mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-31 13:41:03 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			783 lines
		
	
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			783 lines
		
	
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*************************************************************************/
 | |
| /*  array.cpp                                                            */
 | |
| /*************************************************************************/
 | |
| /*                       This file is part of:                           */
 | |
| /*                           GODOT ENGINE                                */
 | |
| /*                      https://godotengine.org                          */
 | |
| /*************************************************************************/
 | |
| /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur.                 */
 | |
| /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md).   */
 | |
| /*                                                                       */
 | |
| /* Permission is hereby granted, free of charge, to any person obtaining */
 | |
| /* a copy of this software and associated documentation files (the       */
 | |
| /* "Software"), to deal in the Software without restriction, including   */
 | |
| /* without limitation the rights to use, copy, modify, merge, publish,   */
 | |
| /* distribute, sublicense, and/or sell copies of the Software, and to    */
 | |
| /* permit persons to whom the Software is furnished to do so, subject to */
 | |
| /* the following conditions:                                             */
 | |
| /*                                                                       */
 | |
| /* The above copyright notice and this permission notice shall be        */
 | |
| /* included in all copies or substantial portions of the Software.       */
 | |
| /*                                                                       */
 | |
| /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */
 | |
| /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */
 | |
| /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
 | |
| /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */
 | |
| /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */
 | |
| /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */
 | |
| /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */
 | |
| /*************************************************************************/
 | |
| 
 | |
| #include "array.h"
 | |
| 
 | |
| #include "container_type_validate.h"
 | |
| #include "core/math/math_funcs.h"
 | |
| #include "core/object/class_db.h"
 | |
| #include "core/object/script_language.h"
 | |
| #include "core/templates/hashfuncs.h"
 | |
| #include "core/templates/search_array.h"
 | |
| #include "core/templates/vector.h"
 | |
| #include "core/variant/callable.h"
 | |
| #include "core/variant/variant.h"
 | |
| 
 | |
| class ArrayPrivate {
 | |
| public:
 | |
| 	SafeRefCount refcount;
 | |
| 	Vector<Variant> array;
 | |
| 	Variant *read_only = nullptr; // If enabled, a pointer is used to a temporary value that is used to return read-only values.
 | |
| 	ContainerTypeValidate typed;
 | |
| };
 | |
| 
 | |
| void Array::_ref(const Array &p_from) const {
 | |
| 	ArrayPrivate *_fp = p_from._p;
 | |
| 
 | |
| 	ERR_FAIL_COND(!_fp); // should NOT happen.
 | |
| 
 | |
| 	if (unlikely(_fp->read_only != nullptr)) {
 | |
| 		// If p_from is a read-only array, just copy the contents to avoid further modification.
 | |
| 		_unref();
 | |
| 		_p = memnew(ArrayPrivate);
 | |
| 		_p->refcount.init();
 | |
| 		_p->array = _fp->array;
 | |
| 		_p->typed = _fp->typed;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (_fp == _p) {
 | |
| 		return; // whatever it is, nothing to do here move along
 | |
| 	}
 | |
| 
 | |
| 	bool success = _fp->refcount.ref();
 | |
| 
 | |
| 	ERR_FAIL_COND(!success); // should really not happen either
 | |
| 
 | |
| 	_unref();
 | |
| 
 | |
| 	_p = p_from._p;
 | |
| }
 | |
| 
 | |
| void Array::_unref() const {
 | |
| 	if (!_p) {
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (_p->refcount.unref()) {
 | |
| 		if (_p->read_only) {
 | |
| 			memdelete(_p->read_only);
 | |
| 		}
 | |
