mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-31 13:41:03 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			586 lines
		
	
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			586 lines
		
	
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*************************************************************************/
 | |
| /*  joints_2d_sw.cpp                                                     */
 | |
| /*************************************************************************/
 | |
| /*                       This file is part of:                           */
 | |
| /*                           GODOT ENGINE                                */
 | |
| /*                    http://www.godotengine.org                         */
 | |
| /*************************************************************************/
 | |
| /* Copyright (c) 2007-2016 Juan Linietsky, Ariel Manzur.                 */
 | |
| /*                                                                       */
 | |
| /* Permission is hereby granted, free of charge, to any person obtaining */
 | |
| /* a copy of this software and associated documentation files (the       */
 | |
| /* "Software"), to deal in the Software without restriction, including   */
 | |
| /* without limitation the rights to use, copy, modify, merge, publish,   */
 | |
| /* distribute, sublicense, and/or sell copies of the Software, and to    */
 | |
| /* permit persons to whom the Software is furnished to do so, subject to */
 | |
| /* the following conditions:                                             */
 | |
| /*                                                                       */
 | |
| /* The above copyright notice and this permission notice shall be        */
 | |
| /* included in all copies or substantial portions of the Software.       */
 | |
| /*                                                                       */
 | |
| /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */
 | |
| /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */
 | |
| /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
 | |
| /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */
 | |
| /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */
 | |
| /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */
 | |
| /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */
 | |
| /*************************************************************************/
 | |
| #include "joints_2d_sw.h"
 | |
| #include "space_2d_sw.h"
 | |
| 
 | |
| //based on chipmunk joint constraints
 | |
| 
 | |
| /* Copyright (c) 2007 Scott Lembcke
 | |
|  *
 | |
|  * Permission is hereby granted, free of charge, to any person obtaining a copy
 | |
|  * of this software and associated documentation files (the "Software"), to deal
 | |
|  * in the Software without restriction, including without limitation the rights
 | |
|  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | |
|  * copies of the Software, and to permit persons to whom the Software is
