mirror of
				https://github.com/godotengine/godot.git
				synced 2025-11-03 23:21:15 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			405 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			405 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*************************************************************************/
 | 
						|
/*  collision_solver_sw.cpp                                              */
 | 
						|
/*************************************************************************/
 | 
						|
/*                       This file is part of:                           */
 | 
						|
/*                           GODOT ENGINE                                */
 | 
						|
/*                      https://godotengine.org                          */
 | 
						|
/*************************************************************************/
 | 
						|
/* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur.                 */
 | 
						|
/* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md).   */
 | 
						|
/*                                                                       */
 | 
						|
/* Permission is hereby granted, free of charge, to any person obtaining */
 | 
						|
/* a copy of this software and associated documentation files (the       */
 | 
						|
/* "Software"), to deal in the Software without restriction, including   */
 | 
						|
/* without limitation the rights to use, copy, modify, merge, publish,   */
 | 
						|
/* distribute, sublicense, and/or sell copies of the Software, and to    */
 | 
						|
/* permit persons to whom the Software is furnished to do so, subject to */
 | 
						|
/* the following conditions:                                             */
 | 
						|
/*                                                                       */
 | 
						|
/* The above copyright notice and this permission notice shall be        */
 | 
						|
/* included in all copies or substantial portions of the Software.       */
 | 
						|
/*                                                                       */
 | 
						|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */
 | 
						|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */
 | 
						|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
 | 
						|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */
 | 
						|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */
 | 
						|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */
 | 
						|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */
 | 
						|
/*************************************************************************/
 | 
						|
 | 
						|
#include "collision_solver_sw.h"
 | 
						|
#include "collision_solver_sat.h"
 | 
						|
 | 
						|
#include "gjk_epa.h"
 | 
						|
 | 
						|
#define collision_solver sat_calculate_penetration
 | 
						|
//#define collision_solver gjk_epa_calculate_penetration
 | 
						|
 | 
						|
bool CollisionSolverSW::solve_static_plane(const ShapeSW *p_shape_A, const Transform &p_transform_A, const ShapeSW *p_shape_B, const Transform &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result) {
 | 
						|
	const PlaneShapeSW *plane = static_cast<const PlaneShapeSW *>(p_shape_A);
 | 
						|
	if (p_shape_B->get_type() == PhysicsServer::SHAPE_PLANE) {
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
	Plane p = p_transform_A.xform(plane->get_plane());
 | 
						|
 | 
						|
	static const int max_supports = 16;
 | 
						|
	Vector3 supports[max_supports];
 | 
						|
	int support_count;
 | 
						|
	ShapeSW::FeatureType support_type;
 | 
						|
 | 
						|
	p_shape_B->get_supports(p_transform_B.basis.xform_inv(-p.normal).normalized(), max_supports, supports, support_count, support_type);
 | 
						|
 | 
						|
	if (support_type == ShapeSW::FEATURE_CIRCLE) {
 | 
						|
		ERR_FAIL_COND_V(support_count != 3, false);
 | 
						|
 | 
						|
		Vector3 circle_pos = supports[0];
 | 
						|
		Vector3 circle_axis_1 = supports[1] - circle_pos;
 | 
						|
		Vector3 circle_axis_2 = supports[2] - circle_pos;
 | 
						|
 | 
						|
		// Use 3 equidistant points on the circle.
