mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-30 21:21:10 +00:00 
			
		
		
		
	 5fdc1232ef
			
		
	
	
		5fdc1232ef
		
	
	
	
	
		
			
			This is a much simpler attempt to solve the same problem as #76060, but without breaking any compatibility. * Adds a description of what model space is in the Vector3 enums (MODEL_* constants). This has the proper axes laid out for imported 3D assets. * Adds the option to `look_at` using model_space, which uses Vector3.MODEL_FRONT as forward vector. The attempt of this PR is to still break the assumption that there is a single direction of forward (which is not the case in Godot) and make it easier to understand where 3D models are facing, as well as orienting them via look_at.
		
			
				
	
	
		
			271 lines
		
	
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			271 lines
		
	
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /**************************************************************************/
 | |
| /*  transform_3d.h                                                        */
 | |
| /**************************************************************************/
 | |
| /*                         This file is part of:                          */
 | |
| /*                             GODOT ENGINE                               */
 | |
| /*                        https://godotengine.org                         */
 | |
| /**************************************************************************/
 | |
| /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
 | |
| /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur.                  */
 | |
| /*                                                                        */
 | |
| /* Permission is hereby granted, free of charge, to any person obtaining  */
 | |
| /* a copy of this software and associated documentation files (the        */
 | |
| /* "Software"), to deal in the Software without restriction, including    */
 | |
| /* without limitation the rights to use, copy, modify, merge, publish,    */
 | |
| /* distribute, sublicense, and/or sell copies of the Software, and to     */
 | |
| /* permit persons to whom the Software is furnished to do so, subject to  */
 | |
| /* the following conditions:                                              */
 | |
| /*                                                                        */
 | |
| /* The above copyright notice and this permission notice shall be         */
 | |
| /* included in all copies or substantial portions of the Software.        */
 | |
| /*                                                                        */
 | |
| /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,        */
 | |
| /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF     */
 | |
| /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
 | |
| /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY   */
 | |
| /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,   */
 | |
| /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE      */
 | |
| /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                 */
 | |
| /**************************************************************************/
 | |
| 
 | |
| #ifndef TRANSFORM_3D_H
 | |
| #define TRANSFORM_3D_H
 | |
| 
 | |
| #include "core/math/aabb.h"
 | |
| #include "core/math/basis.h"
 | |
| #include "core/math/plane.h"
 | |
