mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-31 13:41:03 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1699 lines
		
	
	
	
		
			46 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1699 lines
		
	
	
	
		
			46 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // DO NOT ADD INCLUDE GUARDS OR PRAGMA ONCE.
 | |
| // This file will be included more than once.
 | |
| 
 | |
| /*************************************************************************/
 | |
| /*  octree_definition.inc                                                */
 | |
| /*************************************************************************/
 | |
| /*                       This file is part of:                           */
 | |
| /*                           GODOT ENGINE                                */
 | |
| /*                      https://godotengine.org                          */
 | |
| /*************************************************************************/
 | |
| /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur.                 */
 | |
| /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md).   */
 | |
| /*                                                                       */
 | |
| /* Permission is hereby granted, free of charge, to any person obtaining */
 | |
| /* a copy of this software and associated documentation files (the       */
 | |
| /* "Software"), to deal in the Software without restriction, including   */
 | |
| /* without limitation the rights to use, copy, modify, merge, publish,   */
 | |
| /* distribute, sublicense, and/or sell copies of the Software, and to    */
 | |
| /* permit persons to whom the Software is furnished to do so, subject to */
 | |
| /* the following conditions:                                             */
 | |
| /*                                                                       */
 | |
| /* The above copyright notice and this permission notice shall be        */
 | |
| /* included in all copies or substantial portions of the Software.       */
 | |
| /*                                                                       */
 | |
| /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */
 | |
| /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */
 | |
| /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
 | |
| /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */
 | |
| /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */
 | |
| /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */
 | |
| /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */
 | |
| /*************************************************************************/
 | |
| 
 | |
| #include "core/list.h"
 | |
| #include "core/local_vector.h"
 | |
| #include "core/map.h"
 | |
| #include "core/math/aabb.h"
 | |
| #include "core/math/geometry.h"
 | |
| #include "core/math/vector3.h"
 | |
| #include "core/os/os.h"
 | |
| #include "core/print_string.h"
 | |
| #include "core/variant.h"
 | |
| 
 | |
| typedef uint32_t OctreeElementID;
 | |
| 
 | |
| // macro to reduce boiler plate code when providing function implementations
 | |
| #define OCTREE_FUNC(RET_VALUE) template <class T, bool use_pairs, class AL> \
 | |
| RET_VALUE OCTREE_CLASS_NAME<T, use_pairs, AL>
 | |
| 
 | |
| #define OCTREE_FUNC_CONSTRUCTOR template <class T, bool use_pairs, class AL> \
 | |
| OCTREE_CLASS_NAME<T, use_pairs, AL>
 | |
| 
 | |
| template <class T, bool use_pairs = false, class AL = DefaultAllocator>
 | |
| class OCTREE_CLASS_NAME {
 | |
| public:
 | |
| 	typedef void *(*PairCallback)(void *, OctreeElementID, T *, int, OctreeElementID, T *, int);
 | |
| 	typedef void (*UnpairCallback)(void *, OctreeElementID, T *, int, OctreeElementID, T *, int, void *);
 | |
| 
 | |
| private:
 | |
| 	enum {
 | |
| 
 | |
| 		NEG = 0,
 | |
| 		POS = 1,
 | |
| 	};
 | |
| 
 | |
| 	enum {
 | |
| 		OCTANT_NX_NY_NZ,
 | |
| 		OCTANT_PX_NY_NZ,
 | |
| 		OCTANT_NX_PY_NZ,
 | |
| 		OCTANT_PX_PY_NZ,
 | |
| 		OCTANT_NX_NY_PZ,
 | |
| 		OCTANT_PX_NY_PZ,
 | |
| 		OCTANT_NX_PY_PZ,
 | |
| 		OCTANT_PX_PY_PZ
 | |
| 	};
 | |
| 
 | |
| 	struct PairKey {
 | |
| 		union {
 | |
| 			struct {
 | |
| 				OctreeElementID A;
 | |
| 				OctreeElementID B;
 | |
| 			};
 | |
| 			uint64_t key;
 | |
| 		};
 | |
| 
 | |
| 		_FORCE_INLINE_ bool operator<(const PairKey &p_pair) const {
 | |
| 			return key < p_pair.key;
 | |
| 		}
 | |
| 
 | |
| 		_FORCE_INLINE_ PairKey(OctreeElementID p_A, OctreeElementID p_B) {
 | |
| 			if (p_A < p_B) {
 | |
| 				A = p_A;
 | |
| 				B = p_B;
 | |
| 			} else {
 | |
| 				B = p_A;
 | |
| 				A = p_B;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		_FORCE_INLINE_ PairKey() {}
 | |
| 	};
 | |
| 
 | |
| 	struct Element;
 | |
| 
 | |
| #ifdef OCTREE_USE_CACHED_LISTS
 | |
| 	// instead of iterating the linked list every time within octants,
 | |
| 	// we can cache a linear list of prepared elements containing essential data
 | |
| 	// for fast traversal, and rebuild it only when an octant changes.
 | |
| 	struct CachedList {
 | |
| 		LocalVector<AABB> aabbs;
 | |
| 		LocalVector<Element *> elements;
 | |
| 
 | |
| 		void update(List<Element *, AL> &p_elements) {
 | |
| 			// make sure local vector doesn't delete the memory
 | |
| 			// no need to be thrashing allocations
 | |
| 			aabbs.clear();
 | |
| 			elements.clear();
 | |
| 
 | |
| 			typename List<Element *, AL>::Element *E = p_elements.front();
 | |
| 			while (E) {
 | |
| 				Element *e = E->get();
 | |
| 				aabbs.push_back(e->aabb);
 | |
| 				elements.push_back(e);
 | |
| 				E = E->next();
 | |
| 			}
 | |
| 		}
 | |
| 	};
 | |
| #endif
 | |
| 
 | |
| 	struct Octant {
 | |
| 		// cached for FAST plane check
 | |
| 		AABB aabb;
 | |
| 
 | |
| 		uint64_t last_pass;
 | |
| 		Octant *parent;
 | |
| 		Octant *children[8];
 | |
| 
 | |
| 		int children_count; // cache for amount of children (fast check for removal)
 | |
| 		int parent_index; // cache for parent index (fast check for removal)
 | |
| 
 | |
| 		List<Element *, AL> pairable_elements;
 | |
| 		List<Element *, AL> elements;
 | |
| 
 | |
| #ifdef OCTREE_USE_CACHED_LISTS
 | |
| 		// cached lists are linear in memory so are faster than using linked list
 | |
| 		CachedList clist_pairable;
 | |
| 		CachedList clist;
 | |
| 
 | |
| 		// use dirty flag to indicate when cached lists need updating
 | |
| 		// this avoids having to update the cached list on lots of octants
 | |
| 		// if nothing is moving in them.
 | |
| 		bool dirty;
 | |
| 
 | |
| 		void update_cached_lists() {
 | |
| 			if (!dirty) {
 | |
| #ifdef TOOLS_ENABLED
 | |
| //#define OCTREE_CACHED_LIST_ERROR_CHECKS
 | |
| #endif
 | |
| #ifdef OCTREE_CACHED_LIST_ERROR_CHECKS
 | |
| 				// debug - this will slow down performance a lot,
 | |
| 				// only enable these error checks for testing that the cached
 | |
| 				// lists are up to date.
 | |
| 				int hash_before_P = clist_pairable.aabbs.size();
 | |
| 				int hash_before_N = clist.aabbs.size();
 | |
| 				clist_pairable.update(pairable_elements);
 | |
| 				clist.update(elements);
 | |
| 				int hash_after_P = clist_pairable.aabbs.size();
 | |
| 				int hash_after_N = clist.aabbs.size();
 | |
| 
 | |
| 				ERR_FAIL_COND(hash_before_P != hash_after_P);
 | |
| 				ERR_FAIL_COND(hash_before_N != hash_after_N);
 | |
| #endif
 | |
| 				return;
 | |
| 			}
 | |
| 			clist_pairable.update(pairable_elements);
 | |
| 			clist.update(elements);
 | |
| 			dirty = false;
 | |
| 		}
 | |
| #endif
 | |
| 
 | |
| 		Octant() {
 | |
| 			children_count = 0;
 | |
| 			parent_index = -1;
 | |
| 			last_pass = 0;
 | |
| 			parent = nullptr;
 | |
| #ifdef OCTREE_USE_CACHED_LISTS
 | |
| 			dirty = true;
 | |
| #endif
 | |
| 			for (int i = 0; i < 8; i++) {
 | |
| 				children[i] = nullptr;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		~Octant() {
 | |
| 			/*
 | |
| 			for (int i=0;i<8;i++)
 | |
| 				memdelete_notnull(children[i]);
 | |
| 			*/
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	struct PairData;
 | |
| 
 | |
| 	struct Element {
 | |
| 		OCTREE_CLASS_NAME *octree;
 | |
| 
 | |
| 		T *userdata;
 | |
| 		int subindex;
 | |
| 		bool pairable;
 | |
| 		uint32_t pairable_mask;
 | |
| 		uint32_t pairable_type;
 | |
| 
 | |
| 		uint64_t last_pass;
 | |
| 		OctreeElementID _id;
 | |
| 		Octant *common_parent;
 | |
| 
 | |
| 		AABB aabb;
 | |
| 		AABB container_aabb;
 | |
| 
 | |
| 		List<PairData *, AL> pair_list;
 | |
| 
 | |
| 		struct OctantOwner {
 | |
| 			Octant *octant;
 | |
| 			typename List<Element *, AL>::Element *E;
 | |
| 		}; // an element can be in max 8 octants
 | |
| 
 | |
| 		List<OctantOwner, AL> octant_owners;
 | |
| 
 | |
| #ifdef OCTREE_USE_CACHED_LISTS
 | |
| 		// when moving we need make all owner octants dirty, because the AABB can change.
