mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-31 13:41:03 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			523 lines
		
	
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			523 lines
		
	
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*************************************************************************/
 | |
| /*  vector3.h                                                            */
 | |
| /*************************************************************************/
 | |
| /*                       This file is part of:                           */
 | |
| /*                           GODOT ENGINE                                */
 | |
| /*                      https://godotengine.org                          */
 | |
| /*************************************************************************/
 | |
| /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur.                 */
 | |
| /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md).   */
 | |
| /*                                                                       */
 | |
| /* Permission is hereby granted, free of charge, to any person obtaining */
 | |
| /* a copy of this software and associated documentation files (the       */
 | |
| /* "Software"), to deal in the Software without restriction, including   */
 | |
| /* without limitation the rights to use, copy, modify, merge, publish,   */
 | |
| /* distribute, sublicense, and/or sell copies of the Software, and to    */
 | |
| /* permit persons to whom the Software is furnished to do so, subject to */
 | |
| /* the following conditions:                                             */
 | |
| /*                                                                       */
 | |
| /* The above copyright notice and this permission notice shall be        */
 | |
| /* included in all copies or substantial portions of the Software.       */
 | |
| /*                                                                       */
 | |
| /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */
 | |
| /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */
 | |
| /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
 | |
| /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */
 | |
| /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */
 | |
| /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */
 | |
| /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */
 | |
| /*************************************************************************/
 | |
| 
 | |
| #ifndef VECTOR3_H
 | |
| #define VECTOR3_H
 | |
| 
 | |
| #include "core/error/error_macros.h"
 | |
| #include "core/math/math_funcs.h"
 | |
| 
 | |
| class String;
 | |
| struct Basis;
 | |
| struct Vector2;
 | |
| struct Vector3i;
 | |
| 
 | |
| struct _NO_DISCARD_ Vector3 {
 | |
| 	static const int AXIS_COUNT = 3;
 | |
| 
 | |
| 	enum Axis {
 | |
| 		AXIS_X,
 | |
| 		AXIS_Y,
 | |
| 		AXIS_Z,
 | |
| 	};
 | |
| 
 | |
| 	union {
 | |
| 		struct {
 | |
| 			real_t x;
 | |
| 			real_t y;
 | |
| 			real_t z;
 | |
| 		};
 | |
| 
 | |
| 		real_t coord[3] = { 0 };
 | |
| 	};
 | |
| 
 | |
| 	_FORCE_INLINE_ const real_t &operator[](const int p_axis) const {
 | |
| 		DEV_ASSERT((unsigned int)p_axis < 3);
 | |
| 		return coord[p_axis];
 | |
| 	}
 | |
| 
 | |
| 	_FORCE_INLINE_ real_t &operator[](const int p_axis) {
 | |
| 		DEV_ASSERT((unsigned int)p_axis < 3);
 | |
| 		return coord[p_axis];
 | |
| 	}
 | |
| 
