mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-31 13:41:03 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			668 lines
		
	
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			668 lines
		
	
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*************************************************************************/
 | |
| /*  matrix3.cpp                                                          */
 | |
| /*************************************************************************/
 | |
| /*                       This file is part of:                           */
 | |
| /*                           GODOT ENGINE                                */
 | |
| /*                    http://www.godotengine.org                         */
 | |
| /*************************************************************************/
 | |
| /* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur.                 */
 | |
| /* Copyright (c) 2014-2017 Godot Engine contributors (cf. AUTHORS.md)    */
 | |
| /*                                                                       */
 | |
| /* Permission is hereby granted, free of charge, to any person obtaining */
 | |
| /* a copy of this software and associated documentation files (the       */
 | |
| /* "Software"), to deal in the Software without restriction, including   */
 | |
| /* without limitation the rights to use, copy, modify, merge, publish,   */
 | |
| /* distribute, sublicense, and/or sell copies of the Software, and to    */
 | |
| /* permit persons to whom the Software is furnished to do so, subject to */
 | |
| /* the following conditions:                                             */
 | |
| /*                                                                       */
 | |
| /* The above copyright notice and this permission notice shall be        */
 | |
| /* included in all copies or substantial portions of the Software.       */
 | |
| /*                                                                       */
 | |
| /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */
 | |
| /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */
 | |
| /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
 | |
| /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */
 | |
| /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */
 | |
| /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */
 | |
| /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */
 | |
| /*************************************************************************/
 | |
| #include "matrix3.h"
 | |
| #include "math_funcs.h"
 | |
| #include "os/copymem.h"
 | |
| 
 | |
| #define cofac(row1, col1, row2, col2) \
 | |
| 	(elements[row1][col1] * elements[row2][col2] - elements[row1][col2] * elements[row2][col1])
 | |
| 
 | |
| void Basis::from_z(const Vector3 &p_z) {
 | |
| 
 | |
| 	if (Math::abs(p_z.z) > Math_SQRT12) {
 | |
| 
 | |
| 		// choose p in y-z plane
 | |
| 		real_t a = p_z[1] * p_z[1] + p_z[2] * p_z[2];
 | |
| 		real_t k = 1.0 / Math::sqrt(a);
 | |
| 		elements[0] = Vector3(0, -p_z[2] * k, p_z[1] * k);
 | |
| 		elements[1] = Vector3(a * k, -p_z[0] * elements[0][2], p_z[0] * elements[0][1]);
 | |
| 	} else {
 | |
| 
 | |
| 		// choose p in x-y plane
 | |
| 		real_t a = p_z.x * p_z.x + p_z.y * p_z.y;
 | |
| 		real_t k = 1.0 / Math::sqrt(a);
 | |
| 		elements[0] = Vector3(-p_z.y * k, p_z.x * k, 0);
 | |
| 		elements[1] = Vector3(-p_z.z * elements[0].y, p_z.z * elements[0].x, a * k);
 | |
| 	}
 | |
| 	elements[2] = p_z;
 | |
| }
 | |
| 
 | |
| void Basis::invert() {
 | |
| 
 | |
| 	real_t co[3] = {
 | |
| 		cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1)
 | |
| 	};
 | |
| 	real_t det = elements[0][0] * co[0] +
 | |
| 				 elements[0][1] * co[1] +
 | |
| 				 elements[0][2] * co[2];
 | |
| #ifdef MATH_CHECKS
 | |
| 	ERR_FAIL_COND(det == 0);
 | |
| #endif
 | |
| 	real_t s = 1.0 / det;
 | |
| 
 | |
| 	set(co[0] * s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s,
 | |
