mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-31 05:31:01 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			477 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			477 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /**************************************************************************/
 | |
| /*  dynamic_bvh.h                                                         */
 | |
| /**************************************************************************/
 | |
| /*                         This file is part of:                          */
 | |
| /*                             GODOT ENGINE                               */
 | |
| /*                        https://godotengine.org                         */
 | |
| /**************************************************************************/
 | |
| /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
 | |
| /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur.                  */
 | |
| /*                                                                        */
 | |
| /* Permission is hereby granted, free of charge, to any person obtaining  */
 | |
| /* a copy of this software and associated documentation files (the        */
 | |
| /* "Software"), to deal in the Software without restriction, including    */
 | |
| /* without limitation the rights to use, copy, modify, merge, publish,    */
 | |
| /* distribute, sublicense, and/or sell copies of the Software, and to     */
 | |
| /* permit persons to whom the Software is furnished to do so, subject to  */
 | |
| /* the following conditions:                                              */
 | |
| /*                                                                        */
 | |
| /* The above copyright notice and this permission notice shall be         */
 | |
| /* included in all copies or substantial portions of the Software.        */
 | |
| /*                                                                        */
 | |
| /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,        */
 | |
| /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF     */
 | |
| /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
 | |
| /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY   */
 | |
| /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,   */
 | |
| /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE      */
 | |
| /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                 */
 | |
| /**************************************************************************/
 | |
| 
 | |
| #ifndef DYNAMIC_BVH_H
 | |
| #define DYNAMIC_BVH_H
 | |
| 
 | |
| #include "core/math/aabb.h"
 | |
| #include "core/templates/list.h"
 | |
| #include "core/templates/local_vector.h"
 | |
| #include "core/templates/paged_allocator.h"
 | |
| #include "core/typedefs.h"
 | |
| 
 | |
| // Based on bullet Dbvh
 | |
| 
 | |
| /*
 | |
| Bullet Continuous Collision Detection and Physics Library
 | |
| Copyright (c) 2003-2013 Erwin Coumans  http://bulletphysics.org
 | |
| 
 | |
| This software is provided 'as-is', without any express or implied warranty.
 | |
| In no event will the authors be held liable for any damages arising from the use of this software.
 | |
| Permission is granted to anyone to use this software for any purpose,
 | |
| including commercial applications, and to alter it and redistribute it freely,
 | |
| subject to the following restrictions:
 | |
| 
 | |
| 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | |
| 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | |
| 3. This notice may not be removed or altered from any source distribution.
 | |
| */
 | |
| 
 | |
| ///DynamicBVH implementation by Nathanael Presson
 | |
| // The DynamicBVH class implements a fast dynamic bounding volume tree based on axis aligned bounding boxes (aabb tree).
 | |
| 
 | |
| class DynamicBVH {
 | |
| 	struct Node;
 | |
| 
 | |
| public:
 | |
| 	struct ID {
 | |
| 		Node *node = nullptr;
 | |
| 
 | |
| 	public:
 | |
| 		_FORCE_INLINE_ bool is_valid() const { return node != nullptr; }
 | |
| 	};
 | |
| 
 | |
| private:
 | |
| 	struct Volume {
 | |
| 		Vector3 min, max;
 | |
| 
 | |
| 		_FORCE_INLINE_ Vector3 get_center() const { return ((min + max) / 2); }
 | |
| 		_FORCE_INLINE_ Vector3 get_length() const { return (max - min); }
 | |
| 
 | |
| 		_FORCE_INLINE_ bool contains(const Volume &a) const {
 | |
| 			return ((min.x <= a.min.x) &&
 | |
| 					(min.y <= a.min.y) &&
 | |
| 					(min.z <= a.min.z) &&
 | |
| 					(max.x >= a.max.x) &&
 | |
| 					(max.y >= a.max.y) &&
 | |
| 					(max.z >= a.max.z));
 | |
| 		}
 | |
| 
 | |
| 		_FORCE_INLINE_ Volume merge(const Volume &b) const {
 | |
| 			Volume r;
 | |
| 			for (int i = 0; i < 3; ++i) {
 | |
| 				if (min[i] < b.min[i]) {
 | |
| 					r.min[i] = min[i];
 | |
| 				} else {
 | |
| 					r.min[i] = b.min[i];
 | |
| 				}
 | |
| 				if (max[i] > b.max[i]) {
 | |
| 					r.max[i] = max[i];
 | |
| 				} else {
 | |
| 					r.max[i] = b.max[i];
 | |
| 				}
 | |
| 			}
 | |
| 			return r;
 | |
| 		}
 | |
| 
 | |
| 		_FORCE_INLINE_ real_t get_size() const {
 | |
| 			const Vector3 edges = get_length();
 | |
| 			return (edges.x * edges.y * edges.z +
 | |
| 					edges.x + edges.y + edges.z);
 | |
| 		}
 | |
| 
 | |
| 		_FORCE_INLINE_ bool is_not_equal_to(const Volume &b) const {
 | |
| 			return ((min.x != b.min.x) ||
 | |
| 					(min.y != b.min.y) ||
 | |
| 					(min.z != b.min.z) ||
 | |
| 					(max.x != b.max.x) ||
 | |
| 					(max.y != b.max.y) ||
 | |
| 					(max.z != b.max.z));
 | |
| 		}
 | |
| 
 | |
| 		_FORCE_INLINE_ real_t get_proximity_to(const Volume &b) const {
 | |
| 			const Vector3 d = (min + max) - (b.min + b.max);
 | |
| 			return (Math::abs(d.x) + Math::abs(d.y) + Math::abs(d.z));
 | |
| 		}
 | |
| 
 | |
| 		_FORCE_INLINE_ int select_by_proximity(const Volume &a, const Volume &b) const {
 | |
| 			return (get_proximity_to(a) < get_proximity_to(b) ? 0 : 1);
 | |
| 		}
 | |
| 
 | |
| 		//
 | |
| 		_FORCE_INLINE_ bool intersects(const Volume &b) const {
 | |
| 			return ((min.x <= b.max.x) &&
 | |
| 					(max.x >= b.min.x) &&
 | |
| 					(min.y <= b.max.y) &&
 | |
| 					(max.y >= b.min.y) &&
 | |
| 					(min.z <= b.max.z) &&
 | |
| 					(max.z >= b.min.z));
 | |
| 		}
 | |
| 
 | |
| 		_FORCE_INLINE_ bool intersects_convex(const Plane *p_planes, int p_plane_count, const Vector3 *p_points, int p_point_count) const {
 | |
| 			Vector3 half_extents = (max - min) * 0.5;
 | |
| 			Vector3 ofs = min + half_extents;
 | |
| 
 | |
| 			for (int i = 0; i < p_plane_count; i++) {
 | |
| 				const Plane &p = p_planes[i];
 | |
| 				Vector3 point(
 | |
| 						(p.normal.x > 0) ? -half_extents.x : half_extents.x,
 | |
| 						(p.normal.y > 0) ? -half_extents.y : half_extents.y,
 | |
| 						(p.normal.z > 0) ? -half_extents.z : half_extents.z);
 | |
| 				point += ofs;
 | |
| 				if (p.is_point_over(point)) {
 | |
| 					return false;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			// Make sure all points in the shape aren't fully separated from the AABB on
 | |
| 			// each axis.