 | |
| 		void moving() {
 | |
| 			for (typename List<typename Element::OctantOwner, AL>::Element *F = octant_owners.front(); F;) {
 | |
| 				Octant *o = F->get().octant;
 | |
| 				o->dirty = true;
 | |
| 				F = F->next();
 | |
| 			}
 | |
| 		}
 | |
| #endif
 | |
| 
 | |
| 		Element() {
 | |
| 			last_pass = 0;
 | |
| 			_id = 0;
 | |
| 			pairable = false;
 | |
| 			subindex = 0;
 | |
| 			userdata = nullptr;
 | |
| 			octree = nullptr;
 | |
| 			pairable_mask = 0;
 | |
| 			pairable_type = 0;
 | |
| 			common_parent = nullptr;
 | |
| 		}
 | |
| 	};
 | |
| 
 | |
| 	struct PairData {
 | |
| 		int refcount;
 | |
| 		bool intersect;
 | |
| 		Element *A, *B;
 | |
| 		void *ud;
 | |
| 		typename List<PairData *, AL>::Element *eA, *eB;
 | |
| 	};
 | |
| 
 | |
| 	typedef Map<OctreeElementID, Element, Comparator<OctreeElementID>, AL> ElementMap;
 | |
| 	typedef Map<PairKey, PairData, Comparator<PairKey>, AL> PairMap;
 | |
| 	ElementMap element_map;
 | |
| 	PairMap pair_map;
 | |
| 
 | |
| 	PairCallback pair_callback;
 | |
| 	UnpairCallback unpair_callback;
 | |
| 	void *pair_callback_userdata;
 | |
| 	void *unpair_callback_userdata;
 | |
| 
 | |
| 	OctreeElementID last_element_id;
 | |
| 	uint64_t pass;
 | |
| 
 | |
| 	real_t unit_size;
 | |
| 	Octant *root;
 | |
| 	int octant_count;
 | |
| 	int pair_count;
 | |
| 	int octant_elements_limit;
 | |
| 
 | |
| 	_FORCE_INLINE_ void _pair_check(PairData *p_pair) {
 | |
| 		bool intersect = p_pair->A->aabb.intersects_inclusive(p_pair->B->aabb);
 | |
| 
 | |
| 		if (intersect != p_pair->intersect) {
 | |
| 			if (intersect) {
 | |
| 				if (pair_callback) {
 | |
| 					p_pair->ud = pair_callback(pair_callback_userdata, p_pair->A->_id, p_pair->A->userdata, p_pair->A->subindex, p_pair->B->_id, p_pair->B->userdata, p_pair->B->subindex);
 | |
| 				}
 | |
| 				pair_count++;
 | |
| 			} else {
 | |
| 				if (unpair_callback) {
 | |
| 					unpair_callback(pair_callback_userdata, p_pair->A->_id, p_pair->A->userdata, p_pair->A->subindex, p_pair->B->_id, p_pair->B->userdata, p_pair->B->subindex, p_pair->ud);
 | |
| 				}
 | |
| 				pair_count--;
 | |
| 			}
 | |
| 
 | |
| 			p_pair->intersect = intersect;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	_FORCE_INLINE_ void _pair_reference(Element *p_A, Element *p_B) {
 | |
| 		if (p_A == p_B || (p_A->userdata == p_B->userdata && p_A->userdata)) {
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		if (!(p_A->pairable_type & p_B->pairable_mask) &&
 | |
| 				!(p_B->pairable_type & p_A->pairable_mask)) {
 | |
| 			return; // none can pair with none
 | |
| 		}
 | |
| 
 | |
| 		PairKey key(p_A->_id, p_B->_id);
 | |
| 		typename PairMap::Element *E = pair_map.find(key);
 | |
| 
 | |
| 		if (!E) {
 | |
| 			PairData pdata;
 | |
| 			pdata.refcount = 1;
 | |
| 			pdata.A = p_A;
 | |
| 			pdata.B = p_B;
 | |
| 			pdata.intersect = false;
 | |
| 			E = pair_map.insert(key, pdata);
 | |
| 			E->get().eA = p_A->pair_list.push_back(&E->get());
 | |
| 			E->get().eB = p_B->pair_list.push_back(&E->get());
 | |
| 
 | |
| 			/*
 | |
| 			if (pair_callback)
 | |
| 				pair_callback(pair_callback_userdata,p_A->userdata,p_B->userdata);
 | |
| 			*/
 | |
| 		} else {
 | |
| 			E->get().refcount++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	_FORCE_INLINE_ void _pair_unreference(Element *p_A, Element *p_B) {
 | |
| 		if (p_A == p_B) {
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		PairKey key(p_A->_id, p_B->_id);
 | |
| 		typename PairMap::Element *E = pair_map.find(key);
 | |
| 		if (!E) {
 | |
| 			return; // no pair
 | |
| 		}
 | |
| 
 | |
| 		E->get().refcount--;
 | |
| 
 | |
| 		if (E->get().refcount == 0) {
 | |
| 			// bye pair
 | |
| 
 | |
| 			if (E->get().intersect) {
 | |
| 				if (unpair_callback) {
 | |
| 					unpair_callback(pair_callback_userdata, p_A->_id, p_A->userdata, p_A->subindex, p_B->_id, p_B->userdata, p_B->subindex, E->get().ud);
 | |
| 				}
 | |
| 
 | |
| 				pair_count--;
 | |
| 			}
 | |
| 
 | |
| 			if (p_A == E->get().B) {
 | |
| 				//may be reaching inverted
 | |
| 				SWAP(p_A, p_B);
 | |
| 			}
 | |
| 
 | |
| 			p_A->pair_list.erase(E->get().eA);
 | |
| 			p_B->pair_list.erase(E->get().eB);
 | |
| 			pair_map.erase(E);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	_FORCE_INLINE_ void _element_check_pairs(Element *p_element) {
 | |
| 		typename List<PairData *, AL>::Element *E = p_element->pair_list.front();
 | |
| 		while (E) {
 | |
| 			_pair_check(E->get());
 | |
| 			E = E->next();
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	_FORCE_INLINE_ void _optimize() {
 | |
| 		while (root && root->children_count < 2 && !root->elements.size() && !(use_pairs && root->pairable_elements.size())) {
 | |
| 			Octant *new_root = nullptr;
 | |
| 			if (root->children_count == 1) {
 | |
| 				for (int i = 0; i < 8; i++) {
 | |
| 					if (root->children[i]) {
 | |
| 						new_root = root->children[i];
 | |
| 						root->children[i] = nullptr;
 | |
| 						break;
 | |
| 					}
 | |
| 				}
 | |
| 				ERR_FAIL_COND(!new_root);
 | |
| 				new_root->parent = nullptr;
 | |
| 				new_root->parent_index = -1;
 | |
| 			}
 | |
| 
 | |
| 			memdelete_allocator<Octant, AL>(root);
 | |
| 			octant_count--;
 | |
| 			root = new_root;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	void _insert_element(Element *p_element, Octant *p_octant);
 | |
| 	void _ensure_valid_root(const AABB &p_aabb);
 | |
| 	bool _remove_element_pair_and_remove_empty_octants(Element *p_element, Octant *p_octant, Octant *p_limit = nullptr);
 | |
| 	void _remove_element(Element *p_element);
 | |
| 	void _pair_element(Element *p_element, Octant *p_octant);
 | |
| 	void _unpair_element(Element *p_element, Octant *p_octant);
 | |
| 
 | |
| 	struct _CullConvexData {
 | |
| 		const Plane *planes;
 | |
| 		int plane_count;
 | |
| 		const Vector3 *points;
 | |
| 		int point_count;
 | |
| 		T **result_array;
 | |
| 		int *result_idx;
 | |
| 		int result_max;
 | |
| 		uint32_t mask;
 | |
| 	};
 | |
| 
 | |
| 	void _cull_convex(Octant *p_octant, _CullConvexData *p_cull);
 | |
| 	void _cull_aabb(Octant *p_octant, const AABB &p_aabb, T **p_result_array, int *p_result_idx, int p_result_max, int *p_subindex_array, uint32_t p_mask);
 | |
| 	void _cull_segment(Octant *p_octant, const Vector3 &p_from, const Vector3 &p_to, T **p_result_array, int *p_result_idx, int p_result_max, int *p_subindex_array, uint32_t p_mask);
 | |
| 	void _cull_point(Octant *p_octant, const Vector3 &p_point, T **p_result_array, int *p_result_idx, int p_result_max, int *p_subindex_array, uint32_t p_mask);
 | |
| 
 | |
| 	void _remove_tree(Octant *p_octant) {
 | |
| 		if (!p_octant) {
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		for (int i = 0; i < 8; i++) {
 | |
| 			if (p_octant->children[i]) {
 | |
| 				_remove_tree(p_octant->children[i]);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		memdelete_allocator<Octant, AL>(p_octant);
 | |
| 	}
 | |
| 
 | |
| #ifdef TOOLS_ENABLED
 | |
| 	String debug_aabb_to_string(const AABB &aabb) const;
 | |
| 	void debug_octant(const Octant &oct, int depth = 0);
 | |
| #endif
 | |
| 
 | |
| public:
 | |
| 	OctreeElementID create(T *p_userdata, const AABB &p_aabb = AABB(), int p_subindex = 0, bool p_pairable = false, uint32_t p_pairable_type = 0, uint32_t pairable_mask = 1);
 | |
| 	void move(OctreeElementID p_id, const AABB &p_aabb);
 | |