 | 
						|
		for (int i = 0; i < 3; ++i) {
 | 
						|
			Vector3 vertex_pos = circle_pos;
 | 
						|
			vertex_pos += circle_axis_1 * Math::cos(2.0 * Math_PI * i / 3.0);
 | 
						|
			vertex_pos += circle_axis_2 * Math::sin(2.0 * Math_PI * i / 3.0);
 | 
						|
			supports[i] = vertex_pos;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	bool found = false;
 | 
						|
 | 
						|
	for (int i = 0; i < support_count; i++) {
 | 
						|
		supports[i] = p_transform_B.xform(supports[i]);
 | 
						|
		if (p.distance_to(supports[i]) >= 0) {
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		found = true;
 | 
						|
 | 
						|
		Vector3 support_A = p.project(supports[i]);
 | 
						|
 | 
						|
		if (p_result_callback) {
 | 
						|
			if (p_swap_result) {
 | 
						|
				p_result_callback(supports[i], support_A, p_userdata);
 | 
						|
			} else {
 | 
						|
				p_result_callback(support_A, supports[i], p_userdata);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return found;
 | 
						|
}
 | 
						|
 | 
						|
bool CollisionSolverSW::solve_ray(const ShapeSW *p_shape_A, const Transform &p_transform_A, const ShapeSW *p_shape_B, const Transform &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result, real_t p_margin) {
 | 
						|
	const RayShapeSW *ray = static_cast<const RayShapeSW *>(p_shape_A);
 | 
						|
 | 
						|
	Vector3 from = p_transform_A.origin;
 | 
						|
	Vector3 to = from + p_transform_A.basis.get_axis(2) * (ray->get_length() + p_margin);
 | 
						|
	Vector3 support_A = to;
 | 
						|
 | 
						|
	Transform ai = p_transform_B.affine_inverse();
 | 
						|
 | 
						|
	from = ai.xform(from);
 | 
						|
	to = ai.xform(to);
 | 
						|
 | 
						|
	Vector3 p, n;
 | 
						|
	if (!p_shape_B->intersect_segment(from, to, p, n)) {
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
 | 
						|
	Vector3 support_B = p_transform_B.xform(p);
 | 
						|
	if (ray->get_slips_on_slope()) {
 | 
						|
		Vector3 global_n = ai.basis.xform_inv(n).normalized();
 | 
						|
		support_B = support_A + (support_B - support_A).length() * global_n;
 | 
						|
	}
 | 
						|
 | 
						|
	if (p_result_callback) {
 | 
						|
		if (p_swap_result) {
 | 
						|
			p_result_callback(support_B, support_A, p_userdata);
 | 
						|
		} else {
 | 
						|
			p_result_callback(support_A, support_B, p_userdata);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
struct _ConcaveCollisionInfo {
 | 
						|
	const Transform *transform_A;
 | 
						|
	const ShapeSW *shape_A;
 | 
						|
	const Transform *transform_B;
 | 
						|
	CollisionSolverSW::CallbackResult result_callback;
 | 
						|
	void *userdata;
 | 
						|
	bool swap_result;
 | 
						|
	bool collided;
 | 
						|
	int aabb_tests;
 | 
						|
	int collisions;
 | 
						|
	bool tested;
 | 
						|
	real_t margin_A;
 | 
						|
	real_t margin_B;
 | 
						|
	Vector3 close_A, close_B;
 | 
						|
};
 | 
						|
 | 
						|
bool CollisionSolverSW::concave_callback(void *p_userdata, ShapeSW *p_convex) {
 | 
						|
	_ConcaveCollisionInfo &cinfo = *(_ConcaveCollisionInfo *)(p_userdata);
 | 
						|
	cinfo.aabb_tests++;
 | 
						|
 | 
						|
	bool collided = collision_solver(cinfo.shape_A, *cinfo.transform_A, p_convex, *cinfo.transform_B, cinfo.result_callback, cinfo.userdata, cinfo.swap_result, nullptr, cinfo.margin_A, cinfo.margin_B);
 | 
						|
	if (!collided) {
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
 | 
						|
	cinfo.collided = true;
 | 
						|
	cinfo.collisions++;
 | 
						|
 | 
						|
	// Stop at first collision if contacts are not needed.