 | |
| 	_FORCE_INLINE_ Vector3::Axis min_axis_index() const {
 | |
| 		return x < y ? (x < z ? Vector3::AXIS_X : Vector3::AXIS_Z) : (y < z ? Vector3::AXIS_Y : Vector3::AXIS_Z);
 | |
| 	}
 | |
| 
 | |
| 	_FORCE_INLINE_ Vector3::Axis max_axis_index() const {
 | |
| 		return x < y ? (y < z ? Vector3::AXIS_Z : Vector3::AXIS_Y) : (x < z ? Vector3::AXIS_Z : Vector3::AXIS_X);
 | |
| 	}
 | |
| 
 | |
| 	_FORCE_INLINE_ real_t length() const;
 | |
| 	_FORCE_INLINE_ real_t length_squared() const;
 | |
| 
 | |
| 	_FORCE_INLINE_ void normalize();
 | |
| 	_FORCE_INLINE_ Vector3 normalized() const;
 | |
| 	_FORCE_INLINE_ bool is_normalized() const;
 | |
| 	_FORCE_INLINE_ Vector3 inverse() const;
 | |
| 	Vector3 limit_length(const real_t p_len = 1.0) const;
 | |
| 
 | |
| 	_FORCE_INLINE_ void zero();
 | |
| 
 | |
| 	void snap(const Vector3 p_val);
 | |
| 	Vector3 snapped(const Vector3 p_val) const;
 | |
| 
 | |
| 	void rotate(const Vector3 &p_axis, const real_t p_angle);
 | |
| 	Vector3 rotated(const Vector3 &p_axis, const real_t p_angle) const;
 | |
| 
 | |
| 	/* Static Methods between 2 vector3s */
 | |
| 
 | |
| 	_FORCE_INLINE_ Vector3 lerp(const Vector3 &p_to, const real_t p_weight) const;
 | |
| 	_FORCE_INLINE_ Vector3 slerp(const Vector3 &p_to, const real_t p_weight) const;
 | |
| 	_FORCE_INLINE_ Vector3 cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, const real_t p_weight) const;
 | |
| 	_FORCE_INLINE_ Vector3 cubic_interpolate_in_time(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, const real_t p_weight, const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const;
 | |
| 	_FORCE_INLINE_ Vector3 bezier_interpolate(const Vector3 &p_control_1, const Vector3 &p_control_2, const Vector3 &p_end, const real_t p_t) const;
 | |
| 	_FORCE_INLINE_ Vector3 bezier_derivative(const Vector3 &p_control_1, const Vector3 &p_control_2, const Vector3 &p_end, const real_t p_t) const;
 | |
| 
 | |
| 	Vector3 move_toward(const Vector3 &p_to, const real_t p_delta) const;
 | |
| 
 | |
| 	Vector2 octahedron_encode() const;
 | |
| 	static Vector3 octahedron_decode(const Vector2 &p_oct);
 | |
| 	Vector2 octahedron_tangent_encode(const float sign) const;
 | |
| 	static Vector3 octahedron_tangent_decode(const Vector2 &p_oct, float *sign);
 | |
| 
 | |
| 	_FORCE_INLINE_ Vector3 cross(const Vector3 &p_with) const;
 | |
| 	_FORCE_INLINE_ real_t dot(const Vector3 &p_with) const;
 | |
| 	Basis outer(const Vector3 &p_with) const;
 | |
| 
 | |
| 	_FORCE_INLINE_ Vector3 abs() const;
 | |
| 	_FORCE_INLINE_ Vector3 floor() const;
 | |
| 	_FORCE_INLINE_ Vector3 sign() const;
 | |
| 	_FORCE_INLINE_ Vector3 ceil() const;
 | |
| 	_FORCE_INLINE_ Vector3 round() const;
 | |
| 	Vector3 clamp(const Vector3 &p_min, const Vector3 &p_max) const;
 | |
| 
 | |
| 	_FORCE_INLINE_ real_t distance_to(const Vector3 &p_to) const;
 | |
| 	_FORCE_INLINE_ real_t distance_squared_to(const Vector3 &p_to) const;
 | |
| 
 | |
| 	_FORCE_INLINE_ Vector3 posmod(const real_t p_mod) const;
 | |
| 	_FORCE_INLINE_ Vector3 posmodv(const Vector3 &p_modv) const;
 | |
| 	_FORCE_INLINE_ Vector3 project(const Vector3 &p_to) const;
 | |
| 
 | |
| 	_FORCE_INLINE_ real_t angle_to(const Vector3 &p_to) const;
 | |
| 	_FORCE_INLINE_ real_t signed_angle_to(const Vector3 &p_to, const Vector3 &p_axis) const;
 | |
| 	_FORCE_INLINE_ Vector3 direction_to(const Vector3 &p_to) const;
 | |
| 
 | |
| 	_FORCE_INLINE_ Vector3 slide(const Vector3 &p_normal) const;
 | |
