mirror of
				https://github.com/godotengine/godot.git
				synced 2025-11-04 07:31:16 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			522 lines
		
	
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			522 lines
		
	
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*
 | 
						|
Bullet Continuous Collision Detection and Physics Library
 | 
						|
Copyright (c) 2003-2013 Erwin Coumans  http://bulletphysics.org
 | 
						|
 | 
						|
This software is provided 'as-is', without any express or implied warranty.
 | 
						|
In no event will the authors be held liable for any damages arising from the use of this software.
 | 
						|
Permission is granted to anyone to use this software for any purpose,
 | 
						|
including commercial applications, and to alter it and redistribute it freely,
 | 
						|
subject to the following restrictions:
 | 
						|
 | 
						|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | 
						|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | 
						|
3. This notice may not be removed or altered from any source distribution.
 | 
						|
*/
 | 
						|
 | 
						|
#ifndef B3_OBJECT_ARRAY__
 | 
						|
#define B3_OBJECT_ARRAY__
 | 
						|
 | 
						|
#include "b3Scalar.h"  // has definitions like B3_FORCE_INLINE
 | 
						|
#include "b3AlignedAllocator.h"
 | 
						|
 | 
						|
///If the platform doesn't support placement new, you can disable B3_USE_PLACEMENT_NEW
 | 
						|
///then the b3AlignedObjectArray doesn't support objects with virtual methods, and non-trivial constructors/destructors
 | 
						|
///You can enable B3_USE_MEMCPY, then swapping elements in the array will use memcpy instead of operator=
 | 
						|
///see discussion here: http://continuousphysics.com/Bullet/phpBB2/viewtopic.php?t=1231 and
 | 
						|
///http://www.continuousphysics.com/Bullet/phpBB2/viewtopic.php?t=1240
 | 
						|
 | 
						|
#define B3_USE_PLACEMENT_NEW 1
 | 
						|
//#define B3_USE_MEMCPY 1 //disable, because it is cumbersome to find out for each platform where memcpy is defined. It can be in <memory.h> or <string.h> or otherwise...
 | 
						|
#define B3_ALLOW_ARRAY_COPY_OPERATOR  // enabling this can accidently perform deep copies of data if you are not careful
 | 
						|
 | 
						|
#ifdef B3_USE_MEMCPY
 | 
						|
#include <memory.h>
 | 
						|
#include <string.h>
 | 
						|
#endif  //B3_USE_MEMCPY
 | 
						|
 | 
						|
#ifdef B3_USE_PLACEMENT_NEW
 | 
						|
#include <new>  //for placement new
 | 
						|
#endif          //B3_USE_PLACEMENT_NEW
 | 
						|
 | 
						|
///The b3AlignedObjectArray template class uses a subset of the stl::vector interface for its methods
 | 
						|
///It is developed to replace stl::vector to avoid portability issues, including STL alignment issues to add SIMD/SSE data
 | 
						|
template <typename T>
 | 
						|
//template <class T>
 | 
						|
class b3AlignedObjectArray
 | 
						|
{
 | 
						|
	b3AlignedAllocator<T, 16> m_allocator;
 | 
						|
 | 
						|
	int m_size;
 | 
						|
	int m_capacity;
 | 
						|
	T* m_data;
 | 
						|
	//PCK: added this line
 | 
						|
	bool m_ownsMemory;
 | 
						|
 | 
						|
#ifdef B3_ALLOW_ARRAY_COPY_OPERATOR
 | 
						|
public:
 | 
						|
	B3_FORCE_INLINE b3AlignedObjectArray<T>& operator=(const b3AlignedObjectArray<T>& other)
 | 
						|
	{
 | 
						|
		copyFromArray(other);
 | 
						|
		return *this;
 | 
						|
	}
 | 
						|
#else   //B3_ALLOW_ARRAY_COPY_OPERATOR
 | 
