mirror of
				https://github.com/godotengine/godot.git
				synced 2025-11-04 07:31:16 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1836 lines
		
	
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1836 lines
		
	
	
	
		
			44 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/**************************************************************************/
 | 
						|
/*  marshalls.cpp                                                         */
 | 
						|
/**************************************************************************/
 | 
						|
/*                         This file is part of:                          */
 | 
						|
/*                             GODOT ENGINE                               */
 | 
						|
/*                        https://godotengine.org                         */
 | 
						|
/**************************************************************************/
 | 
						|
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
 | 
						|
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur.                  */
 | 
						|
/*                                                                        */
 | 
						|
/* Permission is hereby granted, free of charge, to any person obtaining  */
 | 
						|
/* a copy of this software and associated documentation files (the        */
 | 
						|
/* "Software"), to deal in the Software without restriction, including    */
 | 
						|
/* without limitation the rights to use, copy, modify, merge, publish,    */
 | 
						|
/* distribute, sublicense, and/or sell copies of the Software, and to     */
 | 
						|
/* permit persons to whom the Software is furnished to do so, subject to  */
 | 
						|
/* the following conditions:                                              */
 | 
						|
/*                                                                        */
 | 
						|
/* The above copyright notice and this permission notice shall be         */
 | 
						|
/* included in all copies or substantial portions of the Software.        */
 | 
						|
/*                                                                        */
 | 
						|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,        */
 | 
						|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF     */
 | 
						|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
 | 
						|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY   */
 | 
						|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,   */
 | 
						|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE      */
 | 
						|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                 */
 | 
						|
/**************************************************************************/
 | 
						|
 | 
						|
#include "marshalls.h"
 | 
						|
 | 
						|
#include "core/object/ref_counted.h"
 | 
						|
#include "core/os/keyboard.h"
 | 
						|
#include "core/string/print_string.h"
 | 
						|
 | 
						|
#include <limits.h>
 | 
						|
#include <stdio.h>
 | 
						|
 | 
						|
void EncodedObjectAsID::_bind_methods() {
 | 
						|
	ClassDB::bind_method(D_METHOD("set_object_id", "id"), &EncodedObjectAsID::set_object_id);
 | 
						|
	ClassDB::bind_method(D_METHOD("get_object_id"), &EncodedObjectAsID::get_object_id);
 | 
						|
 | 
						|
	ADD_PROPERTY(PropertyInfo(Variant::INT, "object_id"), "set_object_id", "get_object_id");
 | 
						|
}
 | 
						|
 | 
						|
void EncodedObjectAsID::set_object_id(ObjectID p_id) {
 | 
						|
	id = p_id;
 | 
						|
}
 | 
						|
 | 
						|
ObjectID EncodedObjectAsID::get_object_id() const {
 | 
						|
	return id;
 | 
						|
}
 | 
						|
 | 
						|
#define ERR_FAIL_ADD_OF(a, b, err) ERR_FAIL_COND_V(((int32_t)(b)) < 0 || ((int32_t)(a)) < 0 || ((int32_t)(a)) > INT_MAX - ((int32_t)(b)), err)
 | 
						|
#define ERR_FAIL_MUL_OF(a, b, err) ERR_FAIL_COND_V(((int32_t)(a)) < 0 || ((int32_t)(b)) <= 0 || ((int32_t)(a)) > INT_MAX / ((int32_t)(b)), err)
 | 
						|
 | 
						|
#define ENCODE_MASK 0xFF
 | 
						|
#define ENCODE_FLAG_64 1 << 16
 | 
						|
#define ENCODE_FLAG_OBJECT_AS_ID 1 << 16
 | 
						|
 | 
						|
static Error _decode_string(const uint8_t *&buf, int &len, int *r_len, String &r_string) {
 | 
						|
	ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
 | 
						|
 | 
						|
	int32_t strlen = decode_uint32(buf);
 | 
						|
	int32_t pad = 0;
 | 
						|
 | 
						|
	// Handle padding
 | 
						|
	if (strlen % 4) {
 | 
						|
		pad = 4 - strlen % 4;
 | 
						|
	}
 | 
						|
 | 
						|
	buf += 4;
 | 
						|
	len -= 4;
 | 
						|
 | 
						|
	// Ensure buffer is big enough
 | 
						|
	ERR_FAIL_ADD_OF(strlen, pad, ERR_FILE_EOF);
 | 
						|
	ERR_FAIL_COND_V(strlen < 0 || strlen + pad > len, ERR_FILE_EOF);
 | 
						|
 | 
						|
	String str;
 | 
						|
	ERR_FAIL_COND_V(str.parse_utf8((const char *)buf, strlen) != OK, ERR_INVALID_DATA);
 | 
						|
	r_string = str;
 | 
						|
 | 
						|
	// Add padding
 | 
						|
	strlen += pad;
 | 
						|
 | 
						|
	// Update buffer pos, left data count, and return size
 | 
						|
	buf += strlen;
 | 
						|
	len -= strlen;
 | 
						|
	if (r_len) {
 | 
						|
		(*r_len) += 4 + strlen;
 | 
						|
	}
 | 
						|
 | 
						|
	return OK;
 | 
						|
}
 | 
						|
 | 
						|
Error decode_variant(Variant &r_variant, const uint8_t *p_buffer, int p_len, int *r_len, bool p_allow_objects, int p_depth) {
 | 
						|
	ERR_FAIL_COND_V_MSG(p_depth > Variant::MAX_RECURSION_DEPTH, ERR_OUT_OF_MEMORY, "Variant is too deep. Bailing.");
 | 
						|
	const uint8_t *buf = p_buffer;
 | 
						|
	int len = p_len;
 | 
						|
 | 
						|
	ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
 | 
						|
 | 
						|
	uint32_t type = decode_uint32(buf);
 | 
						|
 | 
						|
	ERR_FAIL_COND_V((type & ENCODE_MASK) >= Variant::VARIANT_MAX, ERR_INVALID_DATA);
 | 
						|
 | 
						|
	buf += 4;
 | 
						|
	len -= 4;
 | 
						|
	if (r_len) {
 | 
						|
		*r_len = 4;
 | 
						|
	}
 | 
						|
 | 
						|
	// Note: We cannot use sizeof(real_t) for decoding, in case a different size is encoded.
 | 
						|
	// Decoding math types always checks for the encoded size, while encoding always uses compilation setting.
 | 
						|
	// This does lead to some code duplication for decoding, but compatibility is the priority.
 | 
						|
	switch (type & ENCODE_MASK) {
 | 
						|
		case Variant::NIL: {
 | 
						|
			r_variant = Variant();
 | 
						|
		} break;
 | 
						|
		case Variant::BOOL: {
 | 
						|
			ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
 | 
						|
			bool val = decode_uint32(buf);
 | 
						|
			r_variant = val;
 | 
						|
			if (r_len) {
 | 
						|
				(*r_len) += 4;
 | 
						|
			}
 | 
						|
		} break;
 | 
						|
		case Variant::INT: {
 | 
						|
			if (type & ENCODE_FLAG_64) {
 | 
						|
				ERR_FAIL_COND_V(len < 8, ERR_INVALID_DATA);
 | 
						|
				int64_t val = decode_uint64(buf);
 | 
						|
				r_variant = val;
 | 
						|
				if (r_len) {
 | 
						|
					(*r_len) += 8;
 | 
						|
				}
 | 
						|
 | 
						|
			} else {
 | 
						|
				ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
 | 
						|
				int32_t val = decode_uint32(buf);
 | 
						|
				r_variant = val;
 | 
						|
				if (r_len) {
 | 
						|
					(*r_len) += 4;
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::FLOAT: {
 | 
						|
			if (type & ENCODE_FLAG_64) {
 | 
						|
				ERR_FAIL_COND_V((size_t)len < sizeof(double), ERR_INVALID_DATA);
 | 
						|
				double val = decode_double(buf);
 | 
						|
				r_variant = val;
 | 
						|
				if (r_len) {
 | 
						|
					(*r_len) += sizeof(double);
 | 
						|
				}
 | 
						|
			} else {
 | 
						|
				ERR_FAIL_COND_V((size_t)len < sizeof(float), ERR_INVALID_DATA);
 | 
						|
				float val = decode_float(buf);
 | 
						|
				r_variant = val;
 | 
						|
				if (r_len) {
 | 
						|
					(*r_len) += sizeof(float);
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::STRING: {
 | 
						|
			String str;
 | 
						|
			Error err = _decode_string(buf, len, r_len, str);
 | 
						|
			if (err) {
 | 
						|
				return err;
 | 
						|
			}
 | 
						|
			r_variant = str;
 | 
						|
 | 
						|
		} break;
 | 
						|
 | 
						|
		// math types
 | 
						|
		case Variant::VECTOR2: {
 | 
						|
			Vector2 val;
 | 
						|
			if (type & ENCODE_FLAG_64) {
 | 
						|
				ERR_FAIL_COND_V((size_t)len < sizeof(double) * 2, ERR_INVALID_DATA);
 | 
						|
				val.x = decode_double(&buf[0]);
 | 
						|
				val.y = decode_double(&buf[sizeof(double)]);
 | 
						|
 | 
						|
				if (r_len) {
 | 
						|
					(*r_len) += sizeof(double) * 2;
 | 
						|
				}
 | 
						|
			} else {
 | 
						|
				ERR_FAIL_COND_V((size_t)len < sizeof(float) * 2, ERR_INVALID_DATA);
 | 
						|
				val.x = decode_float(&buf[0]);