| 	void set_pairable(OctreeElementID p_id, bool p_pairable = false, uint32_t p_pairable_type = 0, uint32_t pairable_mask = 1);
 | |
| 	void erase(OctreeElementID p_id);
 | |
| 
 | |
| 	bool is_pairable(OctreeElementID p_id) const;
 | |
| 	T *get(OctreeElementID p_id) const;
 | |
| 	int get_subindex(OctreeElementID p_id) const;
 | |
| 	AABB get_aabb(OctreeElementID p_id) const;
 | |
| 
 | |
| 	int cull_convex(const Vector<Plane> &p_convex, T **p_result_array, int p_result_max, uint32_t p_mask = 0xFFFFFFFF);
 | |
| 	int cull_aabb(const AABB &p_aabb, T **p_result_array, int p_result_max, int *p_subindex_array = nullptr, uint32_t p_mask = 0xFFFFFFFF);
 | |
| 	int cull_segment(const Vector3 &p_from, const Vector3 &p_to, T **p_result_array, int p_result_max, int *p_subindex_array = nullptr, uint32_t p_mask = 0xFFFFFFFF);
 | |
| 
 | |
| 	int cull_point(const Vector3 &p_point, T **p_result_array, int p_result_max, int *p_subindex_array = nullptr, uint32_t p_mask = 0xFFFFFFFF);
 | |
| 
 | |
| 	void set_pair_callback(PairCallback p_callback, void *p_userdata);
 | |
| 	void set_unpair_callback(UnpairCallback p_callback, void *p_userdata);
 | |
| 
 | |
| 	int get_octant_count() const { return octant_count; }
 | |
| 	int get_pair_count() const { return pair_count; }
 | |
| 	void set_octant_elements_limit(int p_limit) { octant_elements_limit = p_limit; }
 | |
| 
 | |
| 	// just convenience for project settings, as users don't need to know exact numbers
 | |
| 	void set_balance(float p_bal) // 0.0 is optimized for multiple tests, 1.0 is for multiple edits (moves etc)
 | |
| 	{
 | |
| 		float v = CLAMP(p_bal, 0.0f, 1.0f);
 | |
| 		v *= v;
 | |
| 		v *= v;
 | |
| 		v *= 8096.0f; // these values have been found empirically
 | |
| 		int l = 0 + v;
 | |
| 		set_octant_elements_limit(l);
 | |
| 	}
 | |
| 
 | |
| #ifdef TOOLS_ENABLED
 | |
| 	void debug_octants();
 | |
| #endif
 | |
| 
 | |
| 	OCTREE_CLASS_NAME(real_t p_unit_size = 1.0);
 | |
| 	~OCTREE_CLASS_NAME() { _remove_tree(root); }
 | |
| };
 | |
| 
 | |
| /* PRIVATE FUNCTIONS */
 | |
| 
 | |
| OCTREE_FUNC(T *)::get(OctreeElementID p_id) const {
 | |
| 	const typename ElementMap::Element *E = element_map.find(p_id);
 | |
| 	ERR_FAIL_COND_V(!E, nullptr);
 | |
| 	return E->get().userdata;
 | |
| }
 | |
| 
 | |
| OCTREE_FUNC(bool)::is_pairable(OctreeElementID p_id) const {
 | |
| 	const typename ElementMap::Element *E = element_map.find(p_id);
 | |
| 	ERR_FAIL_COND_V(!E, false);
 | |
| 	return E->get().pairable;
 | |
| }
 | |
| 
 | |
| OCTREE_FUNC(int)::get_subindex(OctreeElementID p_id) const {
 | |
| 	const typename ElementMap::Element *E = element_map.find(p_id);
 | |
| 	ERR_FAIL_COND_V(!E, -1);
 | |
| 	return E->get().subindex;
 | |
| }
 | |
| 
 | |
| OCTREE_FUNC(AABB)::get_aabb(OctreeElementID p_id) const {
 | |
| 	const typename ElementMap::Element *E = element_map.find(p_id);
 | |
| 	ERR_FAIL_COND_V(!E, AABB());
 | |
| 	return E->get().aabb;
 | |
| }
 | |
| 
 | |
| #define OCTREE_DIVISOR 4
 | |
| 
 | |
| OCTREE_FUNC(void)::_insert_element(Element *p_element, Octant *p_octant) {
 | |
| 	real_t element_size = p_element->aabb.get_longest_axis_size() * 1.01; // avoid precision issues
 | |
| 
 | |
| 	// don't create new child octants unless there is more than a certain number in
 | |
| 	// this octant. This prevents runaway creation of too many octants, and is more efficient
 | |
| 	// because brute force is faster up to a certain point.
 | |
| 	bool can_split = true;
 | |
| 
 | |
| 	if (p_element->pairable) {
 | |
| 		if (p_octant->pairable_elements.size() < octant_elements_limit) {
 | |
| 			can_split = false;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (p_octant->elements.size() < octant_elements_limit) {
 | |
| 			can_split = false;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!can_split || (element_size > (p_octant->aabb.size.x / OCTREE_DIVISOR))) {
 | |
| 		/* at smallest possible size for the element  */
 | |
| 		typename Element::OctantOwner owner;
 | |
| 		owner.octant = p_octant;
 | |
| 
 | |
| 		if (use_pairs && p_element->pairable) {
 | |
| 			p_octant->pairable_elements.push_back(p_element);
 | |
| 			owner.E = p_octant->pairable_elements.back();
 | |
| 		} else {
 | |
| 			p_octant->elements.push_back(p_element);
 | |
| 			owner.E = p_octant->elements.back();
 | |
| 		}
 | |
| #ifdef OCTREE_USE_CACHED_LISTS
 | |
| 		p_octant->dirty = true;
 | |
| #endif
 | |
| 		p_element->octant_owners.push_back(owner);
 | |
| 
 | |
| 		if (p_element->common_parent == nullptr) {
 | |
| 			p_element->common_parent = p_octant;
 | |
| 			p_element->container_aabb = p_octant->aabb;
 | |
| 		} else {
 | |
| 			p_element->container_aabb.merge_with(p_octant->aabb);
 | |
| 		}
 | |
| 
 | |
| 		if (use_pairs && p_octant->children_count > 0) {
 | |
| 			pass++; //elements below this only get ONE reference added
 | |
| 
 | |
| 			for (int i = 0; i < 8; i++) {
 | |
| 				if (p_octant->children[i]) {
 | |
| 					_pair_element(p_element, p_octant->children[i]);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* not big enough, send it to subitems */
 | |
| 		int splits = 0;
 | |
| 		bool candidate = p_element->common_parent == nullptr;
 | |
| 
 | |
| 		for (int i = 0; i < 8; i++) {
 | |
| 			if (p_octant->children[i]) {
 | |
| 				/* element exists, go straight to it */
 | |
| 				if (p_octant->children[i]->aabb.intersects_inclusive(p_element->aabb)) {
 | |
| 					_insert_element(p_element, p_octant->children[i]);
 | |
| 					splits++;
 | |
| 				}
 | |
| 			} else {
 | |
| 				/* check against AABB where child should be */
 | |
| 
 | |
| 				AABB aabb = p_octant->aabb;
 | |
| 				aabb.size *= 0.5;
 | |
| 
 | |
| 				if (i & 1) {
 | |
| 					aabb.position.x += aabb.size.x;
 | |
| 				}
 | |
| 				if (i & 2) {
 | |
| 					aabb.position.y += aabb.size.y;
 | |
| 				}
 | |
| 				if (i & 4) {
 | |
| 					aabb.position.z += aabb.size.z;
 | |
| 				}
 | |
| 
 | |
| 				if (aabb.intersects_inclusive(p_element->aabb)) {
 | |
| 					/* if actually intersects, create the child */
 | |
| 
 | |
| 					Octant *child = memnew_allocator(Octant, AL);
 | |
| 					p_octant->children[i] = child;
 | |
| 					child->parent = p_octant;
 | |
| 					child->parent_index = i;
 | |
| 
 | |
| 					child->aabb = aabb;
 | |
| 
 | |
| 					p_octant->children_count++;
 | |
| 
 | |
| 					_insert_element(p_element, child);
 | |
| 					octant_count++;
 | |
| 					splits++;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (candidate && splits > 1) {
 | |
| 			p_element->common_parent = p_octant;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (use_pairs) {
 | |
| 		typename List<Element *, AL>::Element *E = p_octant->pairable_elements.front();
 | |
| 
 | |
| 		while (E) {
 | |
| 			_pair_reference(p_element, E->get());
 | |
| 			E = E->next();
 | |
| 		}
 | |
| 
 | |
| 		if (p_element->pairable) {
 | |
| 			// and always test non-pairable if element is pairable
 | |
| 			E = p_octant->elements.front();
 | |
| 			while (E) {
 | |
| 				_pair_reference(p_element, E->get());
 | |
| 				E = E->next();
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| OCTREE_FUNC(void)::_ensure_valid_root(const AABB &p_aabb) {
 | |
| 	if (!root) {
 | |
| 		// octre is empty
 | |
| 
 | |
| 		AABB base(Vector3(), Vector3(1.0, 1.0, 1.0) * unit_size);
 | |
| 
 | |
| 		while (!base.encloses(p_aabb)) {
 | |
| 			if (ABS(base.position.x + base.size.x) <= ABS(base.position.x)) {
 | |
| 				/* grow towards positive */
 | |
| 				base.size *= 2.0;
 | |