						|
private:
 | 
						|
	B3_FORCE_INLINE b3AlignedObjectArray<T>& operator=(const b3AlignedObjectArray<T>& other);
 | 
						|
#endif  //B3_ALLOW_ARRAY_COPY_OPERATOR
 | 
						|
 | 
						|
protected:
 | 
						|
	B3_FORCE_INLINE int allocSize(int size)
 | 
						|
	{
 | 
						|
		return (size ? size * 2 : 1);
 | 
						|
	}
 | 
						|
	B3_FORCE_INLINE void copy(int start, int end, T* dest) const
 | 
						|
	{
 | 
						|
		int i;
 | 
						|
		for (i = start; i < end; ++i)
 | 
						|
#ifdef B3_USE_PLACEMENT_NEW
 | 
						|
			new (&dest[i]) T(m_data[i]);
 | 
						|
#else
 | 
						|
			dest[i] = m_data[i];
 | 
						|
#endif  //B3_USE_PLACEMENT_NEW
 | 
						|
	}
 | 
						|
 | 
						|
	B3_FORCE_INLINE void init()
 | 
						|
	{
 | 
						|
		//PCK: added this line
 | 
						|
		m_ownsMemory = true;
 | 
						|
		m_data = 0;
 | 
						|
		m_size = 0;
 | 
						|
		m_capacity = 0;
 | 
						|
	}
 | 
						|
	B3_FORCE_INLINE void destroy(int first, int last)
 | 
						|
	{
 | 
						|
		int i;
 | 
						|
		for (i = first; i < last; i++)
 | 
						|
		{
 | 
						|
			m_data[i].~T();
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	B3_FORCE_INLINE void* allocate(int size)
 | 
						|
	{
 | 
						|
		if (size)
 | 
						|
			return m_allocator.allocate(size);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	B3_FORCE_INLINE void deallocate()
 | 
						|
	{
 | 
						|
		if (m_data)
 | 
						|
		{
 | 
						|
			//PCK: enclosed the deallocation in this block
 | 
						|
			if (m_ownsMemory)
 | 
						|
			{
 | 
						|
				m_allocator.deallocate(m_data);
 | 
						|
			}
 | 
						|
			m_data = 0;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
public:
 | 
						|
	b3AlignedObjectArray()
 | 
						|
	{
 | 
						|
		init();
 | 
						|
	}
 | 
						|
 | 
						|
	~b3AlignedObjectArray()
 | 
						|
	{
 | 
						|
		clear();
 | 
						|
	}
 | 
						|
 | 
						|
	///Generally it is best to avoid using the copy constructor of an b3AlignedObjectArray, and use a (const) reference to the array instead.
 | 
						|
	b3AlignedObjectArray(const b3AlignedObjectArray& otherArray)
 | 
						|
	{
 | 
						|
		init();
 | 
						|
 | 
						|
		int otherSize = otherArray.size();
 | 
						|
		resize(otherSize);
 | 
						|
		otherArray.copy(0, otherSize, m_data);
 | 
						|
	}
 | 
						|
 | 
						|
	/// return the number of elements in the array
 | 
						|
	B3_FORCE_INLINE int size() const
 | 
						|
	{
 | 
						|
		return m_size;
 | 
						|
	}
 | 
						|
 | 
						|
	B3_FORCE_INLINE const T& at(int n) const
 | 
						|
	{
 | 
						|
		b3Assert(n >= 0);
 | 
						|
		b3Assert(n < size());
 | 
						|
		return m_data[n];
 | 
						|
	}
 | 
						|
 | 
						|
	B3_FORCE_INLINE T& at(int n)
 | 
						|
	{
 | 
						|
		b3Assert(n >= 0);
 | 
						|
		b3Assert(n < size());
 | 
						|
		return m_data[n];
 | 
						|
	}
 | 
						|
 | 
						|
	B3_FORCE_INLINE const T& operator[](int n) const
 | 
						|
	{
 | 
						|
		b3Assert(n >= 0);
 | 
						|
		b3Assert(n < size());
 | 
						|
		return m_data[n];
 | 
						|
	}
 | 
						|
 | 
						|
	B3_FORCE_INLINE T& operator[](int n)
 | 
						|
	{
 | 
						|
		b3Assert(n >= 0);
 | 
						|
		b3Assert(n < size());
 | 
						|
		return m_data[n];
 | 
						|
	}
 | 
						|
 | 
						|
	///clear the array, deallocated memory. Generally it is better to use array.resize(0), to reduce performance overhead of run-time memory (de)allocations.