 | 
						|
				val.y = decode_float(&buf[sizeof(float)]);
 | 
						|
 | 
						|
				if (r_len) {
 | 
						|
					(*r_len) += sizeof(float) * 2;
 | 
						|
				}
 | 
						|
			}
 | 
						|
			r_variant = val;
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::VECTOR2I: {
 | 
						|
			ERR_FAIL_COND_V(len < 4 * 2, ERR_INVALID_DATA);
 | 
						|
			Vector2i val;
 | 
						|
			val.x = decode_uint32(&buf[0]);
 | 
						|
			val.y = decode_uint32(&buf[4]);
 | 
						|
			r_variant = val;
 | 
						|
 | 
						|
			if (r_len) {
 | 
						|
				(*r_len) += 4 * 2;
 | 
						|
			}
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::RECT2: {
 | 
						|
			Rect2 val;
 | 
						|
			if (type & ENCODE_FLAG_64) {
 | 
						|
				ERR_FAIL_COND_V((size_t)len < sizeof(double) * 4, ERR_INVALID_DATA);
 | 
						|
				val.position.x = decode_double(&buf[0]);
 | 
						|
				val.position.y = decode_double(&buf[sizeof(double)]);
 | 
						|
				val.size.x = decode_double(&buf[sizeof(double) * 2]);
 | 
						|
				val.size.y = decode_double(&buf[sizeof(double) * 3]);
 | 
						|
 | 
						|
				if (r_len) {
 | 
						|
					(*r_len) += sizeof(double) * 4;
 | 
						|
				}
 | 
						|
			} else {
 | 
						|
				ERR_FAIL_COND_V((size_t)len < sizeof(float) * 4, ERR_INVALID_DATA);
 | 
						|
				val.position.x = decode_float(&buf[0]);
 | 
						|
				val.position.y = decode_float(&buf[sizeof(float)]);
 | 
						|
				val.size.x = decode_float(&buf[sizeof(float) * 2]);
 | 
						|
				val.size.y = decode_float(&buf[sizeof(float) * 3]);
 | 
						|
 | 
						|
				if (r_len) {
 | 
						|
					(*r_len) += sizeof(float) * 4;
 | 
						|
				}
 | 
						|
			}
 | 
						|
			r_variant = val;
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::RECT2I: {
 | 
						|
			ERR_FAIL_COND_V(len < 4 * 4, ERR_INVALID_DATA);
 | 
						|
			Rect2i val;
 | 
						|
			val.position.x = decode_uint32(&buf[0]);
 | 
						|
			val.position.y = decode_uint32(&buf[4]);
 | 
						|
			val.size.x = decode_uint32(&buf[8]);
 | 
						|
			val.size.y = decode_uint32(&buf[12]);
 | 
						|
			r_variant = val;
 | 
						|
 | 
						|
			if (r_len) {
 | 
						|
				(*r_len) += 4 * 4;
 | 
						|
			}
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::VECTOR3: {
 | 
						|
			Vector3 val;
 | 
						|
			if (type & ENCODE_FLAG_64) {
 | 
						|
				ERR_FAIL_COND_V((size_t)len < sizeof(double) * 3, ERR_INVALID_DATA);
 | 
						|
				val.x = decode_double(&buf[0]);
 | 
						|
				val.y = decode_double(&buf[sizeof(double)]);
 | 
						|
				val.z = decode_double(&buf[sizeof(double) * 2]);
 | 
						|
 | 
						|
				if (r_len) {
 | 
						|
					(*r_len) += sizeof(double) * 3;
 | 
						|
				}
 | 
						|
			} else {
 | 
						|
				ERR_FAIL_COND_V((size_t)len < sizeof(float) * 3, ERR_INVALID_DATA);
 | 
						|
				val.x = decode_float(&buf[0]);
 | 
						|
				val.y = decode_float(&buf[sizeof(float)]);
 | 
						|
				val.z = decode_float(&buf[sizeof(float) * 2]);
 | 
						|
 | 
						|
				if (r_len) {
 | 
						|
					(*r_len) += sizeof(float) * 3;
 | 
						|
				}
 | 
						|
			}
 | 
						|
			r_variant = val;
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::VECTOR3I: {
 | 
						|
			ERR_FAIL_COND_V(len < 4 * 3, ERR_INVALID_DATA);
 | 
						|
			Vector3i val;
 | 
						|
			val.x = decode_uint32(&buf[0]);
 | 
						|
			val.y = decode_uint32(&buf[4]);
 | 
						|
			val.z = decode_uint32(&buf[8]);
 | 
						|
			r_variant = val;
 | 
						|
 | 
						|
			if (r_len) {
 | 
						|
				(*r_len) += 4 * 3;
 | 
						|
			}
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::VECTOR4: {
 | 
						|
			Vector4 val;
 | 
						|
			if (type & ENCODE_FLAG_64) {
 | 
						|
				ERR_FAIL_COND_V((size_t)len < sizeof(double) * 4, ERR_INVALID_DATA);
 | 
						|
				val.x = decode_double(&buf[0]);
 | 
						|
				val.y = decode_double(&buf[sizeof(double)]);
 | 
						|
				val.z = decode_double(&buf[sizeof(double) * 2]);
 | 
						|
				val.w = decode_double(&buf[sizeof(double) * 3]);
 | 
						|
 | 
						|
				if (r_len) {
 | 
						|
					(*r_len) += sizeof(double) * 4;
 | 
						|
				}
 | 
						|
			} else {
 | 
						|
				ERR_FAIL_COND_V((size_t)len < sizeof(float) * 4, ERR_INVALID_DATA);
 | 
						|
				val.x = decode_float(&buf[0]);
 | 
						|
				val.y = decode_float(&buf[sizeof(float)]);
 | 
						|
				val.z = decode_float(&buf[sizeof(float) * 2]);
 | 
						|
				val.w = decode_float(&buf[sizeof(float) * 3]);
 | 
						|
 | 
						|
				if (r_len) {
 | 
						|
					(*r_len) += sizeof(float) * 4;
 | 
						|
				}
 | 
						|
			}
 | 
						|
			r_variant = val;
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::VECTOR4I: {
 | 
						|
			ERR_FAIL_COND_V(len < 4 * 4, ERR_INVALID_DATA);
 | 
						|
			Vector4i val;
 | 
						|
			val.x = decode_uint32(&buf[0]);
 | 
						|
			val.y = decode_uint32(&buf[4]);
 | 
						|
			val.z = decode_uint32(&buf[8]);
 | 
						|
			val.w = decode_uint32(&buf[12]);
 | 
						|
			r_variant = val;
 | 
						|
 | 
						|
			if (r_len) {
 | 
						|
				(*r_len) += 4 * 4;
 | 
						|
			}
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::TRANSFORM2D: {
 | 
						|
			Transform2D val;
 | 
						|
			if (type & ENCODE_FLAG_64) {
 | 
						|
				ERR_FAIL_COND_V((size_t)len < sizeof(double) * 6, ERR_INVALID_DATA);
 | 
						|
				for (int i = 0; i < 3; i++) {
 | 
						|
					for (int j = 0; j < 2; j++) {
 | 
						|
						val.columns[i][j] = decode_double(&buf[(i * 2 + j) * sizeof(double)]);
 | 
						|
					}
 | 
						|
				}
 | 
						|
 | 
						|
				if (r_len) {
 | 
						|
					(*r_len) += sizeof(double) * 6;
 | 
						|
				}
 | 
						|
			} else {
 | 
						|
				ERR_FAIL_COND_V((size_t)len < sizeof(float) * 6, ERR_INVALID_DATA);
 | 
						|
				for (int i = 0; i < 3; i++) {
 | 
						|
					for (int j = 0; j < 2; j++) {
 | 
						|
						val.columns[i][j] = decode_float(&buf[(i * 2 + j) * sizeof(float)]);
 | 
						|
					}
 | 
						|
				}
 | 
						|
 | 
						|
				if (r_len) {
 | 
						|
					(*r_len) += sizeof(float) * 6;
 | 
						|
				}
 | 
						|
			}
 | 
						|
			r_variant = val;
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::PLANE: {
 | 
						|
			Plane val;
 | 
						|
			if (type & ENCODE_FLAG_64) {
 | 
						|
				ERR_FAIL_COND_V((size_t)len < sizeof(double) * 4, ERR_INVALID_DATA);
 | 
						|
				val.normal.x = decode_double(&buf[0]);
 | 
						|
				val.normal.y = decode_double(&buf[sizeof(double)]);
 | 
						|
				val.normal.z = decode_double(&buf[sizeof(double) * 2]);
 | 
						|
				val.d = decode_double(&buf[sizeof(double) * 3]);
 | 
						|
 | 
						|
				if (r_len) {
 | 
						|
					(*r_len) += sizeof(double) * 4;
 | 
						|
				}
 | 
						|
			} else {
 | 
						|
				ERR_FAIL_COND_V((size_t)len < sizeof(float) * 4, ERR_INVALID_DATA);
 | 
						|
				val.normal.x = decode_float(&buf[0]);
 | 
						|
				val.normal.y = decode_float(&buf[sizeof(float)]);
 | 
						|
				val.normal.z = decode_float(&buf[sizeof(float) * 2]);
 | 
						|
				val.d = decode_float(&buf[sizeof(float) * 3]);
 | 
						|
 | 
						|
				if (r_len) {
 | 
						|
					(*r_len) += sizeof(float) * 4;
 | 
						|
				}
 | 
						|
			}
 | 
						|
			r_variant = val;
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::QUATERNION: {
 | 
						|
			Quaternion val;
 | 
						|
			if (type & ENCODE_FLAG_64) {
 | 
						|
				ERR_FAIL_COND_V((size_t)len < sizeof(double) * 4, ERR_INVALID_DATA);
 | 
						|
				val.x = decode_double(&buf[0]);
 | 
						|
				val.y = decode_double(&buf[sizeof(double)]);
 | 
						|
				val.z = decode_double(&buf[sizeof(double) * 2]);
 | 
						|
				val.w = decode_double(&buf[sizeof(double) * 3]);
 | 
						|
 | 
						|
				if (r_len) {
 | 
						|
					(*r_len) += sizeof(double) * 4;
 | 
						|
				}
 | 
						|
			} else {
 | 
						|
				ERR_FAIL_COND_V((size_t)len < sizeof(float) * 4, ERR_INVALID_DATA);
 | 
						|
				val.x = decode_float(&buf[0]);
 | 
						|
				val.y = decode_float(&buf[sizeof(float)]);
 | 
						|
				val.z = decode_float(&buf[sizeof(float) * 2]);
 | 
						|
				val.w = decode_float(&buf[sizeof(float) * 3]);
 | 
						|
 | 
						|
				if (r_len) {
 | 
						|
					(*r_len) += sizeof(float) * 4;
 | 
						|
				}
 | 
						|
			}
 | 
						|
			r_variant = val;
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::AABB: {
 | 
						|
			AABB val;
 | 
						|
			if (type & ENCODE_FLAG_64) {
 | 
						|
				ERR_FAIL_COND_V((size_t)len < sizeof(double) * 6, ERR_INVALID_DATA);
 | 
						|
				val.position.x = decode_double(&buf[0]);
 | 
						|
				val.position.y = decode_double(&buf[sizeof(double)]);
 | 
						|
				val.position.z = decode_double(&buf[sizeof(double) * 2]);
 | 
						|