| 			co[1] * s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s,
 | |
| 			co[2] * s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s);
 | |
| }
 | |
| 
 | |
| void Basis::orthonormalize() {
 | |
| #ifdef MATH_CHECKS
 | |
| 	ERR_FAIL_COND(determinant() == 0);
 | |
| #endif
 | |
| 	// Gram-Schmidt Process
 | |
| 
 | |
| 	Vector3 x = get_axis(0);
 | |
| 	Vector3 y = get_axis(1);
 | |
| 	Vector3 z = get_axis(2);
 | |
| 
 | |
| 	x.normalize();
 | |
| 	y = (y - x * (x.dot(y)));
 | |
| 	y.normalize();
 | |
| 	z = (z - x * (x.dot(z)) - y * (y.dot(z)));
 | |
| 	z.normalize();
 | |
| 
 | |
| 	set_axis(0, x);
 | |
| 	set_axis(1, y);
 | |
| 	set_axis(2, z);
 | |
| }
 | |
| 
 | |
| Basis Basis::orthonormalized() const {
 | |
| 
 | |
| 	Basis c = *this;
 | |
| 	c.orthonormalize();
 | |
| 	return c;
 | |
| }
 | |
| 
 | |
| bool Basis::is_orthogonal() const {
 | |
| 	Basis id;
 | |
| 	Basis m = (*this) * transposed();
 | |
| 
 | |
| 	return is_equal_approx(id, m);
 | |
| }
 | |
| 
 | |
| bool Basis::is_rotation() const {
 | |
| 	return Math::is_equal_approx(determinant(), 1) && is_orthogonal();
 | |
| }
 | |
| 
 | |
| bool Basis::is_symmetric() const {
 | |
| 
 | |
| 	if (!Math::is_equal_approx(elements[0][1], elements[1][0]))
 | |
| 		return false;
 | |
| 	if (!Math::is_equal_approx(elements[0][2], elements[2][0]))
 | |
| 		return false;
 | |
| 	if (!Math::is_equal_approx(elements[1][2], elements[2][1]))
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| Basis Basis::diagonalize() {
 | |
| 
 | |
| //NOTE: only implemented for symmetric matrices
 | |
| //with the Jacobi iterative method method
 | |
| #ifdef MATH_CHECKS
 | |
| 	ERR_FAIL_COND_V(!is_symmetric(), Basis());
 | |
| #endif
 | |
| 	const int ite_max = 1024;
 | |
| 
 | |
| 	real_t off_matrix_norm_2 = elements[0][1] * elements[0][1] + elements[0][2] * elements[0][2] + elements[1][2] * elements[1][2];
 | |
| 
 | |
| 	int ite = 0;
 | |
| 	Basis acc_rot;
 | |
| 	while (off_matrix_norm_2 > CMP_EPSILON2 && ite++ < ite_max) {
 | |
| 		real_t el01_2 = elements[0][1] * elements[0][1];
 | |
| 		real_t el02_2 = elements[0][2] * elements[0][2];
 | |
| 		real_t el12_2 = elements[1][2] * elements[1][2];
 | |
| 		// Find the pivot element
 | |
| 		int i, j;
 | |
| 		if (el01_2 > el02_2) {
 | |
| 			if (el12_2 > el01_2) {
 | |
| 				i = 1;
 | |
| 				j = 2;
 | |
| 			} else {
 | |
| 				i = 0;
 | |
| 				j = 1;
 | |
| 			}
 | |
| 		} else {
 | |
| 			if (el12_2 > el02_2) {
 | |
| 				i = 1;
 | |
| 				j = 2;
 | |
| 			} else {
 | |
| 				i = 0;
 | |
| 				j = 2;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// Compute the rotation angle
 | |
| 		real_t angle;
 | |
| 		if (Math::is_equal_approx(elements[j][j], elements[i][i])) {
 | |
| 			angle = Math_PI / 4;
 | |
| 		} else {
 | |
| 			angle = 0.5 * Math::atan(2 * elements[i][j] / (elements[j][j] - elements[i][i]));
 | |
| 		}
 | |
| 
 | |
| 		// Compute the rotation matrix
 | |
| 		Basis rot;
 | |
| 		rot.elements[i][i] = rot.elements[j][j] = Math::cos(angle);
 | |
| 		rot.elements[i][j] = -(rot.elements[j][i] = Math::sin(angle));
 | |
| 
 | |
| 		// Update the off matrix norm
 | |
| 		off_matrix_norm_2 -= elements[i][j] * elements[i][j];
 | |
| 
 | |
| 		// Apply the rotation
 | |
| 		*this = rot * *this * rot.transposed();
 | |
| 		acc_rot = rot * acc_rot;
 | |
| 	}
 | |
| 
 | |
| 	return acc_rot;
 | |
| }
 | |
| 
 | |
| Basis Basis::inverse() const {
 | |
| 
 | |
| 	Basis inv = *this;
 | |
| 	inv.invert();
 | |
| 	return inv;
 | |
| }
 | |
| 
 | |
| void Basis::transpose() {
 | |
| 
 | |
| 	SWAP(elements[0][1], elements[1][0]);
 | |
| 	SWAP(elements[0][2], elements[2][0]);
 | |
| 	SWAP(elements[1][2], elements[2][1]);
 | |
| }
 | |
| 
 | |
| Basis Basis::transposed() const {
 | |
| 
 | |
| 	Basis tr = *this;
 | |
| 	tr.transpose();
 | |
| 	return tr;
 | |
| }
 | |
| 
 | |
| // Multiplies the matrix from left by the scaling matrix: M -> S.M
 | |
| // See the comment for Basis::rotated for further explanation.