 | 
						|
	B3_FORCE_INLINE void clear()
 | 
						|
	{
 | 
						|
		destroy(0, size());
 | 
						|
 | 
						|
		deallocate();
 | 
						|
 | 
						|
		init();
 | 
						|
	}
 | 
						|
 | 
						|
	B3_FORCE_INLINE void pop_back()
 | 
						|
	{
 | 
						|
		b3Assert(m_size > 0);
 | 
						|
		m_size--;
 | 
						|
		m_data[m_size].~T();
 | 
						|
	}
 | 
						|
 | 
						|
	///resize changes the number of elements in the array. If the new size is larger, the new elements will be constructed using the optional second argument.
 | 
						|
	///when the new number of elements is smaller, the destructor will be called, but memory will not be freed, to reduce performance overhead of run-time memory (de)allocations.
 | 
						|
	B3_FORCE_INLINE void resizeNoInitialize(int newsize)
 | 
						|
	{
 | 
						|
		int curSize = size();
 | 
						|
 | 
						|
		if (newsize < curSize)
 | 
						|
		{
 | 
						|
		}
 | 
						|
		else
 | 
						|
		{
 | 
						|
			if (newsize > size())
 | 
						|
			{
 | 
						|
				reserve(newsize);
 | 
						|
			}
 | 
						|
			//leave this uninitialized
 | 
						|
		}
 | 
						|
		m_size = newsize;
 | 
						|
	}
 | 
						|
 | 
						|
	B3_FORCE_INLINE void resize(int newsize, const T& fillData = T())
 | 
						|
	{
 | 
						|
		int curSize = size();
 | 
						|
 | 
						|
		if (newsize < curSize)
 | 
						|
		{
 | 
						|
			for (int i = newsize; i < curSize; i++)
 | 
						|
			{
 | 
						|
				m_data[i].~T();
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else
 | 
						|
		{
 | 
						|
			if (newsize > size())
 | 
						|
			{
 | 
						|
				reserve(newsize);
 | 
						|
			}
 | 
						|
#ifdef B3_USE_PLACEMENT_NEW
 | 
						|
			for (int i = curSize; i < newsize; i++)
 | 
						|
			{
 | 
						|
				new (&m_data[i]) T(fillData);
 | 
						|
			}
 | 
						|
#endif  //B3_USE_PLACEMENT_NEW
 | 
						|
		}
 | 
						|
 | 
						|
		m_size = newsize;
 | 
						|
	}
 | 
						|
	B3_FORCE_INLINE T& expandNonInitializing()
 | 
						|
	{
 | 
						|
		int sz = size();
 | 
						|
		if (sz == capacity())
 | 
						|
		{
 | 
						|
			reserve(allocSize(size()));
 | 
						|
		}
 | 
						|
		m_size++;
 | 
						|
 | 
						|
		return m_data[sz];
 | 
						|
	}
 | 
						|
 | 
						|
	B3_FORCE_INLINE T& expand(const T& fillValue = T())
 | 
						|
	{
 | 
						|
		int sz = size();
 | 
						|
		if (sz == capacity())
 | 
						|
		{
 | 
						|
			reserve(allocSize(size()));
 | 
						|
		}
 | 
						|
		m_size++;
 | 
						|
#ifdef B3_USE_PLACEMENT_NEW
 | 
						|
		new (&m_data[sz]) T(fillValue);  //use the in-place new (not really allocating heap memory)
 | 
						|
#endif
 | 
						|
 | 
						|
		return m_data[sz];
 | 
						|
	}
 | 
						|
 | 
						|
	B3_FORCE_INLINE void push_back(const T& _Val)
 | 
						|
	{
 | 
						|
		int sz = size();
 | 
						|
		if (sz == capacity())
 | 
						|
		{
 | 
						|
			reserve(allocSize(size()));
 | 
						|
		}
 | 
						|
 | 
						|
#ifdef B3_USE_PLACEMENT_NEW
 | 
						|
		new (&m_data[m_size]) T(_Val);
 | 
						|
#else
 | 
						|
		m_data[size()] = _Val;
 | 
						|
#endif  //B3_USE_PLACEMENT_NEW
 | 
						|
 | 
						|
		m_size++;
 | 
						|
	}
 | 
						|
 | 
						|
	/// return the pre-allocated (reserved) elements, this is at least as large as the total number of elements,see size() and reserve()
 | 
						|
	B3_FORCE_INLINE int capacity() const
 | 
						|
	{
 | 
						|
		return m_capacity;
 | 
						|
	}
 | 
						|
 | 
						|