| 	_FORCE_INLINE_ Vector3 bounce(const Vector3 &p_normal) const;
 | |
| 	_FORCE_INLINE_ Vector3 reflect(const Vector3 &p_normal) const;
 | |
| 
 | |
| 	bool is_equal_approx(const Vector3 &p_v) const;
 | |
| 	bool is_zero_approx() const;
 | |
| 	bool is_finite() const;
 | |
| 
 | |
| 	/* Operators */
 | |
| 
 | |
| 	_FORCE_INLINE_ Vector3 &operator+=(const Vector3 &p_v);
 | |
| 	_FORCE_INLINE_ Vector3 operator+(const Vector3 &p_v) const;
 | |
| 	_FORCE_INLINE_ Vector3 &operator-=(const Vector3 &p_v);
 | |
| 	_FORCE_INLINE_ Vector3 operator-(const Vector3 &p_v) const;
 | |
| 	_FORCE_INLINE_ Vector3 &operator*=(const Vector3 &p_v);
 | |
| 	_FORCE_INLINE_ Vector3 operator*(const Vector3 &p_v) const;
 | |
| 	_FORCE_INLINE_ Vector3 &operator/=(const Vector3 &p_v);
 | |
| 	_FORCE_INLINE_ Vector3 operator/(const Vector3 &p_v) const;
 | |
| 
 | |
| 	_FORCE_INLINE_ Vector3 &operator*=(const real_t p_scalar);
 | |
| 	_FORCE_INLINE_ Vector3 operator*(const real_t p_scalar) const;
 | |
| 	_FORCE_INLINE_ Vector3 &operator/=(const real_t p_scalar);
 | |
| 	_FORCE_INLINE_ Vector3 operator/(const real_t p_scalar) const;
 | |
| 
 | |
| 	_FORCE_INLINE_ Vector3 operator-() const;
 | |
| 
 | |
| 	_FORCE_INLINE_ bool operator==(const Vector3 &p_v) const;
 | |
| 	_FORCE_INLINE_ bool operator!=(const Vector3 &p_v) const;
 | |
| 	_FORCE_INLINE_ bool operator<(const Vector3 &p_v) const;
 | |
| 	_FORCE_INLINE_ bool operator<=(const Vector3 &p_v) const;
 | |
| 	_FORCE_INLINE_ bool operator>(const Vector3 &p_v) const;
 | |
| 	_FORCE_INLINE_ bool operator>=(const Vector3 &p_v) const;
 | |
| 
 | |
| 	operator String() const;
 | |
| 	operator Vector3i() const;
 | |
| 
 | |
| 	_FORCE_INLINE_ Vector3() {}
 | |
| 	_FORCE_INLINE_ Vector3(const real_t p_x, const real_t p_y, const real_t p_z) {
 | |
| 		x = p_x;
 | |
| 		y = p_y;
 | |
| 		z = p_z;
 | |
| 	}
 | |
| };
 | |
| 
 | |
| Vector3 Vector3::cross(const Vector3 &p_with) const {
 | |
| 	Vector3 ret(
 | |
| 			(y * p_with.z) - (z * p_with.y),
 | |
| 			(z * p_with.x) - (x * p_with.z),
 | |
| 			(x * p_with.y) - (y * p_with.x));
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| real_t Vector3::dot(const Vector3 &p_with) const {
 | |
| 	return x * p_with.x + y * p_with.y + z * p_with.z;
 | |
| }
 | |
| 
 | |
| Vector3 Vector3::abs() const {
 | |
| 	return Vector3(Math::abs(x), Math::abs(y), Math::abs(z));
 | |
| }
 | |
| 
 | |
| Vector3 Vector3::sign() const {
 | |
| 	return Vector3(SIGN(x), SIGN(y), SIGN(z));
 | |
| }
 | |
| 
 | |
| Vector3 Vector3::floor() const {
 | |
| 	return Vector3(Math::floor(x), Math::floor(y), Math::floor(z));
 | |
| }
 | |
| 
 | |
| Vector3 Vector3::ceil() const {
 | |
| 	return Vector3(Math::ceil(x), Math::ceil(y), Math::ceil(z));
 | |
| }
 | |
| 
 | |
| Vector3 Vector3::round() const {
 | |
| 	return Vector3(Math::round(x), Math::round(y), Math::round(z));
 | |
| }
 | |
| 
 | |
| Vector3 Vector3::lerp(const Vector3 &p_to, const real_t p_weight) const {
 | |
| 	Vector3 res = *this;
 | |
| 	res.x = Math::lerp(res.x, p_to.x, p_weight);
 | |
| 	res.y = Math::lerp(res.y, p_to.y, p_weight);
 | |
| 	res.z = Math::lerp(res.z, p_to.z, p_weight);
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| Vector3 Vector3::slerp(const Vector3 &p_to, const real_t p_weight) const {
 | |
| 	// This method seems more complicated than it really is, since we write out
 | |
| 	// the internals of some methods for efficiency (mainly, checking length).