 | |
| void Basis::scale(const Vector3 &p_scale) {
 | |
| 
 | |
| 	elements[0][0] *= p_scale.x;
 | |
| 	elements[0][1] *= p_scale.x;
 | |
| 	elements[0][2] *= p_scale.x;
 | |
| 	elements[1][0] *= p_scale.y;
 | |
| 	elements[1][1] *= p_scale.y;
 | |
| 	elements[1][2] *= p_scale.y;
 | |
| 	elements[2][0] *= p_scale.z;
 | |
| 	elements[2][1] *= p_scale.z;
 | |
| 	elements[2][2] *= p_scale.z;
 | |
| }
 | |
| 
 | |
| Basis Basis::scaled(const Vector3 &p_scale) const {
 | |
| 
 | |
| 	Basis m = *this;
 | |
| 	m.scale(p_scale);
 | |
| 	return m;
 | |
| }
 | |
| 
 | |
| Vector3 Basis::get_scale() const {
 | |
| 	// FIXME: We are assuming M = R.S (R is rotation and S is scaling), and use polar decomposition to extract R and S.
 | |
| 	// A polar decomposition is M = O.P, where O is an orthogonal matrix (meaning rotation and reflection) and
 | |
| 	// P is a positive semi-definite matrix (meaning it contains absolute values of scaling along its diagonal).
 | |
| 	//
 | |
| 	// Despite being different from what we want to achieve, we can nevertheless make use of polar decomposition
 | |
| 	// here as follows. We can split O into a rotation and a reflection as O = R.Q, and obtain M = R.S where
 | |
| 	// we defined S = Q.P. Now, R is a proper rotation matrix and S is a (signed) scaling matrix,
 | |
| 	// which can involve negative scalings. However, there is a catch: unlike the polar decomposition of M = O.P,
 | |
| 	// the decomposition of O into a rotation and reflection matrix as O = R.Q is not unique.
 | |
| 	// Therefore, we are going to do this decomposition by sticking to a particular convention.
 | |
| 	// This may lead to confusion for some users though.
 | |
| 	//
 | |
| 	// The convention we use here is to absorb the sign flip into the scaling matrix.
 | |
| 	// The same convention is also used in other similar functions such as set_scale,
 | |
| 	// get_rotation_axis_angle, get_rotation, set_rotation_axis_angle, set_rotation_euler, ...
 | |
| 	//
 | |
| 	// A proper way to get rid of this issue would be to store the scaling values (or at least their signs)
 | |
| 	// as a part of Basis. However, if we go that path, we need to disable direct (write) access to the
 | |
| 	// matrix elements.
 | |
| 	real_t det_sign = determinant() > 0 ? 1 : -1;
 | |
| 	return det_sign * Vector3(
 | |
| 							  Vector3(elements[0][0], elements[1][0], elements[2][0]).length(),
 | |
| 							  Vector3(elements[0][1], elements[1][1], elements[2][1]).length(),
 | |
| 							  Vector3(elements[0][2], elements[1][2], elements[2][2]).length());
 | |
| }
 | |
| 
 | |
| // Sets scaling while preserving rotation.
 | |
| // This requires some care when working with matrices with negative determinant,
 | |
| // since we're using a particular convention for "polar" decomposition in get_scale and get_rotation.
 | |
| // For details, see the explanation in get_scale.
 | |
| void Basis::set_scale(const Vector3 &p_scale) {
 | |
| 	Vector3 e = get_euler();
 | |
| 	Basis(); // reset to identity
 | |
| 	scale(p_scale);
 | |
| 	rotate(e);
 | |
| }
 | |
| 
 | |
| // Multiplies the matrix from left by the rotation matrix: M -> R.M
 | |
| // Note that this does *not* rotate the matrix itself.