	B3_FORCE_INLINE void reserve(int _Count)
 | 
						|
	{  // determine new minimum length of allocated storage
 | 
						|
		if (capacity() < _Count)
 | 
						|
		{  // not enough room, reallocate
 | 
						|
			T* s = (T*)allocate(_Count);
 | 
						|
			b3Assert(s);
 | 
						|
			if (s == 0)
 | 
						|
			{
 | 
						|
				b3Error("b3AlignedObjectArray reserve out-of-memory\n");
 | 
						|
				_Count = 0;
 | 
						|
				m_size = 0;
 | 
						|
			}
 | 
						|
			copy(0, size(), s);
 | 
						|
 | 
						|
			destroy(0, size());
 | 
						|
 | 
						|
			deallocate();
 | 
						|
 | 
						|
			//PCK: added this line
 | 
						|
			m_ownsMemory = true;
 | 
						|
 | 
						|
			m_data = s;
 | 
						|
 | 
						|
			m_capacity = _Count;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	class less
 | 
						|
	{
 | 
						|
	public:
 | 
						|
		bool operator()(const T& a, const T& b)
 | 
						|
		{
 | 
						|
			return (a < b);
 | 
						|
		}
 | 
						|
	};
 | 
						|
 | 
						|
	template <typename L>
 | 
						|
	void quickSortInternal(const L& CompareFunc, int lo, int hi)
 | 
						|
	{
 | 
						|
		//  lo is the lower index, hi is the upper index
 | 
						|
		//  of the region of array a that is to be sorted
 | 
						|
		int i = lo, j = hi;
 | 
						|
		T x = m_data[(lo + hi) / 2];
 | 
						|
 | 
						|
		//  partition
 | 
						|
		do
 | 
						|
		{
 | 
						|
			while (CompareFunc(m_data[i], x))
 | 
						|
				i++;
 | 
						|
			while (CompareFunc(x, m_data[j]))
 | 
						|
				j--;
 | 
						|
			if (i <= j)
 | 
						|
			{
 | 
						|
				swap(i, j);
 | 
						|
				i++;
 | 
						|
				j--;
 | 
						|
			}
 | 
						|
		} while (i <= j);
 | 
						|
 | 
						|
		//  recursion
 | 
						|
		if (lo < j)
 | 
						|
			quickSortInternal(CompareFunc, lo, j);
 | 
						|
		if (i < hi)
 | 
						|
			quickSortInternal(CompareFunc, i, hi);
 | 
						|
	}
 | 
						|
 | 
						|
	template <typename L>
 | 
						|
	void quickSort(const L& CompareFunc)
 | 
						|
	{
 | 
						|
		//don't sort 0 or 1 elements
 | 
						|
		if (size() > 1)
 | 
						|
		{
 | 
						|
			quickSortInternal(CompareFunc, 0, size() - 1);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	///heap sort from http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Sort/Heap/
 | 
						|
	template <typename L>
 | 
						|
	void downHeap(T* pArr, int k, int n, const L& CompareFunc)
 | 
						|
	{
 | 
						|
		/*  PRE: a[k+1..N] is a heap */
 | 
						|
		/* POST:  a[k..N]  is a heap */
 | 
						|
 | 
						|
		T temp = pArr[k - 1];
 | 
						|
		/* k has child(s) */
 | 
						|
		while (k <= n / 2)
 | 
						|
		{
 | 
						|
			int child = 2 * k;
 | 
						|
 | 
						|
			if ((child < n) && CompareFunc(pArr[child - 1], pArr[child]))
 | 
						|
			{
 | 
						|
				child++;
 | 
						|
			}
 | 
						|
			/* pick larger child */
 | 
						|
			if (CompareFunc(temp, pArr[child - 1]))
 | 
						|
			{
 | 
						|
				/* move child up */
 | 
						|
				pArr[k - 1] = pArr[child - 1];
 | 
						|
				k = child;
 | 
						|
			}
 | 
						|
			else
 | 
						|
			{
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		pArr[k - 1] = temp;
 | 
						|
	} /*downHeap*/
 | 
						|
 | 
						|
	void swap(int index0, int index1)
 | 
						|
	{
 | 
						|
#ifdef B3_USE_MEMCPY
 | 
						|
		char temp[sizeof(T)];
 | 
						|
		memcpy(temp, &m_data[index0], sizeof(T));
 | 
						|
		memcpy(&m_data[index0], &m_data[index1], sizeof(T));
 | 
						|
