mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-31 13:41:03 +00:00 
			
		
		
		
	 ed47570266
			
		
	
	
		ed47570266
		
	
	
	
	
		
			
			Although the expanded bounds were working in normal use, for moving and growing objects, there was one case which was not dealt with properly - significant shrinkage of exact bounds within an expanded bound. This PR detects significant shrinkage and forces a new expanded bound to be created.
		
			
				
	
	
		
			298 lines
		
	
	
	
		
			7.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			298 lines
		
	
	
	
		
			7.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| void _split_inform_references(uint32_t p_node_id) {
 | |
| 	TNode &node = _nodes[p_node_id];
 | |
| 	TLeaf &leaf = _node_get_leaf(node);
 | |
| 
 | |
| 	for (int n = 0; n < leaf.num_items; n++) {
 | |
| 		uint32_t ref_id = leaf.get_item_ref_id(n);
 | |
| 
 | |
| 		ItemRef &ref = _refs[ref_id];
 | |
| 		ref.tnode_id = p_node_id;
 | |
| 		ref.item_id = n;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void _split_leaf_sort_groups_simple(int &num_a, int &num_b, uint16_t *group_a, uint16_t *group_b, const BVHABB_CLASS *temp_bounds, const BVHABB_CLASS full_bound) {
 | |
| 	// special case for low leaf sizes .. should static compile out
 | |
| 	if (MAX_ITEMS < 4) {
 | |
| 		uint32_t ind = group_a[0];
 | |
| 
 | |
| 		// add to b
 | |
| 		group_b[num_b++] = ind;
 | |
| 
 | |
| 		// remove from a
 | |
| 		group_a[0] = group_a[num_a - 1];
 | |
| 		num_a--;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	POINT centre = full_bound.calculate_centre();
 | |
| 	POINT size = full_bound.calculate_size();
 | |
| 
 | |
| 	int order[POINT::AXIS_COUNT];
 | |
| 
 | |
| 	order[0] = size.min_axis();
 | |
| 	order[POINT::AXIS_COUNT - 1] = size.max_axis();
 | |
| 
 | |
| 	static_assert(POINT::AXIS_COUNT <= 3, "BVH POINT::AXIS_COUNT has unexpected size");
 | |
| 	if (POINT::AXIS_COUNT == 3) {
 | |
| 		order[1] = 3 - (order[0] + order[2]);
 | |
| 	}
 | |
| 
 | |
| 	// simplest case, split on the longest axis
 | |
| 	int split_axis = order[0];
 | |
| 	for (int a = 0; a < num_a; a++) {
 | |
| 		uint32_t ind = group_a[a];
 | |
| 
 | |
| 		if (temp_bounds[ind].min.coord[split_axis] > centre.coord[split_axis]) {
 | |
| 			// add to b
 | |
| 			group_b[num_b++] = ind;
 | |
| 
 | |
| 			// remove from a
 | |
| 			group_a[a] = group_a[num_a - 1];
 | |
| 			num_a--;
 | |
| 
 | |
| 			// do this one again, as it has been replaced
 | |
| 			a--;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// detect when split on longest axis failed
 | |
| 	int min_threshold = MAX_ITEMS / 4;
 | |
| 	int min_group_size[POINT::AXIS_COUNT];
 | |
| 	min_group_size[0] = MIN(num_a, num_b);
 | |
| 	if (min_group_size[0] < min_threshold) {
 | |
| 		// slow but sure .. first move everything back into a
 | |
| 		for (int b = 0; b < num_b; b++) {
 | |
| 			group_a[num_a++] = group_b[b];
 | |
| 		}
 | |
| 		num_b = 0;
 | |
| 
 | |
| 		// now calculate the best split
 | |
| 		for (int axis = 1; axis < POINT::AXIS_COUNT; axis++) {
 | |
| 			split_axis = order[axis];
 | |
| 			int count = 0;
 | |
| 
 | |
| 			for (int a = 0; a < num_a; a++) {
 | |
| 				uint32_t ind = group_a[a];
 | |
| 
 | |
| 				if (temp_bounds[ind].min.coord[split_axis] > centre.coord[split_axis]) {
 | |
| 					count++;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			min_group_size[axis] = MIN(count, num_a - count);
 | |
| 		} // for axis
 | |
| 
 | |
| 		// best axis
 | |
| 		int best_axis = 0;
 | |
| 		int best_min = min_group_size[0];
 | |
| 		for (int axis = 1; axis < POINT::AXIS_COUNT; axis++) {
 | |
| 			if (min_group_size[axis] > best_min) {
