
| 	virtual void uniform_set_set_invalidation_callback(RID p_uniform_set, InvalidationCallback p_callback, void *p_userdata);
 | |
| 
 | |
| 	virtual Error buffer_copy(RID p_src_buffer, RID p_dst_buffer, uint32_t p_src_offset, uint32_t p_dst_offset, uint32_t p_size, BitField<BarrierMask> p_post_barrier = BARRIER_MASK_ALL_BARRIERS);
 | |
| 	virtual Error buffer_update(RID p_buffer, uint32_t p_offset, uint32_t p_size, const void *p_data, BitField<BarrierMask> p_post_barrier = BARRIER_MASK_ALL_BARRIERS); // Works for any buffer.
 | |
| 	virtual Error buffer_clear(RID p_buffer, uint32_t p_offset, uint32_t p_size, BitField<BarrierMask> p_post_barrier = BARRIER_MASK_ALL_BARRIERS);
 | |
| 	virtual Vector<uint8_t> buffer_get_data(RID p_buffer, uint32_t p_offset = 0, uint32_t p_size = 0);
 | |
| 
 | |
| 	/*************************/
 | |
| 	/**** RENDER PIPELINE ****/
 | |
| 	/*************************/
 | |
| 
 | |
| 	virtual RID render_pipeline_create(RID p_shader, FramebufferFormatID p_framebuffer_format, VertexFormatID p_vertex_format, RenderPrimitive p_render_primitive, const PipelineRasterizationState &p_rasterization_state, const PipelineMultisampleState &p_multisample_state, const PipelineDepthStencilState &p_depth_stencil_state, const PipelineColorBlendState &p_blend_state, BitField<PipelineDynamicStateFlags> p_dynamic_state_flags = 0, uint32_t p_for_render_pass = 0, const Vector<PipelineSpecializationConstant> &p_specialization_constants = Vector<PipelineSpecializationConstant>());
 | |
| 	virtual bool render_pipeline_is_valid(RID p_pipeline);
 | |
| 
 | |
| 	/**************************/
 | |
| 	/**** COMPUTE PIPELINE ****/
 | |
| 	/**************************/
 | |
| 
 | |
| 	virtual RID compute_pipeline_create(RID p_shader, const Vector<PipelineSpecializationConstant> &p_specialization_constants = Vector<PipelineSpecializationConstant>());
 | |
| 	virtual bool compute_pipeline_is_valid(RID p_pipeline);
 | |
| 
 | |
| 	/****************/
 | |
| 	/**** SCREEN ****/
 | |
| 	/****************/
 | |
| 
 | |
| 	virtual int screen_get_width(DisplayServer::WindowID p_screen = 0) const;
 | |
| 	virtual int screen_get_height(DisplayServer::WindowID p_screen = 0) const;
 | |
| 	virtual FramebufferFormatID screen_get_framebuffer_format() const;
 | |
| 
 | |
| 	/********************/
 | |
| 	/**** DRAW LISTS ****/
 | |
| 	/********************/
 | |
| 
 | |
| 	virtual DrawListID draw_list_begin_for_screen(DisplayServer::WindowID p_screen = 0, const Color &p_clear_color = Color());
 | |
| 
 | |
| 	virtual DrawListID draw_list_begin(RID p_framebuffer, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector<Color> &p_clear_color_values = Vector<Color>(), float p_clear_depth = 1.0, uint32_t p_clear_stencil = 0, const Rect2 &p_region = Rect2(), const Vector<RID> &p_storage_textures = Vector<RID>());
 | |
| 	virtual Error draw_list_begin_split(RID p_framebuffer, uint32_t p_splits, DrawListID *r_split_ids, InitialAction p_initial_color_action, FinalAction p_final_color_action, InitialAction p_initial_depth_action, FinalAction p_final_depth_action, const Vector<Color> &p_clear_color_values = Vector<Color>(), float p_clear_depth = 1.0, uint32_t p_clear_stencil = 0, const Rect2 &p_region = Rect2(), const Vector<RID> &p_storage_textures = Vector<RID>());
 | |
| 
 | |
| 	virtual void draw_list_set_blend_constants(DrawListID p_list, const Color &p_color);
 | |
| 	virtual void draw_list_bind_render_pipeline(DrawListID p_list, RID p_render_pipeline);
 | |
| 	virtual void draw_list_bind_uniform_set(DrawListID p_list, RID p_uniform_set, uint32_t p_index);
 | |
| 	virtual void draw_list_bind_vertex_array(DrawListID p_list, RID p_vertex_array);
 | |
| 	virtual void draw_list_bind_index_array(DrawListID p_list, RID p_index_array);
 | |
| 	virtual void draw_list_set_line_width(DrawListID p_list, float p_width);
 | |
| 	virtual void draw_list_set_push_constant(DrawListID p_list, const void *p_data, uint32_t p_data_size);
 | |
| 
 | |
| 	virtual void draw_list_draw(DrawListID p_list, bool p_use_indices, uint32_t p_instances = 1, uint32_t p_procedural_vertices = 0);