 | |
| 			int bad_point_counts_positive[3] = { 0 };
 | |
| 			int bad_point_counts_negative[3] = { 0 };
 | |
| 
 | |
| 			for (int k = 0; k < 3; k++) {
 | |
| 				for (int i = 0; i < p_point_count; i++) {
 | |
| 					if (p_points[i].coord[k] > ofs.coord[k] + half_extents.coord[k]) {
 | |
| 						bad_point_counts_positive[k]++;
 | |
| 					}
 | |
| 					if (p_points[i].coord[k] < ofs.coord[k] - half_extents.coord[k]) {
 | |
| 						bad_point_counts_negative[k]++;
 | |
| 					}
 | |
| 				}
 | |
| 
 | |
| 				if (bad_point_counts_negative[k] == p_point_count) {
 | |
| 					return false;
 | |
| 				}
 | |
| 				if (bad_point_counts_positive[k] == p_point_count) {
 | |
| 					return false;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			return true;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	struct Node {
 | |
| 		Volume volume;
 | |
| 		Node *parent = nullptr;
 | |
| 		union {
 | |
| 			Node *children[2];
 | |
| 			void *data;
 | |
| 		};
 | |
| 
 | |
| 		_FORCE_INLINE_ bool is_leaf() const { return children[1] == nullptr; }
 | |
| 		_FORCE_INLINE_ bool is_internal() const { return (!is_leaf()); }
 | |
| 
 | |
| 		_FORCE_INLINE_ int get_index_in_parent() const {
 | |
| 			ERR_FAIL_COND_V(!parent, 0);
 | |
| 			return (parent->children[1] == this) ? 1 : 0;
 | |
| 		}
 | |
| 		void get_max_depth(int depth, int &maxdepth) {
 | |
| 			if (is_internal()) {
 | |
| 				children[0]->get_max_depth(depth + 1, maxdepth);
 | |
| 				children[1]->get_max_depth(depth + 1, maxdepth);
 | |
| 			} else {
 | |
| 				maxdepth = MAX(maxdepth, depth);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		//
 | |
| 		int count_leaves() const {
 | |
| 			if (is_internal()) {
 | |
| 				return children[0]->count_leaves() + children[1]->count_leaves();
 | |
| 			} else {
 | |
| 				return (1);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		bool is_left_of_axis(const Vector3 &org, const Vector3 &axis) const {
 | |
| 			return axis.dot(volume.get_center() - org) <= 0;
 | |
| 		}
 | |
| 
 | |
| 		Node() {
 | |
| 			children[0] = nullptr;
 | |
| 			children[1] = nullptr;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	PagedAllocator<Node> node_allocator;
 | |
| 	// Fields
 | |
| 	Node *bvh_root = nullptr;
 | |
| 	int lkhd = -1;
 | |
| 	int total_leaves = 0;
 | |
| 	uint32_t opath = 0;
 | |
| 	uint32_t index = 0;
 | |
| 
 | |
| 	enum {
 | |
| 		ALLOCA_STACK_SIZE = 128
 | |
| 	};
 | |
| 
 | |
| 	_FORCE_INLINE_ void _delete_node(Node *p_node);
 | |
| 	void _recurse_delete_node(Node *p_node);
 | |
| 	_FORCE_INLINE_ Node *_create_node(Node *p_parent, void *p_data);
 | |
| 	_FORCE_INLINE_ DynamicBVH::Node *_create_node_with_volume(Node *p_parent, const Volume &p_volume, void *p_data);
 | |
| 	_FORCE_INLINE_ void _insert_leaf(Node *p_root, Node *p_leaf);
 | |
| 	_FORCE_INLINE_ Node *_remove_leaf(Node *leaf);
 | |
| 	void _fetch_leaves(Node *p_root, LocalVector<Node *> &r_leaves, int p_depth = -1);
 | |
| 	static int _split(Node **leaves, int p_count, const Vector3 &p_org, const Vector3 &p_axis);
 | |
| 	static Volume _bounds(Node **leaves, int p_count);
 | |
| 	void _bottom_up(Node **leaves, int p_count);
 | |
| 	Node *_top_down(Node **leaves, int p_count, int p_bu_threshold);
 | |
| 	Node *_node_sort(Node *n, Node *&r);
 | |
| 
 | |
| 	_FORCE_INLINE_ void _update(Node *leaf, int lookahead = -1);
 | |
| 
 | |