 | |
|  * furnished to do so, subject to the following conditions:
 | |
|  *
 | |
|  * The above copyright notice and this permission notice shall be included in
 | |
|  * all copies or substantial portions of the Software.
 | |
|  *
 | |
|  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
|  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 | |
|  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | |
|  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | |
|  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 | |
|  * SOFTWARE.
 | |
|  */
 | |
| 
 | |
| static inline real_t k_scalar(Body2DSW *a,Body2DSW *b,const Vector2& rA, const Vector2& rB, const Vector2& n) {
 | |
| 
 | |
| 
 | |
| 	real_t value=0;
 | |
| 
 | |
| 
 | |
| 	{
 | |
| 		value+=a->get_inv_mass();
 | |
| 		real_t rcn = rA.cross(n);
 | |
| 		value+=a->get_inv_inertia() * rcn * rcn;
 | |
| 	}
 | |
| 
 | |
| 	if (b) {
 | |
| 
 | |
| 		value+=b->get_inv_mass();
 | |
| 		real_t rcn = rB.cross(n);
 | |
| 		value+=b->get_inv_inertia() * rcn * rcn;
 | |
| 	}
 | |
| 
 | |
| 	return value;
 | |
| 
 | |
| }
 | |
| 
 | |
| static inline Vector2
 | |
| relative_velocity(Body2DSW *a, Body2DSW *b, Vector2 rA, Vector2 rB){
 | |
| 	Vector2 sum = a->get_linear_velocity() -rA.tangent() * a->get_angular_velocity();
 | |
| 	if (b)
 | |
| 		return (b->get_linear_velocity() -rB.tangent() * b->get_angular_velocity()) - sum;
 | |
| 	else
 | |
| 		return -sum;
 | |
| }
 | |
| 
 | |
| static inline real_t
 | |
| normal_relative_velocity(Body2DSW *a, Body2DSW *b, Vector2 rA, Vector2 rB, Vector2 n){
 | |
| 	return relative_velocity(a, b, rA, rB).dot(n);
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| 
 | |
| bool PinJoint2DSW::setup(float p_step) {
 | |
| 
 | |
| 	Space2DSW *space = A->get_space();
 | |
| 	ERR_FAIL_COND_V(!space,false;)
 | |
| 	rA = A->get_transform().basis_xform(anchor_A);
 | |
| 	rB = B?B->get_transform().basis_xform(anchor_B):anchor_B;
 | |
| 
 | |
| 	Vector2 gA = A->get_transform().get_origin();
 | |
| 	Vector2 gB = B?B->get_transform().get_origin():Vector2();
 | |
| 
 | |
| 	Vector2 delta = gB - gA;
 | |
| 	delta = (delta+rB) -rA;
 | |
| 
 | |
| 	real_t jdist = delta.length();
 | |
| 	correct=false;
 | |
| 	if (jdist==0)
 | |
| 		return false; // do not correct
 | |
| 
 | |
| 	correct=true;
 | |
| 
 | |
| 	n = delta / jdist;
 | |
| 
 | |
| 	// calculate mass normal
 | |
| 	mass_normal = 1.0f/k_scalar(A, B, rA, rB, n);
 | |
| 
 | |
| 	// calculate bias velocity
 | |
| 	//real_t maxBias = joint->constraint.maxBias;
 | |
| 	bias = -(get_bias()==0?space->get_constraint_bias():get_bias())*(1.0/p_step)*(jdist-dist);
 | |
| 	bias = CLAMP(bias, -get_max_bias(), +get_max_bias());
 | |
| 
 | |
| 	// compute max impulse
 | |
| 	jn_max = get_max_force() * p_step;
 | |
| 
 | |
| 	// apply accumulated impulse
 | |
| 	Vector2 j = n * jn_acc;
 | |
| 	A->apply_impulse(rA,-j);
 | |
| 	if (B)
 | |
| 		B->apply_impulse(rB,j);
 | |
| 
 | |
| 	print_line("setup");
