mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-31 13:41:03 +00:00 
			
		
		
		
	 767e374dce
			
		
	
	
		767e374dce
		
	
	
	
	
		
			
			Since Embree v3.13.0 supports AARCH64, switch back to the official repo instead of using Embree-aarch64. `thirdparty/embree/patches/godot-changes.patch` should now contain an accurate diff of the changes done to the library.
		
			
				
	
	
		
			237 lines
		
	
	
	
		
			9.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			237 lines
		
	
	
	
		
			9.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2009-2021 Intel Corporation
 | |
| // SPDX-License-Identifier: Apache-2.0
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include "../common/primref_mb.h"
 | |
| #include "../../common/algorithms/parallel_filter.h"
 | |
| 
 | |
| #define MBLUR_TIME_SPLIT_THRESHOLD 1.25f
 | |
| 
 | |
| namespace embree
 | |
| {
 | |
|   namespace isa
 | |
|   { 
 | |
|     /*! Performs standard object binning */
 | |
|     template<typename PrimRefMB, typename RecalculatePrimRef, size_t BINS>
 | |
|       struct HeuristicMBlurTemporalSplit
 | |
|       {
 | |
|         typedef BinSplit<MBLUR_NUM_OBJECT_BINS> Split;
 | |
|         typedef mvector<PrimRefMB>* PrimRefVector;
 | |
|         typedef typename PrimRefMB::BBox BBox; 
 | |
| 
 | |
|         static const size_t PARALLEL_THRESHOLD = 3 * 1024;
 | |
|         static const size_t PARALLEL_FIND_BLOCK_SIZE = 1024;
 | |
|         static const size_t PARALLEL_PARTITION_BLOCK_SIZE = 128;
 | |
| 
 | |
|         HeuristicMBlurTemporalSplit (MemoryMonitorInterface* device, const RecalculatePrimRef& recalculatePrimRef)
 | |
|           : device(device), recalculatePrimRef(recalculatePrimRef) {}
 | |
| 
 | |
|         struct TemporalBinInfo
 | |
|         {
 | |
|           __forceinline TemporalBinInfo () {
 | |
|           }
 | |
| 
 | |
|           __forceinline TemporalBinInfo (EmptyTy)
 | |
|           {
 | |
|             for (size_t i=0; i<BINS-1; i++)
 | |
|             {
 | |
|               count0[i] = count1[i] = 0;
 | |
|               bounds0[i] = bounds1[i] = empty;
 | |
|             }
 | |
|           }
 | |
|           
 | |
|           void bin(const PrimRefMB* prims, size_t begin, size_t end, BBox1f time_range, const SetMB& set, const RecalculatePrimRef& recalculatePrimRef)
 | |
|           {
 | |
|             for (int b=0; b<BINS-1; b++)
 | |
|             {
 | |
|               const float t = float(b+1)/float(BINS);
 | |
|               const float ct = lerp(time_range.lower,time_range.upper,t);
 | |
|               const float center_time = set.align_time(ct);
 | |
|               if (center_time <= time_range.lower) continue;
 | |
|               if (center_time >= time_range.upper) continue;
 | |
|               const BBox1f dt0(time_range.lower,center_time);
 | |
|               const BBox1f dt1(center_time,time_range.upper);
 | |
|               
 | |
|               /* find linear bounds for both time segments */
 | |
|               for (size_t i=begin; i<end; i++) 
 | |
|               {
 | |
|                 if (prims[i].time_range_overlap(dt0))
 | |
|                 {
 | |
|                   const LBBox3fa bn0 = recalculatePrimRef.linearBounds(prims[i],dt0);
 | |
| #if MBLUR_BIN_LBBOX
 | |
|                   bounds0[b].extend(bn0);
 | |
| #else
 | |
|                   bounds0[b].extend(bn0.interpolate(0.5f));
 | |
| #endif
 | |
|                   count0[b] += prims[i].timeSegmentRange(dt0).size();
 | |
|                 }
 | |
| 
 | |
|                 if (prims[i].time_range_overlap(dt1))
 | |
|                 {
 | |
|                   const LBBox3fa bn1 = recalculatePrimRef.linearBounds(prims[i],dt1);
 | |
| #if MBLUR_BIN_LBBOX
 | |
|                   bounds1[b].extend(bn1);
 | |
| #else
 | |
|                   bounds1[b].extend(bn1.interpolate(0.5f));
 | |
| #endif
 | |
|                   count1[b] += prims[i].timeSegmentRange(dt1).size();
 | |
|                 }
 | |
|               }
 | |
|             }
 | |
|           }
 | |
| 
 | |