 | |
| //
 | |
| // The main use of Basis is as Transform.basis, which is used a the transformation matrix
 | |
| // of 3D object. Rotate here refers to rotation of the object (which is R * (*this)),
 | |
| // not the matrix itself (which is R * (*this) * R.transposed()).
 | |
| Basis Basis::rotated(const Vector3 &p_axis, real_t p_phi) const {
 | |
| 	return Basis(p_axis, p_phi) * (*this);
 | |
| }
 | |
| 
 | |
| void Basis::rotate(const Vector3 &p_axis, real_t p_phi) {
 | |
| 	*this = rotated(p_axis, p_phi);
 | |
| }
 | |
| 
 | |
| Basis Basis::rotated(const Vector3 &p_euler) const {
 | |
| 	return Basis(p_euler) * (*this);
 | |
| }
 | |
| 
 | |
| void Basis::rotate(const Vector3 &p_euler) {
 | |
| 	*this = rotated(p_euler);
 | |
| }
 | |
| 
 | |
| // TODO: rename this to get_rotation_euler
 | |
| Vector3 Basis::get_rotation() const {
 | |
| 	// Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S,
 | |
| 	// and returns the Euler angles corresponding to the rotation part, complementing get_scale().
 | |
| 	// See the comment in get_scale() for further information.
 | |
| 	Basis m = orthonormalized();
 | |
| 	real_t det = m.determinant();
 | |
| 	if (det < 0) {
 | |
| 		// Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles.
 | |
| 		m.scale(Vector3(-1, -1, -1));
 | |
| 	}
 | |
| 
 | |
| 	return m.get_euler();
 | |
| }
 | |
| 
 | |
| void Basis::get_rotation_axis_angle(Vector3 &p_axis, real_t &p_angle) const {
 | |
| 	// Assumes that the matrix can be decomposed into a proper rotation and scaling matrix as M = R.S,
 | |
| 	// and returns the Euler angles corresponding to the rotation part, complementing get_scale().
 | |
| 	// See the comment in get_scale() for further information.
 | |
| 	Basis m = orthonormalized();
 | |
| 	real_t det = m.determinant();
 | |
| 	if (det < 0) {
 | |
| 		// Ensure that the determinant is 1, such that result is a proper rotation matrix which can be represented by Euler angles.
 | |
| 		m.scale(Vector3(-1, -1, -1));
 | |
| 	}
 | |
| 
 | |
| 	m.get_axis_angle(p_axis, p_angle);
 | |
| }
 | |
| 
 | |
| // Sets rotation while preserving scaling.
 | |
| // This requires some care when working with matrices with negative determinant,
 | |
| // since we're using a particular convention for "polar" decomposition in get_scale and get_rotation.
 | |
| // For details, see the explanation in get_scale.
 | |
| void Basis::set_rotation_euler(const Vector3 &p_euler) {
 | |
| 	Vector3 s = get_scale();
 | |
| 	Basis(); // reset to identity
 | |
| 	scale(s);
 | |
| 	rotate(p_euler);
 | |
| }
 | |
| 
 | |
| // Sets rotation while preserving scaling.
 | |
| // This requires some care when working with matrices with negative determinant,
 | |
| // since we're using a particular convention for "polar" decomposition in get_scale and get_rotation.
 | |
| // For details, see the explanation in get_scale.
 | |
| void Basis::set_rotation_axis_angle(const Vector3 &p_axis, real_t p_angle) {
 | |
| 	Vector3 s = get_scale();
 | |
| 	Basis(); // reset to identity
 | |
| 	scale(s);
 | |
| 	rotate(p_axis, p_angle);
 | |
| }
 | |
| 
 | |
| // get_euler returns a vector containing the Euler angles in the format
 | |
| // (a1,a2,a3), where a3 is the angle of the first rotation, and a1 is the last
 | |
| // (following the convention they are commonly defined in the literature).
 | |
| //
 | |
| // The current implementation uses XYZ convention (Z is the first rotation),
 | |
| // so euler.z is the angle of the (first) rotation around Z axis and so on,
 | |
| //
 | |
| // And thus, assuming the matrix is a rotation matrix, this function returns
 | |
| // the angles in the decomposition R = X(a1).Y(a2).Z(a3) where Z(a) rotates
 | |
| // around the z-axis by a and so on.
 | |
| Vector3 Basis::get_euler() const {
 | |
| 
 | |
| 	// Euler angles in XYZ convention.