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| void PinJoint2DSW::solve(float p_step){
 | |
| 
 | |
| 	if (!correct)
 | |
| 		return;
 | |
| 
 | |
| 	Vector2 ln = n;
 | |
| 
 | |
| 	// compute relative velocity
 | |
| 	real_t vrn = normal_relative_velocity(A,B, rA, rB, ln);
 | |
| 
 | |
| 	// compute normal impulse
 | |
| 	real_t jn = (bias - vrn)*mass_normal;
 | |
| 	real_t jnOld = jn_acc;
 | |
| 	jn_acc = CLAMP(jnOld + jn,-jn_max,jn_max); //cpfclamp(jnOld + jn, -joint->jnMax, joint->jnMax);
 | |
| 	jn = jn_acc - jnOld;
 | |
| 	print_line("jn_acc: "+rtos(jn_acc));
 | |
| 	Vector2 j = jn*ln;
 | |
| 
 | |
| 	A->apply_impulse(rA,-j);
 | |
| 	if (B)
 | |
| 		B->apply_impulse(rB,j);
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| PinJoint2DSW::PinJoint2DSW(const Vector2& p_pos,Body2DSW* p_body_a,Body2DSW* p_body_b) : Joint2DSW(_arr,p_body_b?2:1) {
 | |
| 
 | |
| 	A=p_body_a;
 | |
| 	B=p_body_b;
 | |
| 	anchor_A = p_body_a->get_inv_transform().xform(p_pos);
 | |
| 	anchor_B = p_body_b?p_body_b->get_inv_transform().xform(p_pos):p_pos;
 | |
| 
 | |
| 	jn_acc=0;
 | |
| 	dist=0;
 | |
| 
 | |
| 	p_body_a->add_constraint(this,0);
 | |
| 	if (p_body_b)
 | |
| 		p_body_b->add_constraint(this,1);
 | |
| 
 | |
| }
 | |
| 
 | |
| PinJoint2DSW::~PinJoint2DSW() {
 | |
| 
 | |
| 	if (A)
 | |
| 		A->remove_constraint(this);
 | |
| 	if (B)
 | |
| 		B->remove_constraint(this);
 | |
| 
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| 
 | |
| bool PinJoint2DSW::setup(float p_step) {
 | |
| 
 | |
| 	Space2DSW *space = A->get_space();
 | |
| 	ERR_FAIL_COND_V(!space,false;)
 | |
| 	rA = A->get_transform().basis_xform(anchor_A);
 | |
| 	rB = B?B->get_transform().basis_xform(anchor_B):anchor_B;
 | |
| #if 0
 | |
| 	Vector2 gA = rA+A->get_transform().get_origin();
 | |
| 	Vector2 gB = B?rB+B->get_transform().get_origin():rB;
 | |
| 
 | |
| 	VectorB delta = gB - gA;
 | |
| 
 | |
| 	real_t jdist = delta.length();
 | |
| 	correct=false;
 | |
| 	if (jdist==0)
 | |
| 		return false; // do not correct
 | |
| #endif
 | |
| 
 | |
| 	// deltaV = deltaV0 + K * impulse
 | |
| 	// invM = [(1/m1 + 1/m2) * eye(2) - skew(rA) * invI1 * skew(rA) - skew(rB) * invI2 * skew(rB)]
 | |
| 	//      = [1/m1+1/m2     0    ] + invI1 * [rA.y*rA.y -rA.x*rA.y] + invI2 * [rA.y*rA.y -rA.x*rA.y]
 | |
| 	//        [    0     1/m1+1/m2]           [-rA.x*rA.y rA.x*rA.x]           [-rA.x*rA.y rA.x*rA.x]
 | |
| 
 | |
| 	real_t B_inv_mass = B?B->get_inv_mass():0.0;
 | |
| 
 | |
| 
 | |
| 	Matrix32 K1;
 | |
| 	K1[0].x = A->get_inv_mass() + B_inv_mass;	K1[1].x = 0.0f;
 | |
| 	K1[0].y = 0.0f;					K1[1].y = A->get_inv_mass() + B_inv_mass;
 | |
| 
 | |
| 	Matrix32 K2;
 | |
| 	K2[0].x =  A->get_inv_inertia() * rA.y * rA.y;		K2[1].x = -A->get_inv_inertia() * rA.x * rA.y;
 | |
| 	K2[0].y = -A->get_inv_inertia() * rA.x * rA.y;		K2[1].y =  A->get_inv_inertia() * rA.x * rA.x;
 | |
| 
 | |
| 	Matrix32 K;
 | |
| 	K[0]= K1[0] + K2[0];
 | |
| 	K[1]= K1[1] + K2[1];
 | |
| 
 | |
| 	if (B) {
 | |
| 
 | |
| 		Matrix32 K3;
 | |