| 		memdelete(_p);
 | |
| 	}
 | |
| 	_p = nullptr;
 | |
| }
 | |
| 
 | |
| Variant &Array::operator[](int p_idx) {
 | |
| 	if (unlikely(_p->read_only)) {
 | |
| 		*_p->read_only = _p->array[p_idx];
 | |
| 		return *_p->read_only;
 | |
| 	}
 | |
| 	return _p->array.write[p_idx];
 | |
| }
 | |
| 
 | |
| const Variant &Array::operator[](int p_idx) const {
 | |
| 	if (unlikely(_p->read_only)) {
 | |
| 		*_p->read_only = _p->array[p_idx];
 | |
| 		return *_p->read_only;
 | |
| 	}
 | |
| 	return _p->array[p_idx];
 | |
| }
 | |
| 
 | |
| int Array::size() const {
 | |
| 	return _p->array.size();
 | |
| }
 | |
| 
 | |
| bool Array::is_empty() const {
 | |
| 	return _p->array.is_empty();
 | |
| }
 | |
| 
 | |
| void Array::clear() {
 | |
| 	ERR_FAIL_COND_MSG(_p->read_only, "Array is in read-only state.");
 | |
| 	_p->array.clear();
 | |
| }
 | |
| 
 | |
| bool Array::operator==(const Array &p_array) const {
 | |
| 	return recursive_equal(p_array, 0);
 | |
| }
 | |
| 
 | |
| bool Array::operator!=(const Array &p_array) const {
 | |
| 	return !recursive_equal(p_array, 0);
 | |
| }
 | |
| 
 | |
| bool Array::recursive_equal(const Array &p_array, int recursion_count) const {
 | |
| 	// Cheap checks
 | |
| 	if (_p == p_array._p) {
 | |
| 		return true;
 | |
| 	}
 | |
| 	const Vector<Variant> &a1 = _p->array;
 | |
| 	const Vector<Variant> &a2 = p_array._p->array;
 | |
| 	const int size = a1.size();
 | |
| 	if (size != a2.size()) {
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	// Heavy O(n) check
 | |
| 	if (recursion_count > MAX_RECURSION) {
 | |
| 		ERR_PRINT("Max recursion reached");
 | |
| 		return true;
 | |
| 	}
 | |
| 	recursion_count++;
 | |
| 	for (int i = 0; i < size; i++) {
 | |
| 		if (!a1[i].hash_compare(a2[i], recursion_count)) {
 | |
| 			return false;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| bool Array::operator<(const Array &p_array) const {
 | |
| 	int a_len = size();
 | |
| 	int b_len = p_array.size();
 | |
| 
 | |
| 	int min_cmp = MIN(a_len, b_len);
 | |
| 
 | |
| 	for (int i = 0; i < min_cmp; i++) {
 | |
| 		if (operator[](i) < p_array[i]) {
 | |
| 			return true;
 | |
| 		} else if (p_array[i] < operator[](i)) {
 | |
| 			return false;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return a_len < b_len;
 | |
| }
 | |
| 
 | |
| bool Array::operator<=(const Array &p_array) const {
 | |
| 	return !operator>(p_array);
 | |
| }
 | |
| bool Array::operator>(const Array &p_array) const {
 | |
| 	return p_array < *this;
 | |
| }
 | |
| bool Array::operator>=(const Array &p_array) const {
 | |
| 	return !operator<(p_array);
 | |
| }
 | |
| 
 | |
| uint32_t Array::hash() const {
 | |
| 	return recursive_hash(0);
 | |
| }
 | |
| 
 | |
| uint32_t Array::recursive_hash(int recursion_count) const {
 | |
| 	if (recursion_count > MAX_RECURSION) {
 | |
| 		ERR_PRINT("Max recursion reached");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	uint32_t h = hash_murmur3_one_32(Variant::ARRAY);
 | |
| 
 | |
| 	recursion_count++;
 | |
| 	for (int i = 0; i < _p->array.size(); i++) {
 | |
| 		h = hash_murmur3_one_32(_p->array[i].recursive_hash(recursion_count), h);
 | |
| 	}
 | |
| 	return hash_fmix32(h);
 | |
| }
 | |
| 
 | |
| bool Array::_assign(const Array &p_array) {
 | |
| 	if (_p->typed.type != Variant::OBJECT && _p->typed.type == p_array._p->typed.type) {
 | |
| 		//same type or untyped, just reference, should be fine
 | |
| 		_ref(p_array);
 | |
| 	} else if (_p->typed.type == Variant::NIL) { //from typed to untyped, must copy, but this is cheap anyway
 | |
| 		_p->array = p_array._p->array;
 | |
| 	} else if (p_array._p->typed.type == Variant::NIL) { //from untyped to typed, must try to check if they are all valid
 | |
| 		if (_p->typed.type == Variant::OBJECT) {
 | |
| 			//for objects, it needs full validation, either can be converted or fail
 | |
| 			for (int i = 0; i < p_array._p->array.size(); i++) {
 | |
| 				if (!_p->typed.validate(p_array._p->array[i], "assign")) {
 | |
| 					return false;
 | |
| 				}
 | |
| 			}
 | |
| 			_p->array = p_array._p->array; //then just copy, which is cheap anyway
 | |
| 
 | |
| 		} else {
 | |
| 			//for non objects, we need to check if there is a valid conversion, which needs to happen one by one, so this is the worst case.