| 			} else {
 | |
| 				base.position -= base.size;
 | |
| 				base.size *= 2.0;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		root = memnew_allocator(Octant, AL);
 | |
| 
 | |
| 		root->parent = nullptr;
 | |
| 		root->parent_index = -1;
 | |
| 		root->aabb = base;
 | |
| 
 | |
| 		octant_count++;
 | |
| 
 | |
| 	} else {
 | |
| 		AABB base = root->aabb;
 | |
| 
 | |
| 		while (!base.encloses(p_aabb)) {
 | |
| 			ERR_FAIL_COND_MSG(base.size.x > OCTREE_SIZE_LIMIT, "Octree upper size limit reached, does the AABB supplied contain NAN?");
 | |
| 
 | |
| 			Octant *gp = memnew_allocator(Octant, AL);
 | |
| 			octant_count++;
 | |
| 			root->parent = gp;
 | |
| 
 | |
| 			if (ABS(base.position.x + base.size.x) <= ABS(base.position.x)) {
 | |
| 				/* grow towards positive */
 | |
| 				base.size *= 2.0;
 | |
| 				gp->aabb = base;
 | |
| 				gp->children[0] = root;
 | |
| 				root->parent_index = 0;
 | |
| 			} else {
 | |
| 				base.position -= base.size;
 | |
| 				base.size *= 2.0;
 | |
| 				gp->aabb = base;
 | |
| 				gp->children[(1 << 0) | (1 << 1) | (1 << 2)] = root; // add at all-positive
 | |
| 				root->parent_index = (1 << 0) | (1 << 1) | (1 << 2);
 | |
| 			}
 | |
| 
 | |
| 			gp->children_count = 1;
 | |
| 			root = gp;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| OCTREE_FUNC(bool)::_remove_element_pair_and_remove_empty_octants(Element *p_element, Octant *p_octant, Octant *p_limit) {
 | |
| 	bool octant_removed = false;
 | |
| 
 | |
| 	while (true) {
 | |
| 		// check all exit conditions
 | |
| 
 | |
| 		if (p_octant == p_limit) { // reached limit, nothing to erase, exit
 | |
| 			return octant_removed;
 | |
| 		}
 | |
| 
 | |
| 		bool unpaired = false;
 | |
| 
 | |
| 		if (use_pairs && p_octant->last_pass != pass) {
 | |
| 			// check whether we should unpair stuff
 | |
| 			// always test pairable
 | |
| 			typename List<Element *, AL>::Element *E = p_octant->pairable_elements.front();
 | |
| 			while (E) {
 | |
| 				_pair_unreference(p_element, E->get());
 | |
| 				E = E->next();
 | |
| 			}
 | |
| 			if (p_element->pairable) {
 | |
| 				// and always test non-pairable if element is pairable
 | |
| 				E = p_octant->elements.front();
 | |
| 				while (E) {
 | |
| 					_pair_unreference(p_element, E->get());
 | |
| 					E = E->next();
 | |
| 				}
 | |
| 			}
 | |
| 			p_octant->last_pass = pass;
 | |
| 			unpaired = true;
 | |
| 		}
 | |
| 
 | |
| 		bool removed = false;
 | |
| 
 | |
| 		Octant *parent = p_octant->parent;
 | |
| 
 | |
| 		if (p_octant->children_count == 0 && p_octant->elements.empty() && p_octant->pairable_elements.empty()) {
 | |
| 			// erase octant
 | |
| 
 | |
| 			if (p_octant == root) { // won't have a parent, just erase
 | |
| 
 | |
| 				root = nullptr;
 | |
| 			} else {
 | |
| 				ERR_FAIL_INDEX_V(p_octant->parent_index, 8, octant_removed);
 | |
| 
 | |
| 				parent->children[p_octant->parent_index] = nullptr;
 | |
| 				parent->children_count--;
 | |
| 			}
 | |
| 
 | |
| 			memdelete_allocator<Octant, AL>(p_octant);
 | |
| 			octant_count--;
 | |
| 			removed = true;
 | |
| 			octant_removed = true;
 | |
| 		}
 | |
| 
 | |
| 		if (!removed && !unpaired) {
 | |
| 			return octant_removed; // no reason to keep going up anymore! was already visited and was not removed
 | |
| 		}
 | |
| 
 | |
| 		p_octant = parent;
 | |
| 	}
 | |
| 
 | |
| 	return octant_removed;
 | |
| }
 | |
| 
 | |
| OCTREE_FUNC(void)::_unpair_element(Element *p_element, Octant *p_octant) {
 | |
| 	// always test pairable
 | |
| 	typename List<Element *, AL>::Element *E = p_octant->pairable_elements.front();
 | |
| 	while (E) {
 | |
| 		if (E->get()->last_pass != pass) { // only remove ONE reference
 | |
| 			_pair_unreference(p_element, E->get());
 | |
| 			E->get()->last_pass = pass;
 | |
| 		}
 | |
| 		E = E->next();
 | |
| 	}
 | |
| 
 | |
| 	if (p_element->pairable) {
 | |
| 		// and always test non-pairable if element is pairable
 | |
| 		E = p_octant->elements.front();
 | |
| 		while (E) {
 | |
| 			if (E->get()->last_pass != pass) { // only remove ONE reference
 | |
| 				_pair_unreference(p_element, E->get());
 | |
| 				E->get()->last_pass = pass;
 | |
| 			}
 | |
| 			E = E->next();
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	p_octant->last_pass = pass;
 | |
| 
 | |
| 	if (p_octant->children_count == 0) {
 | |
| 		return; // small optimization for leafs
 | |
| 	}
 | |
| 
 | |
| 	for (int i = 0; i < 8; i++) {
 | |
| 		if (p_octant->children[i]) {
 | |
| 			_unpair_element(p_element, p_octant->children[i]);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| OCTREE_FUNC(void)::_pair_element(Element *p_element, Octant *p_octant) {
 | |
| 	// always test pairable
 | |
| 
 | |
| 	typename List<Element *, AL>::Element *E = p_octant->pairable_elements.front();
 | |
| 
 | |
| 	while (E) {
 | |
| 		if (E->get()->last_pass != pass) { // only get ONE reference
 | |
| 			_pair_reference(p_element, E->get());
 | |
| 			E->get()->last_pass = pass;
 | |
| 		}
 | |
| 		E = E->next();
 | |
| 	}
 | |
| 
 | |
| 	if (p_element->pairable) {
 | |
| 		// and always test non-pairable if element is pairable
 | |
| 		E = p_octant->elements.front();
 | |
| 		while (E) {
 | |
| 			if (E->get()->last_pass != pass) { // only get ONE reference
 | |
| 				_pair_reference(p_element, E->get());
 | |
| 				E->get()->last_pass = pass;
 | |
| 			}
 | |
| 			E = E->next();
 | |
| 		}
 | |
| 	}
 | |
| 	p_octant->last_pass = pass;
 | |
| 
 | |
| 	if (p_octant->children_count == 0) {
 | |
| 		return; // small optimization for leafs
 | |
| 	}
 | |
| 
 | |
| 	for (int i = 0; i < 8; i++) {
 | |
| 		if (p_octant->children[i]) {
 | |
| 			_pair_element(p_element, p_octant->children[i]);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| OCTREE_FUNC(void)::_remove_element(Element *p_element) {
 | |
| 	pass++; // will do a new pass for this
 | |
| 
 | |
| 	typename List<typename Element::OctantOwner, AL>::Element *I = p_element->octant_owners.front();
 | |
| 
 | |
| 	for (; I; I = I->next()) {
 | |
| 		Octant *o = I->get().octant;
 | |
| 
 | |
| 		if (!use_pairs) {
 | |
| 			o->elements.erase(I->get().E);
 | |
| 		} else {
 | |
| 			// erase children pairs, they are erased ONCE even if repeated
 | |
| 			pass++;
 | |
| 			for (int i = 0; i < 8; i++) {
 | |
| 				if (o->children[i]) {
 | |
| 					_unpair_element(p_element, o->children[i]);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if (p_element->pairable) {
 | |
| 				o->pairable_elements.erase(I->get().E);
 | |
| 			} else {
 | |
| 				o->elements.erase(I->get().E);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| #ifdef OCTREE_USE_CACHED_LISTS
 | |
| 		o->dirty = true;
 | |
| #endif
 | |
| 		_remove_element_pair_and_remove_empty_octants(p_element, o);
 | |
| 	}
 | |
| 
 | |
| 	p_element->octant_owners.clear();
 | |
| 
 | |
| 	if (use_pairs) {
 | |
| 		int remaining = p_element->pair_list.size();
 | |
| 		//p_element->pair_list.clear();
 | |
| 		ERR_FAIL_COND(remaining);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| OCTREE_FUNC(OctreeElementID)::create(T *p_userdata, const AABB &p_aabb, int p_subindex, bool p_pairable, uint32_t p_pairable_type, uint32_t p_pairable_mask) {
 | |
| // check for AABB validity
 | |
| #ifdef DEBUG_ENABLED
 | |
| 	ERR_FAIL_COND_V(p_aabb.position.x > 1e15 || p_aabb.position.x < -1e15, 0);
 | |
| 	ERR_FAIL_COND_V(p_aabb.position.y > 1e15 || p_aabb.position.y < -1e15, 0);
 | |