| 		K3[0].x =  B->get_inv_inertia() * rB.y * rB.y;		K3[1].x = -B->get_inv_inertia() * rB.x * rB.y;
 | |
| 		K3[0].y = -B->get_inv_inertia() * rB.x * rB.y;		K3[1].y =  B->get_inv_inertia() * rB.x * rB.x;
 | |
| 
 | |
| 		K[0]+=K3[0];
 | |
| 		K[1]+=K3[1];
 | |
| 	}
 | |
| 
 | |
| 	K[0].x += softness;
 | |
| 	K[1].y += softness;
 | |
| 
 | |
| 	M = K.affine_inverse();
 | |
| 
 | |
| 	Vector2 gA = rA+A->get_transform().get_origin();
 | |
| 	Vector2 gB = B?rB+B->get_transform().get_origin():rB;
 | |
| 
 | |
| 	Vector2 delta = gB - gA;
 | |
| 
 | |
| 	bias = delta*-(get_bias()==0?space->get_constraint_bias():get_bias())*(1.0/p_step);
 | |
| 
 | |
| 	// apply accumulated impulse
 | |
| 	A->apply_impulse(rA,-P);
 | |
| 	if (B)
 | |
| 		B->apply_impulse(rB,P);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| void PinJoint2DSW::solve(float p_step){
 | |
| 
 | |
| 
 | |
| 	// compute relative velocity
 | |
| 	Vector2 vA = A->get_linear_velocity() - rA.cross(A->get_angular_velocity());
 | |
| 
 | |
| 	Vector2 rel_vel;
 | |
| 	if (B)
 | |
| 		rel_vel = B->get_linear_velocity() - rB.cross(B->get_angular_velocity()) - vA;
 | |
| 	else
 | |
| 		rel_vel = -vA;
 | |
| 
 | |
| 	Vector2 impulse = M.basis_xform(bias - rel_vel - Vector2(softness,softness) * P);
 | |
| 
 | |
| 	A->apply_impulse(rA,-impulse);
 | |
| 	if (B)
 | |
| 		B->apply_impulse(rB,impulse);
 | |
| 
 | |
| 
 | |
| 	P += impulse;
 | |
| }
 | |
| 
 | |
| void PinJoint2DSW::set_param(Physics2DServer::PinJointParam p_param, real_t p_value) {
 | |
| 
 | |
| 	if(p_param == Physics2DServer::PIN_JOINT_SOFTNESS)
 | |
| 		softness = p_value;
 | |
| }
 | |
| 
 | |
| real_t PinJoint2DSW::get_param(Physics2DServer::PinJointParam p_param) const {
 | |
| 
 | |
| 	if(p_param == Physics2DServer::PIN_JOINT_SOFTNESS)
 | |
| 		return softness;
 | |
| 	ERR_FAIL_V(0);
 | |
| }
 | |
| 
 | |
| PinJoint2DSW::PinJoint2DSW(const Vector2& p_pos,Body2DSW* p_body_a,Body2DSW* p_body_b) : Joint2DSW(_arr,p_body_b?2:1) {
 | |
| 
 | |
| 	A=p_body_a;
 | |
| 	B=p_body_b;
 | |
| 	anchor_A = p_body_a->get_inv_transform().xform(p_pos);
 | |
| 	anchor_B = p_body_b?p_body_b->get_inv_transform().xform(p_pos):p_pos;
 | |
| 
 | |
| 	softness=0;
 | |
| 
 | |
| 	p_body_a->add_constraint(this,0);
 | |
| 	if (p_body_b)
 | |
| 		p_body_b->add_constraint(this,1);
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| PinJoint2DSW::~PinJoint2DSW() {
 | |
| 
 | |
| 	if (A)
 | |
| 		A->remove_constraint(this);
 | |
| 	if (B)
 | |
| 		B->remove_constraint(this);
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| #endif
 | |
| 
 | |
| //////////////////////////////////////////////
 | |
| //////////////////////////////////////////////
 | |
| //////////////////////////////////////////////
 | |
| 
 | |
| 
 | |
| static inline void
 | |
| k_tensor(Body2DSW *a, Body2DSW *b, Vector2 r1, Vector2 r2, Vector2 *k1, Vector2 *k2)
 | |
| {
 | |
| 	// calculate mass matrix
 | |
| 	// If I wasn't lazy and wrote a proper matrix class, this wouldn't be so gross...
