mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-27 19:54:27 +00:00 
			
		
		
		
	 6100b4bd33
			
		
	
	
		6100b4bd33
		
			
		
	
	
	
	
		
			
			Release notes: - https://github.com/facebook/zstd/releases/tag/v1.5.3 - https://github.com/facebook/zstd/releases/tag/v1.5.4 - https://github.com/facebook/zstd/releases/tag/v1.5.5
		
			
				
	
	
		
			960 lines
		
	
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			960 lines
		
	
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) Meta Platforms, Inc. and affiliates.
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * This source code is licensed under both the BSD-style license (found in the
 | |
|  * LICENSE file in the root directory of this source tree) and the GPLv2 (found
 | |
|  * in the COPYING file in the root directory of this source tree).
 | |
|  * You may select, at your option, one of the above-listed licenses.
 | |
|  */
 | |
| 
 | |
| #include "zstd_compress_internal.h"  /* ZSTD_hashPtr, ZSTD_count, ZSTD_storeSeq */
 | |
| #include "zstd_fast.h"
 | |
| 
 | |
| static void ZSTD_fillHashTableForCDict(ZSTD_matchState_t* ms,
 | |
|                         const void* const end,
 | |
|                         ZSTD_dictTableLoadMethod_e dtlm)
 | |
| {
 | |
|     const ZSTD_compressionParameters* const cParams = &ms->cParams;
 | |
|     U32* const hashTable = ms->hashTable;
 | |
|     U32  const hBits = cParams->hashLog + ZSTD_SHORT_CACHE_TAG_BITS;
 | |
|     U32  const mls = cParams->minMatch;
 | |
|     const BYTE* const base = ms->window.base;
 | |
|     const BYTE* ip = base + ms->nextToUpdate;
 | |
|     const BYTE* const iend = ((const BYTE*)end) - HASH_READ_SIZE;
 | |
|     const U32 fastHashFillStep = 3;
 | |
| 
 | |
|     /* Currently, we always use ZSTD_dtlm_full for filling CDict tables.
 | |
|      * Feel free to remove this assert if there's a good reason! */
 | |
|     assert(dtlm == ZSTD_dtlm_full);
 | |
| 
 | |
|     /* Always insert every fastHashFillStep position into the hash table.
 | |
|      * Insert the other positions if their hash entry is empty.
 | |
|      */
 | |
|     for ( ; ip + fastHashFillStep < iend + 2; ip += fastHashFillStep) {
 | |
|         U32 const curr = (U32)(ip - base);
 | |
|         {   size_t const hashAndTag = ZSTD_hashPtr(ip, hBits, mls);
 | |
|             ZSTD_writeTaggedIndex(hashTable, hashAndTag, curr);   }
 | |
| 
 | |
|         if (dtlm == ZSTD_dtlm_fast) continue;
 | |
|         /* Only load extra positions for ZSTD_dtlm_full */
 | |
|         {   U32 p;
 | |
|             for (p = 1; p < fastHashFillStep; ++p) {
 | |
|                 size_t const hashAndTag = ZSTD_hashPtr(ip + p, hBits, mls);
 | |
|                 if (hashTable[hashAndTag >> ZSTD_SHORT_CACHE_TAG_BITS] == 0) {  /* not yet filled */
 | |
|                     ZSTD_writeTaggedIndex(hashTable, hashAndTag, curr + p);
 | |
|                 }   }   }   }
 | |
| }
 | |
| 
 | |
| static void ZSTD_fillHashTableForCCtx(ZSTD_matchState_t* ms,
 | |
|                         const void* const end,
 | |
|                         ZSTD_dictTableLoadMethod_e dtlm)
 | |
| {
 | |
|     const ZSTD_compressionParameters* const cParams = &ms->cParams;
 | |
|     U32* const hashTable = ms->hashTable;
 | |
|     U32  const hBits = cParams->hashLog;
 | |
|     U32  const mls = cParams->minMatch;
 | |
|     const BYTE* const base = ms->window.base;
 | |
|     const BYTE* ip = base + ms->nextToUpdate;
 | |
|     const BYTE* const iend = ((const BYTE*)end) - HASH_READ_SIZE;
 | |
|     const U32 fastHashFillStep = 3;
 | |
| 
 | |
|     /* Currently, we always use ZSTD_dtlm_fast for filling CCtx tables.
 | |
|      * Feel free to remove this assert if there's a good reason! */
 | |
|     assert(dtlm == ZSTD_dtlm_fast);
 | |
| 
 | |
|     /* Always insert every fastHashFillStep position into the hash table.
 | |
|      * Insert the other positions if their hash entry is empty.
 | |
|      */
 | |
|     for ( ; ip + fastHashFillStep < iend + 2; ip += fastHashFillStep) {
 | |
|         U32 const curr = (U32)(ip - base);
 | |
|         size_t const hash0 = ZSTD_hashPtr(ip, hBits, mls);
 | |
|         hashTable[hash0] = curr;
 | |
|         if (dtlm == ZSTD_dtlm_fast) continue;
 | |
|         /* Only load extra positions for ZSTD_dtlm_full */
 | |
|         {   U32 p;
 | |
|             for (p = 1; p < fastHashFillStep; ++p) {
 | |
|                 size_t const hash = ZSTD_hashPtr(ip + p, hBits, mls);
 | |
|                 if (hashTable[hash] == 0) {  /* not yet filled */
 | |
|                     hashTable[hash] = curr + p;
 | |
|     }   }   }   }
 | |
| }
 | |
| 
 | |
| void ZSTD_fillHashTable(ZSTD_matchState_t* ms,
 | |
|                         const void* const end,
 | |
|                         ZSTD_dictTableLoadMethod_e dtlm,
 | |
|                         ZSTD_tableFillPurpose_e tfp)
 | |
| {
 | |
|     if (tfp == ZSTD_tfp_forCDict) {
 | |
|         ZSTD_fillHashTableForCDict(ms, end, dtlm);
 | |
|     } else {
 | |
|         ZSTD_fillHashTableForCCtx(ms, end, dtlm);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * If you squint hard enough (and ignore repcodes), the search operation at any
 | |
|  * given position is broken into 4 stages:
 | |
|  *
 | |
|  * 1. Hash   (map position to hash value via input read)
 | |
|  * 2. Lookup (map hash val to index via hashtable read)
 | |
|  * 3. Load   (map index to value at that position via input read)
 | |
|  * 4. Compare
 | |
|  *
 | |
|  * Each of these steps involves a memory read at an address which is computed
 | |
|  * from the previous step. This means these steps must be sequenced and their
 | |
|  * latencies are cumulative.
