mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-30 21:21:10 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			316 lines
		
	
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			316 lines
		
	
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*************************************************************************/
 | |
| /*  collision_solver_2d_sw.cpp                                           */
 | |
| /*************************************************************************/
 | |
| /*                       This file is part of:                           */
 | |
| /*                           GODOT ENGINE                                */
 | |
| /*                    http://www.godotengine.org                         */
 | |
| /*************************************************************************/
 | |
| /* Copyright (c) 2007-2016 Juan Linietsky, Ariel Manzur.                 */
 | |
| /*                                                                       */
 | |
| /* Permission is hereby granted, free of charge, to any person obtaining */
 | |
| /* a copy of this software and associated documentation files (the       */
 | |
| /* "Software"), to deal in the Software without restriction, including   */
 | |
| /* without limitation the rights to use, copy, modify, merge, publish,   */
 | |
| /* distribute, sublicense, and/or sell copies of the Software, and to    */
 | |
| /* permit persons to whom the Software is furnished to do so, subject to */
 | |
| /* the following conditions:                                             */
 | |
| /*                                                                       */
 | |
| /* The above copyright notice and this permission notice shall be        */
 | |
| /* included in all copies or substantial portions of the Software.       */
 | |
| /*                                                                       */
 | |
| /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */
 | |
| /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */
 | |
| /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
 | |
| /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */
 | |
| /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */
 | |
| /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */
 | |
| /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */
 | |
| /*************************************************************************/
 | |
| #include "collision_solver_2d_sw.h"
 | |
| #include "collision_solver_2d_sat.h"
 | |
| 
 | |
| 
 | |
| #define collision_solver sat_2d_calculate_penetration
 | |
| //#define collision_solver gjk_epa_calculate_penetration
 | |
| 
 | |
| 
 | |
| bool CollisionSolver2DSW::solve_static_line(const Shape2DSW *p_shape_A,const Matrix32& p_transform_A,const Shape2DSW *p_shape_B,const Matrix32& p_transform_B,CallbackResult p_result_callback,void *p_userdata,bool p_swap_result) {
 | |
| 
 | |
| 
 | |
| 	const LineShape2DSW *line = static_cast<const LineShape2DSW*>(p_shape_A);
 | |
| 	if (p_shape_B->get_type()==Physics2DServer::SHAPE_LINE)
 | |
| 		return false;
 | |
| 
 | |
| 
 | |