 | |
| 	real_t k11, k12, k21, k22;
 | |
| 	real_t m_sum = a->get_inv_mass() + b->get_inv_mass();
 | |
| 
 | |
| 	// start with I*m_sum
 | |
| 	k11 = m_sum; k12 = 0.0f;
 | |
| 	k21 = 0.0f;  k22 = m_sum;
 | |
| 
 | |
| 	// add the influence from r1
 | |
| 	real_t a_i_inv = a->get_inv_inertia();
 | |
| 	real_t r1xsq =  r1.x * r1.x * a_i_inv;
 | |
| 	real_t r1ysq =  r1.y * r1.y * a_i_inv;
 | |
| 	real_t r1nxy = -r1.x * r1.y * a_i_inv;
 | |
| 	k11 += r1ysq; k12 += r1nxy;
 | |
| 	k21 += r1nxy; k22 += r1xsq;
 | |
| 
 | |
| 	// add the influnce from r2
 | |
| 	real_t b_i_inv = b->get_inv_inertia();
 | |
| 	real_t r2xsq =  r2.x * r2.x * b_i_inv;
 | |
| 	real_t r2ysq =  r2.y * r2.y * b_i_inv;
 | |
| 	real_t r2nxy = -r2.x * r2.y * b_i_inv;
 | |
| 	k11 += r2ysq; k12 += r2nxy;
 | |
| 	k21 += r2nxy; k22 += r2xsq;
 | |
| 
 | |
| 	// invert
 | |
| 	real_t determinant = k11*k22 - k12*k21;
 | |
| 	ERR_FAIL_COND(determinant== 0.0);
 | |
| 
 | |
| 	real_t det_inv = 1.0f/determinant;
 | |
| 	*k1 = Vector2( k22*det_inv, -k12*det_inv);
 | |
| 	*k2 = Vector2(-k21*det_inv,  k11*det_inv);
 | |
| }
 | |
| 
 | |
| static _FORCE_INLINE_ Vector2
 | |
| mult_k(const Vector2& vr, const Vector2 &k1, const Vector2 &k2)
 | |
| {
 | |
| 	return Vector2(vr.dot(k1), vr.dot(k2));
 | |
| }
 | |
| 
 | |
| bool GrooveJoint2DSW::setup(float p_step) {
 | |
| 
 | |
| 
 | |
| 	// calculate endpoints in worldspace
 | |
| 	Vector2 ta = A->get_transform().xform(A_groove_1);
 | |
| 	Vector2 tb = A->get_transform().xform(A_groove_2);
 | |
| 	Space2DSW *space=A->get_space();
 | |
| 
 | |
| 	// calculate axis
 | |
| 	Vector2 n = -(tb - ta).tangent().normalized();
 | |
| 	real_t d = ta.dot(n);
 | |
| 
 | |
| 	xf_normal = n;
 | |
| 	rB = B->get_transform().basis_xform(B_anchor);
 | |
| 
 | |
| 	// calculate tangential distance along the axis of rB
 | |
| 	real_t td = (B->get_transform().get_origin() + rB).cross(n);
 | |
| 	// calculate clamping factor and rB
 | |
| 	if(td <= ta.cross(n)){
 | |
| 		clamp = 1.0f;
 | |
| 		rA = ta - A->get_transform().get_origin();
 | |
| 	} else if(td >= tb.cross(n)){
 | |
| 		clamp = -1.0f;
 | |
| 		rA = tb - A->get_transform().get_origin();
 | |
| 	} else {
 | |
| 		clamp = 0.0f;
 | |
| 		//joint->r1 = cpvsub(cpvadd(cpvmult(cpvperp(n), -td), cpvmult(n, d)), a->p);
 | |
| 		rA =  ((-n.tangent() * -td) + n*d) - A->get_transform().get_origin();
 | |
| 	}
 | |
| 
 | |
| 	// Calculate mass tensor
 | |
| 	k_tensor(A, B, rA, rB, &k1, &k2);
 | |
| 
 | |
| 	// compute max impulse
 | |
| 	jn_max = get_max_force() * p_step;
 | |
| 
 | |
| 	// calculate bias velocity
 | |