 | |
| 	real_t start_length_sq = length_squared();
 | |
| 	real_t end_length_sq = p_to.length_squared();
 | |
| 	if (unlikely(start_length_sq == 0.0f || end_length_sq == 0.0f)) {
 | |
| 		// Zero length vectors have no angle, so the best we can do is either lerp or throw an error.
 | |
| 		return lerp(p_to, p_weight);
 | |
| 	}
 | |
| 	Vector3 axis = cross(p_to);
 | |
| 	real_t axis_length_sq = axis.length_squared();
 | |
| 	if (unlikely(axis_length_sq == 0.0f)) {
 | |
| 		// Colinear vectors have no rotation axis or angle between them, so the best we can do is lerp.
 | |
| 		return lerp(p_to, p_weight);
 | |
| 	}
 | |
| 	axis /= Math::sqrt(axis_length_sq);
 | |
| 	real_t start_length = Math::sqrt(start_length_sq);
 | |
| 	real_t result_length = Math::lerp(start_length, Math::sqrt(end_length_sq), p_weight);
 | |
| 	real_t angle = angle_to(p_to);
 | |
| 	return rotated(axis, angle * p_weight) * (result_length / start_length);
 | |
| }
 | |
| 
 | |
| Vector3 Vector3::cubic_interpolate(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, const real_t p_weight) const {
 | |
| 	Vector3 res = *this;
 | |
| 	res.x = Math::cubic_interpolate(res.x, p_b.x, p_pre_a.x, p_post_b.x, p_weight);
 | |
| 	res.y = Math::cubic_interpolate(res.y, p_b.y, p_pre_a.y, p_post_b.y, p_weight);
 | |
| 	res.z = Math::cubic_interpolate(res.z, p_b.z, p_pre_a.z, p_post_b.z, p_weight);
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| Vector3 Vector3::cubic_interpolate_in_time(const Vector3 &p_b, const Vector3 &p_pre_a, const Vector3 &p_post_b, const real_t p_weight, const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const {
 | |
| 	Vector3 res = *this;
 | |
| 	res.x = Math::cubic_interpolate_in_time(res.x, p_b.x, p_pre_a.x, p_post_b.x, p_weight, p_b_t, p_pre_a_t, p_post_b_t);
 | |
| 	res.y = Math::cubic_interpolate_in_time(res.y, p_b.y, p_pre_a.y, p_post_b.y, p_weight, p_b_t, p_pre_a_t, p_post_b_t);
 | |
| 	res.z = Math::cubic_interpolate_in_time(res.z, p_b.z, p_pre_a.z, p_post_b.z, p_weight, p_b_t, p_pre_a_t, p_post_b_t);
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| Vector3 Vector3::bezier_interpolate(const Vector3 &p_control_1, const Vector3 &p_control_2, const Vector3 &p_end, const real_t p_t) const {
 | |
| 	Vector3 res = *this;
 | |
| 	res.x = Math::bezier_interpolate(res.x, p_control_1.x, p_control_2.x, p_end.x, p_t);
 | |
| 	res.y = Math::bezier_interpolate(res.y, p_control_1.y, p_control_2.y, p_end.y, p_t);
 | |
| 	res.z = Math::bezier_interpolate(res.z, p_control_1.z, p_control_2.z, p_end.z, p_t);
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| Vector3 Vector3::bezier_derivative(const Vector3 &p_control_1, const Vector3 &p_control_2, const Vector3 &p_end, const real_t p_t) const {
 | |
| 	Vector3 res = *this;
 | |
| 	res.x = Math::bezier_derivative(res.x, p_control_1.x, p_control_2.x, p_end.x, p_t);
 | |
| 	res.y = Math::bezier_derivative(res.y, p_control_1.y, p_control_2.y, p_end.y, p_t);
 | |
| 	res.z = Math::bezier_derivative(res.z, p_control_1.z, p_control_2.z, p_end.z, p_t);