| 	Vector2 n = p_transform_A.basis_xform(line->get_normal()).normalized();
 | |
| 	Vector2 p = p_transform_A.xform(line->get_normal()*line->get_d());
 | |
| 	real_t d = n.dot(p);
 | |
| 
 | |
| 	Vector2 supports[2];
 | |
| 	int support_count;
 | |
| 
 | |
| 	p_shape_B->get_supports(p_transform_A.affine_inverse().basis_xform(-n).normalized(),supports,support_count);
 | |
| 
 | |
| 	bool found=false;
 | |
| 
 | |
| 
 | |
| 	for(int i=0;i<support_count;i++) {
 | |
| 
 | |
| 		supports[i] = p_transform_B.xform( supports[i] );
 | |
| 		real_t pd = n.dot(supports[i]);
 | |
| 		if (pd>=d)
 | |
| 			continue;
 | |
| 		found=true;
 | |
| 
 | |
| 		Vector2 support_A = supports[i] - n*(pd-d);
 | |
| 
 | |
| 		if (p_result_callback) {
 | |
| 			if (p_swap_result)
 | |
| 				p_result_callback(supports[i],support_A,p_userdata);
 | |
| 			else
 | |
| 				p_result_callback(support_A,supports[i],p_userdata);
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	return found;
 | |
| }
 | |
| 
 | |
| bool CollisionSolver2DSW::solve_raycast(const Shape2DSW *p_shape_A,const Matrix32& p_transform_A,const Shape2DSW *p_shape_B,const Matrix32& p_transform_B,CallbackResult p_result_callback,void *p_userdata,bool p_swap_result,Vector2 *sep_axis) {
 | |
| 
 | |
| 
 | |
| 
 | |
| 	const RayShape2DSW *ray = static_cast<const RayShape2DSW*>(p_shape_A);
 | |
| 	if (p_shape_B->get_type()==Physics2DServer::SHAPE_RAY)
 | |
| 		return false;
 | |
| 
 | |
| 	Vector2 from = p_transform_A.get_origin();
 | |
| 	Vector2 to = from+p_transform_A[1]*ray->get_length();
 | |
| 	Vector2 support_A=to;
 | |
| 
 | |
| 	Matrix32 invb = p_transform_B.affine_inverse();
 | |
| 	from = invb.xform(from);
 | |
| 	to = invb.xform(to);
 | |
| 
 | |
| 	Vector2 p,n;
 | |
| 	if (!p_shape_B->intersect_segment(from,to,p,n)) {
 | |
| 
 | |
| 		if (sep_axis)
 | |
| 			*sep_axis=p_transform_A[1].normalized();
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	Vector2 support_B=p_transform_B.xform(p);
 | |
| 
 | |
| 	if (p_result_callback) {
 | |
| 		if (p_swap_result)
 | |
| 			p_result_callback(support_B,support_A,p_userdata);
 | |
| 		else
 | |
| 			p_result_callback(support_A,support_B,p_userdata);
 | |
| 	}
 | |
| 	return true;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
| bool CollisionSolver2DSW::solve_ray(const Shape2DSW *p_shape_A,const Matrix32& p_transform_A,const Shape2DSW *p_shape_B,const Matrix32& p_transform_B,const Matrix32& p_inverse_B,CallbackResult p_result_callback,void *p_userdata,bool p_swap_result) {
 | |
| 
 | |
| 
 | |
| 	const RayShape2DSW *ray = static_cast<const RayShape2DSW*>(p_shape_A);
 | |
| 
 | |
| 	Vector2 from = p_transform_A.origin;
 | |
| 	Vector2 to = from+p_transform_A.basis.get_axis(2)*ray->get_length();
 | |
| 	Vector2 support_A=to;
 | |
| 
 | |
| 	from = p_inverse_B.xform(from);
 | |
| 	to = p_inverse_B.xform(to);
 | |
| 
 | |
| 	Vector2 p,n;
 | |
| 	if (!p_shape_B->intersect_segment(from,to,&p,&n))
 | |
| 		return false;
 | |
| 
 | |
| 	Vector2 support_B=p_transform_B.xform(p);
 | |
| 
 | |
| 	if (p_result_callback) {
 | |
| 		if (p_swap_result)
 | |
| 			p_result_callback(support_B,support_A,p_userdata);
 | |
| 		else
 | |