| //	cpVect delta = cpvsub(cpvadd(b->p, joint->r2), cpvadd(a->p, joint->r1));
 | |
| //	joint->bias = cpvclamp(cpvmult(delta, -joint->constraint.biasCoef*dt_inv), joint->constraint.maxBias);
 | |
| 
 | |
| 
 | |
| 	Vector2 delta = (B->get_transform().get_origin() +rB) - (A->get_transform().get_origin() + rA);
 | |
| 	float _b = get_bias();
 | |
| 	_b=0.001;
 | |
| 	gbias=(delta*-(_b==0?space->get_constraint_bias():_b)*(1.0/p_step)).clamped(get_max_bias());
 | |
| 
 | |
| 	// apply accumulated impulse
 | |
| 	A->apply_impulse(rA,-jn_acc);
 | |
| 	B->apply_impulse(rB,jn_acc);
 | |
| 
 | |
| 	correct=true;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| void GrooveJoint2DSW::solve(float p_step){
 | |
| 
 | |
| 
 | |
| 	// compute impulse
 | |
| 	Vector2 vr = relative_velocity(A, B, rA,rB);
 | |
| 
 | |
| 	Vector2 j = mult_k(gbias-vr, k1, k2);
 | |
| 	Vector2 jOld = jn_acc;
 | |
| 	j+=jOld;
 | |
| 
 | |
| 	jn_acc = (((clamp * j.cross(xf_normal)) > 0) ? j : xf_normal.project(j)).clamped(jn_max);
 | |
| 
 | |
| 	j = jn_acc - jOld;
 | |
| 
 | |
| 	A->apply_impulse(rA,-j);
 | |
| 	B->apply_impulse(rB,j);
 | |
| }
 | |
| 
 | |
| 
 | |
| GrooveJoint2DSW::GrooveJoint2DSW(const Vector2& p_a_groove1,const Vector2& p_a_groove2, const Vector2& p_b_anchor, Body2DSW* p_body_a,Body2DSW* p_body_b) : Joint2DSW(_arr,2) {
 | |
| 
 | |
| 	A=p_body_a;
 | |
| 	B=p_body_b;
 | |
| 
 | |
| 	A_groove_1 = A->get_inv_transform().xform(p_a_groove1);
 | |
| 	A_groove_2 = A->get_inv_transform().xform(p_a_groove2);
 | |
| 	B_anchor=B->get_inv_transform().xform(p_b_anchor);
 | |
| 	A_groove_normal = -(A_groove_2 - A_groove_1).normalized().tangent();
 | |
| 
 | |
| 	A->add_constraint(this,0);
 | |
| 	B->add_constraint(this,1);
 | |
| 
 | |
| }
 | |
| 
 | |
| GrooveJoint2DSW::~GrooveJoint2DSW() {
 | |
| 
 | |
| 	A->remove_constraint(this);
 | |
| 	B->remove_constraint(this);
 | |
| }
 | |
| 
 | |
| 
 | |
| //////////////////////////////////////////////
 | |
| //////////////////////////////////////////////
 | |
| //////////////////////////////////////////////
 | |
| 
 | |
| 
 | |
| bool DampedSpringJoint2DSW::setup(float p_step) {
 | |
| 
 | |
| 	rA = A->get_transform().basis_xform(anchor_A);
 | |
| 	rB = B->get_transform().basis_xform(anchor_B);
 | |
| 
 | |
| 	Vector2 delta = (B->get_transform().get_origin() + rB) - (A->get_transform().get_origin() + rA) ;
 | |
| 	real_t dist = delta.length();
 | |
| 
 | |
| 	if (dist)
 | |
| 		n=delta/dist;
 | |
| 	else
 | |
| 		n=Vector2();
 | |
| 
 | |
| 	real_t k = k_scalar(A, B, rA, rB, n);
 | |
| 	n_mass = 1.0f/k;
 | |
| 
 | |
| 	target_vrn = 0.0f;
 | |
| 	v_coef = 1.0f - Math::exp(-damping*(p_step)*k);