|           __forceinline void bin_parallel(const PrimRefMB* prims, size_t begin, size_t end, size_t blockSize, size_t parallelThreshold, BBox1f time_range, const SetMB& set, const RecalculatePrimRef& recalculatePrimRef) 
 | |
|           {
 | |
|             if (likely(end-begin < parallelThreshold)) {
 | |
|               bin(prims,begin,end,time_range,set,recalculatePrimRef);
 | |
|             } 
 | |
|             else 
 | |
|             {
 | |
|               auto bin = [&](const range<size_t>& r) -> TemporalBinInfo { 
 | |
|                 TemporalBinInfo binner(empty); binner.bin(prims, r.begin(), r.end(), time_range, set, recalculatePrimRef); return binner; 
 | |
|               };
 | |
|               *this = parallel_reduce(begin,end,blockSize,TemporalBinInfo(empty),bin,merge2);
 | |
|             }
 | |
|           }
 | |
|           
 | |
|           /*! merges in other binning information */
 | |
|           __forceinline void merge (const TemporalBinInfo& other)
 | |
|           {
 | |
|             for (size_t i=0; i<BINS-1; i++) 
 | |
|             {
 | |
|               count0[i] += other.count0[i];
 | |
|               count1[i] += other.count1[i];
 | |
|               bounds0[i].extend(other.bounds0[i]);
 | |
|               bounds1[i].extend(other.bounds1[i]);
 | |
|             }
 | |
|           }
 | |
| 
 | |
|           static __forceinline const TemporalBinInfo merge2(const TemporalBinInfo& a, const TemporalBinInfo& b) {
 | |
|             TemporalBinInfo r = a; r.merge(b); return r;
 | |
|           }
 | |
|                     
 | |
|           Split best(int logBlockSize, BBox1f time_range, const SetMB& set)
 | |
|           {
 | |
|             float bestSAH = inf;
 | |
|             float bestPos = 0.0f;
 | |
|             for (int b=0; b<BINS-1; b++)
 | |
|             {
 | |
|               float t = float(b+1)/float(BINS);
 | |
|               float ct = lerp(time_range.lower,time_range.upper,t);
 | |
|               const float center_time = set.align_time(ct);
 | |
|               if (center_time <= time_range.lower) continue;
 | |
|               if (center_time >= time_range.upper) continue;
 | |
|               const BBox1f dt0(time_range.lower,center_time);
 | |
|               const BBox1f dt1(center_time,time_range.upper);
 | |
|               
 | |
|               /* calculate sah */
 | |
|               const size_t lCount = (count0[b]+(size_t(1) << logBlockSize)-1) >> int(logBlockSize);
 | |
|               const size_t rCount = (count1[b]+(size_t(1) << logBlockSize)-1) >> int(logBlockSize);
 | |
|               float sah0 = expectedApproxHalfArea(bounds0[b])*float(lCount)*dt0.size();
 | |
|               float sah1 = expectedApproxHalfArea(bounds1[b])*float(rCount)*dt1.size();
 | |
|               if (unlikely(lCount == 0)) sah0 = 0.0f; // happens for initial splits when objects not alive over entire shutter time
 | |
|               if (unlikely(rCount == 0)) sah1 = 0.0f;
 | |
|               const float sah = sah0+sah1;
 | |
|               if (sah < bestSAH) {
 | |
|                 bestSAH = sah;
 | |
|                 bestPos = center_time;
 | |
|               }
 | |
|             }
 | |
|             return Split(bestSAH*MBLUR_TIME_SPLIT_THRESHOLD,(unsigned)Split::SPLIT_TEMPORAL,0,bestPos);
 | |
|           }
 | |
|           
 | |
|         public:
 | |
|           size_t count0[BINS-1];
 | |
|           size_t count1[BINS-1];
 | |
|           BBox bounds0[BINS-1];
 | |
|           BBox bounds1[BINS-1];
 | |
|         };
 | |
|         
 | |
|         /*! finds the best split */
 | |
|         const Split find(const SetMB& set, const size_t logBlockSize)
 | |
|         {
 | |
|           assert(set.size() > 0);
 | |
|           TemporalBinInfo binner(empty);
 | |
|           binner.bin_parallel(set.prims->data(),set.begin(),set.end(),PARALLEL_FIND_BLOCK_SIZE,PARALLEL_THRESHOLD,set.time_range,set,recalculatePrimRef);
 | |
|           Split tsplit = binner.best((int)logBlockSize,set.time_range,set);
 | |
|           if (!tsplit.valid()) tsplit.data = Split::SPLIT_FALLBACK; // use fallback split
 | |
|           return tsplit;