				val.size.x = decode_double(&buf[sizeof(double) * 3]);
 | 
						|
				val.size.y = decode_double(&buf[sizeof(double) * 4]);
 | 
						|
				val.size.z = decode_double(&buf[sizeof(double) * 5]);
 | 
						|
 | 
						|
				if (r_len) {
 | 
						|
					(*r_len) += sizeof(double) * 6;
 | 
						|
				}
 | 
						|
			} else {
 | 
						|
				ERR_FAIL_COND_V((size_t)len < sizeof(float) * 6, ERR_INVALID_DATA);
 | 
						|
				val.position.x = decode_float(&buf[0]);
 | 
						|
				val.position.y = decode_float(&buf[sizeof(float)]);
 | 
						|
				val.position.z = decode_float(&buf[sizeof(float) * 2]);
 | 
						|
				val.size.x = decode_float(&buf[sizeof(float) * 3]);
 | 
						|
				val.size.y = decode_float(&buf[sizeof(float) * 4]);
 | 
						|
				val.size.z = decode_float(&buf[sizeof(float) * 5]);
 | 
						|
 | 
						|
				if (r_len) {
 | 
						|
					(*r_len) += sizeof(float) * 6;
 | 
						|
				}
 | 
						|
			}
 | 
						|
			r_variant = val;
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::BASIS: {
 | 
						|
			Basis val;
 | 
						|
			if (type & ENCODE_FLAG_64) {
 | 
						|
				ERR_FAIL_COND_V((size_t)len < sizeof(double) * 9, ERR_INVALID_DATA);
 | 
						|
				for (int i = 0; i < 3; i++) {
 | 
						|
					for (int j = 0; j < 3; j++) {
 | 
						|
						val.rows[i][j] = decode_double(&buf[(i * 3 + j) * sizeof(double)]);
 | 
						|
					}
 | 
						|
				}
 | 
						|
 | 
						|
				if (r_len) {
 | 
						|
					(*r_len) += sizeof(double) * 9;
 | 
						|
				}
 | 
						|
			} else {
 | 
						|
				ERR_FAIL_COND_V((size_t)len < sizeof(float) * 9, ERR_INVALID_DATA);
 | 
						|
				for (int i = 0; i < 3; i++) {
 | 
						|
					for (int j = 0; j < 3; j++) {
 | 
						|
						val.rows[i][j] = decode_float(&buf[(i * 3 + j) * sizeof(float)]);
 | 
						|
					}
 | 
						|
				}
 | 
						|
 | 
						|
				if (r_len) {
 | 
						|
					(*r_len) += sizeof(float) * 9;
 | 
						|
				}
 | 
						|
			}
 | 
						|
			r_variant = val;
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::TRANSFORM3D: {
 | 
						|
			Transform3D val;
 | 
						|
			if (type & ENCODE_FLAG_64) {
 | 
						|
				ERR_FAIL_COND_V((size_t)len < sizeof(double) * 12, ERR_INVALID_DATA);
 | 
						|
				for (int i = 0; i < 3; i++) {
 | 
						|
					for (int j = 0; j < 3; j++) {
 | 
						|
						val.basis.rows[i][j] = decode_double(&buf[(i * 3 + j) * sizeof(double)]);
 | 
						|
					}
 | 
						|
				}
 | 
						|
				val.origin[0] = decode_double(&buf[sizeof(double) * 9]);
 | 
						|
				val.origin[1] = decode_double(&buf[sizeof(double) * 10]);
 | 
						|
				val.origin[2] = decode_double(&buf[sizeof(double) * 11]);
 | 
						|
 | 
						|
				if (r_len) {
 | 
						|
					(*r_len) += sizeof(double) * 12;
 | 
						|
				}
 | 
						|
			} else {
 | 
						|
				ERR_FAIL_COND_V((size_t)len < sizeof(float) * 12, ERR_INVALID_DATA);
 | 
						|
				for (int i = 0; i < 3; i++) {
 | 
						|
					for (int j = 0; j < 3; j++) {
 | 
						|
						val.basis.rows[i][j] = decode_float(&buf[(i * 3 + j) * sizeof(float)]);
 | 
						|
					}
 | 
						|
				}
 | 
						|
				val.origin[0] = decode_float(&buf[sizeof(float) * 9]);
 | 
						|
				val.origin[1] = decode_float(&buf[sizeof(float) * 10]);
 | 
						|
				val.origin[2] = decode_float(&buf[sizeof(float) * 11]);
 | 
						|
 | 
						|
				if (r_len) {
 | 
						|
					(*r_len) += sizeof(float) * 12;
 | 
						|
				}
 | 
						|
			}
 | 
						|
			r_variant = val;
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::PROJECTION: {
 | 
						|
			Projection val;
 | 
						|
			if (type & ENCODE_FLAG_64) {
 | 
						|
				ERR_FAIL_COND_V((size_t)len < sizeof(double) * 16, ERR_INVALID_DATA);
 | 
						|
				for (int i = 0; i < 4; i++) {
 | 
						|
					for (int j = 0; j < 4; j++) {
 | 
						|
						val.columns[i][j] = decode_double(&buf[(i * 4 + j) * sizeof(double)]);
 | 
						|
					}
 | 
						|
				}
 | 
						|
				if (r_len) {
 | 
						|
					(*r_len) += sizeof(double) * 16;
 | 
						|
				}
 | 
						|
			} else {
 | 
						|
				ERR_FAIL_COND_V((size_t)len < sizeof(float) * 16, ERR_INVALID_DATA);
 | 
						|
				for (int i = 0; i < 4; i++) {
 | 
						|
					for (int j = 0; j < 4; j++) {
 | 
						|
						val.columns[i][j] = decode_float(&buf[(i * 4 + j) * sizeof(float)]);
 | 
						|
					}
 | 
						|
				}
 | 
						|
 | 
						|
				if (r_len) {
 | 
						|
					(*r_len) += sizeof(float) * 16;
 | 
						|
				}
 | 
						|
			}
 | 
						|
			r_variant = val;
 | 
						|
 | 
						|
		} break;
 | 
						|
		// misc types
 | 
						|
		case Variant::COLOR: {
 | 
						|
			ERR_FAIL_COND_V(len < 4 * 4, ERR_INVALID_DATA);
 | 
						|
			Color val;
 | 
						|
			val.r = decode_float(&buf[0]);
 | 
						|
			val.g = decode_float(&buf[4]);
 | 
						|
			val.b = decode_float(&buf[8]);
 | 
						|
			val.a = decode_float(&buf[12]);
 | 
						|
			r_variant = val;
 | 
						|
 | 
						|
			if (r_len) {
 | 
						|
				(*r_len) += 4 * 4; // Colors should always be in single-precision.
 | 
						|
			}
 | 
						|
		} break;
 | 
						|
		case Variant::STRING_NAME: {
 | 
						|
			String str;
 | 
						|
			Error err = _decode_string(buf, len, r_len, str);
 | 
						|
			if (err) {
 | 
						|
				return err;
 | 
						|
			}
 | 
						|
			r_variant = StringName(str);
 | 
						|
 | 
						|
		} break;
 | 
						|
 | 
						|
		case Variant::NODE_PATH: {
 | 
						|
			ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
 | 
						|
			int32_t strlen = decode_uint32(buf);
 | 
						|
 | 
						|
			if (strlen & 0x80000000) {
 | 
						|
				//new format
 | 
						|
				ERR_FAIL_COND_V(len < 12, ERR_INVALID_DATA);
 | 
						|
				Vector<StringName> names;
 | 
						|
				Vector<StringName> subnames;
 | 
						|
 | 
						|
				uint32_t namecount = strlen &= 0x7FFFFFFF;
 | 
						|
				uint32_t subnamecount = decode_uint32(buf + 4);
 | 
						|
				uint32_t flags = decode_uint32(buf + 8);
 | 
						|
 | 
						|
				len -= 12;
 | 
						|
				buf += 12;
 | 
						|
 | 
						|
				if (flags & 2) { // Obsolete format with property separate from subpath
 | 
						|
					subnamecount++;
 | 
						|
				}
 | 
						|
 | 
						|
				uint32_t total = namecount + subnamecount;
 | 
						|
 | 
						|
				if (r_len) {
 | 
						|
					(*r_len) += 12;
 | 
						|
				}
 | 
						|
 | 
						|
				for (uint32_t i = 0; i < total; i++) {
 | 
						|
					String str;
 | 
						|
					Error err = _decode_string(buf, len, r_len, str);
 | 
						|
					if (err) {
 | 
						|
						return err;
 | 
						|
					}
 | 
						|
 | 
						|
					if (i < namecount) {
 | 
						|
						names.push_back(str);
 | 
						|
					} else {
 | 
						|
						subnames.push_back(str);
 | 
						|
					}
 | 
						|
				}
 | 
						|
 | 
						|
				r_variant = NodePath(names, subnames, flags & 1);
 | 
						|
 | 
						|
			} else {
 | 
						|
				//old format, just a string
 | 
						|
 | 
						|
				ERR_FAIL_V(ERR_INVALID_DATA);
 | 
						|
			}
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::RID: {
 | 
						|
			ERR_FAIL_COND_V(len < 8, ERR_INVALID_DATA);
 | 
						|
			uint64_t id = decode_uint64(buf);
 | 
						|
			if (r_len) {
 | 
						|
				(*r_len) += 8;
 | 
						|
			}
 | 
						|
 | 
						|
			r_variant = RID::from_uint64(id);
 | 
						|
		} break;
 | 
						|
		case Variant::OBJECT: {
 | 
						|
			if (type & ENCODE_FLAG_OBJECT_AS_ID) {
 | 
						|
				//this _is_ allowed
 | 
						|
				ERR_FAIL_COND_V(len < 8, ERR_INVALID_DATA);
 | 
						|
				ObjectID val = ObjectID(decode_uint64(buf));
 | 
						|
				if (r_len) {
 | 
						|
					(*r_len) += 8;
 | 
						|
				}
 | 
						|
 | 
						|
				if (val.is_null()) {
 | 
						|
					r_variant = (Object *)nullptr;
 | 
						|
				} else {
 | 
						|
					Ref<EncodedObjectAsID> obj_as_id;
 | 
						|
					obj_as_id.instantiate();
 | 
						|
					obj_as_id->set_object_id(val);
 | 
						|
 | 
						|
					r_variant = obj_as_id;
 | 
						|
				}
 | 
						|
 | 
						|
			} else {
 | 
						|
				ERR_FAIL_COND_V(!p_allow_objects, ERR_UNAUTHORIZED);
 | 
						|
 | 
						|
				String str;
 | 
						|
				Error err = _decode_string(buf, len, r_len, str);
 | 
						|
				if (err) {
 | 
						|
					return err;
 | 
						|
				}
 | 
						|
 | 
						|
				if (str.is_empty()) {
 | 
						|
					r_variant = (Object *)nullptr;
 | 
						|
				} else {
 | 
						|
					Object *obj = ClassDB::instantiate(str);
 | 
						|
 | 
						|
					ERR_FAIL_NULL_V(obj, ERR_UNAVAILABLE);
 | 
						|
					ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
 | 
						|
 | 
						|
					int32_t count = decode_uint32(buf);
 | 
						|
					buf += 4;
 | 
						|
					len -= 4;
 | 
						|
					if (r_len) {
 | 
						|
						(*r_len) += 4; // Size of count number.