| 			p_result_callback(support_A,support_B,p_userdata);
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| */
 | |
| 
 | |
| struct _ConcaveCollisionInfo2D {
 | |
| 
 | |
| 	const Matrix32 *transform_A;
 | |
| 	const Shape2DSW *shape_A;
 | |
| 	const Matrix32 *transform_B;
 | |
| 	Vector2 motion_A;
 | |
| 	Vector2 motion_B;
 | |
| 	real_t margin_A;
 | |
| 	real_t margin_B;
 | |
| 	CollisionSolver2DSW::CallbackResult result_callback;
 | |
| 	void *userdata;
 | |
| 	bool swap_result;
 | |
| 	bool collided;
 | |
| 	int aabb_tests;
 | |
| 	int collisions;
 | |
| 	Vector2 *sep_axis;
 | |
| 
 | |
| };
 | |
| 
 | |
| void CollisionSolver2DSW::concave_callback(void *p_userdata, Shape2DSW *p_convex) {
 | |
| 
 | |
| 
 | |
| 
 | |
| 	_ConcaveCollisionInfo2D &cinfo = *(_ConcaveCollisionInfo2D*)(p_userdata);
 | |
| 	cinfo.aabb_tests++;
 | |
| 	if (!cinfo.result_callback && cinfo.collided)
 | |
| 		return; //already collided and no contacts requested, don't test anymore
 | |
| 
 | |
| 	bool collided = collision_solver(cinfo.shape_A, *cinfo.transform_A, cinfo.motion_A, p_convex,*cinfo.transform_B, cinfo.motion_B, cinfo.result_callback, cinfo.userdata, cinfo.swap_result,cinfo.sep_axis,cinfo.margin_A,cinfo.margin_B );
 | |
| 	if (!collided)
 | |
| 		return;
 | |
| 
 | |
| 
 | |
| 	cinfo.collided=true;
 | |
| 	cinfo.collisions++;
 | |
| 
 | |
| }
 | |
| 
 | |
| bool CollisionSolver2DSW::solve_concave(const Shape2DSW *p_shape_A,const Matrix32& p_transform_A,const Vector2& p_motion_A,const Shape2DSW *p_shape_B,const Matrix32& p_transform_B,const Vector2& p_motion_B,CallbackResult p_result_callback,void *p_userdata,bool p_swap_result,Vector2 *sep_axis,float p_margin_A,float p_margin_B) {
 | |
| 
 | |
| 
 | |
| 	const ConcaveShape2DSW *concave_B=static_cast<const ConcaveShape2DSW*>(p_shape_B);
 | |
| 
 | |
| 	_ConcaveCollisionInfo2D cinfo;
 | |
| 	cinfo.transform_A=&p_transform_A;
 | |
| 	cinfo.shape_A=p_shape_A;
 | |
| 	cinfo.transform_B=&p_transform_B;
 | |
| 	cinfo.motion_A=p_motion_A;
 | |
| 	cinfo.result_callback=p_result_callback;
 | |
| 	cinfo.userdata=p_userdata;
 | |
| 	cinfo.swap_result=p_swap_result;
 | |
| 	cinfo.collided=false;
 | |
| 	cinfo.collisions=0;
 | |
| 	cinfo.sep_axis=sep_axis;
 | |
| 	cinfo.margin_A=p_margin_A;
 | |
| 	cinfo.margin_B=p_margin_B;
 | |
| 
 | |
| 	cinfo.aabb_tests=0;
 | |
| 
 | |
| 	Matrix32 rel_transform = p_transform_A;
 | |
| 	rel_transform.elements[2]-=p_transform_B.elements[2];
 | |
| 
 | |
| 	//quickly compute a local Rect2
 | |
| 
 | |
| 	Rect2 local_aabb;
 | |
| 	for(int i=0;i<2;i++) {
 | |
| 
 | |
| 	     Vector2 axis( p_transform_B.elements[i] );
 | |
| 	     float axis_scale = 1.0/axis.length();
 | |
| 	     axis*=axis_scale;
 | |
| 
 | |
| 	     float smin,smax;
 | |
| 	     p_shape_A->project_rangev(axis,rel_transform,smin,smax);
 | |
| 	     smin*=axis_scale;
 | |
| 	     smax*=axis_scale;
 | |
| 
 | |
| 	     local_aabb.pos[i]=smin;
 | |
| 	     local_aabb.size[i]=smax-smin;
 | |
| 	}
 | |
| 
 | |
| 	concave_B->cull(local_aabb,concave_callback,&cinfo);
 | |
| 
 | |
| 
 | |
| //	print_line("Rect2 TESTS: "+itos(cinfo.aabb_tests));
 | |