| #include "core/templates/vector.h"
 | |
| 
 | |
| struct _NO_DISCARD_ Transform3D {
 | |
| 	Basis basis;
 | |
| 	Vector3 origin;
 | |
| 
 | |
| 	void invert();
 | |
| 	Transform3D inverse() const;
 | |
| 
 | |
| 	void affine_invert();
 | |
| 	Transform3D affine_inverse() const;
 | |
| 
 | |
| 	Transform3D rotated(const Vector3 &p_axis, real_t p_angle) const;
 | |
| 	Transform3D rotated_local(const Vector3 &p_axis, real_t p_angle) const;
 | |
| 
 | |
| 	void rotate(const Vector3 &p_axis, real_t p_angle);
 | |
| 	void rotate_basis(const Vector3 &p_axis, real_t p_angle);
 | |
| 
 | |
| 	void set_look_at(const Vector3 &p_eye, const Vector3 &p_target, const Vector3 &p_up = Vector3(0, 1, 0), bool p_use_model_front = false);
 | |
| 	Transform3D looking_at(const Vector3 &p_target, const Vector3 &p_up = Vector3(0, 1, 0), bool p_use_model_front = false) const;
 | |
| 
 | |
| 	void scale(const Vector3 &p_scale);
 | |
| 	Transform3D scaled(const Vector3 &p_scale) const;
 | |
| 	Transform3D scaled_local(const Vector3 &p_scale) const;
 | |
| 	void scale_basis(const Vector3 &p_scale);
 | |
| 	void translate_local(real_t p_tx, real_t p_ty, real_t p_tz);
 | |
| 	void translate_local(const Vector3 &p_translation);
 | |
| 	Transform3D translated(const Vector3 &p_translation) const;
 | |
| 	Transform3D translated_local(const Vector3 &p_translation) const;
 | |
| 
 | |
| 	const Basis &get_basis() const { return basis; }
 | |
| 	void set_basis(const Basis &p_basis) { basis = p_basis; }
 | |
| 
 | |
| 	const Vector3 &get_origin() const { return origin; }
 | |
| 	void set_origin(const Vector3 &p_origin) { origin = p_origin; }
 | |
| 
 | |
| 	void orthonormalize();
 | |
| 	Transform3D orthonormalized() const;
 | |
| 	void orthogonalize();
 | |
| 	Transform3D orthogonalized() const;
 | |
| 	bool is_equal_approx(const Transform3D &p_transform) const;
 | |
| 	bool is_finite() const;
 | |
| 
 | |
| 	bool operator==(const Transform3D &p_transform) const;
 | |
| 	bool operator!=(const Transform3D &p_transform) const;
 | |
| 
 | |
| 	_FORCE_INLINE_ Vector3 xform(const Vector3 &p_vector) const;
 | |
| 	_FORCE_INLINE_ AABB xform(const AABB &p_aabb) const;
 | |
| 	_FORCE_INLINE_ Vector<Vector3> xform(const Vector<Vector3> &p_array) const;
 | |
| 
 | |
| 	// NOTE: These are UNSAFE with non-uniform scaling, and will produce incorrect results.
 | |
| 	// They use the transpose.
 | |
| 	// For safe inverse transforms, xform by the affine_inverse.
 | |
| 	_FORCE_INLINE_ Vector3 xform_inv(const Vector3 &p_vector) const;
 | |
| 	_FORCE_INLINE_ AABB xform_inv(const AABB &p_aabb) const;
 | |
| 	_FORCE_INLINE_ Vector<Vector3> xform_inv(const Vector<Vector3> &p_array) const;
 | |
| 
 | |
| 	// Safe with non-uniform scaling (uses affine_inverse).
 | |
| 	_FORCE_INLINE_ Plane xform(const Plane &p_plane) const;
 | |
| 	_FORCE_INLINE_ Plane xform_inv(const Plane &p_plane) const;
 | |
| 
 | |
| 	// These fast versions use precomputed affine inverse, and should be used in bottleneck areas where
 | |
| 	// multiple planes are to be transformed.
 | |
| 	_FORCE_INLINE_ Plane xform_fast(const Plane &p_plane, const Basis &p_basis_inverse_transpose) const;
 | |
| 	static _FORCE_INLINE_ Plane xform_inv_fast(const Plane &p_plane, const Transform3D &p_inverse, const Basis &p_basis_transpose);
 | |
| 
 | |
| 	void operator*=(const Transform3D &p_transform);
 | |
| 	Transform3D operator*(const Transform3D &p_transform) const;