| 	ERR_FAIL_COND_V(p_aabb.position.z > 1e15 || p_aabb.position.z < -1e15, 0);
 | |
| 	ERR_FAIL_COND_V(p_aabb.size.x > 1e15 || p_aabb.size.x < 0.0, 0);
 | |
| 	ERR_FAIL_COND_V(p_aabb.size.y > 1e15 || p_aabb.size.y < 0.0, 0);
 | |
| 	ERR_FAIL_COND_V(p_aabb.size.z > 1e15 || p_aabb.size.z < 0.0, 0);
 | |
| 	ERR_FAIL_COND_V(Math::is_nan(p_aabb.size.x), 0);
 | |
| 	ERR_FAIL_COND_V(Math::is_nan(p_aabb.size.y), 0);
 | |
| 	ERR_FAIL_COND_V(Math::is_nan(p_aabb.size.z), 0);
 | |
| 
 | |
| #endif
 | |
| 	typename ElementMap::Element *E = element_map.insert(last_element_id++,
 | |
| 			Element());
 | |
| 	Element &e = E->get();
 | |
| 
 | |
| 	e.aabb = p_aabb;
 | |
| 	e.userdata = p_userdata;
 | |
| 	e.subindex = p_subindex;
 | |
| 	e.last_pass = 0;
 | |
| 	e.octree = this;
 | |
| 	e.pairable = p_pairable;
 | |
| 	e.pairable_type = p_pairable_type;
 | |
| 	e.pairable_mask = p_pairable_mask;
 | |
| 	e._id = last_element_id - 1;
 | |
| 
 | |
| 	if (!e.aabb.has_no_surface()) {
 | |
| 		_ensure_valid_root(p_aabb);
 | |
| 		_insert_element(&e, root);
 | |
| 		if (use_pairs) {
 | |
| 			_element_check_pairs(&e);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return last_element_id - 1;
 | |
| }
 | |
| 
 | |
| OCTREE_FUNC(void)::move(OctreeElementID p_id, const AABB &p_aabb) {
 | |
| #ifdef DEBUG_ENABLED
 | |
| 	// check for AABB validity
 | |
| 	ERR_FAIL_COND(p_aabb.position.x > 1e15 || p_aabb.position.x < -1e15);
 | |
| 	ERR_FAIL_COND(p_aabb.position.y > 1e15 || p_aabb.position.y < -1e15);
 | |
| 	ERR_FAIL_COND(p_aabb.position.z > 1e15 || p_aabb.position.z < -1e15);
 | |
| 	ERR_FAIL_COND(p_aabb.size.x > 1e15 || p_aabb.size.x < 0.0);
 | |
| 	ERR_FAIL_COND(p_aabb.size.y > 1e15 || p_aabb.size.y < 0.0);
 | |
| 	ERR_FAIL_COND(p_aabb.size.z > 1e15 || p_aabb.size.z < 0.0);
 | |
| 	ERR_FAIL_COND(Math::is_nan(p_aabb.size.x));
 | |
| 	ERR_FAIL_COND(Math::is_nan(p_aabb.size.y));
 | |
| 	ERR_FAIL_COND(Math::is_nan(p_aabb.size.z));
 | |
| #endif
 | |
| 	typename ElementMap::Element *E = element_map.find(p_id);
 | |
| 	ERR_FAIL_COND(!E);
 | |
| 	Element &e = E->get();
 | |
| 
 | |
| 	bool old_has_surf = !e.aabb.has_no_surface();
 | |
| 	bool new_has_surf = !p_aabb.has_no_surface();
 | |
| 
 | |
| 	if (old_has_surf != new_has_surf) {
 | |
| 		if (old_has_surf) {
 | |
| 			_remove_element(&e); // removing
 | |
| 			e.common_parent = nullptr;
 | |
| 			e.aabb = AABB();
 | |
| 			_optimize();
 | |
| 		} else {
 | |
| 			_ensure_valid_root(p_aabb); // inserting
 | |
| 			e.common_parent = nullptr;
 | |
| 			e.aabb = p_aabb;
 | |
| 			_insert_element(&e, root);
 | |
| 			if (use_pairs) {
 | |
| 				_element_check_pairs(&e);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (!old_has_surf) { // doing nothing
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	// it still is enclosed in the same AABB it was assigned to
 | |
| 	if (e.container_aabb.encloses(p_aabb)) {
 | |
| 		e.aabb = p_aabb;
 | |
| 		if (use_pairs) {
 | |
| 			_element_check_pairs(&e); // must check pairs anyway
 | |
| 		}
 | |
| 
 | |
| #ifdef OCTREE_USE_CACHED_LISTS
 | |
| 		e.moving();
 | |
| #endif
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	AABB combined = e.aabb;
 | |
| 	combined.merge_with(p_aabb);
 | |
| 	_ensure_valid_root(combined);
 | |
| 
 | |
| 	ERR_FAIL_COND(e.octant_owners.front() == nullptr);
 | |
| 
 | |
| 	/* FIND COMMON PARENT */
 | |
| 
 | |
| 	List<typename Element::OctantOwner, AL> owners = e.octant_owners; // save the octant owners
 | |
| 	Octant *common_parent = e.common_parent;
 | |
| 	ERR_FAIL_COND(!common_parent);
 | |
| 
 | |
| 	//src is now the place towards where insertion is going to happen
 | |
| 	pass++;
 | |
| 
 | |
| 	while (common_parent && !common_parent->aabb.encloses(p_aabb)) {
 | |
| 		common_parent = common_parent->parent;
 | |
| 	}
 | |
| 
 | |
| 	ERR_FAIL_COND(!common_parent);
 | |
| 
 | |
| 	//prepare for reinsert
 | |
| 	e.octant_owners.clear();
 | |
| 	e.common_parent = nullptr;
 | |
| 	e.aabb = p_aabb;
 | |
| 
 | |
| 	_insert_element(&e, common_parent); // reinsert from this point
 | |
| 
 | |
| 	pass++;
 | |
| 
 | |
| 	for (typename List<typename Element::OctantOwner, AL>::Element *F = owners.front(); F;) {
 | |
| 		Octant *o = F->get().octant;
 | |
| 		typename List<typename Element::OctantOwner, AL>::Element *N = F->next();
 | |
| 
 | |
| 		/*
 | |
| 		if (!use_pairs)
 | |
| 			o->elements.erase( F->get().E );
 | |
| 		*/
 | |
| 
 | |
| 		if (use_pairs && e.pairable) {
 | |
| 			o->pairable_elements.erase(F->get().E);
 | |
| 		} else {
 | |
| 			o->elements.erase(F->get().E);
 | |
| 		}
 | |
| 
 | |
| #ifdef OCTREE_USE_CACHED_LISTS
 | |
| 		o->dirty = true;
 | |
| #endif
 | |
| 
 | |
| 		if (_remove_element_pair_and_remove_empty_octants(&e, o, common_parent->parent)) {
 | |
| 			owners.erase(F);
 | |
| 		}
 | |
| 
 | |
| 		F = N;
 | |
| 	}
 | |
| 
 | |
| 	if (use_pairs) {
 | |
| 		//unpair child elements in anything that survived
 | |
| 		for (typename List<typename Element::OctantOwner, AL>::Element *F = owners.front(); F; F = F->next()) {
 | |
| 			Octant *o = F->get().octant;
 | |
| 
 | |
| 			// erase children pairs, unref ONCE
 | |
| 			pass++;
 | |
| 			for (int i = 0; i < 8; i++) {
 | |
| 				if (o->children[i]) {
 | |
| 					_unpair_element(&e, o->children[i]);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		_element_check_pairs(&e);
 | |
| 	}
 | |
| 
 | |
| 	_optimize();
 | |
| }
 | |
| 
 | |
| OCTREE_FUNC(void)::set_pairable(OctreeElementID p_id, bool p_pairable, uint32_t p_pairable_type, uint32_t p_pairable_mask) {
 | |
| 	typename ElementMap::Element *E = element_map.find(p_id);
 | |
| 	ERR_FAIL_COND(!E);
 | |
| 
 | |
| 	Element &e = E->get();
 | |
| 
 | |
| 	if (p_pairable == e.pairable && e.pairable_type == p_pairable_type && e.pairable_mask == p_pairable_mask) {
 | |
| 		return; // no changes, return
 | |
| 	}
 | |
| 
 | |
| 	if (!e.aabb.has_no_surface()) {
 | |
| 		_remove_element(&e);
 | |
| 	}
 | |
| 
 | |
| 	e.pairable = p_pairable;
 | |
| 	e.pairable_type = p_pairable_type;
 | |
| 	e.pairable_mask = p_pairable_mask;
 | |
| 	e.common_parent = nullptr;
 | |
| 
 | |
| 	if (!e.aabb.has_no_surface()) {
 | |
| 		_ensure_valid_root(e.aabb);
 | |
| 		_insert_element(&e, root);
 | |
| 		if (use_pairs) {
 | |
| 			_element_check_pairs(&e);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| OCTREE_FUNC(void)::erase(OctreeElementID p_id) {
 | |
| 	typename ElementMap::Element *E = element_map.find(p_id);
 | |
| 	ERR_FAIL_COND(!E);
 | |
| 
 | |
| 	Element &e = E->get();
 | |
| 
 | |
| 	if (!e.aabb.has_no_surface()) {
 | |
| 		_remove_element(&e);
 | |
| 	}
 | |
| 
 | |
| 	element_map.erase(p_id);
 | |
| 	_optimize();
 | |
| }
 | |
| 
 | |
| OCTREE_FUNC(void)::_cull_convex(Octant *p_octant, _CullConvexData *p_cull) {
 | |
| 	if (*p_cull->result_idx == p_cull->result_max) {
 | |
| 		return; //pointless
 | |
| 	}
 | |
| 
 | |
| 	if (!p_octant->elements.empty()) {
 | |
| #ifdef OCTREE_USE_CACHED_LISTS
 | |
| 		// make sure cached list of element pointers and aabbs is up to date if this octant is dirty
 | |
| 		p_octant->update_cached_lists();
 | |
| 
 | |
| 		int num_elements = p_octant->clist.elements.size();
 | |
| 		for (int n = 0; n < num_elements; n++) {
 | |
| 			const AABB &aabb = p_octant->clist.aabbs[n];
 | |
| 			Element *e = p_octant->clist.elements[n];
 | |
| 
 | |
| 			// in most cases with the cached linear  list tests we will do the AABB checks BEFORE last pass and cull mask.