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| real_t Vector3::distance_to(const Vector3 &p_to) const {
 | |
| 	return (p_to - *this).length();
 | |
| }
 | |
| 
 | |
| real_t Vector3::distance_squared_to(const Vector3 &p_to) const {
 | |
| 	return (p_to - *this).length_squared();
 | |
| }
 | |
| 
 | |
| Vector3 Vector3::posmod(const real_t p_mod) const {
 | |
| 	return Vector3(Math::fposmod(x, p_mod), Math::fposmod(y, p_mod), Math::fposmod(z, p_mod));
 | |
| }
 | |
| 
 | |
| Vector3 Vector3::posmodv(const Vector3 &p_modv) const {
 | |
| 	return Vector3(Math::fposmod(x, p_modv.x), Math::fposmod(y, p_modv.y), Math::fposmod(z, p_modv.z));
 | |
| }
 | |
| 
 | |
| Vector3 Vector3::project(const Vector3 &p_to) const {
 | |
| 	return p_to * (dot(p_to) / p_to.length_squared());
 | |
| }
 | |
| 
 | |
| real_t Vector3::angle_to(const Vector3 &p_to) const {
 | |
| 	return Math::atan2(cross(p_to).length(), dot(p_to));
 | |
| }
 | |
| 
 | |
| real_t Vector3::signed_angle_to(const Vector3 &p_to, const Vector3 &p_axis) const {
 | |
| 	Vector3 cross_to = cross(p_to);
 | |
| 	real_t unsigned_angle = Math::atan2(cross_to.length(), dot(p_to));
 | |
| 	real_t sign = cross_to.dot(p_axis);
 | |
| 	return (sign < 0) ? -unsigned_angle : unsigned_angle;
 | |
| }
 | |
| 
 | |
| Vector3 Vector3::direction_to(const Vector3 &p_to) const {
 | |
| 	Vector3 ret(p_to.x - x, p_to.y - y, p_to.z - z);
 | |
| 	ret.normalize();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Operators */
 | |
| 
 | |
| Vector3 &Vector3::operator+=(const Vector3 &p_v) {
 | |
| 	x += p_v.x;
 | |
| 	y += p_v.y;
 | |
| 	z += p_v.z;
 | |
| 	return *this;
 | |
| }
 | |
| 
 | |
| Vector3 Vector3::operator+(const Vector3 &p_v) const {
 | |
| 	return Vector3(x + p_v.x, y + p_v.y, z + p_v.z);
 | |
| }
 | |
| 
 | |
| Vector3 &Vector3::operator-=(const Vector3 &p_v) {
 | |
| 	x -= p_v.x;
 | |
| 	y -= p_v.y;
 | |
| 	z -= p_v.z;
 | |
| 	return *this;
 | |
| }
 | |
| 
 | |
| Vector3 Vector3::operator-(const Vector3 &p_v) const {
 | |
| 	return Vector3(x - p_v.x, y - p_v.y, z - p_v.z);
 | |
| }
 | |
| 
 | |
| Vector3 &Vector3::operator*=(const Vector3 &p_v) {
 | |
| 	x *= p_v.x;
 | |
| 	y *= p_v.y;
 | |
| 	z *= p_v.z;
 | |
| 	return *this;
 | |
| }
 | |
| 
 | |
| Vector3 Vector3::operator*(const Vector3 &p_v) const {
 | |
| 	return Vector3(x * p_v.x, y * p_v.y, z * p_v.z);
 | |
| }
 | |
| 
 | |
| Vector3 &Vector3::operator/=(const Vector3 &p_v) {
 | |
| 	x /= p_v.x;
 | |
| 	y /= p_v.y;
 | |
| 	z /= p_v.z;
 | |
| 	return *this;
 | |
| }
 | |
| 
 | |
| Vector3 Vector3::operator/(const Vector3 &p_v) const {
 | |
| 	return Vector3(x / p_v.x, y / p_v.y, z / p_v.z);
 | |
| }
 | |
| 
 | |
| Vector3 &Vector3::operator*=(const real_t p_scalar) {
 | |
| 	x *= p_scalar;
 | |
| 	y *= p_scalar;
 | |
| 	z *= p_scalar;
 | |
| 	return *this;
 | |
| }
 | |
| 
 | |
| // Multiplication operators required to workaround issues with LLVM using implicit conversion
 | |
| // to Vector3i instead for integers where it should not.
