mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-31 13:41:03 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			392 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			392 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /* -----------------------------------------------------------------------------
 | |
| 
 | |
|     Copyright (c) 2006 Simon Brown                          si@sjbrown.co.uk
 | |
|     Copyright (c) 2007 Ignacio Castano                   icastano@nvidia.com
 | |
| 
 | |
|     Permission is hereby granted, free of charge, to any person obtaining
 | |
|     a copy of this software and associated documentation files (the
 | |
|     "Software"), to deal in the Software without restriction, including
 | |
|     without limitation the rights to use, copy, modify, merge, publish,
 | |
|     distribute, sublicense, and/or sell copies of the Software, and to
 | |
|     permit persons to whom the Software is furnished to do so, subject to
 | |
|     the following conditions:
 | |
| 
 | |
|     The above copyright notice and this permission notice shall be included
 | |
|     in all copies or substantial portions of the Software.
 | |
| 
 | |
|     THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 | |
|     OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 | |
|     MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
 | |
|     IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
 | |
|     CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
 | |
|     TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
 | |
|     SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 | |
| 
 | |
|    -------------------------------------------------------------------------- */
 | |
| 
 | |
| #include "clusterfit.h"
 | |
| #include "colourset.h"
 | |
| #include "colourblock.h"
 | |
| #include <cfloat>
 | |
| 
 | |
| namespace squish {
 | |
| 
 | |
| ClusterFit::ClusterFit( ColourSet const* colours, int flags, float* metric )
 | |
|   : ColourFit( colours, flags )
 | |
| {
 | |
|     // set the iteration count
 | |
|     m_iterationCount = ( m_flags & kColourIterativeClusterFit ) ? kMaxIterations : 1;
 | |
| 
 | |
|     // initialise the metric (old perceptual = 0.2126f, 0.7152f, 0.0722f)
 | |
|     if( metric )
 | |
|         m_metric = Vec4( metric[0], metric[1], metric[2], 1.0f );
 | |
|     else
 | |
|         m_metric = VEC4_CONST( 1.0f );
 | |
| 
 | |
|     // initialise the best error
 | |
|     m_besterror = VEC4_CONST( FLT_MAX );
 | |
| 
 | |
|     // cache some values
 | |
|     int const count = m_colours->GetCount();
 | |
|     Vec3 const* values = m_colours->GetPoints();
 | |
| 
 | |
|     // get the covariance matrix
 | |
|     Sym3x3 covariance = ComputeWeightedCovariance( count, values, m_colours->GetWeights() );
 | |
| 
 | |
|     // compute the principle component
 | |
|     m_principle = ComputePrincipleComponent( covariance );
 | |
| }
 | |
| 
 | |
| bool ClusterFit::ConstructOrdering( Vec3 const& axis, int iteration )
 | |
| {
 | |
|     // cache some values
 | |
|     int const count = m_colours->GetCount();
 | |
|     Vec3 const* values = m_colours->GetPoints();
 | |
| 
 | |
|     // build the list of dot products
 | |
|     float dps[16];
 | |
|     u8* order = ( u8* )m_order + 16*iteration;
 | |
|     for( int i = 0; i < count; ++i )
 | |
|     {
 | |
|         dps[i] = Dot( values[i], axis );
 | |
|         order[i] = ( u8 )i;
 | |
|     }
 | |
| 