 | 
						|
					}
 | 
						|
 | 
						|
					for (int i = 0; i < count; i++) {
 | 
						|
						str = String();
 | 
						|
						err = _decode_string(buf, len, r_len, str);
 | 
						|
						if (err) {
 | 
						|
							return err;
 | 
						|
						}
 | 
						|
 | 
						|
						Variant value;
 | 
						|
						int used;
 | 
						|
						err = decode_variant(value, buf, len, &used, p_allow_objects, p_depth + 1);
 | 
						|
						if (err) {
 | 
						|
							return err;
 | 
						|
						}
 | 
						|
 | 
						|
						buf += used;
 | 
						|
						len -= used;
 | 
						|
						if (r_len) {
 | 
						|
							(*r_len) += used;
 | 
						|
						}
 | 
						|
 | 
						|
						obj->set(str, value);
 | 
						|
					}
 | 
						|
 | 
						|
					if (Object::cast_to<RefCounted>(obj)) {
 | 
						|
						Ref<RefCounted> ref = Ref<RefCounted>(Object::cast_to<RefCounted>(obj));
 | 
						|
						r_variant = ref;
 | 
						|
					} else {
 | 
						|
						r_variant = obj;
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::CALLABLE: {
 | 
						|
			r_variant = Callable();
 | 
						|
		} break;
 | 
						|
		case Variant::SIGNAL: {
 | 
						|
			String name;
 | 
						|
			Error err = _decode_string(buf, len, r_len, name);
 | 
						|
			if (err) {
 | 
						|
				return err;
 | 
						|
			}
 | 
						|
 | 
						|
			ERR_FAIL_COND_V(len < 8, ERR_INVALID_DATA);
 | 
						|
			ObjectID id = ObjectID(decode_uint64(buf));
 | 
						|
			if (r_len) {
 | 
						|
				(*r_len) += 8;
 | 
						|
			}
 | 
						|
 | 
						|
			r_variant = Signal(id, StringName(name));
 | 
						|
		} break;
 | 
						|
		case Variant::DICTIONARY: {
 | 
						|
			ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
 | 
						|
			int32_t count = decode_uint32(buf);
 | 
						|
			//  bool shared = count&0x80000000;
 | 
						|
			count &= 0x7FFFFFFF;
 | 
						|
 | 
						|
			buf += 4;
 | 
						|
			len -= 4;
 | 
						|
 | 
						|
			if (r_len) {
 | 
						|
				(*r_len) += 4; // Size of count number.
 | 
						|
			}
 | 
						|
 | 
						|
			Dictionary d;
 | 
						|
 | 
						|
			for (int i = 0; i < count; i++) {
 | 
						|
				Variant key, value;
 | 
						|
 | 
						|
				int used;
 | 
						|
				Error err = decode_variant(key, buf, len, &used, p_allow_objects, p_depth + 1);
 | 
						|
				ERR_FAIL_COND_V_MSG(err != OK, err, "Error when trying to decode Variant.");
 | 
						|
 | 
						|
				buf += used;
 | 
						|
				len -= used;
 | 
						|
				if (r_len) {
 | 
						|
					(*r_len) += used;
 | 
						|
				}
 | 
						|
 | 
						|
				err = decode_variant(value, buf, len, &used, p_allow_objects, p_depth + 1);
 | 
						|
				ERR_FAIL_COND_V_MSG(err != OK, err, "Error when trying to decode Variant.");
 | 
						|
 | 
						|
				buf += used;
 | 
						|
				len -= used;
 | 
						|
				if (r_len) {
 | 
						|
					(*r_len) += used;
 | 
						|
				}
 | 
						|
 | 
						|
				d[key] = value;
 | 
						|
			}
 | 
						|
 | 
						|
			r_variant = d;
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::ARRAY: {
 | 
						|
			ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
 | 
						|
			int32_t count = decode_uint32(buf);
 | 
						|
			//  bool shared = count&0x80000000;
 | 
						|
			count &= 0x7FFFFFFF;
 | 
						|
 | 
						|
			buf += 4;
 | 
						|
			len -= 4;
 | 
						|
 | 
						|
			if (r_len) {
 | 
						|
				(*r_len) += 4; // Size of count number.
 | 
						|
			}
 | 
						|
 | 
						|
			Array varr;
 | 
						|
 | 
						|
			for (int i = 0; i < count; i++) {
 | 
						|
				int used = 0;
 | 
						|
				Variant v;
 | 
						|
				Error err = decode_variant(v, buf, len, &used, p_allow_objects, p_depth + 1);
 | 
						|
				ERR_FAIL_COND_V_MSG(err != OK, err, "Error when trying to decode Variant.");
 | 
						|
				buf += used;
 | 
						|
				len -= used;
 | 
						|
				varr.push_back(v);
 | 
						|
				if (r_len) {
 | 
						|
					(*r_len) += used;
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			r_variant = varr;
 | 
						|
 | 
						|
		} break;
 | 
						|
 | 
						|
		// arrays
 | 
						|
		case Variant::PACKED_BYTE_ARRAY: {
 | 
						|
			ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
 | 
						|
			int32_t count = decode_uint32(buf);
 | 
						|
			buf += 4;
 | 
						|
			len -= 4;
 | 
						|
			ERR_FAIL_COND_V(count < 0 || count > len, ERR_INVALID_DATA);
 | 
						|
 | 
						|
			Vector<uint8_t> data;
 | 
						|
 | 
						|
			if (count) {
 | 
						|
				data.resize(count);
 | 
						|
				uint8_t *w = data.ptrw();
 | 
						|
				for (int32_t i = 0; i < count; i++) {
 | 
						|
					w[i] = buf[i];
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			r_variant = data;
 | 
						|
 | 
						|
			if (r_len) {
 | 
						|
				if (count % 4) {
 | 
						|
					(*r_len) += 4 - count % 4;
 | 
						|
				}
 | 
						|
				(*r_len) += 4 + count;
 | 
						|
			}
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::PACKED_INT32_ARRAY: {
 | 
						|
			ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
 | 
						|
			int32_t count = decode_uint32(buf);
 | 
						|
			buf += 4;
 | 
						|
			len -= 4;
 | 
						|
			ERR_FAIL_MUL_OF(count, 4, ERR_INVALID_DATA);
 | 
						|
			ERR_FAIL_COND_V(count < 0 || count * 4 > len, ERR_INVALID_DATA);
 | 
						|
 | 
						|
			Vector<int32_t> data;
 | 
						|
 | 
						|
			if (count) {
 | 
						|
				//const int*rbuf=(const int*)buf;
 | 
						|
				data.resize(count);
 | 
						|
				int32_t *w = data.ptrw();
 | 
						|
				for (int32_t i = 0; i < count; i++) {
 | 
						|
					w[i] = decode_uint32(&buf[i * 4]);
 | 
						|
				}
 | 
						|
			}
 | 
						|
			r_variant = Variant(data);
 | 
						|
			if (r_len) {
 | 
						|
				(*r_len) += 4 + count * sizeof(int32_t);
 | 
						|
			}
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::PACKED_INT64_ARRAY: {
 | 
						|
			ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
 | 
						|
			int32_t count = decode_uint32(buf);
 | 
						|
			buf += 4;
 | 
						|
			len -= 4;
 | 
						|
			ERR_FAIL_MUL_OF(count, 8, ERR_INVALID_DATA);
 | 
						|
			ERR_FAIL_COND_V(count < 0 || count * 8 > len, ERR_INVALID_DATA);
 | 
						|
 | 
						|
			Vector<int64_t> data;
 | 
						|
 | 
						|
			if (count) {
 | 
						|
				//const int*rbuf=(const int*)buf;
 | 
						|
				data.resize(count);
 | 
						|
				int64_t *w = data.ptrw();
 | 
						|
				for (int64_t i = 0; i < count; i++) {
 | 
						|
					w[i] = decode_uint64(&buf[i * 8]);
 | 
						|
				}
 | 
						|
			}
 | 
						|
			r_variant = Variant(data);
 | 
						|
			if (r_len) {
 | 
						|
				(*r_len) += 4 + count * sizeof(int64_t);
 | 
						|
			}
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::PACKED_FLOAT32_ARRAY: {
 | 
						|
			ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
 | 
						|
			int32_t count = decode_uint32(buf);
 | 
						|
			buf += 4;
 | 
						|
			len -= 4;
 | 
						|
			ERR_FAIL_MUL_OF(count, 4, ERR_INVALID_DATA);
 | 
						|
			ERR_FAIL_COND_V(count < 0 || count * 4 > len, ERR_INVALID_DATA);
 | 
						|
 | 
						|
			Vector<float> data;
 | 
						|
 | 
						|
			if (count) {
 | 
						|
				//const float*rbuf=(const float*)buf;
 | 
						|
				data.resize(count);
 | 
						|
				float *w = data.ptrw();
 | 
						|
				for (int32_t i = 0; i < count; i++) {
 | 
						|
					w[i] = decode_float(&buf[i * 4]);
 | 
						|
				}
 | 
						|
			}
 | 
						|
			r_variant = data;
 | 
						|
 | 
						|
			if (r_len) {
 | 
						|
				(*r_len) += 4 + count * sizeof(float);
 | 
						|
			}
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::PACKED_FLOAT64_ARRAY: {
 | 
						|
			ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
 | 
						|
			int32_t count = decode_uint32(buf);
 | 
						|
			buf += 4;
 | 
						|
			len -= 4;
 | 
						|
			ERR_FAIL_MUL_OF(count, 8, ERR_INVALID_DATA);
 | 
						|
			ERR_FAIL_COND_V(count < 0 || count * 8 > len, ERR_INVALID_DATA);
 | 
						|
 | 
						|
			Vector<double> data;
 | 
						|
 | 
						|
			if (count) {
 | 
						|
				data.resize(count);
 | 
						|
				double *w = data.ptrw();
 | 
						|
				for (int64_t i = 0; i < count; i++) {
 | 
						|
					w[i] = decode_double(&buf[i * 8]);
 | 
						|
				}
 | 
						|
			}
 | 
						|
			r_variant = data;
 | 
						|
 | 
						|
			if (r_len) {
 | 
						|
				(*r_len) += 4 + count * sizeof(double);
 | 
						|
			}
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::PACKED_STRING_ARRAY: {
 | 
						|
			ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
 | 
						|
			int32_t count = decode_uint32(buf);
 | 
						|
 | 
						|
			Vector<String> strings;
 | 
						|
			buf += 4;
 | 
						|
			len -= 4;
 | 
						|
 | 
						|
			if (r_len) {
 | 
						|
				(*r_len) += 4; // Size of count number.