 | 
						|
	return !cinfo.result_callback;
 | 
						|
}
 | 
						|
 | 
						|
bool CollisionSolverSW::solve_concave(const ShapeSW *p_shape_A, const Transform &p_transform_A, const ShapeSW *p_shape_B, const Transform &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result, real_t p_margin_A, real_t p_margin_B) {
 | 
						|
	const ConcaveShapeSW *concave_B = static_cast<const ConcaveShapeSW *>(p_shape_B);
 | 
						|
 | 
						|
	_ConcaveCollisionInfo cinfo;
 | 
						|
	cinfo.transform_A = &p_transform_A;
 | 
						|
	cinfo.shape_A = p_shape_A;
 | 
						|
	cinfo.transform_B = &p_transform_B;
 | 
						|
	cinfo.result_callback = p_result_callback;
 | 
						|
	cinfo.userdata = p_userdata;
 | 
						|
	cinfo.swap_result = p_swap_result;
 | 
						|
	cinfo.collided = false;
 | 
						|
	cinfo.collisions = 0;
 | 
						|
	cinfo.margin_A = p_margin_A;
 | 
						|
	cinfo.margin_B = p_margin_B;
 | 
						|
 | 
						|
	cinfo.aabb_tests = 0;
 | 
						|
 | 
						|
	Transform rel_transform = p_transform_A;
 | 
						|
	rel_transform.origin -= p_transform_B.origin;
 | 
						|
 | 
						|
	//quickly compute a local AABB
 | 
						|
 | 
						|
	AABB local_aabb;
 | 
						|
	for (int i = 0; i < 3; i++) {
 | 
						|
		Vector3 axis(p_transform_B.basis.get_axis(i));
 | 
						|
		real_t axis_scale = 1.0 / axis.length();
 | 
						|
		axis *= axis_scale;
 | 
						|
 | 
						|
		real_t smin, smax;
 | 
						|
		p_shape_A->project_range(axis, rel_transform, smin, smax);
 | 
						|
		smin -= p_margin_A;
 | 
						|
		smax += p_margin_A;
 | 
						|
		smin *= axis_scale;
 | 
						|
		smax *= axis_scale;
 | 
						|
 | 
						|
		local_aabb.position[i] = smin;
 | 
						|
		local_aabb.size[i] = smax - smin;
 | 
						|
	}
 | 
						|
 | 
						|
	concave_B->cull(local_aabb, concave_callback, &cinfo);
 | 
						|
 | 
						|
	return cinfo.collided;
 | 
						|
}
 | 
						|
 | 
						|
bool CollisionSolverSW::solve_static(const ShapeSW *p_shape_A, const Transform &p_transform_A, const ShapeSW *p_shape_B, const Transform &p_transform_B, CallbackResult p_result_callback, void *p_userdata, Vector3 *r_sep_axis, real_t p_margin_A, real_t p_margin_B) {
 | 
						|
	PhysicsServer::ShapeType type_A = p_shape_A->get_type();
 | 
						|
	PhysicsServer::ShapeType type_B = p_shape_B->get_type();
 | 
						|
	bool concave_A = p_shape_A->is_concave();
 | 
						|
	bool concave_B = p_shape_B->is_concave();
 | 
						|
 | 
						|
	bool swap = false;
 | 
						|
 | 
						|
	if (type_A > type_B) {
 | 
						|
		SWAP(type_A, type_B);
 | 
						|
		SWAP(concave_A, concave_B);
 | 
						|
		swap = true;
 | 
						|
	}
 | 
						|
 | 
						|
	if (type_A == PhysicsServer::SHAPE_PLANE) {
 | 
						|
		if (type_B == PhysicsServer::SHAPE_PLANE) {
 | 
						|
			return false;
 | 
						|
		}
 | 
						|
		if (type_B == PhysicsServer::SHAPE_RAY) {
 | 
						|
			return false;
 | 
						|
		}
 | 
						|
 | 
						|
		if (swap) {
 | 
						|
			return solve_static_plane(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true);
 | 
						|
		} else {
 | 
						|
			return solve_static_plane(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false);
 | 
						|
		}
 | 
						|
 | 
						|
	} else if (type_A == PhysicsServer::SHAPE_RAY) {
 | 
						|
		if (type_B == PhysicsServer::SHAPE_RAY) {
 | 
						|
			return false;
 | 
						|
		}
 | 
						|
 | 
						|
		if (swap) {
 | 
						|
			return solve_ray(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true, p_margin_B);
 | 
						|
		} else {
 | 
						|
			return solve_ray(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, p_margin_A);
 | 
						|
		}
 | 
						|
 | 
						|
	} else if (concave_B) {
 | 
						|
		if (concave_A) {
 | 
						|
			return false;
 | 
						|
		}
 | 
						|
 | 
						|
		if (!swap) {
 | 
						|
			return solve_concave(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, p_margin_A, p_margin_B);
 | 
						|
		} else {
 | 
						|
			return solve_concave(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true, p_margin_A, p_margin_B);
 | 
						|
		}
 | 
						|
 | 
						|
	} else {
 | 
						|
		return collision_solver(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, r_sep_axis, p_margin_A, p_margin_B);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
bool CollisionSolverSW::concave_distance_callback(void *p_userdata, ShapeSW *p_convex) {
 | 
						|
	_ConcaveCollisionInfo &cinfo = *(_ConcaveCollisionInfo *)(p_userdata);
 | 
						|
	cinfo.aabb_tests++;
 | 
						|
 | 
						|
	Vector3 close_A, close_B;
 | 
						|
	cinfo.collided = !gjk_epa_calculate_distance(cinfo.shape_A, *cinfo.transform_A, p_convex, *cinfo.transform_B, close_A, close_B);
 | 
						|
 | 
						|
	if (cinfo.collided) {
 | 
						|
		// No need to process any more result.