 | |
|     // stable sort using them
 | |
|     for( int i = 0; i < count; ++i )
 | |
|     {
 | |
|         for( int j = i; j > 0 && dps[j] < dps[j - 1]; --j )
 | |
|         {
 | |
|             std::swap( dps[j], dps[j - 1] );
 | |
|             std::swap( order[j], order[j - 1] );
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // check this ordering is unique
 | |
|     for( int it = 0; it < iteration; ++it )
 | |
|     {
 | |
|         u8 const* prev = ( u8* )m_order + 16*it;
 | |
|         bool same = true;
 | |
|         for( int i = 0; i < count; ++i )
 | |
|         {
 | |
|             if( order[i] != prev[i] )
 | |
|             {
 | |
|                 same = false;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         if( same )
 | |
|             return false;
 | |
|     }
 | |
| 
 | |
|     // copy the ordering and weight all the points
 | |
|     Vec3 const* unweighted = m_colours->GetPoints();
 | |
|     float const* weights = m_colours->GetWeights();
 | |
|     m_xsum_wsum = VEC4_CONST( 0.0f );
 | |
|     for( int i = 0; i < count; ++i )
 | |
|     {
 | |
|         int j = order[i];
 | |
|         Vec4 p( unweighted[j].X(), unweighted[j].Y(), unweighted[j].Z(), 1.0f );
 | |
|         Vec4 w( weights[j] );
 | |
|         Vec4 x = p*w;
 | |
|         m_points_weights[i] = x;
 | |
|         m_xsum_wsum += x;
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| void ClusterFit::Compress3( void* block )
 | |
| {
 | |
|     // declare variables
 | |
|     int const count = m_colours->GetCount();
 | |
|     Vec4 const two = VEC4_CONST( 2.0 );
 | |
|     Vec4 const one = VEC4_CONST( 1.0f );
 | |
|     Vec4 const half_half2( 0.5f, 0.5f, 0.5f, 0.25f );
 | |
|     Vec4 const zero = VEC4_CONST( 0.0f );
 | |
|     Vec4 const half = VEC4_CONST( 0.5f );
 | |
|     Vec4 const grid( 31.0f, 63.0f, 31.0f, 0.0f );
 | |
|     Vec4 const gridrcp( 1.0f/31.0f, 1.0f/63.0f, 1.0f/31.0f, 0.0f );
 | |
| 
 | |
|     // prepare an ordering using the principle axis
 | |
|     ConstructOrdering( m_principle, 0 );
 | |
| 
 | |
|     // check all possible clusters and iterate on the total order
 | |
|     Vec4 beststart = VEC4_CONST( 0.0f );
 | |
|     Vec4 bestend = VEC4_CONST( 0.0f );
 | |
|     Vec4 besterror = m_besterror;
 | |
|     u8 bestindices[16];
 | |
|     int bestiteration = 0;
 | |
|     int besti = 0, bestj = 0;
 | |
| 
 | |
|     // loop over iterations (we avoid the case that all points in first or last cluster)
 | |
|     for( int iterationIndex = 0;; )
 | |
|     {
 | |
|         // first cluster [0,i) is at the start
 | |
|         Vec4 part0 = VEC4_CONST( 0.0f );
 | |
|         for( int i = 0; i < count; ++i )
 | |
|         {
 | |
|             // second cluster [i,j) is half along
 | |
|             Vec4 part1 = ( i == 0 ) ? m_points_weights[0] : VEC4_CONST( 0.0f );
 | |
|             int jmin = ( i == 0 ) ? 1 : i;
 | |
|             for( int j = jmin;; )
 | |
|             {
 | |
|                 // last cluster [j,count) is at the end
 | |
|                 Vec4 part2 = m_xsum_wsum - part1 - part0;
 | |
| 
 | |
|                 // compute least squares terms directly
 | |
|                 Vec4 alphax_sum = MultiplyAdd( part1, half_half2, part0 );
 | |
|                 Vec4 alpha2_sum = alphax_sum.SplatW();
 | |
| 
 | |
|                 Vec4 betax_sum = MultiplyAdd( part1, half_half2, part2 );
 | |
|                 Vec4 beta2_sum = betax_sum.SplatW();
 | |
| 
 | |