 | |
| 
 | |
| 	// apply spring force
 | |
| 	real_t f_spring = (rest_length - dist) * stiffness;
 | |
| 	Vector2 j = n * f_spring*(p_step);
 | |
| 
 | |
| 	A->apply_impulse(rA,-j);
 | |
| 	B->apply_impulse(rB,j);
 | |
| 
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| void DampedSpringJoint2DSW::solve(float p_step) {
 | |
| 
 | |
| 	// compute relative velocity
 | |
| 	real_t vrn = normal_relative_velocity(A, B, rA, rB, n) - target_vrn;
 | |
| 
 | |
| 	// compute velocity loss from drag
 | |
| 	// not 100% certain this is derived correctly, though it makes sense
 | |
| 	real_t v_damp = -vrn*v_coef;
 | |
| 	target_vrn = vrn + v_damp;
 | |
| 	Vector2 j=n*v_damp*n_mass;
 | |
| 
 | |
| 	A->apply_impulse(rA,-j);
 | |
| 	B->apply_impulse(rB,j);
 | |
| 
 | |
| }
 | |
| 
 | |
| void DampedSpringJoint2DSW::set_param(Physics2DServer::DampedStringParam p_param, real_t p_value) {
 | |
| 
 | |
| 	switch(p_param) {
 | |
| 
 | |
| 		case Physics2DServer::DAMPED_STRING_REST_LENGTH: {
 | |
| 
 | |
| 			rest_length=p_value;
 | |
| 		} break;
 | |
| 		case Physics2DServer::DAMPED_STRING_DAMPING: {
 | |
| 
 | |
| 			damping=p_value;
 | |
| 		} break;
 | |
| 		case Physics2DServer::DAMPED_STRING_STIFFNESS: {
 | |
| 
 | |
| 			stiffness=p_value;
 | |
| 		} break;
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| real_t DampedSpringJoint2DSW::get_param(Physics2DServer::DampedStringParam p_param) const{
 | |
| 
 | |
| 	switch(p_param) {
 | |
| 
 | |
| 		case Physics2DServer::DAMPED_STRING_REST_LENGTH: {
 | |
| 
 | |
| 			return rest_length;
 | |
| 		} break;
 | |
| 		case Physics2DServer::DAMPED_STRING_DAMPING: {
 | |
| 
 | |
| 			return damping;
 | |
| 		} break;
 | |
| 		case Physics2DServer::DAMPED_STRING_STIFFNESS: {
 | |
| 
 | |
| 			return stiffness;
 | |
| 		} break;
 | |
| 	}
 | |
| 
 | |
| 	ERR_FAIL_V(0);
 | |
| }
 | |
| 
 | |
| 
 | |
| DampedSpringJoint2DSW::DampedSpringJoint2DSW(const Vector2& p_anchor_a,const Vector2& p_anchor_b, Body2DSW* p_body_a,Body2DSW* p_body_b) : Joint2DSW(_arr,2) {
 | |
| 
 | |
| 
 | |
| 	A=p_body_a;
 | |
| 	B=p_body_b;
 | |
| 	anchor_A = A->get_inv_transform().xform(p_anchor_a);
 | |
| 	anchor_B = B->get_inv_transform().xform(p_anchor_b);
 | |
| 
 | |
| 	rest_length=p_anchor_a.distance_to(p_anchor_b);
 | |
| 	stiffness=20;
 | |
| 	damping=1.5;
 | |
| 
 | |
| 
 | |
| 	A->add_constraint(this,0);
 | |
| 	B->add_constraint(this,1);
 | |
| 
 | |
| }
 | |
| 
 | |
| DampedSpringJoint2DSW::~DampedSpringJoint2DSW() {
 | |
| 
 | |
| 	A->remove_constraint(this);
 | |
| 	B->remove_constraint(this);
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | 