| 	void _extract_leaves(Node *p_node, List<ID> *r_elements);
 | |
| 
 | |
| 	_FORCE_INLINE_ bool _ray_aabb(const Vector3 &rayFrom, const Vector3 &rayInvDirection, const unsigned int raySign[3], const Vector3 bounds[2], real_t &tmin, real_t lambda_min, real_t lambda_max) {
 | |
| 		real_t tmax, tymin, tymax, tzmin, tzmax;
 | |
| 		tmin = (bounds[raySign[0]].x - rayFrom.x) * rayInvDirection.x;
 | |
| 		tmax = (bounds[1 - raySign[0]].x - rayFrom.x) * rayInvDirection.x;
 | |
| 		tymin = (bounds[raySign[1]].y - rayFrom.y) * rayInvDirection.y;
 | |
| 		tymax = (bounds[1 - raySign[1]].y - rayFrom.y) * rayInvDirection.y;
 | |
| 
 | |
| 		if ((tmin > tymax) || (tymin > tmax)) {
 | |
| 			return false;
 | |
| 		}
 | |
| 
 | |
| 		if (tymin > tmin) {
 | |
| 			tmin = tymin;
 | |
| 		}
 | |
| 
 | |
| 		if (tymax < tmax) {
 | |
| 			tmax = tymax;
 | |
| 		}
 | |
| 
 | |
| 		tzmin = (bounds[raySign[2]].z - rayFrom.z) * rayInvDirection.z;
 | |
| 		tzmax = (bounds[1 - raySign[2]].z - rayFrom.z) * rayInvDirection.z;
 | |
| 
 | |
| 		if ((tmin > tzmax) || (tzmin > tmax)) {
 | |
| 			return false;
 | |
| 		}
 | |
| 		if (tzmin > tmin) {
 | |
| 			tmin = tzmin;
 | |
| 		}
 | |
| 		if (tzmax < tmax) {
 | |
| 			tmax = tzmax;
 | |
| 		}
 | |
| 		return ((tmin < lambda_max) && (tmax > lambda_min));
 | |
| 	}
 | |
| 
 | |
| public:
 | |
| 	// Methods
 | |
| 	void clear();
 | |
| 	bool is_empty() const { return (nullptr == bvh_root); }
 | |
| 	void optimize_bottom_up();
 | |
| 	void optimize_top_down(int bu_threshold = 128);
 | |
| 	void optimize_incremental(int passes);
 | |
| 	ID insert(const AABB &p_box, void *p_userdata);
 | |
| 	bool update(const ID &p_id, const AABB &p_box);
 | |
| 	void remove(const ID &p_id);
 | |
| 	void get_elements(List<ID> *r_elements);
 | |
| 
 | |
| 	int get_leaf_count() const;
 | |
| 	int get_max_depth() const;
 | |
| 
 | |
| 	/* Discouraged, but works as a reference on how it must be used */
 | |
| 	struct DefaultQueryResult {
 | |
| 		virtual bool operator()(void *p_data) = 0; //return true whether you want to continue the query
 | |
| 		virtual ~DefaultQueryResult() {}
 | |
| 	};
 | |
| 
 | |
| 	template <class QueryResult>
 | |
| 	_FORCE_INLINE_ void aabb_query(const AABB &p_aabb, QueryResult &r_result);
 | |
| 	template <class QueryResult>
 | |
| 	_FORCE_INLINE_ void convex_query(const Plane *p_planes, int p_plane_count, const Vector3 *p_points, int p_point_count, QueryResult &r_result);
 | |
| 	template <class QueryResult>
 | |
| 	_FORCE_INLINE_ void ray_query(const Vector3 &p_from, const Vector3 &p_to, QueryResult &r_result);
 | |
| 
 | |
| 	void set_index(uint32_t p_index);
 | |
| 	uint32_t get_index() const;
 | |
| 
 | |
| 	~DynamicBVH();
 | |
| };
 | |
| 
 | |
| template <class QueryResult>
 | |
| void DynamicBVH::aabb_query(const AABB &p_box, QueryResult &r_result) {
 | |
| 	if (!bvh_root) {
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	Volume volume;
 | |
| 	volume.min = p_box.position;
 | |
| 	volume.max = p_box.position + p_box.size;
 | |
| 
 | |
| 	const Node **stack = (const Node **)alloca(ALLOCA_STACK_SIZE * sizeof(const Node *));
 | |
| 	stack[0] = bvh_root;
 | |
| 	int32_t depth = 1;
 | |
| 	int32_t threshold = ALLOCA_STACK_SIZE - 2;
 | |
| 
 | |
| 	LocalVector<const Node *> aux_stack; //only used in rare occasions when you run out of alloca memory because tree is too unbalanced. Should correct itself over time.
