mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-30 21:21:10 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			314 lines
		
	
	
	
		
			8.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			314 lines
		
	
	
	
		
			8.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include "internal.h"
 | |
| #include "mathops.h"
 | |
| 
 | |
| /*The fastest fallback strategy for platforms with fast multiplication appears
 | |
|    to be based on de Bruijn sequences~\cite{LP98}.
 | |
|   Define OC_ILOG_NODEBRUIJN to use a simpler fallback on platforms where
 | |
|    multiplication or table lookups are too expensive.
 | |
| 
 | |
|   @UNPUBLISHED{LP98,
 | |
|     author="Charles E. Leiserson and Harald Prokop",
 | |
|     title="Using de {Bruijn} Sequences to Index a 1 in a Computer Word",
 | |
|     month=Jun,
 | |
|     year=1998,
 | |
|     note="\url{http://supertech.csail.mit.edu/papers/debruijn.pdf}"
 | |
|   }*/
 | |
| #if !defined(OC_ILOG_NODEBRUIJN)&&!defined(OC_CLZ32)
 | |
| static const unsigned char OC_DEBRUIJN_IDX32[32]={
 | |
|    0, 1,28, 2,29,14,24, 3,30,22,20,15,25,17, 4, 8,
 | |
|   31,27,13,23,21,19,16, 7,26,12,18, 6,11, 5,10, 9
 | |
| };
 | |
| #endif
 | |
| 
 | |
| int oc_ilog32(ogg_uint32_t _v){
 | |
| #if defined(OC_CLZ32)
 | |
|   return OC_CLZ32_OFFS-OC_CLZ32(_v)&-!!_v;
 | |
| #else
 | |
| /*On a Pentium M, this branchless version tested as the fastest version without
 | |
|    multiplications on 1,000,000,000 random 32-bit integers, edging out a
 | |
|    similar version with branches, and a 256-entry LUT version.*/
 | |
| # if defined(OC_ILOG_NODEBRUIJN)
 | |
|   int ret;
 | |
|   int m;
 | |
|   ret=_v>0;
 | |
|   m=(_v>0xFFFFU)<<4;
 | |
|   _v>>=m;
 | |
|   ret|=m;
 | |
|   m=(_v>0xFFU)<<3;
 | |
|   _v>>=m;
 | |
|   ret|=m;
 | |
|   m=(_v>0xFU)<<2;
 | |
|   _v>>=m;
 | |
|   ret|=m;
 | |
|   m=(_v>3)<<1;
 | |
|   _v>>=m;
 | |
|   ret|=m;
 | |
|   ret+=_v>1;
 | |
|   return ret;
 | |
| /*This de Bruijn sequence version is faster if you have a fast multiplier.*/
 | |
| # else
 | |
|   int ret;
 | |
|   _v|=_v>>1;
 | |
|   _v|=_v>>2;
 | |
|   _v|=_v>>4;
 | |
|   _v|=_v>>8;
 | |
|   _v|=_v>>16;
 | |
|   ret=_v&1;
 | |
|   _v=(_v>>1)+1;
 | |
|   ret+=OC_DEBRUIJN_IDX32[_v*0x77CB531U>>27&0x1F];
 | |
|   return ret;
 | |
| # endif
 | |
| #endif
 | |
| }
 | |
| 
 | |
| int oc_ilog64(ogg_int64_t _v){
 | |
| #if defined(OC_CLZ64)
 | |
|   return OC_CLZ64_OFFS-OC_CLZ64(_v)&-!!_v;
 | |
| #else
 | |
| /*If we don't have a fast 64-bit word implementation, split it into two 32-bit
 | |
|    halves.*/
 | |
| # if defined(OC_ILOG_NODEBRUIJN)|| \
 | |
|  defined(OC_CLZ32)||LONG_MAX<9223372036854775807LL
 | |
|   ogg_uint32_t v;
 | |
|   int          ret;
 | |
|   int          m;
 | |
|   m=(_v>0xFFFFFFFFU)<<5;
 | |