|                 Vec4 alphabeta_sum = ( part1*half_half2 ).SplatW();
 | |
| 
 | |
|                 // compute the least-squares optimal points
 | |
|                 Vec4 factor = Reciprocal( NegativeMultiplySubtract( alphabeta_sum, alphabeta_sum, alpha2_sum*beta2_sum ) );
 | |
|                 Vec4 a = NegativeMultiplySubtract( betax_sum, alphabeta_sum, alphax_sum*beta2_sum )*factor;
 | |
|                 Vec4 b = NegativeMultiplySubtract( alphax_sum, alphabeta_sum, betax_sum*alpha2_sum )*factor;
 | |
| 
 | |
|                 // clamp to the grid
 | |
|                 a = Min( one, Max( zero, a ) );
 | |
|                 b = Min( one, Max( zero, b ) );
 | |
|                 a = Truncate( MultiplyAdd( grid, a, half ) )*gridrcp;
 | |
|                 b = Truncate( MultiplyAdd( grid, b, half ) )*gridrcp;
 | |
| 
 | |
|                 // compute the error (we skip the constant xxsum)
 | |
|                 Vec4 e1 = MultiplyAdd( a*a, alpha2_sum, b*b*beta2_sum );
 | |
|                 Vec4 e2 = NegativeMultiplySubtract( a, alphax_sum, a*b*alphabeta_sum );
 | |
|                 Vec4 e3 = NegativeMultiplySubtract( b, betax_sum, e2 );
 | |
|                 Vec4 e4 = MultiplyAdd( two, e3, e1 );
 | |
| 
 | |
|                 // apply the metric to the error term
 | |
|                 Vec4 e5 = e4*m_metric;
 | |
|                 Vec4 error = e5.SplatX() + e5.SplatY() + e5.SplatZ();
 | |
| 
 | |
|                 // keep the solution if it wins
 | |
|                 if( CompareAnyLessThan( error, besterror ) )
 | |
|                 {
 | |
|                     beststart = a;
 | |
|                     bestend = b;
 | |
|                     besti = i;
 | |
|                     bestj = j;
 | |
|                     besterror = error;
 | |
|                     bestiteration = iterationIndex;
 | |
|                 }
 | |
| 
 | |
|                 // advance
 | |
|                 if( j == count )
 | |
|                     break;
 | |
|                 part1 += m_points_weights[j];
 | |
|                 ++j;
 | |
|             }
 | |
| 
 | |
|             // advance
 | |
|             part0 += m_points_weights[i];
 | |
|         }
 | |
| 
 | |
|         // stop if we didn't improve in this iteration
 | |
|         if( bestiteration != iterationIndex )
 | |
|             break;
 | |
| 
 | |
|         // advance if possible
 | |
|         ++iterationIndex;
 | |
|         if( iterationIndex == m_iterationCount )
 | |
|             break;
 | |
| 
 | |
|         // stop if a new iteration is an ordering that has already been tried
 | |
|         Vec3 axis = ( bestend - beststart ).GetVec3();
 | |
|         if( !ConstructOrdering( axis, iterationIndex ) )
 | |
|             break;
 | |
|     }
 | |
| 
 | |
|     // save the block if necessary
 | |
|     if( CompareAnyLessThan( besterror, m_besterror ) )
 | |
|     {
 | |
|         // remap the indices
 | |
|         u8 const* order = ( u8* )m_order + 16*bestiteration;
 | |
| 
 | |
|         u8 unordered[16];
 | |
|         for( int m = 0; m < besti; ++m )
 | |
|             unordered[order[m]] = 0;
 | |
|         for( int m = besti; m < bestj; ++m )
 | |
|             unordered[order[m]] = 2;
 | |
|         for( int m = bestj; m < count; ++m )
 | |
|             unordered[order[m]] = 1;
 | |
| 
 | |
|         m_colours->RemapIndices( unordered, bestindices );
 | |
| 
 | |
|         // save the block
 | |
|         WriteColourBlock3( beststart.GetVec3(), bestend.GetVec3(), bestindices, block );