 | 
						|
			}
 | 
						|
 | 
						|
			for (int32_t i = 0; i < count; i++) {
 | 
						|
				String str;
 | 
						|
				Error err = _decode_string(buf, len, r_len, str);
 | 
						|
				if (err) {
 | 
						|
					return err;
 | 
						|
				}
 | 
						|
 | 
						|
				strings.push_back(str);
 | 
						|
			}
 | 
						|
 | 
						|
			r_variant = strings;
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::PACKED_VECTOR2_ARRAY: {
 | 
						|
			ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
 | 
						|
			int32_t count = decode_uint32(buf);
 | 
						|
			buf += 4;
 | 
						|
			len -= 4;
 | 
						|
 | 
						|
			Vector<Vector2> varray;
 | 
						|
 | 
						|
			if (type & ENCODE_FLAG_64) {
 | 
						|
				ERR_FAIL_MUL_OF(count, sizeof(double) * 2, ERR_INVALID_DATA);
 | 
						|
				ERR_FAIL_COND_V(count < 0 || count * sizeof(double) * 2 > (size_t)len, ERR_INVALID_DATA);
 | 
						|
 | 
						|
				if (r_len) {
 | 
						|
					(*r_len) += 4; // Size of count number.
 | 
						|
				}
 | 
						|
 | 
						|
				if (count) {
 | 
						|
					varray.resize(count);
 | 
						|
					Vector2 *w = varray.ptrw();
 | 
						|
 | 
						|
					for (int32_t i = 0; i < count; i++) {
 | 
						|
						w[i].x = decode_double(buf + i * sizeof(double) * 2 + sizeof(double) * 0);
 | 
						|
						w[i].y = decode_double(buf + i * sizeof(double) * 2 + sizeof(double) * 1);
 | 
						|
					}
 | 
						|
 | 
						|
					int adv = sizeof(double) * 2 * count;
 | 
						|
 | 
						|
					if (r_len) {
 | 
						|
						(*r_len) += adv;
 | 
						|
					}
 | 
						|
					len -= adv;
 | 
						|
					buf += adv;
 | 
						|
				}
 | 
						|
			} else {
 | 
						|
				ERR_FAIL_MUL_OF(count, sizeof(float) * 2, ERR_INVALID_DATA);
 | 
						|
				ERR_FAIL_COND_V(count < 0 || count * sizeof(float) * 2 > (size_t)len, ERR_INVALID_DATA);
 | 
						|
 | 
						|
				if (r_len) {
 | 
						|
					(*r_len) += 4; // Size of count number.
 | 
						|
				}
 | 
						|
 | 
						|
				if (count) {
 | 
						|
					varray.resize(count);
 | 
						|
					Vector2 *w = varray.ptrw();
 | 
						|
 | 
						|
					for (int32_t i = 0; i < count; i++) {
 | 
						|
						w[i].x = decode_float(buf + i * sizeof(float) * 2 + sizeof(float) * 0);
 | 
						|
						w[i].y = decode_float(buf + i * sizeof(float) * 2 + sizeof(float) * 1);
 | 
						|
					}
 | 
						|
 | 
						|
					int adv = sizeof(float) * 2 * count;
 | 
						|
 | 
						|
					if (r_len) {
 | 
						|
						(*r_len) += adv;
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
			r_variant = varray;
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::PACKED_VECTOR3_ARRAY: {
 | 
						|
			ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
 | 
						|
			int32_t count = decode_uint32(buf);
 | 
						|
			buf += 4;
 | 
						|
			len -= 4;
 | 
						|
 | 
						|
			Vector<Vector3> varray;
 | 
						|
 | 
						|
			if (type & ENCODE_FLAG_64) {
 | 
						|
				ERR_FAIL_MUL_OF(count, sizeof(double) * 3, ERR_INVALID_DATA);
 | 
						|
				ERR_FAIL_COND_V(count < 0 || count * sizeof(double) * 3 > (size_t)len, ERR_INVALID_DATA);
 | 
						|
 | 
						|
				if (r_len) {
 | 
						|
					(*r_len) += 4; // Size of count number.
 | 
						|
				}
 | 
						|
 | 
						|
				if (count) {
 | 
						|
					varray.resize(count);
 | 
						|
					Vector3 *w = varray.ptrw();
 | 
						|
 | 
						|
					for (int32_t i = 0; i < count; i++) {
 | 
						|
						w[i].x = decode_double(buf + i * sizeof(double) * 3 + sizeof(double) * 0);
 | 
						|
						w[i].y = decode_double(buf + i * sizeof(double) * 3 + sizeof(double) * 1);
 | 
						|
						w[i].z = decode_double(buf + i * sizeof(double) * 3 + sizeof(double) * 2);
 | 
						|
					}
 | 
						|
 | 
						|
					int adv = sizeof(double) * 3 * count;
 | 
						|
 | 
						|
					if (r_len) {
 | 
						|
						(*r_len) += adv;
 | 
						|
					}
 | 
						|
					len -= adv;
 | 
						|
					buf += adv;
 | 
						|
				}
 | 
						|
			} else {
 | 
						|
				ERR_FAIL_MUL_OF(count, sizeof(float) * 3, ERR_INVALID_DATA);
 | 
						|
				ERR_FAIL_COND_V(count < 0 || count * sizeof(float) * 3 > (size_t)len, ERR_INVALID_DATA);
 | 
						|
 | 
						|
				if (r_len) {
 | 
						|
					(*r_len) += 4; // Size of count number.
 | 
						|
				}
 | 
						|
 | 
						|
				if (count) {
 | 
						|
					varray.resize(count);
 | 
						|
					Vector3 *w = varray.ptrw();
 | 
						|
 | 
						|
					for (int32_t i = 0; i < count; i++) {
 | 
						|
						w[i].x = decode_float(buf + i * sizeof(float) * 3 + sizeof(float) * 0);
 | 
						|
						w[i].y = decode_float(buf + i * sizeof(float) * 3 + sizeof(float) * 1);
 | 
						|
						w[i].z = decode_float(buf + i * sizeof(float) * 3 + sizeof(float) * 2);
 | 
						|
					}
 | 
						|
 | 
						|
					int adv = sizeof(float) * 3 * count;
 | 
						|
 | 
						|
					if (r_len) {
 | 
						|
						(*r_len) += adv;
 | 
						|
					}
 | 
						|
					len -= adv;
 | 
						|
					buf += adv;
 | 
						|
				}
 | 
						|
			}
 | 
						|
			r_variant = varray;
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::PACKED_COLOR_ARRAY: {
 | 
						|
			ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
 | 
						|
			int32_t count = decode_uint32(buf);
 | 
						|
			buf += 4;
 | 
						|
			len -= 4;
 | 
						|
 | 
						|
			ERR_FAIL_MUL_OF(count, 4 * 4, ERR_INVALID_DATA);
 | 
						|
			ERR_FAIL_COND_V(count < 0 || count * 4 * 4 > len, ERR_INVALID_DATA);
 | 
						|
 | 
						|
			Vector<Color> carray;
 | 
						|
 | 
						|
			if (r_len) {
 | 
						|
				(*r_len) += 4; // Size of count number.
 | 
						|
			}
 | 
						|
 | 
						|
			if (count) {
 | 
						|
				carray.resize(count);
 | 
						|
				Color *w = carray.ptrw();
 | 
						|
 | 
						|
				for (int32_t i = 0; i < count; i++) {
 | 
						|
					// Colors should always be in single-precision.