|   v=(ogg_uint32_t)(_v>>m);
 | |
| #  if defined(OC_CLZ32)
 | |
|   ret=m+OC_CLZ32_OFFS-OC_CLZ32(v)&-!!v;
 | |
| #  elif defined(OC_ILOG_NODEBRUIJN)
 | |
|   ret=v>0|m;
 | |
|   m=(v>0xFFFFU)<<4;
 | |
|   v>>=m;
 | |
|   ret|=m;
 | |
|   m=(v>0xFFU)<<3;
 | |
|   v>>=m;
 | |
|   ret|=m;
 | |
|   m=(v>0xFU)<<2;
 | |
|   v>>=m;
 | |
|   ret|=m;
 | |
|   m=(v>3)<<1;
 | |
|   v>>=m;
 | |
|   ret|=m;
 | |
|   ret+=v>1;
 | |
|   return ret;
 | |
| #  else
 | |
|   v|=v>>1;
 | |
|   v|=v>>2;
 | |
|   v|=v>>4;
 | |
|   v|=v>>8;
 | |
|   v|=v>>16;
 | |
|   ret=v&1|m;
 | |
|   v=(v>>1)+1;
 | |
|   ret+=OC_DEBRUIJN_IDX32[v*0x77CB531U>>27&0x1F];
 | |
| #  endif
 | |
|   return ret;
 | |
| /*Otherwise do it in one 64-bit multiply.*/
 | |
| # else
 | |
|   static const unsigned char OC_DEBRUIJN_IDX64[64]={
 | |
|      0, 1, 2, 7, 3,13, 8,19, 4,25,14,28, 9,34,20,40,
 | |
|      5,17,26,38,15,46,29,48,10,31,35,54,21,50,41,57,
 | |
|     63, 6,12,18,24,27,33,39,16,37,45,47,30,53,49,56,
 | |
|     62,11,23,32,36,44,52,55,61,22,43,51,60,42,59,58
 | |
|   };
 | |
|   int ret;
 | |
|   _v|=_v>>1;
 | |
|   _v|=_v>>2;
 | |
|   _v|=_v>>4;
 | |
|   _v|=_v>>8;
 | |
|   _v|=_v>>16;
 | |
|   _v|=_v>>32;
 | |
|   ret=(int)_v&1;
 | |
|   _v=(_v>>1)+1;
 | |
|   ret+=OC_DEBRUIJN_IDX64[_v*0x218A392CD3D5DBF>>58&0x3F];
 | |
|   return ret;
 | |
| # endif
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*round(2**(62+i)*atanh(2**(-(i+1)))/log(2))*/
 | |
| static const ogg_int64_t OC_ATANH_LOG2[32]={
 | |
|   0x32B803473F7AD0F4LL,0x2F2A71BD4E25E916LL,0x2E68B244BB93BA06LL,
 | |
|   0x2E39FB9198CE62E4LL,0x2E2E683F68565C8FLL,0x2E2B850BE2077FC1LL,
 | |
|   0x2E2ACC58FE7B78DBLL,0x2E2A9E2DE52FD5F2LL,0x2E2A92A338D53EECLL,
 | |
|   0x2E2A8FC08F5E19B6LL,0x2E2A8F07E51A485ELL,0x2E2A8ED9BA8AF388LL,
 | |
|   0x2E2A8ECE2FE7384ALL,0x2E2A8ECB4D3E4B1ALL,0x2E2A8ECA94940FE8LL,
 | |
|   0x2E2A8ECA6669811DLL,0x2E2A8ECA5ADEDD6ALL,0x2E2A8ECA57FC347ELL,
 | |
|   0x2E2A8ECA57438A43LL,0x2E2A8ECA57155FB4LL,0x2E2A8ECA5709D510LL,
 | |
|   0x2E2A8ECA5706F267LL,0x2E2A8ECA570639BDLL,0x2E2A8ECA57060B92LL,
 | |
|   0x2E2A8ECA57060008LL,0x2E2A8ECA5705FD25LL,0x2E2A8ECA5705FC6CLL,
 | |
|   0x2E2A8ECA5705FC3ELL,0x2E2A8ECA5705FC33LL,0x2E2A8ECA5705FC30LL,
 | |
|   0x2E2A8ECA5705FC2FLL,0x2E2A8ECA5705FC2FLL
 | |
| };
 | |
| 
 | |
| /*Computes the binary exponential of _z, a log base 2 in Q57 format.*/
 | |
| ogg_int64_t oc_bexp64(ogg_int64_t _z){
 | |
|   ogg_int64_t w;
 | |
|   ogg_int64_t z;
 | |
|   int         ipart;
 | |
|   ipart=(int)(_z>>57);
 | |
|   if(ipart<0)return 0;
 | |
|   if(ipart>=63)return 0x7FFFFFFFFFFFFFFFLL;
 | |
|   z=_z-OC_Q57(ipart);
 | |
|   if(z){
 | |
|     ogg_int64_t mask;
 | |
|     long        wlo;
 | |
|     int         i;
 | |
|     /*C doesn't give us 64x64->128 muls, so we use CORDIC.