		memcpy(&m_data[index1], temp, sizeof(T));
 | 
						|
#else
 | 
						|
		T temp = m_data[index0];
 | 
						|
		m_data[index0] = m_data[index1];
 | 
						|
		m_data[index1] = temp;
 | 
						|
#endif  //B3_USE_PLACEMENT_NEW
 | 
						|
	}
 | 
						|
 | 
						|
	template <typename L>
 | 
						|
	void heapSort(const L& CompareFunc)
 | 
						|
	{
 | 
						|
		/* sort a[0..N-1],  N.B. 0 to N-1 */
 | 
						|
		int k;
 | 
						|
		int n = m_size;
 | 
						|
		for (k = n / 2; k > 0; k--)
 | 
						|
		{
 | 
						|
			downHeap(m_data, k, n, CompareFunc);
 | 
						|
		}
 | 
						|
 | 
						|
		/* a[1..N] is now a heap */
 | 
						|
		while (n >= 1)
 | 
						|
		{
 | 
						|
			swap(0, n - 1); /* largest of a[0..n-1] */
 | 
						|
 | 
						|
			n = n - 1;
 | 
						|
			/* restore a[1..i-1] heap */
 | 
						|
			downHeap(m_data, 1, n, CompareFunc);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	///non-recursive binary search, assumes sorted array
 | 
						|
	int findBinarySearch(const T& key) const
 | 
						|
	{
 | 
						|
		int first = 0;
 | 
						|
		int last = size() - 1;
 | 
						|
 | 
						|
		//assume sorted array
 | 
						|
		while (first <= last)
 | 
						|
		{
 | 
						|
			int mid = (first + last) / 2;  // compute mid point.
 | 
						|
			if (key > m_data[mid])
 | 
						|
				first = mid + 1;  // repeat search in top half.
 | 
						|
			else if (key < m_data[mid])
 | 
						|
				last = mid - 1;  // repeat search in bottom half.
 | 
						|
			else
 | 
						|
				return mid;  // found it. return position /////
 | 
						|
		}
 | 
						|
		return size();  // failed to find key
 | 
						|
	}
 | 
						|
 | 
						|
	int findLinearSearch(const T& key) const
 | 
						|
	{
 | 
						|
		int index = size();
 | 
						|
		int i;
 | 
						|
 | 
						|
		for (i = 0; i < size(); i++)
 | 
						|
		{
 | 
						|
			if (m_data[i] == key)
 | 
						|
			{
 | 
						|
				index = i;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		return index;
 | 
						|
	}
 | 
						|
 | 
						|
	int findLinearSearch2(const T& key) const
 | 
						|
	{
 | 
						|
		int index = -1;
 | 
						|
		int i;
 | 
						|
 | 
						|
		for (i = 0; i < size(); i++)
 | 
						|
		{
 | 
						|
			if (m_data[i] == key)
 | 
						|
			{
 | 
						|
				index = i;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		return index;
 | 
						|
	}
 | 
						|
 | 
						|
	void remove(const T& key)
 | 
						|
	{
 | 
						|
		int findIndex = findLinearSearch(key);
 | 
						|
		if (findIndex < size())
 | 
						|
		{
 | 
						|
			swap(findIndex, size() - 1);
 | 
						|
			pop_back();
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	//PCK: whole function
 | 
						|
	void initializeFromBuffer(void* buffer, int size, int capacity)
 | 
						|
	{
 | 
						|
		clear();
 | 
						|
		m_ownsMemory = false;
 | 
						|
		m_data = (T*)buffer;
 | 
						|
		m_size = size;
 | 
						|
		m_capacity = capacity;
 | 
						|
	}
 | 
						|
 | 
						|
	void copyFromArray(const b3AlignedObjectArray& otherArray)
 | 
						|
	{
 | 
						|
		int otherSize = otherArray.size();
 | 
						|
		resize(otherSize);
 | 
						|
		otherArray.copy(0, otherSize, m_data);
 | 
						|
	}
 | 
						|
 | 
						|
	void removeAtIndex(int index)
 | 
						|
	{
 | 
						|
		if (index < size())
 | 
						|
		{
 | 
						|
			swap(index, size() - 1);
 | 
						|
			pop_back();
 | 
						|
		}
 | 
						|
	}
 | 
						|
};
 | 
						|
 | 
						|
#endif  //B3_OBJECT_ARRAY__
 |