 | |
| 
 | |
| 	do {
 | |
| 		depth--;
 | |
| 		const Node *n = stack[depth];
 | |
| 		if (n->volume.intersects(volume)) {
 | |
| 			if (n->is_internal()) {
 | |
| 				if (depth > threshold) {
 | |
| 					if (aux_stack.is_empty()) {
 | |
| 						aux_stack.resize(ALLOCA_STACK_SIZE * 2);
 | |
| 						memcpy(aux_stack.ptr(), stack, ALLOCA_STACK_SIZE * sizeof(const Node *));
 | |
| 					} else {
 | |
| 						aux_stack.resize(aux_stack.size() * 2);
 | |
| 					}
 | |
| 					stack = aux_stack.ptr();
 | |
| 					threshold = aux_stack.size() - 2;
 | |
| 				}
 | |
| 				stack[depth++] = n->children[0];
 | |
| 				stack[depth++] = n->children[1];
 | |
| 			} else {
 | |
| 				if (r_result(n->data)) {
 | |
| 					return;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	} while (depth > 0);
 | |
| }
 | |
| 
 | |
| template <class QueryResult>
 | |
| void DynamicBVH::convex_query(const Plane *p_planes, int p_plane_count, const Vector3 *p_points, int p_point_count, QueryResult &r_result) {
 | |
| 	if (!bvh_root) {
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	//generate a volume anyway to improve pre-testing
 | |
| 	Volume volume;
 | |
| 	for (int i = 0; i < p_point_count; i++) {
 | |
| 		if (i == 0) {
 | |
| 			volume.min = p_points[0];
 | |
| 			volume.max = p_points[0];
 | |
| 		} else {
 | |
| 			volume.min.x = MIN(volume.min.x, p_points[i].x);
 | |
| 			volume.min.y = MIN(volume.min.y, p_points[i].y);
 | |
| 			volume.min.z = MIN(volume.min.z, p_points[i].z);
 | |
| 
 | |
| 			volume.max.x = MAX(volume.max.x, p_points[i].x);
 | |
| 			volume.max.y = MAX(volume.max.y, p_points[i].y);
 | |
| 			volume.max.z = MAX(volume.max.z, p_points[i].z);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	const Node **stack = (const Node **)alloca(ALLOCA_STACK_SIZE * sizeof(const Node *));
 | |
| 	stack[0] = bvh_root;
 | |
| 	int32_t depth = 1;
 | |
| 	int32_t threshold = ALLOCA_STACK_SIZE - 2;
 | |
| 
 | |
| 	LocalVector<const Node *> aux_stack; //only used in rare occasions when you run out of alloca memory because tree is too unbalanced. Should correct itself over time.