 | |
| 	void operator*=(const real_t p_val);
 | |
| 	Transform3D operator*(const real_t p_val) const;
 | |
| 
 | |
| 	Transform3D interpolate_with(const Transform3D &p_transform, real_t p_c) const;
 | |
| 
 | |
| 	_FORCE_INLINE_ Transform3D inverse_xform(const Transform3D &t) const {
 | |
| 		Vector3 v = t.origin - origin;
 | |
| 		return Transform3D(basis.transpose_xform(t.basis),
 | |
| 				basis.xform(v));
 | |
| 	}
 | |
| 
 | |
| 	void set(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz, real_t tx, real_t ty, real_t tz) {
 | |
| 		basis.set(xx, xy, xz, yx, yy, yz, zx, zy, zz);
 | |
| 		origin.x = tx;
 | |
| 		origin.y = ty;
 | |
| 		origin.z = tz;
 | |
| 	}
 | |
| 
 | |
| 	operator String() const;
 | |
| 
 | |
| 	Transform3D() {}
 | |
| 	Transform3D(const Basis &p_basis, const Vector3 &p_origin = Vector3());
 | |
| 	Transform3D(const Vector3 &p_x, const Vector3 &p_y, const Vector3 &p_z, const Vector3 &p_origin);
 | |
| 	Transform3D(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz, real_t ox, real_t oy, real_t oz);
 | |
| };
 | |
| 
 | |
| _FORCE_INLINE_ Vector3 Transform3D::xform(const Vector3 &p_vector) const {
 | |
| 	return Vector3(
 | |
| 			basis[0].dot(p_vector) + origin.x,
 | |
| 			basis[1].dot(p_vector) + origin.y,
 | |
| 			basis[2].dot(p_vector) + origin.z);
 | |
| }
 | |
| 
 | |
| _FORCE_INLINE_ Vector3 Transform3D::xform_inv(const Vector3 &p_vector) const {
 | |
| 	Vector3 v = p_vector - origin;
 | |
| 
 | |
| 	return Vector3(
 | |
| 			(basis.rows[0][0] * v.x) + (basis.rows[1][0] * v.y) + (basis.rows[2][0] * v.z),
 | |
| 			(basis.rows[0][1] * v.x) + (basis.rows[1][1] * v.y) + (basis.rows[2][1] * v.z),
 | |
| 			(basis.rows[0][2] * v.x) + (basis.rows[1][2] * v.y) + (basis.rows[2][2] * v.z));
 | |
| }
 | |
| 
 | |
| // Neither the plane regular xform or xform_inv are particularly efficient,
 | |
| // as they do a basis inverse. For xforming a large number
 | |
| // of planes it is better to pre-calculate the inverse transpose basis once
 | |
| // and reuse it for each plane, by using the 'fast' version of the functions.
 | |
| _FORCE_INLINE_ Plane Transform3D::xform(const Plane &p_plane) const {
 | |
| 	Basis b = basis.inverse();
 | |
| 	b.transpose();
 | |
| 	return xform_fast(p_plane, b);
 | |
| }
 | |
| 
 | |
| _FORCE_INLINE_ Plane Transform3D::xform_inv(const Plane &p_plane) const {
 | |
| 	Transform3D inv = affine_inverse();
 | |
| 	Basis basis_transpose = basis.transposed();
 | |
| 	return xform_inv_fast(p_plane, inv, basis_transpose);
 | |
| }
 | |
| 
 | |
| _FORCE_INLINE_ AABB Transform3D::xform(const AABB &p_aabb) const {
 | |
| 	/* https://dev.theomader.com/transform-bounding-boxes/ */
 | |
| 	Vector3 min = p_aabb.position;
 | |
| 	Vector3 max = p_aabb.position + p_aabb.size;
 | |
| 	Vector3 tmin, tmax;
 | |
| 	for (int i = 0; i < 3; i++) {
 | |
| 		tmin[i] = tmax[i] = origin[i];
 | |
| 		for (int j = 0; j < 3; j++) {
 | |
| 			real_t e = basis[i][j] * min[j];
 | |
| 			real_t f = basis[i][j] * max[j];
 | |
| 			if (e < f) {
 | |
| 				tmin[i] += e;
 | |
| 				tmax[i] += f;
 | |
| 			} else {
 | |
| 				tmin[i] += f;
 | |
| 				tmax[i] += e;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	AABB r_aabb;
 | |
| 	r_aabb.position = tmin;
 | |
| 	r_aabb.size = tmax - tmin;
 | |
| 	return r_aabb;
 | |
| }
 | |
| 
 | |
| _FORCE_INLINE_ AABB Transform3D::xform_inv(const AABB &p_aabb) const {
 | |