 | |
| 
 | |
|         // save the error
 | |
|         m_besterror = besterror;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void ClusterFit::Compress4( void* block )
 | |
| {
 | |
|     // declare variables
 | |
|     int const count = m_colours->GetCount();
 | |
|     Vec4 const two = VEC4_CONST( 2.0f );
 | |
|     Vec4 const one = VEC4_CONST( 1.0f );
 | |
|     Vec4 const onethird_onethird2( 1.0f/3.0f, 1.0f/3.0f, 1.0f/3.0f, 1.0f/9.0f );
 | |
|     Vec4 const twothirds_twothirds2( 2.0f/3.0f, 2.0f/3.0f, 2.0f/3.0f, 4.0f/9.0f );
 | |
|     Vec4 const twonineths = VEC4_CONST( 2.0f/9.0f );
 | |
|     Vec4 const zero = VEC4_CONST( 0.0f );
 | |
|     Vec4 const half = VEC4_CONST( 0.5f );
 | |
|     Vec4 const grid( 31.0f, 63.0f, 31.0f, 0.0f );
 | |
|     Vec4 const gridrcp( 1.0f/31.0f, 1.0f/63.0f, 1.0f/31.0f, 0.0f );
 | |
| 
 | |
|     // prepare an ordering using the principle axis
 | |
|     ConstructOrdering( m_principle, 0 );
 | |
| 
 | |
|     // check all possible clusters and iterate on the total order
 | |
|     Vec4 beststart = VEC4_CONST( 0.0f );
 | |
|     Vec4 bestend = VEC4_CONST( 0.0f );
 | |
|     Vec4 besterror = m_besterror;
 | |
|     u8 bestindices[16];
 | |
|     int bestiteration = 0;
 | |
|     int besti = 0, bestj = 0, bestk = 0;
 | |
| 
 | |
|     // loop over iterations (we avoid the case that all points in first or last cluster)
 | |
|     for( int iterationIndex = 0;; )
 | |
|     {
 | |
|         // first cluster [0,i) is at the start
 | |
|         Vec4 part0 = VEC4_CONST( 0.0f );
 | |
|         for( int i = 0; i < count; ++i )
 | |
|         {
 | |
|             // second cluster [i,j) is one third along
 | |
|             Vec4 part1 = VEC4_CONST( 0.0f );
 | |
|             for( int j = i;; )
 | |
|             {
 | |
|                 // third cluster [j,k) is two thirds along
 | |
|                 Vec4 part2 = ( j == 0 ) ? m_points_weights[0] : VEC4_CONST( 0.0f );
 | |
|                 int kmin = ( j == 0 ) ? 1 : j;
 | |
|                 for( int k = kmin;; )
 | |
|                 {
 | |
|                     // last cluster [k,count) is at the end
 | |
|                     Vec4 part3 = m_xsum_wsum - part2 - part1 - part0;
 | |
| 
 | |
|                     // compute least squares terms directly
 | |
|                     Vec4 const alphax_sum = MultiplyAdd( part2, onethird_onethird2, MultiplyAdd( part1, twothirds_twothirds2, part0 ) );
 | |
|                     Vec4 const alpha2_sum = alphax_sum.SplatW();
 | |
| 
 | |
|                     Vec4 const betax_sum = MultiplyAdd( part1, onethird_onethird2, MultiplyAdd( part2, twothirds_twothirds2, part3 ) );
 | |
|                     Vec4 const beta2_sum = betax_sum.SplatW();
 | |
| 
 | |
|                     Vec4 const alphabeta_sum = twonineths*( part1 + part2 ).SplatW();
 | |
| 
 | |
|                     // compute the least-squares optimal points
 | |
|                     Vec4 factor = Reciprocal( NegativeMultiplySubtract( alphabeta_sum, alphabeta_sum, alpha2_sum*beta2_sum ) );
 | |
|                     Vec4 a = NegativeMultiplySubtract( betax_sum, alphabeta_sum, alphax_sum*beta2_sum )*factor;
 | |
|                     Vec4 b = NegativeMultiplySubtract( alphax_sum, alphabeta_sum, betax_sum*alpha2_sum )*factor;
 | |
| 
 | |
|                     // clamp to the grid
 | |
|                     a = Min( one, Max( zero, a ) );
 | |
|                     b = Min( one, Max( zero, b ) );