 | |
| 
 | |
| _FORCE_INLINE_ Vector3 operator*(const float p_scalar, const Vector3 &p_vec) {
 | |
| 	return p_vec * p_scalar;
 | |
| }
 | |
| 
 | |
| _FORCE_INLINE_ Vector3 operator*(const double p_scalar, const Vector3 &p_vec) {
 | |
| 	return p_vec * p_scalar;
 | |
| }
 | |
| 
 | |
| _FORCE_INLINE_ Vector3 operator*(const int32_t p_scalar, const Vector3 &p_vec) {
 | |
| 	return p_vec * p_scalar;
 | |
| }
 | |
| 
 | |
| _FORCE_INLINE_ Vector3 operator*(const int64_t p_scalar, const Vector3 &p_vec) {
 | |
| 	return p_vec * p_scalar;
 | |
| }
 | |
| 
 | |
| Vector3 Vector3::operator*(const real_t p_scalar) const {
 | |
| 	return Vector3(x * p_scalar, y * p_scalar, z * p_scalar);
 | |
| }
 | |
| 
 | |
| Vector3 &Vector3::operator/=(const real_t p_scalar) {
 | |
| 	x /= p_scalar;
 | |
| 	y /= p_scalar;
 | |
| 	z /= p_scalar;
 | |
| 	return *this;
 | |
| }
 | |
| 
 | |
| Vector3 Vector3::operator/(const real_t p_scalar) const {
 | |
| 	return Vector3(x / p_scalar, y / p_scalar, z / p_scalar);
 | |
| }
 | |
| 
 | |
| Vector3 Vector3::operator-() const {
 | |
| 	return Vector3(-x, -y, -z);
 | |
| }
 | |
| 
 | |
| bool Vector3::operator==(const Vector3 &p_v) const {
 | |
| 	return x == p_v.x && y == p_v.y && z == p_v.z;
 | |
| }
 | |
| 
 | |
| bool Vector3::operator!=(const Vector3 &p_v) const {
 | |
| 	return x != p_v.x || y != p_v.y || z != p_v.z;
 | |
| }
 | |
| 
 | |
| bool Vector3::operator<(const Vector3 &p_v) const {
 | |
| 	if (x == p_v.x) {
 | |
| 		if (y == p_v.y) {
 | |
| 			return z < p_v.z;
 | |
| 		}
 | |
| 		return y < p_v.y;
 | |
| 	}
 | |
| 	return x < p_v.x;
 | |
| }
 | |
| 
 | |
| bool Vector3::operator>(const Vector3 &p_v) const {
 | |
| 	if (x == p_v.x) {
 | |
| 		if (y == p_v.y) {
 | |
| 			return z > p_v.z;
 | |
| 		}
 | |
| 		return y > p_v.y;
 | |
| 	}
 | |
| 	return x > p_v.x;
 | |
| }
 | |
| 
 | |
| bool Vector3::operator<=(const Vector3 &p_v) const {
 | |
| 	if (x == p_v.x) {
 | |
| 		if (y == p_v.y) {
 | |
| 			return z <= p_v.z;
 | |
| 		}
 | |
| 		return y < p_v.y;
 | |
| 	}
 | |
| 	return x < p_v.x;
 | |
| }
 | |
| 
 | |
| bool Vector3::operator>=(const Vector3 &p_v) const {
 | |
| 	if (x == p_v.x) {
 | |
| 		if (y == p_v.y) {
 | |
| 			return z >= p_v.z;
 | |
| 		}
 | |
| 		return y > p_v.y;
 | |
| 	}
 | |
| 	return x > p_v.x;
 | |
| }
 | |
| 
 | |