 | |
| 	// See https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
 | |
| 	//
 | |
| 	// rot =  cy*cz          -cy*sz           sy
 | |
| 	//        cz*sx*sy+cx*sz  cx*cz-sx*sy*sz -cy*sx
 | |
| 	//       -cx*cz*sy+sx*sz  cz*sx+cx*sy*sz  cx*cy
 | |
| 
 | |
| 	Vector3 euler;
 | |
| #ifdef MATH_CHECKS
 | |
| 	ERR_FAIL_COND_V(is_rotation() == false, euler);
 | |
| #endif
 | |
| 	euler.y = Math::asin(elements[0][2]);
 | |
| 	if (euler.y < Math_PI * 0.5) {
 | |
| 		if (euler.y > -Math_PI * 0.5) {
 | |
| 			euler.x = Math::atan2(-elements[1][2], elements[2][2]);
 | |
| 			euler.z = Math::atan2(-elements[0][1], elements[0][0]);
 | |
| 
 | |
| 		} else {
 | |
| 			real_t r = Math::atan2(elements[1][0], elements[1][1]);
 | |
| 			euler.z = 0.0;
 | |
| 			euler.x = euler.z - r;
 | |
| 		}
 | |
| 	} else {
 | |
| 		real_t r = Math::atan2(elements[0][1], elements[1][1]);
 | |
| 		euler.z = 0;
 | |
| 		euler.x = r - euler.z;
 | |
| 	}
 | |
| 
 | |
| 	return euler;
 | |
| }
 | |
| 
 | |
| // set_euler expects a vector containing the Euler angles in the format
 | |
| // (c,b,a), where a is the angle of the first rotation, and c is the last.
 | |
| // The current implementation uses XYZ convention (Z is the first rotation).
 | |
| void Basis::set_euler(const Vector3 &p_euler) {
 | |
| 
 | |
| 	real_t c, s;
 | |
| 
 | |
| 	c = Math::cos(p_euler.x);
 | |
| 	s = Math::sin(p_euler.x);
 | |
| 	Basis xmat(1.0, 0.0, 0.0, 0.0, c, -s, 0.0, s, c);
 | |
| 
 | |
| 	c = Math::cos(p_euler.y);
 | |
| 	s = Math::sin(p_euler.y);
 | |
| 	Basis ymat(c, 0.0, s, 0.0, 1.0, 0.0, -s, 0.0, c);
 | |
| 
 | |
| 	c = Math::cos(p_euler.z);
 | |
| 	s = Math::sin(p_euler.z);
 | |
| 	Basis zmat(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0);
 | |
| 
 | |
| 	//optimizer will optimize away all this anyway
 | |
| 	*this = xmat * (ymat * zmat);
 | |
| }
 | |
| 
 | |
| bool Basis::is_equal_approx(const Basis &a, const Basis &b) const {
 | |
| 
 | |
| 	for (int i = 0; i < 3; i++) {
 | |
| 		for (int j = 0; j < 3; j++) {
 | |
| 			if (Math::is_equal_approx(a.elements[i][j], b.elements[i][j]) == false)
 | |
| 				return false;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| bool Basis::operator==(const Basis &p_matrix) const {
 | |
| 
 | |
| 	for (int i = 0; i < 3; i++) {
 | |
| 		for (int j = 0; j < 3; j++) {
 | |
| 			if (elements[i][j] != p_matrix.elements[i][j])
 | |
| 				return false;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| bool Basis::operator!=(const Basis &p_matrix) const {
 | |
| 
 | |
| 	return (!(*this == p_matrix));
 | |
| }
 | |
| 
 | |
| Basis::operator String() const {
 | |
| 
 | |
| 	String mtx;
 | |
| 	for (int i = 0; i < 3; i++) {
 | |
| 
 | |
| 		for (int j = 0; j < 3; j++) {
 | |
| 
 | |
| 			if (i != 0 || j != 0)
 | |
| 				mtx += ", ";
 | |
| 
 | |
| 			mtx += rtos(elements[i][j]);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return mtx;
 | |
| }
 | |
| 
 | |
| Basis::operator Quat() const {
 | |
| 	//commenting this check because precision issues cause it to fail when it shouldn't
 | |
| 	//#ifdef MATH_CHECKS
 | |
| 	//ERR_FAIL_COND_V(is_rotation() == false, Quat());
 | |
| 	//#endif
 | |
| 	real_t trace = elements[0][0] + elements[1][1] + elements[2][2];
 | |
| 	real_t temp[4];
 | |
| 
 | |
| 	if (trace > 0.0) {
 | |
| 		real_t s = Math::sqrt(trace + 1.0);
 | |
| 		temp[3] = (s * 0.5);
 | |
| 		s = 0.5 / s;
 | |
| 
 | |
| 		temp[0] = ((elements[2][1] - elements[1][2]) * s);
 | |
| 		temp[1] = ((elements[0][2] - elements[2][0]) * s);
 | |
| 		temp[2] = ((elements[1][0] - elements[0][1]) * s);
 | |
| 	} else {
 | |
| 		int i = elements[0][0] < elements[1][1] ?