 | |
| 			// The reason is that the later checks are more expensive because they are not in cache, and many of the AABB
 | |
| 			// tests will fail so we can avoid these cache misses.
 | |
| 			if (aabb.intersects_convex_shape(p_cull->planes, p_cull->plane_count, p_cull->points, p_cull->point_count)) {
 | |
| 				if (e->last_pass == pass || (use_pairs && !(e->pairable_type & p_cull->mask))) {
 | |
| 					continue;
 | |
| 				}
 | |
| 				e->last_pass = pass;
 | |
| 
 | |
| 				if (*p_cull->result_idx < p_cull->result_max) {
 | |
| 					p_cull->result_array[*p_cull->result_idx] = e->userdata;
 | |
| 					(*p_cull->result_idx)++;
 | |
| 				} else {
 | |
| 					return; // pointless to continue
 | |
| 				}
 | |
| 			}
 | |
| 		} // for n
 | |
| #else
 | |
| 		typename List<Element *, AL>::Element *I;
 | |
| 		I = p_octant->elements.front();
 | |
| 
 | |
| 		for (; I; I = I->next()) {
 | |
| 			Element *e = I->get();
 | |
| 			const AABB &aabb = e->aabb;
 | |
| 
 | |
| 			if (e->last_pass == pass || (use_pairs && !(e->pairable_type & p_cull->mask))) {
 | |
| 				continue;
 | |
| 			}
 | |
| 			e->last_pass = pass;
 | |
| 
 | |
| 			if (aabb.intersects_convex_shape(p_cull->planes, p_cull->plane_count, p_cull->points, p_cull->point_count)) {
 | |
| 				if (*p_cull->result_idx < p_cull->result_max) {
 | |
| 					p_cull->result_array[*p_cull->result_idx] = e->userdata;
 | |
| 					(*p_cull->result_idx)++;
 | |
| 				} else {
 | |
| 					return; // pointless to continue
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| #endif
 | |
| 	} // if elements not empty
 | |
| 
 | |
| 	if (use_pairs && !p_octant->pairable_elements.empty()) {
 | |
| #ifdef OCTREE_USE_CACHED_LISTS
 | |
| 		// make sure cached list of element pointers and aabbs is up to date if this octant is dirty
 | |
| 		p_octant->update_cached_lists();
 | |
| 
 | |
| 		int num_elements = p_octant->clist_pairable.elements.size();
 | |
| 		for (int n = 0; n < num_elements; n++) {
 | |
| 			const AABB &aabb = p_octant->clist_pairable.aabbs[n];
 | |
| 			Element *e = p_octant->clist_pairable.elements[n];
 | |
| 
 | |
| 			if (aabb.intersects_convex_shape(p_cull->planes, p_cull->plane_count, p_cull->points, p_cull->point_count)) {
 | |
| 				if (e->last_pass == pass || (use_pairs && !(e->pairable_type & p_cull->mask))) {
 | |
| 					continue;
 | |
| 				}
 | |
| 				e->last_pass = pass;
 | |
| 
 | |
| 				if (*p_cull->result_idx < p_cull->result_max) {
 | |
| 					p_cull->result_array[*p_cull->result_idx] = e->userdata;
 | |
| 					(*p_cull->result_idx)++;
 | |
| 				} else {
 | |
| 					return; // pointless to continue
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| #else
 | |
| 
 | |
| 		typename List<Element *, AL>::Element *I;
 | |
| 		I = p_octant->pairable_elements.front();
 | |
| 
 | |
| 		for (; I; I = I->next()) {
 | |
| 			Element *e = I->get();
 | |
| 			const AABB &aabb = e->aabb;
 | |
| 
 | |
| 			if (e->last_pass == pass || (use_pairs && !(e->pairable_type & p_cull->mask))) {
 | |
| 				continue;
 | |
| 			}
 | |
| 			e->last_pass = pass;
 | |
| 
 | |
| 			if (aabb.intersects_convex_shape(p_cull->planes, p_cull->plane_count, p_cull->points, p_cull->point_count)) {
 | |
| 				if (*p_cull->result_idx < p_cull->result_max) {
 | |
| 					p_cull->result_array[*p_cull->result_idx] = e->userdata;
 | |
| 					(*p_cull->result_idx)++;
 | |
| 				} else {
 | |
| 					return; // pointless to continue
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	for (int i = 0; i < 8; i++) {
 | |
| 		if (p_octant->children[i] && p_octant->children[i]->aabb.intersects_convex_shape(p_cull->planes, p_cull->plane_count, p_cull->points, p_cull->point_count)) {
 | |
| 			_cull_convex(p_octant->children[i], p_cull);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| OCTREE_FUNC(void)::_cull_aabb(Octant *p_octant, const AABB &p_aabb, T **p_result_array, int *p_result_idx, int p_result_max, int *p_subindex_array, uint32_t p_mask) {
 | |
| 	if (*p_result_idx == p_result_max) {
 | |
| 		return; //pointless
 | |
| 	}
 | |
| 
 | |
| 	if (!p_octant->elements.empty()) {
 | |
| #ifdef OCTREE_USE_CACHED_LISTS
 | |
| 		// make sure cached list of element pointers and aabbs is up to date if this octant is dirty
 | |
| 		p_octant->update_cached_lists();
 | |
| 
 | |
| 		int num_elements = p_octant->clist.elements.size();
 | |
| 		for (int n = 0; n < num_elements; n++) {
 | |
| 			const AABB &aabb = p_octant->clist.aabbs[n];
 | |
| 			Element *e = p_octant->clist.elements[n];
 | |
| 
 | |
| 			if (p_aabb.intersects_inclusive(aabb)) {
 | |
| 				if (e->last_pass == pass || (use_pairs && !(e->pairable_type & p_mask))) {
 | |
| 					continue;
 | |
| 				}
 | |
| 				e->last_pass = pass;
 | |
| 
 | |
| 				if (*p_result_idx < p_result_max) {
 | |
| 					p_result_array[*p_result_idx] = e->userdata;
 | |
| 					if (p_subindex_array) {
 | |
| 						p_subindex_array[*p_result_idx] = e->subindex;
 | |
| 					}
 | |
| 
 | |
| 					(*p_result_idx)++;
 | |
| 				} else {
 | |
| 					return; // pointless to continue
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| #else
 | |
| 		typename List<Element *, AL>::Element *I;
 | |
| 		I = p_octant->elements.front();
 | |
| 		for (; I; I = I->next()) {
 | |
| 			Element *e = I->get();
 | |
| 			const AABB &aabb = e->aabb;
 | |
| 
 | |
| 			if (p_aabb.intersects_inclusive(aabb)) {
 | |
| 				if (e->last_pass == pass || (use_pairs && !(e->pairable_type & p_mask))) {
 | |
| 					continue;
 | |
| 				}
 | |
| 				e->last_pass = pass;
 | |
| 
 | |
| 				if (*p_result_idx < p_result_max) {
 | |
| 					p_result_array[*p_result_idx] = e->userdata;
 | |
| 					if (p_subindex_array) {
 | |
| 						p_subindex_array[*p_result_idx] = e->subindex;
 | |
| 					}
 | |
| 
 | |
| 					(*p_result_idx)++;
 | |
| 				} else {
 | |
| 					return; // pointless to continue
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	if (use_pairs && !p_octant->pairable_elements.empty()) {
 | |
| #ifdef OCTREE_USE_CACHED_LISTS
 | |
| 		// make sure cached list of element pointers and aabbs is up to date if this octant is dirty
 | |
| 		p_octant->update_cached_lists();
 | |
| 
 | |
| 		int num_elements = p_octant->clist_pairable.elements.size();
 | |
| 		for (int n = 0; n < num_elements; n++) {
 | |
| 			const AABB &aabb = p_octant->clist_pairable.aabbs[n];
 | |
| 			Element *e = p_octant->clist_pairable.elements[n];
 | |
| 
 | |
| 			if (p_aabb.intersects_inclusive(aabb)) {
 | |
| 				if (e->last_pass == pass || (use_pairs && !(e->pairable_type & p_mask))) {
 | |
| 					continue;
 | |
| 				}
 | |
| 				e->last_pass = pass;
 | |
| 
 | |
| 				if (*p_result_idx < p_result_max) {
 | |
| 					p_result_array[*p_result_idx] = e->userdata;
 | |
| 					if (p_subindex_array) {
 | |
| 						p_subindex_array[*p_result_idx] = e->subindex;
 | |
| 					}
 | |
| 					(*p_result_idx)++;
 | |
| 				} else {
 | |
| 					return; // pointless to continue
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| #else
 | |
| 
 | |