 | |
|  *
 | |
|  * Rather than do 1->2->3->4 sequentially for a single position before moving
 | |
|  * onto the next, this implementation interleaves these operations across the
 | |
|  * next few positions:
 | |
|  *
 | |
|  * R = Repcode Read & Compare
 | |
|  * H = Hash
 | |
|  * T = Table Lookup
 | |
|  * M = Match Read & Compare
 | |
|  *
 | |
|  * Pos | Time -->
 | |
|  * ----+-------------------
 | |
|  * N   | ... M
 | |
|  * N+1 | ...   TM
 | |
|  * N+2 |    R H   T M
 | |
|  * N+3 |         H    TM
 | |
|  * N+4 |           R H   T M
 | |
|  * N+5 |                H   ...
 | |
|  * N+6 |                  R ...
 | |
|  *
 | |
|  * This is very much analogous to the pipelining of execution in a CPU. And just
 | |
|  * like a CPU, we have to dump the pipeline when we find a match (i.e., take a
 | |
|  * branch).
 | |
|  *
 | |
|  * When this happens, we throw away our current state, and do the following prep
 | |
|  * to re-enter the loop:
 | |
|  *
 | |
|  * Pos | Time -->
 | |
|  * ----+-------------------
 | |
|  * N   | H T
 | |
|  * N+1 |  H
 | |
|  *
 | |
|  * This is also the work we do at the beginning to enter the loop initially.
 | |
|  */
 | |
| FORCE_INLINE_TEMPLATE size_t
 | |
| ZSTD_compressBlock_fast_noDict_generic(
 | |
|         ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
 | |
|         void const* src, size_t srcSize,
 | |
|         U32 const mls, U32 const hasStep)
 | |
| {
 | |
|     const ZSTD_compressionParameters* const cParams = &ms->cParams;
 | |
|     U32* const hashTable = ms->hashTable;
 | |
|     U32 const hlog = cParams->hashLog;
 | |
|     /* support stepSize of 0 */
 | |
|     size_t const stepSize = hasStep ? (cParams->targetLength + !(cParams->targetLength) + 1) : 2;
 | |
|     const BYTE* const base = ms->window.base;
 | |
|     const BYTE* const istart = (const BYTE*)src;
 | |
|     const U32   endIndex = (U32)((size_t)(istart - base) + srcSize);
 | |
|     const U32   prefixStartIndex = ZSTD_getLowestPrefixIndex(ms, endIndex, cParams->windowLog);
 | |
|     const BYTE* const prefixStart = base + prefixStartIndex;
 | |
|     const BYTE* const iend = istart + srcSize;
 | |
|     const BYTE* const ilimit = iend - HASH_READ_SIZE;
 | |
| 
 | |
|     const BYTE* anchor = istart;
 | |
|     const BYTE* ip0 = istart;
 | |
|     const BYTE* ip1;
 | |
|     const BYTE* ip2;
 | |
|     const BYTE* ip3;
 | |
|     U32 current0;
 | |
| 
 | |
|     U32 rep_offset1 = rep[0];
 | |
|     U32 rep_offset2 = rep[1];
 | |
|     U32 offsetSaved1 = 0, offsetSaved2 = 0;
 | |
| 
 | |
|     size_t hash0; /* hash for ip0 */
 | |
|     size_t hash1; /* hash for ip1 */
 | |
|     U32 idx; /* match idx for ip0 */
 | |
|     U32 mval; /* src value at match idx */
 | |
| 
 | |
|     U32 offcode;
 | |
|     const BYTE* match0;
 | |
|     size_t mLength;
 | |
| 
 | |
|     /* ip0 and ip1 are always adjacent. The targetLength skipping and
 | |
|      * uncompressibility acceleration is applied to every other position,
 | |
|      * matching the behavior of #1562. step therefore represents the gap
 | |
|      * between pairs of positions, from ip0 to ip2 or ip1 to ip3. */
 | |
|     size_t step;
 | |
|     const BYTE* nextStep;
 | |
|     const size_t kStepIncr = (1 << (kSearchStrength - 1));
 | |
| 
 | |
|     DEBUGLOG(5, "ZSTD_compressBlock_fast_generic");
 | |
|     ip0 += (ip0 == prefixStart);
 | |
|     {   U32 const curr = (U32)(ip0 - base);
 | |
|         U32 const windowLow = ZSTD_getLowestPrefixIndex(ms, curr, cParams->windowLog);
 | |
|         U32 const maxRep = curr - windowLow;
 | |
|         if (rep_offset2 > maxRep) offsetSaved2 = rep_offset2, rep_offset2 = 0;
 | |
|         if (rep_offset1 > maxRep) offsetSaved1 = rep_offset1, rep_offset1 = 0;
 | |
|     }
 | |
| 
 | |
|     /* start each op */
 | |
| _start: /* Requires: ip0 */
 | |
| 
 | |
|     step = stepSize;
 | |
|     nextStep = ip0 + kStepIncr;
 | |
| 
 | |
|     /* calculate positions, ip0 - anchor == 0, so we skip step calc */
 | |
|     ip1 = ip0 + 1;
 | |
|     ip2 = ip0 + step;
 | |
|     ip3 = ip2 + 1;
 | |
| 
 | |
|     if (ip3 >= ilimit) {
 | |
|         goto _cleanup;
 | |
|     }
 | |
| 
 | |
|     hash0 = ZSTD_hashPtr(ip0, hlog, mls);
 | |
|     hash1 = ZSTD_hashPtr(ip1, hlog, mls);
 | |
| 
 | |
|     idx = hashTable[hash0];
 | |
| 
 | |
|     do {
 | |
|         /* load repcode match for ip[2]*/
 | |
|         const U32 rval = MEM_read32(ip2 - rep_offset1);
 | |
| 
 | |
|         /* write back hash table entry */
 | |
|         current0 = (U32)(ip0 - base);
 | |
|         hashTable[hash0] = current0;
 | |
| 
 | |
|         /* check repcode at ip[2] */
 | |
|         if ((MEM_read32(ip2) == rval) & (rep_offset1 > 0)) {
 | |
|             ip0 = ip2;
 | |
|             match0 = ip0 - rep_offset1;
 | |
|             mLength = ip0[-1] == match0[-1];
 | |
|             ip0 -= mLength;
 | |
|             match0 -= mLength;
 | |
|             offcode = REPCODE1_TO_OFFBASE;
 | |
|             mLength += 4;
 | |
| 
 | |
|             /* First write next hash table entry; we've already calculated it.