 | |
|       This is not particularly fast, but it's not being used in time-critical
 | |
|        code; it is very accurate.*/
 | |
|     /*z is the fractional part of the log in Q62 format.
 | |
|       We need 1 bit of headroom since the magnitude can get larger than 1
 | |
|        during the iteration, and a sign bit.*/
 | |
|     z<<=5;
 | |
|     /*w is the exponential in Q61 format (since it also needs headroom and can
 | |
|        get as large as 2.0); we could get another bit if we dropped the sign,
 | |
|        but we'll recover that bit later anyway.
 | |
|       Ideally this should start out as
 | |
|         \lim_{n->\infty} 2^{61}/\product_{i=1}^n \sqrt{1-2^{-2i}}
 | |
|        but in order to guarantee convergence we have to repeat iterations 4,
 | |
|         13 (=3*4+1), and 40 (=3*13+1, etc.), so it winds up somewhat larger.*/
 | |
|     w=0x26A3D0E401DD846DLL;
 | |
|     for(i=0;;i++){
 | |
|       mask=-(z<0);
 | |
|       w+=(w>>i+1)+mask^mask;
 | |
|       z-=OC_ATANH_LOG2[i]+mask^mask;
 | |
|       /*Repeat iteration 4.*/
 | |
|       if(i>=3)break;
 | |
|       z<<=1;
 | |
|     }
 | |
|     for(;;i++){
 | |
|       mask=-(z<0);
 | |
|       w+=(w>>i+1)+mask^mask;
 | |
|       z-=OC_ATANH_LOG2[i]+mask^mask;
 | |
|       /*Repeat iteration 13.*/
 | |
|       if(i>=12)break;
 | |
|       z<<=1;
 | |
|     }
 | |
|     for(;i<32;i++){
 | |
|       mask=-(z<0);
 | |
|       w+=(w>>i+1)+mask^mask;
 | |
|       z=z-(OC_ATANH_LOG2[i]+mask^mask)<<1;
 | |
|     }
 | |
|     wlo=0;
 | |
|     /*Skip the remaining iterations unless we really require that much
 | |
|        precision.
 | |
|       We could have bailed out earlier for smaller iparts, but that would
 | |
|        require initializing w from a table, as the limit doesn't converge to
 | |
|        61-bit precision until n=30.*/
 | |
|     if(ipart>30){
 | |
|       /*For these iterations, we just update the low bits, as the high bits
 | |
|          can't possibly be affected.
 | |
|         OC_ATANH_LOG2 has also converged (it actually did so one iteration
 | |
|          earlier, but that's no reason for an extra special case).*/
 | |
|       for(;;i++){
 | |
|         mask=-(z<0);
 | |
|         wlo+=(w>>i)+mask^mask;
 | |
|         z-=OC_ATANH_LOG2[31]+mask^mask;
 | |
|         /*Repeat iteration 40.*/
 | |
|         if(i>=39)break;
 | |
|         z<<=1;
 | |
|       }
 | |
|       for(;i<61;i++){
 | |
|         mask=-(z<0);
 | |
|         wlo+=(w>>i)+mask^mask;
 | |
|         z=z-(OC_ATANH_LOG2[31]+mask^mask)<<1;
 | |
|       }
 | |
|     }
 | |
|     w=(w<<1)+wlo;
 | |
|   }
 | |
|   else w=(ogg_int64_t)1<<62;
 | |
|   if(ipart<62)w=(w>>61-ipart)+1>>1;
 | |
|   return w;
 | |
| }
 | |
| 
 | |
| /*Computes the binary logarithm of _w, returned in Q57 format.*/
 | |
| ogg_int64_t oc_blog64(ogg_int64_t _w){
 | |
|   ogg_int64_t z;
 | |
|   int         ipart;
 | |
|   if(_w<=0)return -1;
 | |
|   ipart=OC_ILOGNZ_64(_w)-1;
 | |
|   if(ipart>61)_w>>=ipart-61;
 | |
|   else _w<<=61-ipart;
 | |
|   z=0;
 | |
|   if(_w&_w-1){
 | |
|     ogg_int64_t x;
 | |
|     ogg_int64_t y;
 | |
|     ogg_int64_t u;
 | |
|     ogg_int64_t mask;
 | |
|     int         i;
 | |
|     /*C doesn't give us 64x64->128 muls, so we use CORDIC.