| 	return cinfo.collided;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool CollisionSolver2DSW::solve(const Shape2DSW *p_shape_A,const Matrix32& p_transform_A,const Vector2& p_motion_A,const Shape2DSW *p_shape_B,const Matrix32& p_transform_B,const Vector2& p_motion_B,CallbackResult p_result_callback,void *p_userdata,Vector2 *sep_axis,float p_margin_A,float p_margin_B) {
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 	Physics2DServer::ShapeType type_A=p_shape_A->get_type();
 | |
| 	Physics2DServer::ShapeType type_B=p_shape_B->get_type();
 | |
| 	bool concave_A=p_shape_A->is_concave();
 | |
| 	bool concave_B=p_shape_B->is_concave();
 | |
| 	real_t margin_A=p_margin_A,margin_B=p_margin_B;
 | |
| 
 | |
| 	bool swap = false;
 | |
| 
 | |
| 	if (type_A>type_B) {
 | |
| 		SWAP(type_A,type_B);
 | |
| 		SWAP(concave_A,concave_B);
 | |
| 		SWAP(margin_A,margin_B);
 | |
| 		swap=true;
 | |
| 	}
 | |
| 
 | |
| 	if (type_A==Physics2DServer::SHAPE_LINE) {
 | |
| 
 | |
| 		if (type_B==Physics2DServer::SHAPE_LINE || type_B==Physics2DServer::SHAPE_RAY) {
 | |
| 			return false;
 | |
| 		//if (type_B==Physics2DServer::SHAPE_RAY) {
 | |
| 		//	return false;
 | |
| 		}
 | |
| 
 | |
| 		if (swap) {
 | |
| 			return solve_static_line(p_shape_B,p_transform_B,p_shape_A,p_transform_A,p_result_callback,p_userdata,true);
 | |
| 		} else {
 | |
| 			return solve_static_line(p_shape_A,p_transform_A,p_shape_B,p_transform_B,p_result_callback,p_userdata,false);
 | |
| 		}
 | |
| 
 | |
| 	/*} else if (type_A==Physics2DServer::SHAPE_RAY) {
 | |
| 
 | |
| 		if (type_B==Physics2DServer::SHAPE_RAY)
 | |
| 			return false;
 | |
| 
 | |
| 		if (swap) {
 | |
| 			return solve_ray(p_shape_B,p_transform_B,p_shape_A,p_transform_A,p_inverse_A,p_result_callback,p_userdata,true);
 | |
| 		} else {
 | |
| 			return solve_ray(p_shape_A,p_transform_A,p_shape_B,p_transform_B,p_inverse_B,p_result_callback,p_userdata,false);
 | |
| 		}
 | |
| */
 | |
| 	} else if (type_A==Physics2DServer::SHAPE_RAY) {
 | |
| 
 | |
| 		if (type_B==Physics2DServer::SHAPE_RAY) {
 | |
| 
 | |
| 			return false; //no ray-ray
 | |
| 		}
 | |
| 
 | |
| 
 | |
| 		if (swap) {
 | |
| 			return solve_raycast(p_shape_B,p_transform_B,p_shape_A,p_transform_A,p_result_callback,p_userdata,true,sep_axis);
 | |
| 		} else {
 | |
| 			return solve_raycast(p_shape_A,p_transform_A,p_shape_B,p_transform_B,p_result_callback,p_userdata,false,sep_axis);
 | |
| 		}
 | |
| 
 | |
| 
 | |
| 	} else if (concave_B) {
 | |
| 
 | |
| 
 | |
| 		if (concave_A)
 | |
| 			return false;
 | |
| 
 | |
| 		if (!swap)
 | |
| 			return solve_concave(p_shape_A,p_transform_A,p_motion_A,p_shape_B,p_transform_B,p_motion_B,p_result_callback,p_userdata,false,sep_axis,margin_A,margin_B);
 | |
| 		else
 | |
| 			return solve_concave(p_shape_B,p_transform_B,p_motion_B,p_shape_A,p_transform_A,p_motion_A,p_result_callback,p_userdata,true,sep_axis,margin_A,margin_B);
 | |
| 
 | |
| 
 | |
| 
 | |
| 	} else {
 | |
| 
 | |
| 
 | |
| 		return collision_solver(p_shape_A, p_transform_A,p_motion_A, p_shape_B, p_transform_B, p_motion_B,p_result_callback,p_userdata,false,sep_axis,margin_A,margin_B);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | 