 | |
|                     a = Truncate( MultiplyAdd( grid, a, half ) )*gridrcp;
 | |
|                     b = Truncate( MultiplyAdd( grid, b, half ) )*gridrcp;
 | |
| 
 | |
|                     // compute the error (we skip the constant xxsum)
 | |
|                     Vec4 e1 = MultiplyAdd( a*a, alpha2_sum, b*b*beta2_sum );
 | |
|                     Vec4 e2 = NegativeMultiplySubtract( a, alphax_sum, a*b*alphabeta_sum );
 | |
|                     Vec4 e3 = NegativeMultiplySubtract( b, betax_sum, e2 );
 | |
|                     Vec4 e4 = MultiplyAdd( two, e3, e1 );
 | |
| 
 | |
|                     // apply the metric to the error term
 | |
|                     Vec4 e5 = e4*m_metric;
 | |
|                     Vec4 error = e5.SplatX() + e5.SplatY() + e5.SplatZ();
 | |
| 
 | |
|                     // keep the solution if it wins
 | |
|                     if( CompareAnyLessThan( error, besterror ) )
 | |
|                     {
 | |
|                         beststart = a;
 | |
|                         bestend = b;
 | |
|                         besterror = error;
 | |
|                         besti = i;
 | |
|                         bestj = j;
 | |
|                         bestk = k;
 | |
|                         bestiteration = iterationIndex;
 | |
|                     }
 | |
| 
 | |
|                     // advance
 | |
|                     if( k == count )
 | |
|                         break;
 | |
|                     part2 += m_points_weights[k];
 | |
|                     ++k;
 | |
|                 }
 | |
| 
 | |
|                 // advance
 | |
|                 if( j == count )
 | |
|                     break;
 | |
|                 part1 += m_points_weights[j];
 | |
|                 ++j;
 | |
|             }
 | |
| 
 | |
|             // advance
 | |
|             part0 += m_points_weights[i];
 | |
|         }
 | |
| 
 | |
|         // stop if we didn't improve in this iteration
 | |
|         if( bestiteration != iterationIndex )
 | |
|             break;
 | |
| 
 | |
|         // advance if possible
 | |
|         ++iterationIndex;
 | |
|         if( iterationIndex == m_iterationCount )
 | |
|             break;
 | |
| 
 | |
|         // stop if a new iteration is an ordering that has already been tried
 | |
|         Vec3 axis = ( bestend - beststart ).GetVec3();
 | |
|         if( !ConstructOrdering( axis, iterationIndex ) )
 | |
|             break;
 | |
|     }
 | |
| 
 | |
|     // save the block if necessary
 | |
|     if( CompareAnyLessThan( besterror, m_besterror ) )
 | |
|     {
 | |
|         // remap the indices
 | |
|         u8 const* order = ( u8* )m_order + 16*bestiteration;
 | |
| 
 | |
|         u8 unordered[16];
 | |
|         for( int m = 0; m < besti; ++m )
 | |
|             unordered[order[m]] = 0;
 | |
|         for( int m = besti; m < bestj; ++m )
 | |
|             unordered[order[m]] = 2;
 | |
|         for( int m = bestj; m < bestk; ++m )
 | |
|             unordered[order[m]] = 3;
 | |
|         for( int m = bestk; m < count; ++m )
 | |
|             unordered[order[m]] = 1;
 | |
| 
 | |
|         m_colours->RemapIndices( unordered, bestindices );
 | |
| 
 | |
|         // save the block
 | |
|         WriteColourBlock4( beststart.GetVec3(), bestend.GetVec3(), bestindices, block );
 | |
| 
 | |
|         // save the error
 | |
|         m_besterror = besterror;
 | |
|     }
 | |
| }
 | |
| 
 | |
| } // namespace squish
 | 