 | |
| 
 | |
| 	do {
 | |
| 		depth--;
 | |
| 		const Node *n = stack[depth];
 | |
| 		if (n->volume.intersects(volume) && n->volume.intersects_convex(p_planes, p_plane_count, p_points, p_point_count)) {
 | |
| 			if (n->is_internal()) {
 | |
| 				if (depth > threshold) {
 | |
| 					if (aux_stack.is_empty()) {
 | |
| 						aux_stack.resize(ALLOCA_STACK_SIZE * 2);
 | |
| 						memcpy(aux_stack.ptr(), stack, ALLOCA_STACK_SIZE * sizeof(const Node *));
 | |
| 					} else {
 | |
| 						aux_stack.resize(aux_stack.size() * 2);
 | |
| 					}
 | |
| 					stack = aux_stack.ptr();
 | |
| 					threshold = aux_stack.size() - 2;
 | |
| 				}
 | |
| 				stack[depth++] = n->children[0];
 | |
| 				stack[depth++] = n->children[1];
 | |
| 			} else {
 | |
| 				if (r_result(n->data)) {
 | |
| 					return;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	} while (depth > 0);
 | |
| }
 | |
| template <class QueryResult>
 | |
| void DynamicBVH::ray_query(const Vector3 &p_from, const Vector3 &p_to, QueryResult &r_result) {
 | |
| 	if (!bvh_root) {
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	Vector3 ray_dir = (p_to - p_from);
 | |
| 	ray_dir.normalize();
 | |
| 
 | |
| 	///what about division by zero? --> just set rayDirection[i] to INF/B3_LARGE_FLOAT
 | |
| 	Vector3 inv_dir;
 | |
| 	inv_dir[0] = ray_dir[0] == real_t(0.0) ? real_t(1e20) : real_t(1.0) / ray_dir[0];
 | |
| 	inv_dir[1] = ray_dir[1] == real_t(0.0) ? real_t(1e20) : real_t(1.0) / ray_dir[1];
 | |
| 	inv_dir[2] = ray_dir[2] == real_t(0.0) ? real_t(1e20) : real_t(1.0) / ray_dir[2];
 | |
| 	unsigned int signs[3] = { inv_dir[0] < 0.0, inv_dir[1] < 0.0, inv_dir[2] < 0.0 };
 | |
| 
 | |
| 	real_t lambda_max = ray_dir.dot(p_to - p_from);
 | |
| 
 | |
| 	Vector3 bounds[2];
 | |
| 
 | |
| 	const Node **stack = (const Node **)alloca(ALLOCA_STACK_SIZE * sizeof(const Node *));
 | |
| 	stack[0] = bvh_root;
 | |
| 	int32_t depth = 1;
 | |
| 	int32_t threshold = ALLOCA_STACK_SIZE - 2;
 | |
| 
 | |
| 	LocalVector<const Node *> aux_stack; //only used in rare occasions when you run out of alloca memory because tree is too unbalanced. Should correct itself over time.
 | |
| 
 | |
| 	do {
 | |
| 		depth--;
 | |
| 		const Node *node = stack[depth];
 | |
| 		bounds[0] = node->volume.min;
 | |
| 		bounds[1] = node->volume.max;
 | |
| 		real_t tmin = 1.f, lambda_min = 0.f;
 | |
| 		unsigned int result1 = false;
 | |
| 		result1 = _ray_aabb(p_from, inv_dir, signs, bounds, tmin, lambda_min, lambda_max);
 | |
| 		if (result1) {
 | |
| 			if (node->is_internal()) {
 | |
| 				if (depth > threshold) {
 | |
| 					if (aux_stack.is_empty()) {
 | |
| 						aux_stack.resize(ALLOCA_STACK_SIZE * 2);
 | |
| 						memcpy(aux_stack.ptr(), stack, ALLOCA_STACK_SIZE * sizeof(const Node *));
 | |
| 					} else {
 | |
| 						aux_stack.resize(aux_stack.size() * 2);
 | |
| 					}
 | |
| 					stack = aux_stack.ptr();
 | |
| 					threshold = aux_stack.size() - 2;
 | |
| 				}
 | |
| 				stack[depth++] = node->children[0];
 | |
| 				stack[depth++] = node->children[1];
 | |
| 			} else {
 | |
| 				if (r_result(node->data)) {
 | |
| 					return;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	} while (depth > 0);
 | |
| }
 | |
| 
 | |
| #endif // DYNAMIC_BVH_H
 | 