 | |
|              * This write is known to be safe because the ip1 is before the
 | |
|              * repcode (ip2). */
 | |
|             hashTable[hash1] = (U32)(ip1 - base);
 | |
| 
 | |
|             goto _match;
 | |
|         }
 | |
| 
 | |
|         /* load match for ip[0] */
 | |
|         if (idx >= prefixStartIndex) {
 | |
|             mval = MEM_read32(base + idx);
 | |
|         } else {
 | |
|             mval = MEM_read32(ip0) ^ 1; /* guaranteed to not match. */
 | |
|         }
 | |
| 
 | |
|         /* check match at ip[0] */
 | |
|         if (MEM_read32(ip0) == mval) {
 | |
|             /* found a match! */
 | |
| 
 | |
|             /* First write next hash table entry; we've already calculated it.
 | |
|              * This write is known to be safe because the ip1 == ip0 + 1, so
 | |
|              * we know we will resume searching after ip1 */
 | |
|             hashTable[hash1] = (U32)(ip1 - base);
 | |
| 
 | |
|             goto _offset;
 | |
|         }
 | |
| 
 | |
|         /* lookup ip[1] */
 | |
|         idx = hashTable[hash1];
 | |
| 
 | |
|         /* hash ip[2] */
 | |
|         hash0 = hash1;
 | |
|         hash1 = ZSTD_hashPtr(ip2, hlog, mls);
 | |
| 
 | |
|         /* advance to next positions */
 | |
|         ip0 = ip1;
 | |
|         ip1 = ip2;
 | |
|         ip2 = ip3;
 | |
| 
 | |
|         /* write back hash table entry */
 | |
|         current0 = (U32)(ip0 - base);
 | |
|         hashTable[hash0] = current0;
 | |
| 
 | |
|         /* load match for ip[0] */
 | |
|         if (idx >= prefixStartIndex) {
 | |
|             mval = MEM_read32(base + idx);
 | |
|         } else {
 | |
|             mval = MEM_read32(ip0) ^ 1; /* guaranteed to not match. */
 | |
|         }
 | |
| 
 | |
|         /* check match at ip[0] */
 | |
|         if (MEM_read32(ip0) == mval) {
 | |
|             /* found a match! */
 | |
| 
 | |
|             /* first write next hash table entry; we've already calculated it */
 | |
|             if (step <= 4) {
 | |
|                 /* We need to avoid writing an index into the hash table >= the
 | |
|                  * position at which we will pick up our searching after we've
 | |
|                  * taken this match.
 | |
|                  *
 | |
|                  * The minimum possible match has length 4, so the earliest ip0
 | |
|                  * can be after we take this match will be the current ip0 + 4.
 | |
|                  * ip1 is ip0 + step - 1. If ip1 is >= ip0 + 4, we can't safely
 | |
|                  * write this position.
 | |
|                  */
 | |
|                 hashTable[hash1] = (U32)(ip1 - base);
 | |
|             }
 | |
| 
 | |
|             goto _offset;
 | |
|         }
 | |
| 
 | |
|         /* lookup ip[1] */
 | |
|         idx = hashTable[hash1];
 | |
| 
 | |
|         /* hash ip[2] */
 | |
|         hash0 = hash1;
 | |
|         hash1 = ZSTD_hashPtr(ip2, hlog, mls);
 | |
| 
 | |
|         /* advance to next positions */
 | |
|         ip0 = ip1;
 | |
|         ip1 = ip2;
 | |
|         ip2 = ip0 + step;
 | |
|         ip3 = ip1 + step;
 | |
| 
 | |
|         /* calculate step */
 | |
|         if (ip2 >= nextStep) {
 | |
|             step++;
 | |
|             PREFETCH_L1(ip1 + 64);
 | |
|             PREFETCH_L1(ip1 + 128);
 | |
|             nextStep += kStepIncr;
 | |
|         }
 | |
|     } while (ip3 < ilimit);
 | |
| 
 | |
| _cleanup:
 | |
|     /* Note that there are probably still a couple positions we could search.
 | |
|      * However, it seems to be a meaningful performance hit to try to search
 | |
|      * them. So let's not. */
 | |
| 
 | |
|     /* When the repcodes are outside of the prefix, we set them to zero before the loop.
 | |
|      * When the offsets are still zero, we need to restore them after the block to have a correct
 | |
|      * repcode history. If only one offset was invalid, it is easy. The tricky case is when both
 | |
|      * offsets were invalid. We need to figure out which offset to refill with.
 | |
|      *     - If both offsets are zero they are in the same order.
 | |
|      *     - If both offsets are non-zero, we won't restore the offsets from `offsetSaved[12]`.
 | |
|      *     - If only one is zero, we need to decide which offset to restore.
 | |
|      *         - If rep_offset1 is non-zero, then rep_offset2 must be offsetSaved1.
 | |
|      *         - It is impossible for rep_offset2 to be non-zero.
 | |
|      *
 | |
|      * So if rep_offset1 started invalid (offsetSaved1 != 0) and became valid (rep_offset1 != 0), then
 | |
|      * set rep[0] = rep_offset1 and rep[1] = offsetSaved1.