 | |
| 			Vector<Variant> new_array;
 | |
| 			new_array.resize(p_array._p->array.size());
 | |
| 			for (int i = 0; i < p_array._p->array.size(); i++) {
 | |
| 				Variant src_val = p_array._p->array[i];
 | |
| 				if (src_val.get_type() == _p->typed.type) {
 | |
| 					new_array.write[i] = src_val;
 | |
| 				} else if (Variant::can_convert_strict(src_val.get_type(), _p->typed.type)) {
 | |
| 					Variant *ptr = &src_val;
 | |
| 					Callable::CallError ce;
 | |
| 					Variant::construct(_p->typed.type, new_array.write[i], (const Variant **)&ptr, 1, ce);
 | |
| 					if (ce.error != Callable::CallError::CALL_OK) {
 | |
| 						ERR_FAIL_V_MSG(false, "Unable to convert array index " + itos(i) + " from '" + Variant::get_type_name(src_val.get_type()) + "' to '" + Variant::get_type_name(_p->typed.type) + "'.");
 | |
| 					}
 | |
| 				} else {
 | |
| 					ERR_FAIL_V_MSG(false, "Unable to convert array index " + itos(i) + " from '" + Variant::get_type_name(src_val.get_type()) + "' to '" + Variant::get_type_name(_p->typed.type) + "'.");
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			_p->array = new_array;
 | |
| 		}
 | |
| 	} else if (_p->typed.can_reference(p_array._p->typed)) { //same type or compatible
 | |
| 		_ref(p_array);
 | |
| 	} else {
 | |
| 		ERR_FAIL_V_MSG(false, "Assignment of arrays of incompatible types.");
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| void Array::operator=(const Array &p_array) {
 | |
| 	if (this == &p_array) {
 | |
| 		return;
 | |
| 	}
 | |
| 	_ref(p_array);
 | |
| }
 | |
| 
 | |
| void Array::push_back(const Variant &p_value) {
 | |
| 	ERR_FAIL_COND_MSG(_p->read_only, "Array is in read-only state.");
 | |
| 	ERR_FAIL_COND(!_p->typed.validate(p_value, "push_back"));
 | |
| 	_p->array.push_back(p_value);
 | |
| }
 | |
| 
 | |
| void Array::append_array(const Array &p_array) {
 | |
| 	ERR_FAIL_COND_MSG(_p->read_only, "Array is in read-only state.");
 | |
| 	for (int i = 0; i < p_array.size(); ++i) {
 | |
| 		ERR_FAIL_COND(!_p->typed.validate(p_array[i], "append_array"));
 | |
| 	}
 | |
| 	_p->array.append_array(p_array._p->array);
 | |
| }
 | |
| 
 | |
| Error Array::resize(int p_new_size) {
 | |
| 	ERR_FAIL_COND_V_MSG(_p->read_only, ERR_LOCKED, "Array is in read-only state.");
 | |
| 	return _p->array.resize(p_new_size);
 | |
| }
 | |
| 
 | |
| Error Array::insert(int p_pos, const Variant &p_value) {
 | |
| 	ERR_FAIL_COND_V_MSG(_p->read_only, ERR_LOCKED, "Array is in read-only state.");
 | |
| 	ERR_FAIL_COND_V(!_p->typed.validate(p_value, "insert"), ERR_INVALID_PARAMETER);
 | |
| 	return _p->array.insert(p_pos, p_value);
 | |
| }
 | |
| 
 | |
| void Array::fill(const Variant &p_value) {
 | |
| 	ERR_FAIL_COND_MSG(_p->read_only, "Array is in read-only state.");
 | |
| 	ERR_FAIL_COND(!_p->typed.validate(p_value, "fill"));
 | |
| 	_p->array.fill(p_value);
 | |
| }
 | |
| 
 | |
| void Array::erase(const Variant &p_value) {
 | |
| 	ERR_FAIL_COND_MSG(_p->read_only, "Array is in read-only state.");
 | |
| 	ERR_FAIL_COND(!_p->typed.validate(p_value, "erase"));
 | |
| 	_p->array.erase(p_value);
 | |
| }
 | |
| 
 | |
| Variant Array::front() const {
 | |