 | 
						|
					w[i].r = decode_float(buf + i * 4 * 4 + 4 * 0);
 | 
						|
					w[i].g = decode_float(buf + i * 4 * 4 + 4 * 1);
 | 
						|
					w[i].b = decode_float(buf + i * 4 * 4 + 4 * 2);
 | 
						|
					w[i].a = decode_float(buf + i * 4 * 4 + 4 * 3);
 | 
						|
				}
 | 
						|
 | 
						|
				int adv = 4 * 4 * count;
 | 
						|
 | 
						|
				if (r_len) {
 | 
						|
					(*r_len) += adv;
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			r_variant = carray;
 | 
						|
 | 
						|
		} break;
 | 
						|
		default: {
 | 
						|
			ERR_FAIL_V(ERR_BUG);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return OK;
 | 
						|
}
 | 
						|
 | 
						|
static void _encode_string(const String &p_string, uint8_t *&buf, int &r_len) {
 | 
						|
	CharString utf8 = p_string.utf8();
 | 
						|
 | 
						|
	if (buf) {
 | 
						|
		encode_uint32(utf8.length(), buf);
 | 
						|
		buf += 4;
 | 
						|
		memcpy(buf, utf8.get_data(), utf8.length());
 | 
						|
		buf += utf8.length();
 | 
						|
	}
 | 
						|
 | 
						|
	r_len += 4 + utf8.length();
 | 
						|
	while (r_len % 4) {
 | 
						|
		r_len++; //pad
 | 
						|
		if (buf) {
 | 
						|
			*(buf++) = 0;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
Error encode_variant(const Variant &p_variant, uint8_t *r_buffer, int &r_len, bool p_full_objects, int p_depth) {
 | 
						|
	ERR_FAIL_COND_V_MSG(p_depth > Variant::MAX_RECURSION_DEPTH, ERR_OUT_OF_MEMORY, "Potential infinite recursion detected. Bailing.");
 | 
						|
	uint8_t *buf = r_buffer;
 | 
						|
 | 
						|
	r_len = 0;
 | 
						|
 | 
						|
	uint32_t flags = 0;
 | 
						|
 | 
						|
	switch (p_variant.get_type()) {
 | 
						|
		case Variant::INT: {
 | 
						|
			int64_t val = p_variant;
 | 
						|
			if (val > (int64_t)INT_MAX || val < (int64_t)INT_MIN) {
 | 
						|
				flags |= ENCODE_FLAG_64;
 | 
						|
			}
 | 
						|
		} break;
 | 
						|
		case Variant::FLOAT: {
 | 
						|
			double d = p_variant;
 | 
						|
			float f = d;
 | 
						|
			if (double(f) != d) {
 | 
						|
				flags |= ENCODE_FLAG_64;
 | 
						|
			}
 | 
						|
		} break;
 | 
						|
		case Variant::OBJECT: {
 | 
						|
			// Test for potential wrong values sent by the debugger when it breaks.
 | 
						|
			Object *obj = p_variant.get_validated_object();
 | 
						|
			if (!obj) {
 | 
						|
				// Object is invalid, send a nullptr instead.
 | 
						|
				if (buf) {
 | 
						|
					encode_uint32(Variant::NIL, buf);
 | 
						|
				}
 | 
						|
				r_len += 4;
 | 
						|
				return OK;
 | 
						|
			}
 | 
						|
 | 
						|
			if (!p_full_objects) {
 | 
						|
				flags |= ENCODE_FLAG_OBJECT_AS_ID;
 | 
						|
			}
 | 
						|
		} break;
 | 
						|
#ifdef REAL_T_IS_DOUBLE
 | 
						|
		case Variant::VECTOR2:
 | 
						|
		case Variant::VECTOR3:
 | 
						|
		case Variant::PACKED_VECTOR2_ARRAY:
 | 
						|
		case Variant::PACKED_VECTOR3_ARRAY:
 | 
						|
		case Variant::TRANSFORM2D:
 | 
						|
		case Variant::TRANSFORM3D:
 | 
						|
		case Variant::QUATERNION:
 | 
						|
		case Variant::PLANE:
 | 
						|
		case Variant::BASIS:
 | 
						|
		case Variant::RECT2:
 | 
						|
		case Variant::AABB: {
 | 
						|
			flags |= ENCODE_FLAG_64;
 | 
						|
		} break;
 | 
						|
#endif // REAL_T_IS_DOUBLE
 | 
						|
		default: {
 | 
						|
		} // nothing to do at this stage
 | 
						|
	}
 | 
						|
 | 
						|
	if (buf) {
 | 
						|
		encode_uint32(p_variant.get_type() | flags, buf);
 | 
						|
		buf += 4;
 | 
						|
	}
 | 
						|
	r_len += 4;
 | 
						|
 | 
						|
	switch (p_variant.get_type()) {
 | 
						|
		case Variant::NIL: {
 | 
						|
			//nothing to do
 | 
						|
		} break;
 | 
						|
		case Variant::BOOL: {
 | 
						|
			if (buf) {
 | 
						|
				encode_uint32(p_variant.operator bool(), buf);
 | 
						|
			}
 | 
						|
 | 
						|
			r_len += 4;
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::INT: {
 | 
						|
			if (flags & ENCODE_FLAG_64) {
 | 
						|
				//64 bits
 | 
						|
				if (buf) {
 | 
						|
					encode_uint64(p_variant.operator int64_t(), buf);
 | 
						|
				}
 | 
						|
 | 
						|
				r_len += 8;
 | 
						|
			} else {
 | 
						|
				if (buf) {
 | 
						|
					encode_uint32(p_variant.operator int32_t(), buf);
 | 
						|
				}
 | 
						|
 | 
						|
				r_len += 4;
 | 
						|
			}
 | 
						|
		} break;
 | 
						|
		case Variant::FLOAT: {
 | 
						|
			if (flags & ENCODE_FLAG_64) {
 | 
						|
				if (buf) {
 | 
						|
					encode_double(p_variant.operator double(), buf);
 | 
						|
				}
 | 
						|
 | 
						|
				r_len += 8;
 | 
						|
 | 
						|
			} else {
 | 
						|
				if (buf) {
 | 
						|
					encode_float(p_variant.operator float(), buf);
 | 
						|
				}
 | 
						|
 | 
						|
				r_len += 4;
 | 
						|
			}
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::NODE_PATH: {
 | 
						|
			NodePath np = p_variant;
 | 
						|
			if (buf) {
 | 
						|
				encode_uint32(uint32_t(np.get_name_count()) | 0x80000000, buf); //for compatibility with the old format
 | 
						|
				encode_uint32(np.get_subname_count(), buf + 4);
 | 
						|
				uint32_t np_flags = 0;
 | 
						|
				if (np.is_absolute()) {
 | 
						|
					np_flags |= 1;
 | 
						|
				}
 | 
						|
 | 
						|
				encode_uint32(np_flags, buf + 8);
 | 
						|
 | 
						|
				buf += 12;
 | 
						|
			}
 | 
						|
 | 
						|
			r_len += 12;
 | 
						|
 | 
						|
			int total = np.get_name_count() + np.get_subname_count();
 | 
						|
 | 
						|
			for (int i = 0; i < total; i++) {
 | 
						|
				String str;
 | 
						|
 | 
						|
				if (i < np.get_name_count()) {
 | 
						|
					str = np.get_name(i);
 | 
						|
				} else {
 | 
						|
					str = np.get_subname(i - np.get_name_count());
 | 
						|
				}
 | 
						|
 | 
						|
				CharString utf8 = str.utf8();
 | 
						|
 | 
						|
				int pad = 0;
 | 
						|
 | 
						|
				if (utf8.length() % 4) {
 | 
						|
					pad = 4 - utf8.length() % 4;
 | 
						|
				}
 | 
						|
 | 
						|
				if (buf) {
 | 
						|
					encode_uint32(utf8.length(), buf);
 | 
						|
					buf += 4;
 | 
						|
					memcpy(buf, utf8.get_data(), utf8.length());
 | 
						|
					buf += pad + utf8.length();
 | 
						|
				}
 | 
						|
 | 
						|
				r_len += 4 + utf8.length() + pad;
 | 
						|
			}
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::STRING:
 | 
						|
		case Variant::STRING_NAME: {
 | 
						|
			_encode_string(p_variant, buf, r_len);
 | 
						|
 | 
						|
		} break;
 | 
						|
 | 
						|
		// math types
 | 
						|
		case Variant::VECTOR2: {
 | 
						|
			if (buf) {
 | 
						|
				Vector2 v2 = p_variant;
 | 
						|
				encode_real(v2.x, &buf[0]);
 | 
						|
				encode_real(v2.y, &buf[sizeof(real_t)]);
 | 
						|
			}
 | 
						|
 | 
						|
			r_len += 2 * sizeof(real_t);
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::VECTOR2I: {
 | 
						|
			if (buf) {
 | 
						|
				Vector2i v2 = p_variant;
 | 
						|
				encode_uint32(v2.x, &buf[0]);
 | 
						|
				encode_uint32(v2.y, &buf[4]);
 | 
						|
			}
 | 
						|
 | 
						|
			r_len += 2 * 4;
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::RECT2: {
 | 
						|
			if (buf) {
 | 
						|
				Rect2 r2 = p_variant;
 | 
						|
				encode_real(r2.position.x, &buf[0]);
 | 
						|
				encode_real(r2.position.y, &buf[sizeof(real_t)]);
 | 
						|
				encode_real(r2.size.x, &buf[sizeof(real_t) * 2]);
 | 
						|
				encode_real(r2.size.y, &buf[sizeof(real_t) * 3]);
 | 
						|
			}
 | 
						|
			r_len += 4 * sizeof(real_t);
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::RECT2I: {
 | 
						|
			if (buf) {
 | 
						|
				Rect2i r2 = p_variant;
 | 
						|
				encode_uint32(r2.position.x, &buf[0]);
 | 
						|
				encode_uint32(r2.position.y, &buf[4]);
 | 
						|
				encode_uint32(r2.size.x, &buf[8]);
 | 
						|
				encode_uint32(r2.size.y, &buf[12]);
 | 
						|
			}
 | 
						|
			r_len += 4 * 4;
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::VECTOR3: {
 | 
						|
			if (buf) {
 | 
						|
				Vector3 v3 = p_variant;
 | 
						|
				encode_real(v3.x, &buf[0]);
 | 
						|
				encode_real(v3.y, &buf[sizeof(real_t)]);
 | 
						|
				encode_real(v3.z, &buf[sizeof(real_t) * 2]);
 | 
						|