 | |
| 				best_min = min_group_size[axis];
 | |
| 				best_axis = axis;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// now finally do the split
 | |
| 		if (best_min > 0) {
 | |
| 			split_axis = order[best_axis];
 | |
| 
 | |
| 			for (int a = 0; a < num_a; a++) {
 | |
| 				uint32_t ind = group_a[a];
 | |
| 
 | |
| 				if (temp_bounds[ind].min.coord[split_axis] > centre.coord[split_axis]) {
 | |
| 					// add to b
 | |
| 					group_b[num_b++] = ind;
 | |
| 
 | |
| 					// remove from a
 | |
| 					group_a[a] = group_a[num_a - 1];
 | |
| 					num_a--;
 | |
| 
 | |
| 					// do this one again, as it has been replaced
 | |
| 					a--;
 | |
| 				}
 | |
| 			}
 | |
| 		} // if there was a split!
 | |
| 	} // if the longest axis wasn't a good split
 | |
| 
 | |
| 	// special case, none crossed threshold
 | |
| 	if (!num_b) {
 | |
| 		uint32_t ind = group_a[0];
 | |
| 
 | |
| 		// add to b
 | |
| 		group_b[num_b++] = ind;
 | |
| 
 | |
| 		// remove from a
 | |
| 		group_a[0] = group_a[num_a - 1];
 | |
| 		num_a--;
 | |
| 	}
 | |
| 	// opposite problem! :)
 | |
| 	if (!num_a) {
 | |
| 		uint32_t ind = group_b[0];
 | |
| 
 | |
| 		// add to a
 | |
| 		group_a[num_a++] = ind;
 | |
| 
 | |
| 		// remove from b
 | |
| 		group_b[0] = group_b[num_b - 1];
 | |
| 		num_b--;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void _split_leaf_sort_groups(int &num_a, int &num_b, uint16_t *group_a, uint16_t *group_b, const BVHABB_CLASS *temp_bounds) {
 | |
| 	BVHABB_CLASS groupb_aabb;
 | |
| 	groupb_aabb.set_to_max_opposite_extents();
 | |
| 	for (int n = 0; n < num_b; n++) {
 | |
| 		int which = group_b[n];
 | |
| 		groupb_aabb.merge(temp_bounds[which]);
 | |
| 	}
 | |
| 	BVHABB_CLASS groupb_aabb_new;
 | |
| 
 | |
| 	BVHABB_CLASS rest_aabb;
 | |
| 
 | |
| 	float best_size = FLT_MAX;
 | |
| 	int best_candidate = -1;
 | |
| 
 | |
| 	// find most likely from a to move into b
 | |
| 	for (int check = 0; check < num_a; check++) {
 | |
| 		rest_aabb.set_to_max_opposite_extents();
 | |
| 		groupb_aabb_new = groupb_aabb;
 | |
| 
 | |
| 		// find aabb of all the rest
 | |
| 		for (int rest = 0; rest < num_a; rest++) {
 | |
| 			if (rest == check) {
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			int which = group_a[rest];
 | |
| 			rest_aabb.merge(temp_bounds[which]);
 | |
| 		}
 | |
| 
 | |
| 		groupb_aabb_new.merge(temp_bounds[group_a[check]]);
 | |
| 
 | |
| 		// now compare the sizes
 | |
| 		float size = groupb_aabb_new.get_area() + rest_aabb.get_area();
 | |
| 		if (size < best_size) {
 | |
| 			best_size = size;
 | |
| 			best_candidate = check;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// we should now have the best, move it from group a to group b
 | |
| 	group_b[num_b++] = group_a[best_candidate];
 | |
| 
 | |
| 	// remove best candidate from group a
 | |
| 	num_a--;
 | |
| 	group_a[best_candidate] = group_a[num_a];
 | |
| }
 | |
| 
 | |
| uint32_t split_leaf(uint32_t p_node_id, const BVHABB_CLASS &p_added_item_aabb) {
 | |
| 	return split_leaf_complex(p_node_id, p_added_item_aabb);
 | |
| }
 | |
| 
 | |
| // aabb is the new inserted node
 | |
| uint32_t split_leaf_complex(uint32_t p_node_id, const BVHABB_CLASS &p_added_item_aabb) {
 | |
| 	VERBOSE_PRINT("split_leaf");
 | |
| 
 | |
| 	// note the tnode before and AFTER splitting may be a different address
 | |
| 	// in memory because the vector could get relocated. So we need to reget
 | |
| 	// the tnode after the split
 | |
| 	BVH_ASSERT(_nodes[p_node_id].is_leaf());
 | |
| 
 | |
| 	// first create child leaf nodes
 | |
| 	uint32_t *child_ids = (uint32_t *)alloca(sizeof(uint32_t) * MAX_CHILDREN);