| _FORCE_INLINE_ Vector3 vec3_cross(const Vector3 &p_a, const Vector3 &p_b) {
 | |
| 	return p_a.cross(p_b);
 | |
| }
 | |
| 
 | |
| _FORCE_INLINE_ real_t vec3_dot(const Vector3 &p_a, const Vector3 &p_b) {
 | |
| 	return p_a.dot(p_b);
 | |
| }
 | |
| 
 | |
| real_t Vector3::length() const {
 | |
| 	real_t x2 = x * x;
 | |
| 	real_t y2 = y * y;
 | |
| 	real_t z2 = z * z;
 | |
| 
 | |
| 	return Math::sqrt(x2 + y2 + z2);
 | |
| }
 | |
| 
 | |
| real_t Vector3::length_squared() const {
 | |
| 	real_t x2 = x * x;
 | |
| 	real_t y2 = y * y;
 | |
| 	real_t z2 = z * z;
 | |
| 
 | |
| 	return x2 + y2 + z2;
 | |
| }
 | |
| 
 | |
| void Vector3::normalize() {
 | |
| 	real_t lengthsq = length_squared();
 | |
| 	if (lengthsq == 0) {
 | |
| 		x = y = z = 0;
 | |
| 	} else {
 | |
| 		real_t length = Math::sqrt(lengthsq);
 | |
| 		x /= length;
 | |
| 		y /= length;
 | |
| 		z /= length;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| Vector3 Vector3::normalized() const {
 | |
| 	Vector3 v = *this;
 | |
| 	v.normalize();
 | |
| 	return v;
 | |
| }
 | |
| 
 | |
| bool Vector3::is_normalized() const {
 | |
| 	// use length_squared() instead of length() to avoid sqrt(), makes it more stringent.
 | |
| 	return Math::is_equal_approx(length_squared(), 1, (real_t)UNIT_EPSILON);
 | |
| }
 | |
| 
 | |
| Vector3 Vector3::inverse() const {
 | |
| 	return Vector3(1.0f / x, 1.0f / y, 1.0f / z);
 | |
| }
 | |
| 
 | |
| void Vector3::zero() {
 | |
| 	x = y = z = 0;
 | |
| }
 | |
| 
 | |
| // slide returns the component of the vector along the given plane, specified by its normal vector.
 | |
| Vector3 Vector3::slide(const Vector3 &p_normal) const {
 | |
| #ifdef MATH_CHECKS
 | |
| 	ERR_FAIL_COND_V_MSG(!p_normal.is_normalized(), Vector3(), "The normal Vector3 must be normalized.");
 | |
| #endif
 | |
| 	return *this - p_normal * this->dot(p_normal);
 | |
| }
 | |
| 
 | |
| Vector3 Vector3::bounce(const Vector3 &p_normal) const {
 | |
| 	return -reflect(p_normal);
 | |
| }
 | |
| 
 | |
| Vector3 Vector3::reflect(const Vector3 &p_normal) const {
 | |
| #ifdef MATH_CHECKS
 | |
| 	ERR_FAIL_COND_V_MSG(!p_normal.is_normalized(), Vector3(), "The normal Vector3 must be normalized.");
 | |
| #endif
 | |
| 	return 2.0f * p_normal * this->dot(p_normal) - *this;
 | |
| }
 | |
| 
 | |
| #endif // VECTOR3_H
 | 