| 	/* define vertices */
 | |
| 	Vector3 vertices[8] = {
 | |
| 		Vector3(p_aabb.position.x + p_aabb.size.x, p_aabb.position.y + p_aabb.size.y, p_aabb.position.z + p_aabb.size.z),
 | |
| 		Vector3(p_aabb.position.x + p_aabb.size.x, p_aabb.position.y + p_aabb.size.y, p_aabb.position.z),
 | |
| 		Vector3(p_aabb.position.x + p_aabb.size.x, p_aabb.position.y, p_aabb.position.z + p_aabb.size.z),
 | |
| 		Vector3(p_aabb.position.x + p_aabb.size.x, p_aabb.position.y, p_aabb.position.z),
 | |
| 		Vector3(p_aabb.position.x, p_aabb.position.y + p_aabb.size.y, p_aabb.position.z + p_aabb.size.z),
 | |
| 		Vector3(p_aabb.position.x, p_aabb.position.y + p_aabb.size.y, p_aabb.position.z),
 | |
| 		Vector3(p_aabb.position.x, p_aabb.position.y, p_aabb.position.z + p_aabb.size.z),
 | |
| 		Vector3(p_aabb.position.x, p_aabb.position.y, p_aabb.position.z)
 | |
| 	};
 | |
| 
 | |
| 	AABB ret;
 | |
| 
 | |
| 	ret.position = xform_inv(vertices[0]);
 | |
| 
 | |
| 	for (int i = 1; i < 8; i++) {
 | |
| 		ret.expand_to(xform_inv(vertices[i]));
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| Vector<Vector3> Transform3D::xform(const Vector<Vector3> &p_array) const {
 | |
| 	Vector<Vector3> array;
 | |
| 	array.resize(p_array.size());
 | |
| 
 | |
| 	const Vector3 *r = p_array.ptr();
 | |
| 	Vector3 *w = array.ptrw();
 | |
| 
 | |
| 	for (int i = 0; i < p_array.size(); ++i) {
 | |
| 		w[i] = xform(r[i]);
 | |
| 	}
 | |
| 	return array;
 | |
| }
 | |
| 
 | |
| Vector<Vector3> Transform3D::xform_inv(const Vector<Vector3> &p_array) const {
 | |
| 	Vector<Vector3> array;
 | |
| 	array.resize(p_array.size());
 | |
| 
 | |
| 	const Vector3 *r = p_array.ptr();
 | |
| 	Vector3 *w = array.ptrw();
 | |
| 
 | |
| 	for (int i = 0; i < p_array.size(); ++i) {
 | |
| 		w[i] = xform_inv(r[i]);
 | |
| 	}
 | |
| 	return array;
 | |
| }
 | |
| 
 | |
| _FORCE_INLINE_ Plane Transform3D::xform_fast(const Plane &p_plane, const Basis &p_basis_inverse_transpose) const {
 | |
| 	// Transform a single point on the plane.
 | |
| 	Vector3 point = p_plane.normal * p_plane.d;
 | |
| 	point = xform(point);
 | |
| 
 | |
| 	// Use inverse transpose for correct normals with non-uniform scaling.
 | |
| 	Vector3 normal = p_basis_inverse_transpose.xform(p_plane.normal);
 | |
| 	normal.normalize();
 | |
| 
 | |
| 	real_t d = normal.dot(point);
 | |
| 	return Plane(normal, d);
 | |
| }
 | |
| 
 | |
| _FORCE_INLINE_ Plane Transform3D::xform_inv_fast(const Plane &p_plane, const Transform3D &p_inverse, const Basis &p_basis_transpose) {
 | |
| 	// Transform a single point on the plane.
 | |
| 	Vector3 point = p_plane.normal * p_plane.d;
 | |
| 	point = p_inverse.xform(point);
 | |
| 
 | |
| 	// Note that instead of precalculating the transpose, an alternative
 | |
| 	// would be to use the transpose for the basis transform.
 | |
| 	// However that would be less SIMD friendly (requiring a swizzle).
 | |
| 	// So the cost is one extra precalced value in the calling code.
 | |
| 	// This is probably worth it, as this could be used in bottleneck areas. And
 | |
| 	// where it is not a bottleneck, the non-fast method is fine.
 | |
| 
 | |
| 	// Use transpose for correct normals with non-uniform scaling.
 | |
| 	Vector3 normal = p_basis_transpose.xform(p_plane.normal);
 | |
| 	normal.normalize();
 | |
| 
 | |
| 	real_t d = normal.dot(point);
 | |
| 	return Plane(normal, d);
 | |
| }
 | |
| 
 | |
| #endif // TRANSFORM_3D_H
 |