 | |
|      */
 | |
|     offsetSaved2 = ((offsetSaved1 != 0) && (rep_offset1 != 0)) ? offsetSaved1 : offsetSaved2;
 | |
| 
 | |
|     /* save reps for next block */
 | |
|     rep[0] = rep_offset1 ? rep_offset1 : offsetSaved1;
 | |
|     rep[1] = rep_offset2 ? rep_offset2 : offsetSaved2;
 | |
| 
 | |
|     /* Return the last literals size */
 | |
|     return (size_t)(iend - anchor);
 | |
| 
 | |
| _offset: /* Requires: ip0, idx */
 | |
| 
 | |
|     /* Compute the offset code. */
 | |
|     match0 = base + idx;
 | |
|     rep_offset2 = rep_offset1;
 | |
|     rep_offset1 = (U32)(ip0-match0);
 | |
|     offcode = OFFSET_TO_OFFBASE(rep_offset1);
 | |
|     mLength = 4;
 | |
| 
 | |
|     /* Count the backwards match length. */
 | |
|     while (((ip0>anchor) & (match0>prefixStart)) && (ip0[-1] == match0[-1])) {
 | |
|         ip0--;
 | |
|         match0--;
 | |
|         mLength++;
 | |
|     }
 | |
| 
 | |
| _match: /* Requires: ip0, match0, offcode */
 | |
| 
 | |
|     /* Count the forward length. */
 | |
|     mLength += ZSTD_count(ip0 + mLength, match0 + mLength, iend);
 | |
| 
 | |
|     ZSTD_storeSeq(seqStore, (size_t)(ip0 - anchor), anchor, iend, offcode, mLength);
 | |
| 
 | |
|     ip0 += mLength;
 | |
|     anchor = ip0;
 | |
| 
 | |
|     /* Fill table and check for immediate repcode. */
 | |
|     if (ip0 <= ilimit) {
 | |
|         /* Fill Table */
 | |
|         assert(base+current0+2 > istart);  /* check base overflow */
 | |
|         hashTable[ZSTD_hashPtr(base+current0+2, hlog, mls)] = current0+2;  /* here because current+2 could be > iend-8 */
 | |
|         hashTable[ZSTD_hashPtr(ip0-2, hlog, mls)] = (U32)(ip0-2-base);
 | |
| 
 | |
|         if (rep_offset2 > 0) { /* rep_offset2==0 means rep_offset2 is invalidated */
 | |
|             while ( (ip0 <= ilimit) && (MEM_read32(ip0) == MEM_read32(ip0 - rep_offset2)) ) {
 | |
|                 /* store sequence */
 | |
|                 size_t const rLength = ZSTD_count(ip0+4, ip0+4-rep_offset2, iend) + 4;
 | |
|                 { U32 const tmpOff = rep_offset2; rep_offset2 = rep_offset1; rep_offset1 = tmpOff; } /* swap rep_offset2 <=> rep_offset1 */
 | |
|                 hashTable[ZSTD_hashPtr(ip0, hlog, mls)] = (U32)(ip0-base);
 | |
|                 ip0 += rLength;
 | |
|                 ZSTD_storeSeq(seqStore, 0 /*litLen*/, anchor, iend, REPCODE1_TO_OFFBASE, rLength);
 | |
|                 anchor = ip0;
 | |
|                 continue;   /* faster when present (confirmed on gcc-8) ... (?) */
 | |
|     }   }   }
 | |
| 
 | |
|     goto _start;
 | |
| }
 | |
| 
 | |
| #define ZSTD_GEN_FAST_FN(dictMode, mls, step)                                                            \
 | |
|     static size_t ZSTD_compressBlock_fast_##dictMode##_##mls##_##step(                                      \
 | |
|             ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],                    \
 | |
|             void const* src, size_t srcSize)                                                       \
 | |
|     {                                                                                              \
 | |
|         return ZSTD_compressBlock_fast_##dictMode##_generic(ms, seqStore, rep, src, srcSize, mls, step); \
 | |
|     }
 | |
| 
 | |
| ZSTD_GEN_FAST_FN(noDict, 4, 1)
 | |
| ZSTD_GEN_FAST_FN(noDict, 5, 1)
 | |
| ZSTD_GEN_FAST_FN(noDict, 6, 1)
 | |
| ZSTD_GEN_FAST_FN(noDict, 7, 1)
 | |
| 
 | |
| ZSTD_GEN_FAST_FN(noDict, 4, 0)
 | |
| ZSTD_GEN_FAST_FN(noDict, 5, 0)
 | |
| ZSTD_GEN_FAST_FN(noDict, 6, 0)
 | |
| ZSTD_GEN_FAST_FN(noDict, 7, 0)
 | |
| 
 | |
| size_t ZSTD_compressBlock_fast(
 | |
|         ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
 | |
|         void const* src, size_t srcSize)
 | |
| {
 | |
|     U32 const mls = ms->cParams.minMatch;
 | |
|     assert(ms->dictMatchState == NULL);
 | |
|     if (ms->cParams.targetLength > 1) {
 | |
|         switch(mls)
 | |
|         {
 | |
|         default: /* includes case 3 */
 | |
|         case 4 :
 | |
|             return ZSTD_compressBlock_fast_noDict_4_1(ms, seqStore, rep, src, srcSize);
 | |
|         case 5 :
 | |
|             return ZSTD_compressBlock_fast_noDict_5_1(ms, seqStore, rep, src, srcSize);
 | |
|         case 6 :
 | |
|             return ZSTD_compressBlock_fast_noDict_6_1(ms, seqStore, rep, src, srcSize);
 | |
|         case 7 :
 | |
|             return ZSTD_compressBlock_fast_noDict_7_1(ms, seqStore, rep, src, srcSize);
 | |
|         }
 | |
|     } else {
 | |
|         switch(mls)
 | |
|         {
 | |
|         default: /* includes case 3 */
 | |
|         case 4 :
 | |
|             return ZSTD_compressBlock_fast_noDict_4_0(ms, seqStore, rep, src, srcSize);
 | |
|         case 5 :
 | |
|             return ZSTD_compressBlock_fast_noDict_5_0(ms, seqStore, rep, src, srcSize);
 | |
|         case 6 :
 | |
|             return ZSTD_compressBlock_fast_noDict_6_0(ms, seqStore, rep, src, srcSize);
 | |
|         case 7 :
 | |
|             return ZSTD_compressBlock_fast_noDict_7_0(ms, seqStore, rep, src, srcSize);
 | |
|         }
 | |
| 
 | |
|     }
 | |
| }
 | |
| 
 | |
| FORCE_INLINE_TEMPLATE
 | |
| size_t ZSTD_compressBlock_fast_dictMatchState_generic(
 | |
|         ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
 | |
|         void const* src, size_t srcSize, U32 const mls, U32 const hasStep)
 | |
| {
 | |
|     const ZSTD_compressionParameters* const cParams = &ms->cParams;
 | |
|     U32* const hashTable = ms->hashTable;
 | |
|     U32 const hlog = cParams->hashLog;
 | |
|     /* support stepSize of 0 */
 | |
|     U32 const stepSize = cParams->targetLength + !(cParams->targetLength);
 | |