 | |
| 
 | |
| 	virtual void draw_list_enable_scissor(DrawListID p_list, const Rect2 &p_rect);
 | |
| 	virtual void draw_list_disable_scissor(DrawListID p_list);
 | |
| 
 | |
| 	virtual uint32_t draw_list_get_current_pass();
 | |
| 	virtual DrawListID draw_list_switch_to_next_pass();
 | |
| 	virtual Error draw_list_switch_to_next_pass_split(uint32_t p_splits, DrawListID *r_split_ids);
 | |
| 
 | |
| 	virtual void draw_list_end(BitField<BarrierMask> p_post_barrier = BARRIER_MASK_ALL_BARRIERS);
 | |
| 
 | |
| 	/***********************/
 | |
| 	/**** COMPUTE LISTS ****/
 | |
| 	/***********************/
 | |
| 
 | |
| 	virtual ComputeListID compute_list_begin(bool p_allow_draw_overlap = false);
 | |
| 	virtual void compute_list_bind_compute_pipeline(ComputeListID p_list, RID p_compute_pipeline);
 | |
| 	virtual void compute_list_bind_uniform_set(ComputeListID p_list, RID p_uniform_set, uint32_t p_index);
 | |
| 	virtual void compute_list_set_push_constant(ComputeListID p_list, const void *p_data, uint32_t p_data_size);
 | |
| 	virtual void compute_list_add_barrier(ComputeListID p_list);
 | |
| 
 | |
| 	virtual void compute_list_dispatch(ComputeListID p_list, uint32_t p_x_groups, uint32_t p_y_groups, uint32_t p_z_groups);
 | |
| 	virtual void compute_list_dispatch_threads(ComputeListID p_list, uint32_t p_x_threads, uint32_t p_y_threads, uint32_t p_z_threads);
 | |
| 	virtual void compute_list_dispatch_indirect(ComputeListID p_list, RID p_buffer, uint32_t p_offset);
 | |
| 	virtual void compute_list_end(BitField<BarrierMask> p_post_barrier = BARRIER_MASK_ALL_BARRIERS);
 | |
| 
 | |
| 	virtual void barrier(BitField<BarrierMask> p_from = BARRIER_MASK_ALL_BARRIERS, BitField<BarrierMask> p_to = BARRIER_MASK_ALL_BARRIERS);
 | |
| 	virtual void full_barrier();
 | |
| 
 | |
| 	/**************/
 | |
| 	/**** FREE ****/
 | |
| 	/**************/
 | |
| 
 | |
| 	virtual void free(RID p_id);
 | |
| 
 | |
| 	/****************/
 | |
| 	/**** Timing ****/
 | |
| 	/****************/
 | |
| 
 | |
| 	virtual void capture_timestamp(const String &p_name);
 | |
| 	virtual uint32_t get_captured_timestamps_count() const;
 | |
| 	virtual uint64_t get_captured_timestamps_frame() const;
 | |
| 	virtual uint64_t get_captured_timestamp_gpu_time(uint32_t p_index) const;
 | |
| 	virtual uint64_t get_captured_timestamp_cpu_time(uint32_t p_index) const;
 | |
| 	virtual String get_captured_timestamp_name(uint32_t p_index) const;
 | |
| 
 | |
| 	/****************/
 | |
| 	/**** Limits ****/
 | |
| 	/****************/
 | |
| 
 | |
| 	virtual uint64_t limit_get(Limit p_limit) const;
 | |
| 
 | |
| 	virtual void prepare_screen_for_drawing();
 | |
| 	void initialize(VulkanContext *p_context, bool p_local_device = false);
 | |
| 	void finalize();
 | |
| 
 | |
| 	virtual void swap_buffers(); // For main device.
 | |
| 
 | |
| 	virtual void submit(); // For local device.
 | |
| 	virtual void sync(); // For local device.
 | |
| 
 | |
| 	virtual uint32_t get_frame_delay() const;
 | |
| 
 | |
| 	virtual RenderingDevice *create_local_device();
 | |
| 
 | |
| 	virtual uint64_t get_memory_usage(MemoryType p_type) const;
 | |
| 
 | |
| 	virtual void set_resource_name(RID p_id, const String p_name);
 | |
| 
 | |
| 	virtual void draw_command_begin_label(String p_label_name, const Color p_color = Color(1, 1, 1, 1));
 | |
| 	virtual void draw_command_insert_label(String p_label_name, const Color p_color = Color(1, 1, 1, 1));
 | |
| 	virtual void draw_command_end_label();
 | |
| 
 | |
| 	virtual String get_device_vendor_name() const;
 | |
| 	virtual String get_device_name() const;
 | |
| 	virtual RenderingDevice::DeviceType get_device_type() const;
 | |
| 	virtual String get_device_api_version() const;
 | |
| 	virtual String get_device_pipeline_cache_uuid() const;
 | |
| 
 | |
| 	virtual uint64_t get_driver_resource(DriverResource p_resource, RID p_rid = RID(), uint64_t p_index = 0);
 | |
| 
 | |
| 	virtual bool has_feature(const Features p_feature) const;
 | |
| 
 | |
| 	RenderingDeviceVulkan();
 | |
| 	~RenderingDeviceVulkan();
 | |
| };
 | |
| 
 | |
| #endif // RENDERING_DEVICE_VULKAN_H
 | 