 | |
| 
 | |
| 	for (int n = 0; n < MAX_CHILDREN; n++) {
 | |
| 		// create node children
 | |
| 		TNode *child_node = _nodes.request(child_ids[n]);
 | |
| 
 | |
| 		child_node->clear();
 | |
| 
 | |
| 		// back link to parent
 | |
| 		child_node->parent_id = p_node_id;
 | |
| 
 | |
| 		// make each child a leaf node
 | |
| 		node_make_leaf(child_ids[n]);
 | |
| 	}
 | |
| 
 | |
| 	// don't get any leaves or nodes till AFTER the split
 | |
| 	TNode &tnode = _nodes[p_node_id];
 | |
| 	uint32_t orig_leaf_id = tnode.get_leaf_id();
 | |
| 	const TLeaf &orig_leaf = _node_get_leaf(tnode);
 | |
| 
 | |
| 	// store the final child ids
 | |
| 	for (int n = 0; n < MAX_CHILDREN; n++) {
 | |
| 		tnode.children[n] = child_ids[n];
 | |
| 	}
 | |
| 
 | |
| 	// mark as no longer a leaf node
 | |
| 	tnode.num_children = MAX_CHILDREN;
 | |
| 
 | |
| 	// 2 groups, A and B, and assign children to each to split equally
 | |
| 	int max_children = orig_leaf.num_items + 1; // plus 1 for the wildcard .. the item being added
 | |
| 	//CRASH_COND(max_children > MAX_CHILDREN);
 | |
| 
 | |
| 	uint16_t *group_a = (uint16_t *)alloca(sizeof(uint16_t) * max_children);
 | |
| 	uint16_t *group_b = (uint16_t *)alloca(sizeof(uint16_t) * max_children);
 | |
| 
 | |
| 	// we are copying the ABBs. This is ugly, but we need one extra for the inserted item...
 | |
| 	BVHABB_CLASS *temp_bounds = (BVHABB_CLASS *)alloca(sizeof(BVHABB_CLASS) * max_children);
 | |
| 
 | |
| 	int num_a = max_children;
 | |
| 	int num_b = 0;
 | |
| 
 | |
| 	// setup - start with all in group a
 | |
| 	for (int n = 0; n < orig_leaf.num_items; n++) {
 | |
| 		group_a[n] = n;
 | |
| 		temp_bounds[n] = orig_leaf.get_aabb(n);
 | |
| 	}
 | |
| 	// wildcard
 | |
| 	int wildcard = orig_leaf.num_items;
 | |
| 
 | |
| 	group_a[wildcard] = wildcard;
 | |
| 	temp_bounds[wildcard] = p_added_item_aabb;
 | |
| 
 | |
| 	// we can choose here either an equal split, or just 1 in the new leaf
 | |
| 	_split_leaf_sort_groups_simple(num_a, num_b, group_a, group_b, temp_bounds, tnode.aabb);
 | |
| 
 | |
| 	uint32_t wildcard_node = BVHCommon::INVALID;
 | |
| 
 | |
| 	// now there should be equal numbers in both groups
 | |
| 	for (int n = 0; n < num_a; n++) {
 | |
| 		int which = group_a[n];
 | |
| 
 | |
| 		if (which != wildcard) {
 | |
| 			const BVHABB_CLASS &source_item_aabb = orig_leaf.get_aabb(which);
 | |
| 			uint32_t source_item_ref_id = orig_leaf.get_item_ref_id(which);
 | |
| 			//const Item &source_item = orig_leaf.get_item(which);
 | |
| 			_node_add_item(tnode.children[0], source_item_ref_id, source_item_aabb);
 | |
| 		} else {
 | |
| 			wildcard_node = tnode.children[0];
 | |
| 		}
 | |
| 	}
 | |
| 	for (int n = 0; n < num_b; n++) {
 | |
| 		int which = group_b[n];
 | |
| 
 | |
| 		if (which != wildcard) {
 | |
| 			const BVHABB_CLASS &source_item_aabb = orig_leaf.get_aabb(which);
 | |
| 			uint32_t source_item_ref_id = orig_leaf.get_item_ref_id(which);
 | |
| 			//const Item &source_item = orig_leaf.get_item(which);
 | |
| 			_node_add_item(tnode.children[1], source_item_ref_id, source_item_aabb);
 | |
| 		} else {
 | |
| 			wildcard_node = tnode.children[1];
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// now remove all items from the parent and replace with the child nodes
 | |
| 	_leaves.free(orig_leaf_id);
 | |
| 
 | |
| 	// we should keep the references up to date!
 | |
| 	for (int n = 0; n < MAX_CHILDREN; n++) {
 | |
| 		_split_inform_references(tnode.children[n]);
 | |
| 	}
 | |
| 
 | |
| 	refit_upward(p_node_id);
 | |
| 
 | |
| 	BVH_ASSERT(wildcard_node != BVHCommon::INVALID);
 | |
| 	return wildcard_node;
 | |
| }
 |