|     const BYTE* const base = ms->window.base;
 | |
|     const BYTE* const istart = (const BYTE*)src;
 | |
|     const BYTE* ip0 = istart;
 | |
|     const BYTE* ip1 = ip0 + stepSize; /* we assert below that stepSize >= 1 */
 | |
|     const BYTE* anchor = istart;
 | |
|     const U32   prefixStartIndex = ms->window.dictLimit;
 | |
|     const BYTE* const prefixStart = base + prefixStartIndex;
 | |
|     const BYTE* const iend = istart + srcSize;
 | |
|     const BYTE* const ilimit = iend - HASH_READ_SIZE;
 | |
|     U32 offset_1=rep[0], offset_2=rep[1];
 | |
| 
 | |
|     const ZSTD_matchState_t* const dms = ms->dictMatchState;
 | |
|     const ZSTD_compressionParameters* const dictCParams = &dms->cParams ;
 | |
|     const U32* const dictHashTable = dms->hashTable;
 | |
|     const U32 dictStartIndex       = dms->window.dictLimit;
 | |
|     const BYTE* const dictBase     = dms->window.base;
 | |
|     const BYTE* const dictStart    = dictBase + dictStartIndex;
 | |
|     const BYTE* const dictEnd      = dms->window.nextSrc;
 | |
|     const U32 dictIndexDelta       = prefixStartIndex - (U32)(dictEnd - dictBase);
 | |
|     const U32 dictAndPrefixLength  = (U32)(istart - prefixStart + dictEnd - dictStart);
 | |
|     const U32 dictHBits            = dictCParams->hashLog + ZSTD_SHORT_CACHE_TAG_BITS;
 | |
| 
 | |
|     /* if a dictionary is still attached, it necessarily means that
 | |
|      * it is within window size. So we just check it. */
 | |
|     const U32 maxDistance = 1U << cParams->windowLog;
 | |
|     const U32 endIndex = (U32)((size_t)(istart - base) + srcSize);
 | |
|     assert(endIndex - prefixStartIndex <= maxDistance);
 | |
|     (void)maxDistance; (void)endIndex;   /* these variables are not used when assert() is disabled */
 | |
| 
 | |
|     (void)hasStep; /* not currently specialized on whether it's accelerated */
 | |
| 
 | |
|     /* ensure there will be no underflow
 | |
|      * when translating a dict index into a local index */
 | |
|     assert(prefixStartIndex >= (U32)(dictEnd - dictBase));
 | |
| 
 | |
|     if (ms->prefetchCDictTables) {
 | |
|         size_t const hashTableBytes = (((size_t)1) << dictCParams->hashLog) * sizeof(U32);
 | |
|         PREFETCH_AREA(dictHashTable, hashTableBytes)
 | |
|     }
 | |
| 
 | |
|     /* init */
 | |
|     DEBUGLOG(5, "ZSTD_compressBlock_fast_dictMatchState_generic");
 | |
|     ip0 += (dictAndPrefixLength == 0);
 | |
|     /* dictMatchState repCode checks don't currently handle repCode == 0
 | |
|      * disabling. */
 | |
|     assert(offset_1 <= dictAndPrefixLength);
 | |
|     assert(offset_2 <= dictAndPrefixLength);
 | |
| 
 | |
|     /* Outer search loop */
 | |
|     assert(stepSize >= 1);
 | |
|     while (ip1 <= ilimit) {   /* repcode check at (ip0 + 1) is safe because ip0 < ip1 */
 | |
|         size_t mLength;
 | |
|         size_t hash0 = ZSTD_hashPtr(ip0, hlog, mls);
 | |
| 
 | |
|         size_t const dictHashAndTag0 = ZSTD_hashPtr(ip0, dictHBits, mls);
 | |
|         U32 dictMatchIndexAndTag = dictHashTable[dictHashAndTag0 >> ZSTD_SHORT_CACHE_TAG_BITS];
 | |
|         int dictTagsMatch = ZSTD_comparePackedTags(dictMatchIndexAndTag, dictHashAndTag0);
 | |
| 
 | |
|         U32 matchIndex = hashTable[hash0];
 | |
|         U32 curr = (U32)(ip0 - base);
 | |
|         size_t step = stepSize;
 | |
|         const size_t kStepIncr = 1 << kSearchStrength;
 | |
|         const BYTE* nextStep = ip0 + kStepIncr;
 | |
| 
 | |
|         /* Inner search loop */
 | |
|         while (1) {
 | |
|             const BYTE* match = base + matchIndex;
 | |
|             const U32 repIndex = curr + 1 - offset_1;
 | |
|             const BYTE* repMatch = (repIndex < prefixStartIndex) ?
 | |
|                                    dictBase + (repIndex - dictIndexDelta) :
 | |
|                                    base + repIndex;
 | |
|             const size_t hash1 = ZSTD_hashPtr(ip1, hlog, mls);
 | |
|             size_t const dictHashAndTag1 = ZSTD_hashPtr(ip1, dictHBits, mls);
 | |
|             hashTable[hash0] = curr;   /* update hash table */
 | |
| 
 | |
|             if (((U32) ((prefixStartIndex - 1) - repIndex) >=
 | |
|                  3) /* intentional underflow : ensure repIndex isn't overlapping dict + prefix */
 | |
|                 && (MEM_read32(repMatch) == MEM_read32(ip0 + 1))) {
 | |
|                 const BYTE* const repMatchEnd = repIndex < prefixStartIndex ? dictEnd : iend;
 | |
|                 mLength = ZSTD_count_2segments(ip0 + 1 + 4, repMatch + 4, iend, repMatchEnd, prefixStart) + 4;
 | |
|                 ip0++;
 | |
|                 ZSTD_storeSeq(seqStore, (size_t) (ip0 - anchor), anchor, iend, REPCODE1_TO_OFFBASE, mLength);
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             if (dictTagsMatch) {
 | |
|                 /* Found a possible dict match */
 | |
|                 const U32 dictMatchIndex = dictMatchIndexAndTag >> ZSTD_SHORT_CACHE_TAG_BITS;
 | |
|                 const BYTE* dictMatch = dictBase + dictMatchIndex;
 | |
|                 if (dictMatchIndex > dictStartIndex &&
 | |
|                     MEM_read32(dictMatch) == MEM_read32(ip0)) {
 | |
|                     /* To replicate extDict parse behavior, we only use dict matches when the normal matchIndex is invalid */
 | |
|                     if (matchIndex <= prefixStartIndex) {
 | |
|                         U32 const offset = (U32) (curr - dictMatchIndex - dictIndexDelta);
 | |
|                         mLength = ZSTD_count_2segments(ip0 + 4, dictMatch + 4, iend, dictEnd, prefixStart) + 4;
 | |
|                         while (((ip0 > anchor) & (dictMatch > dictStart))
 | |