 | |
| 						(elements[1][1] < elements[2][2] ? 2 : 1) :
 | |
| 						(elements[0][0] < elements[2][2] ? 2 : 0);
 | |
| 		int j = (i + 1) % 3;
 | |
| 		int k = (i + 2) % 3;
 | |
| 
 | |
| 		real_t s = Math::sqrt(elements[i][i] - elements[j][j] - elements[k][k] + 1.0);
 | |
| 		temp[i] = s * 0.5;
 | |
| 		s = 0.5 / s;
 | |
| 
 | |
| 		temp[3] = (elements[k][j] - elements[j][k]) * s;
 | |
| 		temp[j] = (elements[j][i] + elements[i][j]) * s;
 | |
| 		temp[k] = (elements[k][i] + elements[i][k]) * s;
 | |
| 	}
 | |
| 
 | |
| 	return Quat(temp[0], temp[1], temp[2], temp[3]);
 | |
| }
 | |
| 
 | |
| static const Basis _ortho_bases[24] = {
 | |
| 	Basis(1, 0, 0, 0, 1, 0, 0, 0, 1),
 | |
| 	Basis(0, -1, 0, 1, 0, 0, 0, 0, 1),
 | |
| 	Basis(-1, 0, 0, 0, -1, 0, 0, 0, 1),
 | |
| 	Basis(0, 1, 0, -1, 0, 0, 0, 0, 1),
 | |
| 	Basis(1, 0, 0, 0, 0, -1, 0, 1, 0),
 | |
| 	Basis(0, 0, 1, 1, 0, 0, 0, 1, 0),
 | |
| 	Basis(-1, 0, 0, 0, 0, 1, 0, 1, 0),
 | |
| 	Basis(0, 0, -1, -1, 0, 0, 0, 1, 0),
 | |
| 	Basis(1, 0, 0, 0, -1, 0, 0, 0, -1),
 | |
| 	Basis(0, 1, 0, 1, 0, 0, 0, 0, -1),
 | |
| 	Basis(-1, 0, 0, 0, 1, 0, 0, 0, -1),
 | |
| 	Basis(0, -1, 0, -1, 0, 0, 0, 0, -1),
 | |
| 	Basis(1, 0, 0, 0, 0, 1, 0, -1, 0),
 | |
| 	Basis(0, 0, -1, 1, 0, 0, 0, -1, 0),
 | |
| 	Basis(-1, 0, 0, 0, 0, -1, 0, -1, 0),
 | |
| 	Basis(0, 0, 1, -1, 0, 0, 0, -1, 0),
 | |
| 	Basis(0, 0, 1, 0, 1, 0, -1, 0, 0),
 | |
| 	Basis(0, -1, 0, 0, 0, 1, -1, 0, 0),
 | |
| 	Basis(0, 0, -1, 0, -1, 0, -1, 0, 0),
 | |
| 	Basis(0, 1, 0, 0, 0, -1, -1, 0, 0),
 | |
| 	Basis(0, 0, 1, 0, -1, 0, 1, 0, 0),
 | |
| 	Basis(0, 1, 0, 0, 0, 1, 1, 0, 0),
 | |
| 	Basis(0, 0, -1, 0, 1, 0, 1, 0, 0),
 | |
| 	Basis(0, -1, 0, 0, 0, -1, 1, 0, 0)
 | |
| };
 | |
| 
 | |
| int Basis::get_orthogonal_index() const {
 | |
| 
 | |
| 	//could be sped up if i come up with a way
 | |
| 	Basis orth = *this;
 | |
| 	for (int i = 0; i < 3; i++) {
 | |
| 		for (int j = 0; j < 3; j++) {
 | |
| 
 | |
| 			real_t v = orth[i][j];
 | |
| 			if (v > 0.5)
 | |
| 				v = 1.0;
 | |
| 			else if (v < -0.5)
 | |
| 				v = -1.0;
 | |
| 			else
 | |
| 				v = 0;
 | |
| 
 | |
| 			orth[i][j] = v;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (int i = 0; i < 24; i++) {
 | |
| 
 | |
| 		if (_ortho_bases[i] == orth)
 | |
| 			return i;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void Basis::set_orthogonal_index(int p_index) {
 | |
| 
 | |
| 	//there only exist 24 orthogonal bases in r3
 | |
| 	ERR_FAIL_INDEX(p_index, 24);
 | |
| 
 | |
| 	*this = _ortho_bases[p_index];
 | |
| }
 | |
| 
 | |
| void Basis::get_axis_angle(Vector3 &r_axis, real_t &r_angle) const {