 | 
						|
		return true;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!cinfo.tested || close_A.distance_squared_to(close_B) < cinfo.close_A.distance_squared_to(cinfo.close_B)) {
 | 
						|
		cinfo.close_A = close_A;
 | 
						|
		cinfo.close_B = close_B;
 | 
						|
		cinfo.tested = true;
 | 
						|
	}
 | 
						|
 | 
						|
	cinfo.collisions++;
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
bool CollisionSolverSW::solve_distance_plane(const ShapeSW *p_shape_A, const Transform &p_transform_A, const ShapeSW *p_shape_B, const Transform &p_transform_B, Vector3 &r_point_A, Vector3 &r_point_B) {
 | 
						|
	const PlaneShapeSW *plane = static_cast<const PlaneShapeSW *>(p_shape_A);
 | 
						|
	if (p_shape_B->get_type() == PhysicsServer::SHAPE_PLANE) {
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
	Plane p = p_transform_A.xform(plane->get_plane());
 | 
						|
 | 
						|
	static const int max_supports = 16;
 | 
						|
	Vector3 supports[max_supports];
 | 
						|
	int support_count;
 | 
						|
	ShapeSW::FeatureType support_type;
 | 
						|
 | 
						|
	p_shape_B->get_supports(p_transform_B.basis.xform_inv(-p.normal).normalized(), max_supports, supports, support_count, support_type);
 | 
						|
 | 
						|
	if (support_type == ShapeSW::FEATURE_CIRCLE) {
 | 
						|
		ERR_FAIL_COND_V(support_count != 3, false);
 | 
						|
 | 
						|
		Vector3 circle_pos = supports[0];
 | 
						|
		Vector3 circle_axis_1 = supports[1] - circle_pos;
 | 
						|
		Vector3 circle_axis_2 = supports[2] - circle_pos;
 | 
						|
 | 
						|
		// Use 3 equidistant points on the circle.