|                             && (ip0[-1] == dictMatch[-1])) {
 | |
|                             ip0--;
 | |
|                             dictMatch--;
 | |
|                             mLength++;
 | |
|                         } /* catch up */
 | |
|                         offset_2 = offset_1;
 | |
|                         offset_1 = offset;
 | |
|                         ZSTD_storeSeq(seqStore, (size_t) (ip0 - anchor), anchor, iend, OFFSET_TO_OFFBASE(offset), mLength);
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if (matchIndex > prefixStartIndex && MEM_read32(match) == MEM_read32(ip0)) {
 | |
|                 /* found a regular match */
 | |
|                 U32 const offset = (U32) (ip0 - match);
 | |
|                 mLength = ZSTD_count(ip0 + 4, match + 4, iend) + 4;
 | |
|                 while (((ip0 > anchor) & (match > prefixStart))
 | |
|                        && (ip0[-1] == match[-1])) {
 | |
|                     ip0--;
 | |
|                     match--;
 | |
|                     mLength++;
 | |
|                 } /* catch up */
 | |
|                 offset_2 = offset_1;
 | |
|                 offset_1 = offset;
 | |
|                 ZSTD_storeSeq(seqStore, (size_t) (ip0 - anchor), anchor, iend, OFFSET_TO_OFFBASE(offset), mLength);
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             /* Prepare for next iteration */
 | |
|             dictMatchIndexAndTag = dictHashTable[dictHashAndTag1 >> ZSTD_SHORT_CACHE_TAG_BITS];
 | |
|             dictTagsMatch = ZSTD_comparePackedTags(dictMatchIndexAndTag, dictHashAndTag1);
 | |
|             matchIndex = hashTable[hash1];
 | |
| 
 | |
|             if (ip1 >= nextStep) {
 | |
|                 step++;
 | |
|                 nextStep += kStepIncr;
 | |
|             }
 | |
|             ip0 = ip1;
 | |
|             ip1 = ip1 + step;
 | |
|             if (ip1 > ilimit) goto _cleanup;
 | |
| 
 | |
|             curr = (U32)(ip0 - base);
 | |
|             hash0 = hash1;
 | |
|         }   /* end inner search loop */
 | |
| 
 | |
|         /* match found */
 | |
|         assert(mLength);
 | |
|         ip0 += mLength;
 | |
|         anchor = ip0;
 | |
| 
 | |
|         if (ip0 <= ilimit) {
 | |
|             /* Fill Table */
 | |
|             assert(base+curr+2 > istart);  /* check base overflow */
 | |
|             hashTable[ZSTD_hashPtr(base+curr+2, hlog, mls)] = curr+2;  /* here because curr+2 could be > iend-8 */
 | |
|             hashTable[ZSTD_hashPtr(ip0-2, hlog, mls)] = (U32)(ip0-2-base);
 | |
| 
 | |
|             /* check immediate repcode */
 | |
|             while (ip0 <= ilimit) {
 | |
|                 U32 const current2 = (U32)(ip0-base);
 | |
|                 U32 const repIndex2 = current2 - offset_2;
 | |
|                 const BYTE* repMatch2 = repIndex2 < prefixStartIndex ?
 | |
|                         dictBase - dictIndexDelta + repIndex2 :
 | |
|                         base + repIndex2;
 | |
|                 if ( ((U32)((prefixStartIndex-1) - (U32)repIndex2) >= 3 /* intentional overflow */)
 | |
|                    && (MEM_read32(repMatch2) == MEM_read32(ip0))) {
 | |
|                     const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend;
 | |
|                     size_t const repLength2 = ZSTD_count_2segments(ip0+4, repMatch2+4, iend, repEnd2, prefixStart) + 4;
 | |
|                     U32 tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset;   /* swap offset_2 <=> offset_1 */
 | |
|                     ZSTD_storeSeq(seqStore, 0, anchor, iend, REPCODE1_TO_OFFBASE, repLength2);
 | |
|                     hashTable[ZSTD_hashPtr(ip0, hlog, mls)] = current2;
 | |
|                     ip0 += repLength2;
 | |
|                     anchor = ip0;
 | |
|                     continue;
 | |
|                 }
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* Prepare for next iteration */
 | |
|         assert(ip0 == anchor);
 | |
|         ip1 = ip0 + stepSize;
 | |
|     }
 | |
| 
 | |
| _cleanup:
 | |
|     /* save reps for next block */
 | |
|     rep[0] = offset_1;
 | |
|     rep[1] = offset_2;
 | |
| 
 | |
|     /* Return the last literals size */
 | |
|     return (size_t)(iend - anchor);
 | |
| }
 | |
| 
 | |
| 
 | |
| ZSTD_GEN_FAST_FN(dictMatchState, 4, 0)
 | |
| ZSTD_GEN_FAST_FN(dictMatchState, 5, 0)
 | |
| ZSTD_GEN_FAST_FN(dictMatchState, 6, 0)
 | |
| ZSTD_GEN_FAST_FN(dictMatchState, 7, 0)
 | |
| 
 | |
| size_t ZSTD_compressBlock_fast_dictMatchState(
 | |
|         ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
 | |
|         void const* src, size_t srcSize)
 | |
| {
 | |
|     U32 const mls = ms->cParams.minMatch;
 | |
|     assert(ms->dictMatchState != NULL);
 | |
|     switch(mls)
 | |
|     {
 | |
|     default: /* includes case 3 */
 | |
|     case 4 :
 | |
|         return ZSTD_compressBlock_fast_dictMatchState_4_0(ms, seqStore, rep, src, srcSize);
 | |
|     case 5 :
 | |
|         return ZSTD_compressBlock_fast_dictMatchState_5_0(ms, seqStore, rep, src, srcSize);
 | |
|     case 6 :
 | |
|         return ZSTD_compressBlock_fast_dictMatchState_6_0(ms, seqStore, rep, src, srcSize);
 | |
|     case 7 :
 | |
|         return ZSTD_compressBlock_fast_dictMatchState_7_0(ms, seqStore, rep, src, srcSize);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| static size_t ZSTD_compressBlock_fast_extDict_generic(
 | |
|         ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
 | |
|         void const* src, size_t srcSize, U32 const mls, U32 const hasStep)
 | |
| {
 | |
|     const ZSTD_compressionParameters* const cParams = &ms->cParams;
 | |
|     U32* const hashTable = ms->hashTable;
 | |
|     U32 const hlog = cParams->hashLog;