| 		typename List<Element *, AL>::Element *I;
 | |
| 		I = p_octant->pairable_elements.front();
 | |
| 		for (; I; I = I->next()) {
 | |
| 			Element *e = I->get();
 | |
| 			const AABB &aabb = e->aabb;
 | |
| 
 | |
| 			if (e->last_pass == pass || (use_pairs && !(e->pairable_type & p_mask))) {
 | |
| 				continue;
 | |
| 			}
 | |
| 			e->last_pass = pass;
 | |
| 
 | |
| 			if (p_aabb.intersects_inclusive(aabb)) {
 | |
| 				if (*p_result_idx < p_result_max) {
 | |
| 					p_result_array[*p_result_idx] = e->userdata;
 | |
| 					if (p_subindex_array) {
 | |
| 						p_subindex_array[*p_result_idx] = e->subindex;
 | |
| 					}
 | |
| 					(*p_result_idx)++;
 | |
| 				} else {
 | |
| 					return; // pointless to continue
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	for (int i = 0; i < 8; i++) {
 | |
| 		if (p_octant->children[i] && p_octant->children[i]->aabb.intersects_inclusive(p_aabb)) {
 | |
| 			_cull_aabb(p_octant->children[i], p_aabb, p_result_array, p_result_idx, p_result_max, p_subindex_array, p_mask);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| OCTREE_FUNC(void)::_cull_segment(Octant *p_octant, const Vector3 &p_from, const Vector3 &p_to, T **p_result_array, int *p_result_idx, int p_result_max, int *p_subindex_array, uint32_t p_mask) {
 | |
| 	if (*p_result_idx == p_result_max) {
 | |
| 		return; //pointless
 | |
| 	}
 | |
| 
 | |
| 	if (!p_octant->elements.empty()) {
 | |
| #ifdef OCTREE_USE_CACHED_LISTS
 | |
| 		// make sure cached list of element pointers and aabbs is up to date if this octant is dirty
 | |
| 		p_octant->update_cached_lists();
 | |
| 
 | |
| 		int num_elements = p_octant->clist.elements.size();
 | |
| 		for (int n = 0; n < num_elements; n++) {
 | |
| 			const AABB &aabb = p_octant->clist.aabbs[n];
 | |
| 			Element *e = p_octant->clist.elements[n];
 | |
| 
 | |
| 			if (e->last_pass == pass || (use_pairs && !(e->pairable_type & p_mask))) {
 | |
| 				continue;
 | |
| 			}
 | |
| 			e->last_pass = pass;
 | |
| 
 | |
| 			if (aabb.intersects_segment(p_from, p_to)) {
 | |
| 				if (*p_result_idx < p_result_max) {
 | |
| 					p_result_array[*p_result_idx] = e->userdata;
 | |
| 					if (p_subindex_array) {
 | |
| 						p_subindex_array[*p_result_idx] = e->subindex;
 | |
| 					}
 | |
| 					(*p_result_idx)++;
 | |
| 
 | |
| 				} else {
 | |
| 					return; // pointless to continue
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| #else
 | |
| 
 | |
| 		typename List<Element *, AL>::Element *I;
 | |
| 		I = p_octant->elements.front();
 | |
| 		for (; I; I = I->next()) {
 | |
| 			Element *e = I->get();
 | |
| 			const AABB &aabb = e->aabb;
 | |
| 
 | |
| 			if (e->last_pass == pass || (use_pairs && !(e->pairable_type & p_mask))) {
 | |
| 				continue;
 | |
| 			}
 | |
| 			e->last_pass = pass;
 | |
| 
 | |
| 			if (aabb.intersects_segment(p_from, p_to)) {
 | |
| 				if (*p_result_idx < p_result_max) {
 | |
| 					p_result_array[*p_result_idx] = e->userdata;
 | |
| 					if (p_subindex_array) {
 | |
| 						p_subindex_array[*p_result_idx] = e->subindex;
 | |
| 					}
 | |
| 					(*p_result_idx)++;
 | |
| 
 | |
| 				} else {
 | |
| 					return; // pointless to continue
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	if (use_pairs && !p_octant->pairable_elements.empty()) {
 | |
| #ifdef OCTREE_USE_CACHED_LISTS
 | |
| 		// make sure cached list of element pointers and aabbs is up to date if this octant is dirty
 | |
| 		p_octant->update_cached_lists();
 | |
| 
 | |
| 		int num_elements = p_octant->clist_pairable.elements.size();
 | |
| 		for (int n = 0; n < num_elements; n++) {
 | |
| 			const AABB &aabb = p_octant->clist_pairable.aabbs[n];
 | |
| 			Element *e = p_octant->clist_pairable.elements[n];
 | |
| 
 | |
| 			if (e->last_pass == pass || (use_pairs && !(e->pairable_type & p_mask))) {
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			e->last_pass = pass;
 | |
| 
 | |
| 			if (aabb.intersects_segment(p_from, p_to)) {
 | |
| 				if (*p_result_idx < p_result_max) {
 | |
| 					p_result_array[*p_result_idx] = e->userdata;
 | |
| 					if (p_subindex_array) {
 | |
| 						p_subindex_array[*p_result_idx] = e->subindex;
 | |
| 					}
 | |
| 
 | |
| 					(*p_result_idx)++;
 | |
| 
 | |
| 				} else {
 | |
| 					return; // pointless to continue
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| #else
 | |
| 		typename List<Element *, AL>::Element *I;
 | |
| 		I = p_octant->pairable_elements.front();
 | |
| 		for (; I; I = I->next()) {
 | |
| 			Element *e = I->get();
 | |
| 			const AABB &aabb = e->aabb;
 | |
| 
 | |
| 			if (e->last_pass == pass || (use_pairs && !(e->pairable_type & p_mask))) {
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			e->last_pass = pass;
 | |
| 
 | |
| 			if (aabb.intersects_segment(p_from, p_to)) {
 | |
| 				if (*p_result_idx < p_result_max) {
 | |
| 					p_result_array[*p_result_idx] = e->userdata;
 | |
| 					if (p_subindex_array) {
 | |
| 						p_subindex_array[*p_result_idx] = e->subindex;
 | |
| 					}
 | |
| 
 | |
| 					(*p_result_idx)++;
 | |
| 
 | |
| 				} else {
 | |
| 					return; // pointless to continue
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	for (int i = 0; i < 8; i++) {
 | |
| 		if (p_octant->children[i] && p_octant->children[i]->aabb.intersects_segment(p_from, p_to)) {
 | |
| 			_cull_segment(p_octant->children[i], p_from, p_to, p_result_array, p_result_idx, p_result_max, p_subindex_array, p_mask);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| OCTREE_FUNC(void)::_cull_point(Octant *p_octant, const Vector3 &p_point, T **p_result_array, int *p_result_idx, int p_result_max, int *p_subindex_array, uint32_t p_mask) {
 | |
| 	if (*p_result_idx == p_result_max) {
 | |
| 		return; //pointless
 | |
| 	}
 | |
| 
 | |
| 	if (!p_octant->elements.empty()) {
 | |
| #ifdef OCTREE_USE_CACHED_LISTS
 | |
| 		// make sure cached list of element pointers and aabbs is up to date if this octant is dirty
 | |
| 		p_octant->update_cached_lists();
 | |
| 
 | |
| 		int num_elements = p_octant->clist.elements.size();
 | |
| 		for (int n = 0; n < num_elements; n++) {
 | |
| 			const AABB &aabb = p_octant->clist.aabbs[n];
 | |
| 			Element *e = p_octant->clist.elements[n];
 | |
| 
 | |
| 			if (aabb.has_point(p_point)) {
 | |
| 				if (e->last_pass == pass || (use_pairs && !(e->pairable_type & p_mask))) {
 | |
| 					continue;
 | |
| 				}
 | |
| 				e->last_pass = pass;
 | |
| 
 | |
| 				if (*p_result_idx < p_result_max) {
 | |
| 					p_result_array[*p_result_idx] = e->userdata;
 | |
| 					if (p_subindex_array) {
 | |
| 						p_subindex_array[*p_result_idx] = e->subindex;
 | |
| 					}
 | |
| 					(*p_result_idx)++;
 | |
| 
 | |
| 				} else {
 | |
| 					return; // pointless to continue
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| #else
 | |
| 		typename List<Element *, AL>::Element *I;
 | |
| 		I = p_octant->elements.front();
 | |
| 		for (; I; I = I->next()) {
 | |
| 			Element *e = I->get();
 | |
| 			const AABB &aabb = e->aabb;
 | |
| 
 | |