 | |
|         }
 | |
| 
 | |
|         __forceinline std::unique_ptr<mvector<PrimRefMB>> split(const Split& tsplit, const SetMB& set, SetMB& lset, SetMB& rset)
 | |
|         {
 | |
|           assert(tsplit.sah != float(inf));
 | |
|           assert(tsplit.fpos > set.time_range.lower);
 | |
|           assert(tsplit.fpos < set.time_range.upper);
 | |
| 
 | |
|           float center_time = tsplit.fpos;
 | |
|           const BBox1f time_range0(set.time_range.lower,center_time);
 | |
|           const BBox1f time_range1(center_time,set.time_range.upper);
 | |
|           mvector<PrimRefMB>& prims = *set.prims;
 | |
|           
 | |
|           /* calculate primrefs for first time range */
 | |
|           std::unique_ptr<mvector<PrimRefMB>> new_vector(new mvector<PrimRefMB>(device, set.size()));
 | |
|           PrimRefVector lprims = new_vector.get();
 | |
|           
 | |
|           auto reduction_func0 = [&] (const range<size_t>& r) {
 | |
|             PrimInfoMB pinfo = empty;
 | |
|             for (size_t i=r.begin(); i<r.end(); i++) 
 | |
|             {
 | |
|               if (likely(prims[i].time_range_overlap(time_range0)))
 | |
|               {
 | |
|                 const PrimRefMB& prim = recalculatePrimRef(prims[i],time_range0);
 | |
|                 (*lprims)[i-set.begin()] = prim;
 | |
|                 pinfo.add_primref(prim);
 | |
|               }
 | |
|               else
 | |
|               {
 | |
|                 (*lprims)[i-set.begin()] = prims[i];
 | |
|               }
 | |
|             }
 | |
|             return pinfo;
 | |
|           };        
 | |
|           PrimInfoMB linfo = parallel_reduce(set.object_range,PARALLEL_PARTITION_BLOCK_SIZE,PARALLEL_THRESHOLD,PrimInfoMB(empty),reduction_func0,PrimInfoMB::merge2);
 | |
| 
 | |
|           /* primrefs for first time range are in lprims[0 .. set.size()) */
 | |
|           /* some primitives may need to be filtered out */
 | |
|           if (linfo.size() != set.size())
 | |
|             linfo.object_range._end = parallel_filter(lprims->data(), size_t(0), set.size(), size_t(1024),
 | |
|                                                       [&](const PrimRefMB& prim) { return prim.time_range_overlap(time_range0); });
 | |
|                       
 | |
|           lset = SetMB(linfo,lprims,time_range0);
 | |
| 
 | |
|           /* calculate primrefs for second time range */
 | |
|           auto reduction_func1 = [&] (const range<size_t>& r) {
 | |
|             PrimInfoMB pinfo = empty;
 | |
|             for (size_t i=r.begin(); i<r.end(); i++) 
 | |
|             {
 | |
|               if (likely(prims[i].time_range_overlap(time_range1)))
 | |
|               {
 | |
|                 const PrimRefMB& prim = recalculatePrimRef(prims[i],time_range1);
 | |
|                 prims[i] = prim;
 | |
|                 pinfo.add_primref(prim);
 | |
|               }
 | |
|             }
 | |
|             return pinfo;
 | |
|           };        
 | |
|           PrimInfoMB rinfo = parallel_reduce(set.object_range,PARALLEL_PARTITION_BLOCK_SIZE,PARALLEL_THRESHOLD,PrimInfoMB(empty),reduction_func1,PrimInfoMB::merge2);
 | |
|           rinfo.object_range = range<size_t>(set.begin(), set.begin() + rinfo.size());
 | |
| 
 | |
|           /* primrefs for second time range are in prims[set.begin() .. set.end()) */
 | |
|           /* some primitives may need to be filtered out */
 | |
|           if (rinfo.size() != set.size())
 | |
|             rinfo.object_range._end = parallel_filter(prims.data(), set.begin(), set.end(), size_t(1024),
 | |
|                                                       [&](const PrimRefMB& prim) { return prim.time_range_overlap(time_range1); });
 | |
|         
 | |
|           rset = SetMB(rinfo,&prims,time_range1);
 | |
| 
 | |
|           return new_vector;
 | |
|         }
 | |
| 
 | |
|       private:
 | |
|         MemoryMonitorInterface* device;              // device to report memory usage to
 | |
|         const RecalculatePrimRef recalculatePrimRef;
 | |
|       };
 | |
|   }
 | |
| }
 |