 | |
|     /* support stepSize of 0 */
 | |
|     size_t const stepSize = cParams->targetLength + !(cParams->targetLength) + 1;
 | |
|     const BYTE* const base = ms->window.base;
 | |
|     const BYTE* const dictBase = ms->window.dictBase;
 | |
|     const BYTE* const istart = (const BYTE*)src;
 | |
|     const BYTE* anchor = istart;
 | |
|     const U32   endIndex = (U32)((size_t)(istart - base) + srcSize);
 | |
|     const U32   lowLimit = ZSTD_getLowestMatchIndex(ms, endIndex, cParams->windowLog);
 | |
|     const U32   dictStartIndex = lowLimit;
 | |
|     const BYTE* const dictStart = dictBase + dictStartIndex;
 | |
|     const U32   dictLimit = ms->window.dictLimit;
 | |
|     const U32   prefixStartIndex = dictLimit < lowLimit ? lowLimit : dictLimit;
 | |
|     const BYTE* const prefixStart = base + prefixStartIndex;
 | |
|     const BYTE* const dictEnd = dictBase + prefixStartIndex;
 | |
|     const BYTE* const iend = istart + srcSize;
 | |
|     const BYTE* const ilimit = iend - 8;
 | |
|     U32 offset_1=rep[0], offset_2=rep[1];
 | |
|     U32 offsetSaved1 = 0, offsetSaved2 = 0;
 | |
| 
 | |
|     const BYTE* ip0 = istart;
 | |
|     const BYTE* ip1;
 | |
|     const BYTE* ip2;
 | |
|     const BYTE* ip3;
 | |
|     U32 current0;
 | |
| 
 | |
| 
 | |
|     size_t hash0; /* hash for ip0 */
 | |
|     size_t hash1; /* hash for ip1 */
 | |
|     U32 idx; /* match idx for ip0 */
 | |
|     const BYTE* idxBase; /* base pointer for idx */
 | |
| 
 | |
|     U32 offcode;
 | |
|     const BYTE* match0;
 | |
|     size_t mLength;
 | |
|     const BYTE* matchEnd = 0; /* initialize to avoid warning, assert != 0 later */
 | |
| 
 | |
|     size_t step;
 | |
|     const BYTE* nextStep;
 | |
|     const size_t kStepIncr = (1 << (kSearchStrength - 1));
 | |
| 
 | |
|     (void)hasStep; /* not currently specialized on whether it's accelerated */
 | |
| 
 | |
|     DEBUGLOG(5, "ZSTD_compressBlock_fast_extDict_generic (offset_1=%u)", offset_1);
 | |
| 
 | |
|     /* switch to "regular" variant if extDict is invalidated due to maxDistance */
 | |
|     if (prefixStartIndex == dictStartIndex)
 | |
|         return ZSTD_compressBlock_fast(ms, seqStore, rep, src, srcSize);
 | |
| 
 | |
|     {   U32 const curr = (U32)(ip0 - base);
 | |
|         U32 const maxRep = curr - dictStartIndex;
 | |
|         if (offset_2 >= maxRep) offsetSaved2 = offset_2, offset_2 = 0;
 | |
|         if (offset_1 >= maxRep) offsetSaved1 = offset_1, offset_1 = 0;
 | |
|     }
 | |
| 
 | |
|     /* start each op */
 | |
| _start: /* Requires: ip0 */
 | |
| 
 | |
|     step = stepSize;
 | |
|     nextStep = ip0 + kStepIncr;
 | |
| 
 | |
|     /* calculate positions, ip0 - anchor == 0, so we skip step calc */
 | |
|     ip1 = ip0 + 1;
 | |
|     ip2 = ip0 + step;
 | |
|     ip3 = ip2 + 1;
 | |
| 
 | |
|     if (ip3 >= ilimit) {
 | |
|         goto _cleanup;
 | |
|     }
 | |
| 
 | |
|     hash0 = ZSTD_hashPtr(ip0, hlog, mls);
 | |
|     hash1 = ZSTD_hashPtr(ip1, hlog, mls);
 | |
| 
 | |
|     idx = hashTable[hash0];
 | |
|     idxBase = idx < prefixStartIndex ? dictBase : base;
 | |
| 
 | |
|     do {
 | |
|         {   /* load repcode match for ip[2] */
 | |
|             U32 const current2 = (U32)(ip2 - base);
 | |
|             U32 const repIndex = current2 - offset_1;
 | |
|             const BYTE* const repBase = repIndex < prefixStartIndex ? dictBase : base;
 | |
|             U32 rval;
 | |
|             if ( ((U32)(prefixStartIndex - repIndex) >= 4) /* intentional underflow */
 | |
|                  & (offset_1 > 0) ) {
 | |
|                 rval = MEM_read32(repBase + repIndex);
 | |
|             } else {
 | |
|                 rval = MEM_read32(ip2) ^ 1; /* guaranteed to not match. */
 | |
|             }
 | |
| 
 | |
|             /* write back hash table entry */
 | |
|             current0 = (U32)(ip0 - base);
 | |
|             hashTable[hash0] = current0;
 | |
| 
 | |
|             /* check repcode at ip[2] */
 | |
|             if (MEM_read32(ip2) == rval) {
 | |
|                 ip0 = ip2;
 | |
|                 match0 = repBase + repIndex;
 | |
|                 matchEnd = repIndex < prefixStartIndex ? dictEnd : iend;
 | |
|                 assert((match0 != prefixStart) & (match0 != dictStart));
 | |
|                 mLength = ip0[-1] == match0[-1];
 | |
|                 ip0 -= mLength;
 | |
|                 match0 -= mLength;
 | |
|                 offcode = REPCODE1_TO_OFFBASE;
 | |
|                 mLength += 4;
 | |
|                 goto _match;
 | |
|         }   }
 | |
| 
 | |
|         {   /* load match for ip[0] */
 | |
|             U32 const mval = idx >= dictStartIndex ?
 | |
|                     MEM_read32(idxBase + idx) :
 | |
|                     MEM_read32(ip0) ^ 1; /* guaranteed not to match */
 | |
| 
 | |
|             /* check match at ip[0] */
 | |
|             if (MEM_read32(ip0) == mval) {
 | |
|                 /* found a match! */
 | |
|                 goto _offset;
 | |
|         }   }
 | |
| 
 | |
|         /* lookup ip[1] */
 | |
|         idx = hashTable[hash1];
 | |
|         idxBase = idx < prefixStartIndex ? dictBase : base;
 | |
| 
 | |
|         /* hash ip[2] */
 | |
|         hash0 = hash1;
 | |
|         hash1 = ZSTD_hashPtr(ip2, hlog, mls);
 | |
| 
 | |
|         /* advance to next positions */
 | |
|         ip0 = ip1;
 | |
|         ip1 = ip2;
 | |
|         ip2 = ip3;
 | |
| 
 | |
|         /* write back hash table entry */
 | |
|         current0 = (U32)(ip0 - base);
 | |
|         hashTable[hash0] = current0;
 | |
| 
 | |
|         {   /* load match for ip[0] */
 | |
|             U32 const mval = idx >= dictStartIndex ?