			}
 | 
						|
 | 
						|
			r_len += 3 * sizeof(real_t);
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::VECTOR3I: {
 | 
						|
			if (buf) {
 | 
						|
				Vector3i v3 = p_variant;
 | 
						|
				encode_uint32(v3.x, &buf[0]);
 | 
						|
				encode_uint32(v3.y, &buf[4]);
 | 
						|
				encode_uint32(v3.z, &buf[8]);
 | 
						|
			}
 | 
						|
 | 
						|
			r_len += 3 * 4;
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::TRANSFORM2D: {
 | 
						|
			if (buf) {
 | 
						|
				Transform2D val = p_variant;
 | 
						|
				for (int i = 0; i < 3; i++) {
 | 
						|
					for (int j = 0; j < 2; j++) {
 | 
						|
						memcpy(&buf[(i * 2 + j) * sizeof(real_t)], &val.columns[i][j], sizeof(real_t));
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			r_len += 6 * sizeof(real_t);
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::VECTOR4: {
 | 
						|
			if (buf) {
 | 
						|
				Vector4 v4 = p_variant;
 | 
						|
				encode_real(v4.x, &buf[0]);
 | 
						|
				encode_real(v4.y, &buf[sizeof(real_t)]);
 | 
						|
				encode_real(v4.z, &buf[sizeof(real_t) * 2]);
 | 
						|
				encode_real(v4.w, &buf[sizeof(real_t) * 3]);
 | 
						|
			}
 | 
						|
 | 
						|
			r_len += 4 * sizeof(real_t);
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::VECTOR4I: {
 | 
						|
			if (buf) {
 | 
						|
				Vector4i v4 = p_variant;
 | 
						|
				encode_uint32(v4.x, &buf[0]);
 | 
						|
				encode_uint32(v4.y, &buf[4]);
 | 
						|
				encode_uint32(v4.z, &buf[8]);
 | 
						|
				encode_uint32(v4.w, &buf[12]);
 | 
						|
			}
 | 
						|
 | 
						|
			r_len += 4 * 4;
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::PLANE: {
 | 
						|
			if (buf) {
 | 
						|
				Plane p = p_variant;
 | 
						|
				encode_real(p.normal.x, &buf[0]);
 | 
						|
				encode_real(p.normal.y, &buf[sizeof(real_t)]);
 | 
						|
				encode_real(p.normal.z, &buf[sizeof(real_t) * 2]);
 | 
						|
				encode_real(p.d, &buf[sizeof(real_t) * 3]);
 | 
						|
			}
 | 
						|
 | 
						|
			r_len += 4 * sizeof(real_t);
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::QUATERNION: {
 | 
						|
			if (buf) {
 | 
						|
				Quaternion q = p_variant;
 | 
						|
				encode_real(q.x, &buf[0]);
 | 
						|
				encode_real(q.y, &buf[sizeof(real_t)]);
 | 
						|
				encode_real(q.z, &buf[sizeof(real_t) * 2]);
 | 
						|
				encode_real(q.w, &buf[sizeof(real_t) * 3]);
 | 
						|
			}
 | 
						|
 | 
						|
			r_len += 4 * sizeof(real_t);
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::AABB: {
 | 
						|
			if (buf) {
 | 
						|
				AABB aabb = p_variant;
 | 
						|
				encode_real(aabb.position.x, &buf[0]);
 | 
						|
				encode_real(aabb.position.y, &buf[sizeof(real_t)]);
 | 
						|
				encode_real(aabb.position.z, &buf[sizeof(real_t) * 2]);
 | 
						|
				encode_real(aabb.size.x, &buf[sizeof(real_t) * 3]);
 | 
						|
				encode_real(aabb.size.y, &buf[sizeof(real_t) * 4]);
 | 
						|
				encode_real(aabb.size.z, &buf[sizeof(real_t) * 5]);
 | 
						|
			}
 | 
						|
 | 
						|
			r_len += 6 * sizeof(real_t);
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::BASIS: {
 | 
						|
			if (buf) {
 | 
						|
				Basis val = p_variant;
 | 
						|
				for (int i = 0; i < 3; i++) {
 | 
						|
					for (int j = 0; j < 3; j++) {
 | 
						|
						memcpy(&buf[(i * 3 + j) * sizeof(real_t)], &val.rows[i][j], sizeof(real_t));
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			r_len += 9 * sizeof(real_t);
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::TRANSFORM3D: {
 | 
						|
			if (buf) {
 | 
						|
				Transform3D val = p_variant;
 | 
						|
				for (int i = 0; i < 3; i++) {
 | 
						|
					for (int j = 0; j < 3; j++) {
 | 
						|
						memcpy(&buf[(i * 3 + j) * sizeof(real_t)], &val.basis.rows[i][j], sizeof(real_t));
 | 
						|
					}
 | 
						|
				}
 | 
						|
 | 
						|
				encode_real(val.origin.x, &buf[sizeof(real_t) * 9]);
 | 
						|
				encode_real(val.origin.y, &buf[sizeof(real_t) * 10]);
 | 
						|
				encode_real(val.origin.z, &buf[sizeof(real_t) * 11]);
 | 
						|
			}
 | 
						|
 | 
						|
			r_len += 12 * sizeof(real_t);
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::PROJECTION: {
 | 
						|
			if (buf) {
 | 
						|
				Projection val = p_variant;
 | 
						|
				for (int i = 0; i < 4; i++) {
 | 
						|
					for (int j = 0; j < 4; j++) {
 | 
						|
						memcpy(&buf[(i * 4 + j) * sizeof(real_t)], &val.columns[i][j], sizeof(real_t));
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			r_len += 16 * sizeof(real_t);
 | 
						|
 | 
						|
		} break;
 | 
						|
 | 
						|
		// misc types
 | 
						|
		case Variant::COLOR: {
 | 
						|
			if (buf) {
 | 
						|
				Color c = p_variant;
 | 
						|
				encode_float(c.r, &buf[0]);
 | 
						|
				encode_float(c.g, &buf[4]);
 | 
						|
				encode_float(c.b, &buf[8]);
 | 
						|
				encode_float(c.a, &buf[12]);
 | 
						|
			}
 | 
						|
 | 
						|
			r_len += 4 * 4; // Colors should always be in single-precision.
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::RID: {
 | 
						|
			RID rid = p_variant;
 | 
						|
 | 
						|
			if (buf) {
 | 
						|
				encode_uint64(rid.get_id(), buf);
 | 
						|
			}
 | 
						|
			r_len += 8;
 | 
						|
		} break;
 | 
						|
		case Variant::OBJECT: {
 | 
						|
			if (p_full_objects) {
 | 
						|
				Object *obj = p_variant;
 | 
						|
				if (!obj) {
 | 
						|
					if (buf) {
 | 
						|
						encode_uint32(0, buf);
 | 
						|
					}
 | 
						|
					r_len += 4;
 | 
						|
 | 
						|
				} else {
 | 
						|
					_encode_string(obj->get_class(), buf, r_len);
 | 
						|
 | 
						|
					List<PropertyInfo> props;
 | 
						|
					obj->get_property_list(&props);
 | 
						|
 | 
						|
					int pc = 0;
 | 
						|
					for (const PropertyInfo &E : props) {
 | 
						|
						if (!(E.usage & PROPERTY_USAGE_STORAGE)) {
 | 
						|
							continue;
 | 
						|
						}
 | 
						|
						pc++;
 | 
						|
					}
 | 
						|
 | 
						|
					if (buf) {
 | 
						|
						encode_uint32(pc, buf);
 | 
						|
						buf += 4;
 | 
						|
					}
 | 
						|
 | 
						|
					r_len += 4;
 | 
						|
 | 
						|
					for (const PropertyInfo &E : props) {
 | 
						|
						if (!(E.usage & PROPERTY_USAGE_STORAGE)) {
 | 
						|
							continue;
 | 
						|
						}
 | 
						|
 | 
						|
						_encode_string(E.name, buf, r_len);
 | 
						|
 | 
						|
						int len;
 | 
						|
						Error err = encode_variant(obj->get(E.name), buf, len, p_full_objects, p_depth + 1);
 | 
						|
						ERR_FAIL_COND_V(err, err);
 | 
						|
						ERR_FAIL_COND_V(len % 4, ERR_BUG);
 | 
						|
						r_len += len;
 | 
						|
						if (buf) {
 | 
						|
							buf += len;
 | 
						|
						}
 | 
						|
					}
 | 
						|
				}
 | 
						|
			} else {
 | 
						|
				if (buf) {
 | 
						|
					Object *obj = p_variant.get_validated_object();
 | 
						|
					ObjectID id;
 | 
						|
					if (obj) {
 | 
						|
						id = obj->get_instance_id();
 | 
						|
					}
 | 
						|
 | 
						|
					encode_uint64(id, buf);
 | 
						|
				}
 | 
						|
 | 
						|
				r_len += 8;
 | 
						|
			}
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::CALLABLE: {
 | 
						|
		} break;
 | 
						|
		case Variant::SIGNAL: {
 | 
						|
			Signal signal = p_variant;
 | 
						|
 | 
						|
			_encode_string(signal.get_name(), buf, r_len);
 | 
						|
 | 
						|
			if (buf) {
 | 
						|
				encode_uint64(signal.get_object_id(), buf);
 | 
						|
			}
 | 
						|
			r_len += 8;
 | 
						|
		} break;
 | 
						|
		case Variant::DICTIONARY: {
 | 
						|
			Dictionary d = p_variant;
 | 
						|
 | 
						|
			if (buf) {
 | 
						|
				encode_uint32(uint32_t(d.size()), buf);
 | 
						|
				buf += 4;
 | 
						|
			}
 | 
						|
			r_len += 4;
 | 
						|
 | 
						|
			List<Variant> keys;
 | 
						|
			d.get_key_list(&keys);
 | 
						|
 | 
						|
			for (const Variant &E : keys) {
 | 
						|
				int len;
 | 
						|
				Error err = encode_variant(E, buf, len, p_full_objects, p_depth + 1);
 | 
						|
				ERR_FAIL_COND_V(err, err);
 | 
						|
				ERR_FAIL_COND_V(len % 4, ERR_BUG);
 | 
						|
				r_len += len;
 | 
						|
				if (buf) {
 | 
						|
					buf += len;
 | 