 | |
|       This is not particularly fast, but it's not being used in time-critical
 | |
|        code; it is very accurate.*/
 | |
|     /*z is the fractional part of the log in Q61 format.*/
 | |
|     /*x and y are the cosh() and sinh(), respectively, in Q61 format.
 | |
|       We are computing z=2*atanh(y/x)=2*atanh((_w-1)/(_w+1)).*/
 | |
|     x=_w+((ogg_int64_t)1<<61);
 | |
|     y=_w-((ogg_int64_t)1<<61);
 | |
|     for(i=0;i<4;i++){
 | |
|       mask=-(y<0);
 | |
|       z+=(OC_ATANH_LOG2[i]>>i)+mask^mask;
 | |
|       u=x>>i+1;
 | |
|       x-=(y>>i+1)+mask^mask;
 | |
|       y-=u+mask^mask;
 | |
|     }
 | |
|     /*Repeat iteration 4.*/
 | |
|     for(i--;i<13;i++){
 | |
|       mask=-(y<0);
 | |
|       z+=(OC_ATANH_LOG2[i]>>i)+mask^mask;
 | |
|       u=x>>i+1;
 | |
|       x-=(y>>i+1)+mask^mask;
 | |
|       y-=u+mask^mask;
 | |
|     }
 | |
|     /*Repeat iteration 13.*/
 | |
|     for(i--;i<32;i++){
 | |
|       mask=-(y<0);
 | |
|       z+=(OC_ATANH_LOG2[i]>>i)+mask^mask;
 | |
|       u=x>>i+1;
 | |
|       x-=(y>>i+1)+mask^mask;
 | |
|       y-=u+mask^mask;
 | |
|     }
 | |
|     /*OC_ATANH_LOG2 has converged.*/
 | |
|     for(;i<40;i++){
 | |
|       mask=-(y<0);
 | |
|       z+=(OC_ATANH_LOG2[31]>>i)+mask^mask;
 | |
|       u=x>>i+1;
 | |
|       x-=(y>>i+1)+mask^mask;
 | |
|       y-=u+mask^mask;
 | |
|     }
 | |
|     /*Repeat iteration 40.*/
 | |
|     for(i--;i<62;i++){
 | |
|       mask=-(y<0);
 | |
|       z+=(OC_ATANH_LOG2[31]>>i)+mask^mask;
 | |
|       u=x>>i+1;
 | |
|       x-=(y>>i+1)+mask^mask;
 | |
|       y-=u+mask^mask;
 | |
|     }
 | |
|     z=z+8>>4;
 | |
|   }
 | |
|   return OC_Q57(ipart)+z;
 | |
| }
 | |
| 
 | |
| /*Polynomial approximation of a binary exponential.
 | |
|   Q10 input, Q0 output.*/
 | |
| ogg_uint32_t oc_bexp32_q10(int _z){
 | |
|   unsigned n;
 | |
|   int      ipart;
 | |
|   ipart=_z>>10;
 | |
|   n=(_z&(1<<10)-1)<<4;
 | |
|   n=(n*((n*((n*((n*3548>>15)+6817)>>15)+15823)>>15)+22708)>>15)+16384;
 | |
|   return 14-ipart>0?n+(1<<13-ipart)>>14-ipart:n<<ipart-14;
 | |
| }
 | |
| 
 | |
| /*Polynomial approximation of a binary logarithm.
 | |
|   Q0 input, Q10 output.*/
 | |
| int oc_blog32_q10(ogg_uint32_t _w){
 | |
|   int n;
 | |
|   int ipart;
 | |
|   int fpart;
 | |
|   if(_w<=0)return -1;
 | |
|   ipart=OC_ILOGNZ_32(_w);
 | |
|   n=(ipart-16>0?_w>>ipart-16:_w<<16-ipart)-32768-16384;
 | |
|   fpart=(n*((n*((n*((n*-1402>>15)+2546)>>15)-5216)>>15)+15745)>>15)-6793;
 | |
|   return (ipart<<10)+(fpart>>4);
 | |
| }
 | 