 | |
|                     MEM_read32(idxBase + idx) :
 | |
|                     MEM_read32(ip0) ^ 1; /* guaranteed not to match */
 | |
| 
 | |
|             /* check match at ip[0] */
 | |
|             if (MEM_read32(ip0) == mval) {
 | |
|                 /* found a match! */
 | |
|                 goto _offset;
 | |
|         }   }
 | |
| 
 | |
|         /* lookup ip[1] */
 | |
|         idx = hashTable[hash1];
 | |
|         idxBase = idx < prefixStartIndex ? dictBase : base;
 | |
| 
 | |
|         /* hash ip[2] */
 | |
|         hash0 = hash1;
 | |
|         hash1 = ZSTD_hashPtr(ip2, hlog, mls);
 | |
| 
 | |
|         /* advance to next positions */
 | |
|         ip0 = ip1;
 | |
|         ip1 = ip2;
 | |
|         ip2 = ip0 + step;
 | |
|         ip3 = ip1 + step;
 | |
| 
 | |
|         /* calculate step */
 | |
|         if (ip2 >= nextStep) {
 | |
|             step++;
 | |
|             PREFETCH_L1(ip1 + 64);
 | |
|             PREFETCH_L1(ip1 + 128);
 | |
|             nextStep += kStepIncr;
 | |
|         }
 | |
|     } while (ip3 < ilimit);
 | |
| 
 | |
| _cleanup:
 | |
|     /* Note that there are probably still a couple positions we could search.
 | |
|      * However, it seems to be a meaningful performance hit to try to search
 | |
|      * them. So let's not. */
 | |
| 
 | |
|     /* If offset_1 started invalid (offsetSaved1 != 0) and became valid (offset_1 != 0),
 | |
|      * rotate saved offsets. See comment in ZSTD_compressBlock_fast_noDict for more context. */
 | |
|     offsetSaved2 = ((offsetSaved1 != 0) && (offset_1 != 0)) ? offsetSaved1 : offsetSaved2;
 | |
| 
 | |
|     /* save reps for next block */
 | |
|     rep[0] = offset_1 ? offset_1 : offsetSaved1;
 | |
|     rep[1] = offset_2 ? offset_2 : offsetSaved2;
 | |
| 
 | |
|     /* Return the last literals size */
 | |
|     return (size_t)(iend - anchor);
 | |
| 
 | |
| _offset: /* Requires: ip0, idx, idxBase */
 | |
| 
 | |
|     /* Compute the offset code. */
 | |
|     {   U32 const offset = current0 - idx;
 | |
|         const BYTE* const lowMatchPtr = idx < prefixStartIndex ? dictStart : prefixStart;
 | |
|         matchEnd = idx < prefixStartIndex ? dictEnd : iend;
 | |
|         match0 = idxBase + idx;
 | |
|         offset_2 = offset_1;
 | |
|         offset_1 = offset;
 | |
|         offcode = OFFSET_TO_OFFBASE(offset);
 | |
|         mLength = 4;
 | |
| 
 | |
|         /* Count the backwards match length. */
 | |
|         while (((ip0>anchor) & (match0>lowMatchPtr)) && (ip0[-1] == match0[-1])) {
 | |
|             ip0--;
 | |
|             match0--;
 | |
|             mLength++;
 | |
|     }   }
 | |
| 
 | |
| _match: /* Requires: ip0, match0, offcode, matchEnd */
 | |
| 
 | |
|     /* Count the forward length. */
 | |
|     assert(matchEnd != 0);
 | |
|     mLength += ZSTD_count_2segments(ip0 + mLength, match0 + mLength, iend, matchEnd, prefixStart);
 | |
| 
 | |
|     ZSTD_storeSeq(seqStore, (size_t)(ip0 - anchor), anchor, iend, offcode, mLength);
 | |
| 
 | |
|     ip0 += mLength;
 | |
|     anchor = ip0;
 | |
| 
 | |
|     /* write next hash table entry */
 | |
|     if (ip1 < ip0) {
 | |
|         hashTable[hash1] = (U32)(ip1 - base);
 | |
|     }
 | |
| 
 | |
|     /* Fill table and check for immediate repcode. */
 | |
|     if (ip0 <= ilimit) {
 | |
|         /* Fill Table */
 | |
|         assert(base+current0+2 > istart);  /* check base overflow */
 | |
|         hashTable[ZSTD_hashPtr(base+current0+2, hlog, mls)] = current0+2;  /* here because current+2 could be > iend-8 */
 | |
|         hashTable[ZSTD_hashPtr(ip0-2, hlog, mls)] = (U32)(ip0-2-base);
 | |
| 
 | |
|         while (ip0 <= ilimit) {
 | |
|             U32 const repIndex2 = (U32)(ip0-base) - offset_2;
 | |
|             const BYTE* const repMatch2 = repIndex2 < prefixStartIndex ? dictBase + repIndex2 : base + repIndex2;
 | |
|             if ( (((U32)((prefixStartIndex-1) - repIndex2) >= 3) & (offset_2 > 0))  /* intentional underflow */
 | |
|                  && (MEM_read32(repMatch2) == MEM_read32(ip0)) ) {
 | |
|                 const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend;
 | |
|                 size_t const repLength2 = ZSTD_count_2segments(ip0+4, repMatch2+4, iend, repEnd2, prefixStart) + 4;
 | |
|                 { U32 const tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; }  /* swap offset_2 <=> offset_1 */
 | |
|                 ZSTD_storeSeq(seqStore, 0 /*litlen*/, anchor, iend, REPCODE1_TO_OFFBASE, repLength2);
 | |
|                 hashTable[ZSTD_hashPtr(ip0, hlog, mls)] = (U32)(ip0-base);
 | |
|                 ip0 += repLength2;
 | |
|                 anchor = ip0;
 | |
|                 continue;
 | |
|             }
 | |
|             break;
 | |
|     }   }
 | |
| 
 | |
|     goto _start;
 | |
| }
 | |
| 
 | |
| ZSTD_GEN_FAST_FN(extDict, 4, 0)
 | |
| ZSTD_GEN_FAST_FN(extDict, 5, 0)
 | |
| ZSTD_GEN_FAST_FN(extDict, 6, 0)
 | |
| ZSTD_GEN_FAST_FN(extDict, 7, 0)
 | |
| 
 | |
| size_t ZSTD_compressBlock_fast_extDict(
 | |
|         ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
 | |
|         void const* src, size_t srcSize)
 | |
| {
 | |
|     U32 const mls = ms->cParams.minMatch;
 | |
|     assert(ms->dictMatchState == NULL);
 | |
|     switch(mls)
 | |
|     {
 | |
|     default: /* includes case 3 */
 | |
|     case 4 :
 | |
|         return ZSTD_compressBlock_fast_extDict_4_0(ms, seqStore, rep, src, srcSize);
 | |
|     case 5 :
 | |
|         return ZSTD_compressBlock_fast_extDict_5_0(ms, seqStore, rep, src, srcSize);
 | |
|     case 6 :
 | |
|         return ZSTD_compressBlock_fast_extDict_6_0(ms, seqStore, rep, src, srcSize);
 | |
|     case 7 :
 | |
|         return ZSTD_compressBlock_fast_extDict_7_0(ms, seqStore, rep, src, srcSize);
 | |
|     }
 | |
| }
 |