| 			if (e->last_pass == pass || (use_pairs && !(e->pairable_type & p_mask))) {
 | |
| 				continue;
 | |
| 			}
 | |
| 			e->last_pass = pass;
 | |
| 
 | |
| 			if (aabb.has_point(p_point)) {
 | |
| 				if (*p_result_idx < p_result_max) {
 | |
| 					p_result_array[*p_result_idx] = e->userdata;
 | |
| 					if (p_subindex_array) {
 | |
| 						p_subindex_array[*p_result_idx] = e->subindex;
 | |
| 					}
 | |
| 					(*p_result_idx)++;
 | |
| 
 | |
| 				} else {
 | |
| 					return; // pointless to continue
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	if (use_pairs && !p_octant->pairable_elements.empty()) {
 | |
| #ifdef OCTREE_USE_CACHED_LISTS
 | |
| 		// make sure cached list of element pointers and aabbs is up to date if this octant is dirty
 | |
| 		p_octant->update_cached_lists();
 | |
| 
 | |
| 		int num_elements = p_octant->clist_pairable.elements.size();
 | |
| 		for (int n = 0; n < num_elements; n++) {
 | |
| 			const AABB &aabb = p_octant->clist_pairable.aabbs[n];
 | |
| 			Element *e = p_octant->clist_pairable.elements[n];
 | |
| 
 | |
| 			if (aabb.has_point(p_point)) {
 | |
| 				if (e->last_pass == pass || (use_pairs && !(e->pairable_type & p_mask))) {
 | |
| 					continue;
 | |
| 				}
 | |
| 
 | |
| 				e->last_pass = pass;
 | |
| 
 | |
| 				if (*p_result_idx < p_result_max) {
 | |
| 					p_result_array[*p_result_idx] = e->userdata;
 | |
| 					if (p_subindex_array) {
 | |
| 						p_subindex_array[*p_result_idx] = e->subindex;
 | |
| 					}
 | |
| 
 | |
| 					(*p_result_idx)++;
 | |
| 
 | |
| 				} else {
 | |
| 					return; // pointless to continue
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| #else
 | |
| 		typename List<Element *, AL>::Element *I;
 | |
| 		I = p_octant->pairable_elements.front();
 | |
| 		for (; I; I = I->next()) {
 | |
| 			Element *e = I->get();
 | |
| 			const AABB &aabb = e->aabb;
 | |
| 
 | |
| 			if (e->last_pass == pass || (use_pairs && !(e->pairable_type & p_mask))) {
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			e->last_pass = pass;
 | |
| 
 | |
| 			if (aabb.has_point(p_point)) {
 | |
| 				if (*p_result_idx < p_result_max) {
 | |
| 					p_result_array[*p_result_idx] = e->userdata;
 | |
| 					if (p_subindex_array) {
 | |
| 						p_subindex_array[*p_result_idx] = e->subindex;
 | |
| 					}
 | |
| 
 | |
| 					(*p_result_idx)++;
 | |
| 
 | |
| 				} else {
 | |
| 					return; // pointless to continue
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	for (int i = 0; i < 8; i++) {
 | |
| 		//could be optimized..
 | |
| 		if (p_octant->children[i] && p_octant->children[i]->aabb.has_point(p_point)) {
 | |
| 			_cull_point(p_octant->children[i], p_point, p_result_array, p_result_idx, p_result_max, p_subindex_array, p_mask);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| OCTREE_FUNC(int)::cull_convex(const Vector<Plane> &p_convex, T **p_result_array, int p_result_max, uint32_t p_mask) {
 | |
| 	if (!root || p_convex.size() == 0) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	Vector<Vector3> convex_points = Geometry::compute_convex_mesh_points(&p_convex[0], p_convex.size());
 | |
| 	if (convex_points.size() == 0) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	int result_count = 0;
 | |
| 	pass++;
 | |
| 	_CullConvexData cdata;
 | |
| 	cdata.planes = &p_convex[0];
 | |
| 	cdata.plane_count = p_convex.size();
 | |
| 	cdata.points = &convex_points[0];
 | |
| 	cdata.point_count = convex_points.size();
 | |
| 	cdata.result_array = p_result_array;
 | |
| 	cdata.result_max = p_result_max;
 | |
| 	cdata.result_idx = &result_count;
 | |
| 	cdata.mask = p_mask;
 | |
| 
 | |
| 	_cull_convex(root, &cdata);
 | |
| 
 | |
| 	return result_count;
 | |
| }
 | |
| 
 | |
| OCTREE_FUNC(int)::cull_aabb(const AABB &p_aabb, T **p_result_array, int p_result_max, int *p_subindex_array, uint32_t p_mask) {
 | |
| 	if (!root) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	int result_count = 0;
 | |
| 	pass++;
 | |
| 	_cull_aabb(root, p_aabb, p_result_array, &result_count, p_result_max, p_subindex_array, p_mask);
 | |
| 
 | |
| 	return result_count;
 | |
| }
 | |
| 
 | |
| OCTREE_FUNC(int)::cull_segment(const Vector3 &p_from, const Vector3 &p_to, T **p_result_array, int p_result_max, int *p_subindex_array, uint32_t p_mask) {
 | |
| 	if (!root) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	int result_count = 0;
 | |
| 	pass++;
 | |
| 	_cull_segment(root, p_from, p_to, p_result_array, &result_count, p_result_max, p_subindex_array, p_mask);
 | |
| 
 | |
| 	return result_count;
 | |
| }
 | |
| 
 | |
| OCTREE_FUNC(int)::cull_point(const Vector3 &p_point, T **p_result_array, int p_result_max, int *p_subindex_array, uint32_t p_mask) {
 | |
| 	if (!root) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	int result_count = 0;
 | |
| 	pass++;
 | |
| 	_cull_point(root, p_point, p_result_array, &result_count, p_result_max, p_subindex_array, p_mask);
 | |
| 
 | |
| 	return result_count;
 | |
| }
 | |
| 
 | |
| OCTREE_FUNC(void)::set_pair_callback(PairCallback p_callback, void *p_userdata) {
 | |
| 	pair_callback = p_callback;
 | |
| 	pair_callback_userdata = p_userdata;
 | |
| }
 | |
| 
 | |
| OCTREE_FUNC(void)::set_unpair_callback(UnpairCallback p_callback, void *p_userdata) {
 | |
| 	unpair_callback = p_callback;
 | |
| 	unpair_callback_userdata = p_userdata;
 | |
| }
 | |
| 
 | |
| OCTREE_FUNC_CONSTRUCTOR::OCTREE_CLASS_NAME(real_t p_unit_size) {
 | |
| 	last_element_id = 1;
 | |
| 	pass = 1;
 | |
| 	unit_size = p_unit_size;
 | |
| 	root = nullptr;
 | |
| 
 | |
| 	octant_count = 0;
 | |
| 	pair_count = 0;
 | |
| 	octant_elements_limit = OCTREE_DEFAULT_OCTANT_LIMIT;
 | |
| 
 | |
| 	pair_callback = nullptr;
 | |
| 	unpair_callback = nullptr;
 | |
| 	pair_callback_userdata = nullptr;
 | |
| 	unpair_callback_userdata = nullptr;
 | |
| }
 | |
| 
 | |
| #ifdef TOOLS_ENABLED
 | |
| OCTREE_FUNC(String)::debug_aabb_to_string(const AABB &aabb) const {
 | |
| 	String sz;
 | |
| 	sz = "( " + String(aabb.position);
 | |
| 	sz += " ) - ( ";
 | |
| 	Vector3 max = aabb.position + aabb.size;
 | |
| 	sz += String(max) + " )";
 | |
| 	return sz;
 | |
| }
 | |
| 
 | |
| OCTREE_FUNC(void)::debug_octants() {
 | |
| 	if (root) {
 | |
| 		debug_octant(*root);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| OCTREE_FUNC(void)::debug_octant(const Octant &oct, int depth) {
 | |
| 	String sz = "";
 | |
| 	for (int d = 0; d < depth; d++) {
 | |
| 		sz += "\t";
 | |
| 	}
 | |
| 
 | |
| 	sz += "Octant " + debug_aabb_to_string(oct.aabb);
 | |
| 	sz += "\tnum_children " + itos(oct.children_count);
 | |
| 	sz += ", num_eles " + itos(oct.elements.size());
 | |
| 	sz += ", num_paired_eles" + itos(oct.pairable_elements.size());
 | |
| 	print_line(sz);
 | |
| 
 | |
| 	for (int n = 0; n < 8; n++) {
 | |
| 		const Octant *pChild = oct.children[n];
 | |
| 		if (pChild) {
 | |
| 			debug_octant(*pChild, depth + 1);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| #endif // TOOLS_ENABLED
 | |
| 
 | |
| #undef OCTREE_FUNC
 | 