 | 
						|
		for (int i = 0; i < 3; ++i) {
 | 
						|
			Vector3 vertex_pos = circle_pos;
 | 
						|
			vertex_pos += circle_axis_1 * Math::cos(2.0 * Math_PI * i / 3.0);
 | 
						|
			vertex_pos += circle_axis_2 * Math::sin(2.0 * Math_PI * i / 3.0);
 | 
						|
			supports[i] = vertex_pos;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	bool collided = false;
 | 
						|
	Vector3 closest;
 | 
						|
	real_t closest_d = 0;
 | 
						|
 | 
						|
	for (int i = 0; i < support_count; i++) {
 | 
						|
		supports[i] = p_transform_B.xform(supports[i]);
 | 
						|
		real_t d = p.distance_to(supports[i]);
 | 
						|
		if (i == 0 || d < closest_d) {
 | 
						|
			closest = supports[i];
 | 
						|
			closest_d = d;
 | 
						|
			if (d <= 0) {
 | 
						|
				collided = true;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	r_point_A = p.project(closest);
 | 
						|
	r_point_B = closest;
 | 
						|
 | 
						|
	return collided;
 | 
						|
}
 | 
						|
 | 
						|
bool CollisionSolverSW::solve_distance(const ShapeSW *p_shape_A, const Transform &p_transform_A, const ShapeSW *p_shape_B, const Transform &p_transform_B, Vector3 &r_point_A, Vector3 &r_point_B, const AABB &p_concave_hint, Vector3 *r_sep_axis) {
 | 
						|
	if (p_shape_A->is_concave()) {
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
 | 
						|
	if (p_shape_B->get_type() == PhysicsServer::SHAPE_PLANE) {
 | 
						|
		Vector3 a, b;
 | 
						|
		bool col = solve_distance_plane(p_shape_B, p_transform_B, p_shape_A, p_transform_A, a, b);
 | 
						|
		r_point_A = b;
 | 
						|
		r_point_B = a;
 | 
						|
		return !col;
 | 
						|
 | 
						|
	} else if (p_shape_B->is_concave()) {
 | 
						|
		if (p_shape_A->is_concave()) {
 | 
						|
			return false;
 | 
						|
		}
 | 
						|
 | 
						|
		const ConcaveShapeSW *concave_B = static_cast<const ConcaveShapeSW *>(p_shape_B);
 | 
						|
 | 
						|
		_ConcaveCollisionInfo cinfo;
 | 
						|
		cinfo.transform_A = &p_transform_A;
 | 
						|
		cinfo.shape_A = p_shape_A;
 | 
						|
		cinfo.transform_B = &p_transform_B;
 | 
						|
		cinfo.result_callback = nullptr;
 | 
						|
		cinfo.userdata = nullptr;
 | 
						|
		cinfo.swap_result = false;
 | 
						|
		cinfo.collided = false;
 | 
						|
		cinfo.collisions = 0;
 | 
						|
		cinfo.aabb_tests = 0;
 | 
						|
		cinfo.tested = false;
 | 
						|
 | 
						|
		Transform rel_transform = p_transform_A;
 | 
						|
		rel_transform.origin -= p_transform_B.origin;
 | 
						|
 | 
						|
		//quickly compute a local AABB
 | 
						|
 | 
						|
		bool use_cc_hint = p_concave_hint != AABB();
 | 
						|
		AABB cc_hint_aabb;
 | 
						|
		if (use_cc_hint) {
 | 
						|
			cc_hint_aabb = p_concave_hint;
 | 
						|
			cc_hint_aabb.position -= p_transform_B.origin;
 | 
						|
		}
 | 
						|
 | 
						|
		AABB local_aabb;
 | 
						|
		for (int i = 0; i < 3; i++) {
 | 
						|
			Vector3 axis(p_transform_B.basis.get_axis(i));
 | 
						|
			real_t axis_scale = ((real_t)1.0) / axis.length();
 | 
						|
			axis *= axis_scale;
 | 
						|
 | 
						|
			real_t smin, smax;
 | 
						|
 | 
						|
			if (use_cc_hint) {
 | 
						|
				cc_hint_aabb.project_range_in_plane(Plane(axis, 0), smin, smax);
 | 
						|
			} else {
 | 
						|
				p_shape_A->project_range(axis, rel_transform, smin, smax);
 | 
						|
			}
 | 
						|
 | 
						|
			smin *= axis_scale;
 | 
						|
			smax *= axis_scale;
 | 
						|
 | 
						|
			local_aabb.position[i] = smin;
 | 
						|
			local_aabb.size[i] = smax - smin;
 | 
						|
		}
 | 
						|
 | 
						|
		concave_B->cull(local_aabb, concave_distance_callback, &cinfo);
 | 
						|
		if (!cinfo.collided) {
 | 
						|
			r_point_A = cinfo.close_A;
 | 
						|
			r_point_B = cinfo.close_B;
 | 
						|
		}
 | 
						|
 | 
						|
		return !cinfo.collided;
 | 
						|
	} else {
 | 
						|
		return gjk_epa_calculate_distance(p_shape_A, p_transform_A, p_shape_B, p_transform_B, r_point_A, r_point_B); //should pass sepaxis..
 | 
						|
	}
 | 
						|
}
 |