 | |
| #ifdef MATH_CHECKS
 | |
| 	ERR_FAIL_COND(is_rotation() == false);
 | |
| #endif
 | |
| 	real_t angle, x, y, z; // variables for result
 | |
| 	real_t epsilon = 0.01; // margin to allow for rounding errors
 | |
| 	real_t epsilon2 = 0.1; // margin to distinguish between 0 and 180 degrees
 | |
| 
 | |
| 	if ((Math::abs(elements[1][0] - elements[0][1]) < epsilon) && (Math::abs(elements[2][0] - elements[0][2]) < epsilon) && (Math::abs(elements[2][1] - elements[1][2]) < epsilon)) {
 | |
| 		// singularity found
 | |
| 		// first check for identity matrix which must have +1 for all terms
 | |
| 		//  in leading diagonaland zero in other terms
 | |
| 		if ((Math::abs(elements[1][0] + elements[0][1]) < epsilon2) && (Math::abs(elements[2][0] + elements[0][2]) < epsilon2) && (Math::abs(elements[2][1] + elements[1][2]) < epsilon2) && (Math::abs(elements[0][0] + elements[1][1] + elements[2][2] - 3) < epsilon2)) {
 | |
| 			// this singularity is identity matrix so angle = 0
 | |
| 			r_axis = Vector3(0, 1, 0);
 | |
| 			r_angle = 0;
 | |
| 			return;
 | |
| 		}
 | |
| 		// otherwise this singularity is angle = 180
 | |
| 		angle = Math_PI;
 | |
| 		real_t xx = (elements[0][0] + 1) / 2;
 | |
| 		real_t yy = (elements[1][1] + 1) / 2;
 | |
| 		real_t zz = (elements[2][2] + 1) / 2;
 | |
| 		real_t xy = (elements[1][0] + elements[0][1]) / 4;
 | |
| 		real_t xz = (elements[2][0] + elements[0][2]) / 4;
 | |
| 		real_t yz = (elements[2][1] + elements[1][2]) / 4;
 | |
| 		if ((xx > yy) && (xx > zz)) { // elements[0][0] is the largest diagonal term
 | |
| 			if (xx < epsilon) {
 | |
| 				x = 0;
 | |
| 				y = 0.7071;
 | |
| 				z = 0.7071;
 | |
| 			} else {
 | |
| 				x = Math::sqrt(xx);
 | |
| 				y = xy / x;
 | |
| 				z = xz / x;
 | |
| 			}
 | |
| 		} else if (yy > zz) { // elements[1][1] is the largest diagonal term
 | |
| 			if (yy < epsilon) {
 | |
| 				x = 0.7071;
 | |
| 				y = 0;
 | |
| 				z = 0.7071;
 | |
| 			} else {
 | |
| 				y = Math::sqrt(yy);
 | |
| 				x = xy / y;
 | |
| 				z = yz / y;
 | |
| 			}
 | |
| 		} else { // elements[2][2] is the largest diagonal term so base result on this
 | |
| 			if (zz < epsilon) {
 | |
| 				x = 0.7071;
 | |
| 				y = 0.7071;
 | |
| 				z = 0;
 | |
| 			} else {
 | |
| 				z = Math::sqrt(zz);
 | |
| 				x = xz / z;
 | |
| 				y = yz / z;
 | |
| 			}
 | |
| 		}
 | |
| 		r_axis = Vector3(x, y, z);
 | |
| 		r_angle = angle;
 | |
| 		return;
 | |
| 	}
 | |
| 	// as we have reached here there are no singularities so we can handle normally
 | |