						|
				}
 | 
						|
				Variant *v = d.getptr(E);
 | 
						|
				ERR_FAIL_NULL_V(v, ERR_BUG);
 | 
						|
				err = encode_variant(*v, buf, len, p_full_objects, p_depth + 1);
 | 
						|
				ERR_FAIL_COND_V(err, err);
 | 
						|
				ERR_FAIL_COND_V(len % 4, ERR_BUG);
 | 
						|
				r_len += len;
 | 
						|
				if (buf) {
 | 
						|
					buf += len;
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::ARRAY: {
 | 
						|
			Array v = p_variant;
 | 
						|
 | 
						|
			if (buf) {
 | 
						|
				encode_uint32(uint32_t(v.size()), buf);
 | 
						|
				buf += 4;
 | 
						|
			}
 | 
						|
 | 
						|
			r_len += 4;
 | 
						|
 | 
						|
			for (int i = 0; i < v.size(); i++) {
 | 
						|
				int len;
 | 
						|
				Error err = encode_variant(v.get(i), buf, len, p_full_objects, p_depth + 1);
 | 
						|
				ERR_FAIL_COND_V(err, err);
 | 
						|
				ERR_FAIL_COND_V(len % 4, ERR_BUG);
 | 
						|
				r_len += len;
 | 
						|
				if (buf) {
 | 
						|
					buf += len;
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
		} break;
 | 
						|
		// arrays
 | 
						|
		case Variant::PACKED_BYTE_ARRAY: {
 | 
						|
			Vector<uint8_t> data = p_variant;
 | 
						|
			int datalen = data.size();
 | 
						|
			int datasize = sizeof(uint8_t);
 | 
						|
 | 
						|
			if (buf) {
 | 
						|
				encode_uint32(datalen, buf);
 | 
						|
				buf += 4;
 | 
						|
				const uint8_t *r = data.ptr();
 | 
						|
				memcpy(buf, &r[0], datalen * datasize);
 | 
						|
				buf += datalen * datasize;
 | 
						|
			}
 | 
						|
 | 
						|
			r_len += 4 + datalen * datasize;
 | 
						|
			while (r_len % 4) {
 | 
						|
				r_len++;
 | 
						|
				if (buf) {
 | 
						|
					*(buf++) = 0;
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::PACKED_INT32_ARRAY: {
 | 
						|
			Vector<int32_t> data = p_variant;
 | 
						|
			int datalen = data.size();
 | 
						|
			int datasize = sizeof(int32_t);
 | 
						|
 | 
						|
			if (buf) {
 | 
						|
				encode_uint32(datalen, buf);
 | 
						|
				buf += 4;
 | 
						|
				const int32_t *r = data.ptr();
 | 
						|
				for (int32_t i = 0; i < datalen; i++) {
 | 
						|
					encode_uint32(r[i], &buf[i * datasize]);
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			r_len += 4 + datalen * datasize;
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::PACKED_INT64_ARRAY: {
 | 
						|
			Vector<int64_t> data = p_variant;
 | 
						|
			int datalen = data.size();
 | 
						|
			int datasize = sizeof(int64_t);
 | 
						|
 | 
						|
			if (buf) {
 | 
						|
				encode_uint32(datalen, buf);
 | 
						|
				buf += 4;
 | 
						|
				const int64_t *r = data.ptr();
 | 
						|
				for (int64_t i = 0; i < datalen; i++) {
 | 
						|
					encode_uint64(r[i], &buf[i * datasize]);
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			r_len += 4 + datalen * datasize;
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::PACKED_FLOAT32_ARRAY: {
 | 
						|
			Vector<float> data = p_variant;
 | 
						|
			int datalen = data.size();
 | 
						|
			int datasize = sizeof(float);
 | 
						|
 | 
						|
			if (buf) {
 | 
						|
				encode_uint32(datalen, buf);
 | 
						|
				buf += 4;
 | 
						|
				const float *r = data.ptr();
 | 
						|
				for (int i = 0; i < datalen; i++) {
 | 
						|
					encode_float(r[i], &buf[i * datasize]);
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			r_len += 4 + datalen * datasize;
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::PACKED_FLOAT64_ARRAY: {
 | 
						|
			Vector<double> data = p_variant;
 | 
						|
			int datalen = data.size();
 | 
						|
			int datasize = sizeof(double);
 | 
						|
 | 
						|
			if (buf) {
 | 
						|
				encode_uint32(datalen, buf);
 | 
						|
				buf += 4;
 | 
						|
				const double *r = data.ptr();
 | 
						|
				for (int i = 0; i < datalen; i++) {
 | 
						|
					encode_double(r[i], &buf[i * datasize]);
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			r_len += 4 + datalen * datasize;
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::PACKED_STRING_ARRAY: {
 | 
						|
			Vector<String> data = p_variant;
 | 
						|
			int len = data.size();
 | 
						|
 | 
						|
			if (buf) {
 | 
						|
				encode_uint32(len, buf);
 | 
						|
				buf += 4;
 | 
						|
			}
 | 
						|
 | 
						|
			r_len += 4;
 | 
						|
 | 
						|
			for (int i = 0; i < len; i++) {
 | 
						|
				CharString utf8 = data.get(i).utf8();
 | 
						|
 | 
						|
				if (buf) {
 | 
						|
					encode_uint32(utf8.length() + 1, buf);
 | 
						|
					buf += 4;
 | 
						|
					memcpy(buf, utf8.get_data(), utf8.length() + 1);
 | 
						|
					buf += utf8.length() + 1;
 | 
						|
				}
 | 
						|
 | 
						|
				r_len += 4 + utf8.length() + 1;
 | 
						|
				while (r_len % 4) {
 | 
						|
					r_len++; //pad
 | 
						|
					if (buf) {
 | 
						|
						*(buf++) = 0;
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::PACKED_VECTOR2_ARRAY: {
 | 
						|
			Vector<Vector2> data = p_variant;
 | 
						|
			int len = data.size();
 | 
						|
 | 
						|
			if (buf) {
 | 
						|
				encode_uint32(len, buf);
 | 
						|
				buf += 4;
 | 
						|
			}
 | 
						|
 | 
						|
			r_len += 4;
 | 
						|
 | 
						|
			if (buf) {
 | 
						|
				for (int i = 0; i < len; i++) {
 | 
						|
					Vector2 v = data.get(i);
 | 
						|
 | 
						|
					encode_real(v.x, &buf[0]);
 | 
						|
					encode_real(v.y, &buf[sizeof(real_t)]);
 | 
						|
					buf += sizeof(real_t) * 2;
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			r_len += sizeof(real_t) * 2 * len;
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::PACKED_VECTOR3_ARRAY: {
 | 
						|
			Vector<Vector3> data = p_variant;
 | 
						|
			int len = data.size();
 | 
						|
 | 
						|
			if (buf) {
 | 
						|
				encode_uint32(len, buf);
 | 
						|
				buf += 4;
 | 
						|
			}
 | 
						|
 | 
						|
			r_len += 4;
 | 
						|
 | 
						|
			if (buf) {
 | 
						|
				for (int i = 0; i < len; i++) {
 | 
						|
					Vector3 v = data.get(i);
 | 
						|
 | 
						|
					encode_real(v.x, &buf[0]);
 | 
						|
					encode_real(v.y, &buf[sizeof(real_t)]);
 | 
						|
					encode_real(v.z, &buf[sizeof(real_t) * 2]);
 | 
						|
					buf += sizeof(real_t) * 3;
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			r_len += sizeof(real_t) * 3 * len;
 | 
						|
 | 
						|
		} break;
 | 
						|
		case Variant::PACKED_COLOR_ARRAY: {
 | 
						|
			Vector<Color> data = p_variant;
 | 
						|
			int len = data.size();
 | 
						|
 | 
						|
			if (buf) {
 | 
						|
				encode_uint32(len, buf);
 | 
						|
				buf += 4;
 | 
						|
			}
 | 
						|
 | 
						|
			r_len += 4;
 | 
						|
 | 
						|
			if (buf) {
 | 
						|
				for (int i = 0; i < len; i++) {
 | 
						|
					Color c = data.get(i);
 | 
						|
 | 
						|
					encode_float(c.r, &buf[0]);
 | 
						|
					encode_float(c.g, &buf[4]);
 | 
						|
					encode_float(c.b, &buf[8]);
 | 
						|
					encode_float(c.a, &buf[12]);
 | 
						|
					buf += 4 * 4; // Colors should always be in single-precision.
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			r_len += 4 * 4 * len;
 | 
						|
 | 
						|
		} break;
 | 
						|
		default: {
 | 
						|
			ERR_FAIL_V(ERR_BUG);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return OK;
 | 
						|
}
 | 
						|
 | 
						|
Vector<float> vector3_to_float32_array(const Vector3 *vecs, size_t count) {
 | 
						|
	// We always allocate a new array, and we don't memcpy.
 | 
						|
	// We also don't consider returning a pointer to the passed vectors when sizeof(real_t) == 4.
 | 
						|
	// One reason is that we could decide to put a 4th component in Vector3 for SIMD/mobile performance,
 | 
						|
	// which would cause trouble with these optimizations.
 | 
						|
	Vector<float> floats;
 | 
						|
	if (count == 0) {
 | 
						|
		return floats;
 | 
						|
	}
 | 
						|
	floats.resize(count * 3);
 | 
						|
	float *floats_w = floats.ptrw();
 | 
						|
	for (size_t i = 0; i < count; ++i) {
 | 
						|
		const Vector3 v = vecs[i];
 | 
						|
		floats_w[0] = v.x;
 | 
						|
		floats_w[1] = v.y;
 | 
						|
		floats_w[2] = v.z;
 | 
						|
		floats_w += 3;
 | 
						|
	}
 | 
						|
	return floats;
 | 
						|
}
 |