| 	real_t s = Math::sqrt((elements[1][2] - elements[2][1]) * (elements[1][2] - elements[2][1]) + (elements[2][0] - elements[0][2]) * (elements[2][0] - elements[0][2]) + (elements[0][1] - elements[1][0]) * (elements[0][1] - elements[1][0])); // s=|axis||sin(angle)|, used to normalise
 | |
| 
 | |
| 	angle = Math::acos((elements[0][0] + elements[1][1] + elements[2][2] - 1) / 2);
 | |
| 	if (angle < 0) s = -s;
 | |
| 	x = (elements[2][1] - elements[1][2]) / s;
 | |
| 	y = (elements[0][2] - elements[2][0]) / s;
 | |
| 	z = (elements[1][0] - elements[0][1]) / s;
 | |
| 
 | |
| 	r_axis = Vector3(x, y, z);
 | |
| 	r_angle = angle;
 | |
| }
 | |
| 
 | |
| Basis::Basis(const Vector3 &p_euler) {
 | |
| 
 | |
| 	set_euler(p_euler);
 | |
| }
 | |
| 
 | |
| Basis::Basis(const Quat &p_quat) {
 | |
| 
 | |
| 	real_t d = p_quat.length_squared();
 | |
| 	real_t s = 2.0 / d;
 | |
| 	real_t xs = p_quat.x * s, ys = p_quat.y * s, zs = p_quat.z * s;
 | |
| 	real_t wx = p_quat.w * xs, wy = p_quat.w * ys, wz = p_quat.w * zs;
 | |
| 	real_t xx = p_quat.x * xs, xy = p_quat.x * ys, xz = p_quat.x * zs;
 | |
| 	real_t yy = p_quat.y * ys, yz = p_quat.y * zs, zz = p_quat.z * zs;
 | |
| 	set(1.0 - (yy + zz), xy - wz, xz + wy,
 | |
| 			xy + wz, 1.0 - (xx + zz), yz - wx,
 | |
| 			xz - wy, yz + wx, 1.0 - (xx + yy));
 | |
| }
 | |
| 
 | |
| void Basis::set_axis_angle(const Vector3 &p_axis, real_t p_phi) {
 | |
| // Rotation matrix from axis and angle, see https://en.wikipedia.org/wiki/Rotation_matrix#Rotation_matrix_from_axis_angle
 | |
| #ifdef MATH_CHECKS
 | |
| 	ERR_FAIL_COND(p_axis.is_normalized() == false);
 | |
| #endif
 | |
| 	Vector3 axis_sq(p_axis.x * p_axis.x, p_axis.y * p_axis.y, p_axis.z * p_axis.z);
 | |
| 
 | |
| 	real_t cosine = Math::cos(p_phi);
 | |
| 	real_t sine = Math::sin(p_phi);
 | |
| 
 | |
| 	elements[0][0] = axis_sq.x + cosine * (1.0 - axis_sq.x);
 | |
| 	elements[0][1] = p_axis.x * p_axis.y * (1.0 - cosine) - p_axis.z * sine;
 | |
| 	elements[0][2] = p_axis.z * p_axis.x * (1.0 - cosine) + p_axis.y * sine;
 | |
| 
 | |
| 	elements[1][0] = p_axis.x * p_axis.y * (1.0 - cosine) + p_axis.z * sine;
 | |
| 	elements[1][1] = axis_sq.y + cosine * (1.0 - axis_sq.y);
 | |
| 	elements[1][2] = p_axis.y * p_axis.z * (1.0 - cosine) - p_axis.x * sine;
 | |
| 
 | |
| 	elements[2][0] = p_axis.z * p_axis.x * (1.0 - cosine) - p_axis.y * sine;
 | |
| 	elements[2][1] = p_axis.y * p_axis.z * (1.0 - cosine) + p_axis.x * sine;
 | |
| 	elements[2][2] = axis_sq.z + cosine * (1.0 - axis_sq.z);
 | |
| }
 | |
| 
 | |
| Basis::Basis(const Vector3 &p_axis, real_t p_phi) {
 | |
| 	set_axis_angle(p_axis, p_phi);
 | |
| }
 | 