| 	ERR_FAIL_COND_V_MSG(_p->array.size() == 0, Variant(), "Can't take value from empty array.");
 | |
| 	return operator[](0);
 | |
| }
 | |
| 
 | |
| Variant Array::back() const {
 | |
| 	ERR_FAIL_COND_V_MSG(_p->array.size() == 0, Variant(), "Can't take value from empty array.");
 | |
| 	return operator[](_p->array.size() - 1);
 | |
| }
 | |
| 
 | |
| Variant Array::pick_random() const {
 | |
| 	ERR_FAIL_COND_V_MSG(_p->array.size() == 0, Variant(), "Can't take value from empty array.");
 | |
| 	return operator[](Math::rand() % _p->array.size());
 | |
| }
 | |
| 
 | |
| int Array::find(const Variant &p_value, int p_from) const {
 | |
| 	ERR_FAIL_COND_V(!_p->typed.validate(p_value, "find"), -1);
 | |
| 	return _p->array.find(p_value, p_from);
 | |
| }
 | |
| 
 | |
| int Array::rfind(const Variant &p_value, int p_from) const {
 | |
| 	if (_p->array.size() == 0) {
 | |
| 		return -1;
 | |
| 	}
 | |
| 	ERR_FAIL_COND_V(!_p->typed.validate(p_value, "rfind"), -1);
 | |
| 
 | |
| 	if (p_from < 0) {
 | |
| 		// Relative offset from the end
 | |
| 		p_from = _p->array.size() + p_from;
 | |
| 	}
 | |
| 	if (p_from < 0 || p_from >= _p->array.size()) {
 | |
| 		// Limit to array boundaries
 | |
| 		p_from = _p->array.size() - 1;
 | |
| 	}
 | |
| 
 | |
| 	for (int i = p_from; i >= 0; i--) {
 | |
| 		if (_p->array[i] == p_value) {
 | |
| 			return i;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| int Array::find_last(const Variant &p_value) const {
 | |
| 	ERR_FAIL_COND_V(!_p->typed.validate(p_value, "find_last"), -1);
 | |
| 	return rfind(p_value);
 | |
| }
 | |
| 
 | |
| int Array::count(const Variant &p_value) const {
 | |
| 	ERR_FAIL_COND_V(!_p->typed.validate(p_value, "count"), 0);
 | |
| 	if (_p->array.size() == 0) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	int amount = 0;
 | |
| 	for (int i = 0; i < _p->array.size(); i++) {
 | |
| 		if (_p->array[i] == p_value) {
 | |
| 			amount++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return amount;
 | |
| }
 | |
| 
 | |
| bool Array::has(const Variant &p_value) const {
 | |
| 	ERR_FAIL_COND_V(!_p->typed.validate(p_value, "use 'has'"), false);
 | |
| 
 | |
| 	return _p->array.find(p_value, 0) != -1;
 | |
| }
 | |
| 
 | |
| void Array::remove_at(int p_pos) {
 | |
| 	ERR_FAIL_COND_MSG(_p->read_only, "Array is in read-only state.");
 | |
| 	_p->array.remove_at(p_pos);
 | |
| }
 | |
| 
 | |
| void Array::set(int p_idx, const Variant &p_value) {
 | |
| 	ERR_FAIL_COND_MSG(_p->read_only, "Array is in read-only state.");
 | |
| 	ERR_FAIL_COND(!_p->typed.validate(p_value, "set"));
 | |
| 
 | |
| 	operator[](p_idx) = p_value;
 | |
| }
 | |
| 
 | |
| const Variant &Array::get(int p_idx) const {
 | |
| 	return operator[](p_idx);
 | |
| }
 | |
| 
 | |
| Array Array::duplicate(bool p_deep) const {
 | |
| 	return recursive_duplicate(p_deep, 0);
 | |
| }
 | |
| 
 | |
| Array Array::recursive_duplicate(bool p_deep, int recursion_count) const {
 | |
| 	Array new_arr;
 | |
| 
 | |
| 	if (recursion_count > MAX_RECURSION) {
 | |
| 		ERR_PRINT("Max recursion reached");
 | |
| 		return new_arr;
 | |
| 	}
 | |
| 
 | |
| 	int element_count = size();
 | |
| 	new_arr.resize(element_count);
 | |
| 	new_arr._p->typed = _p->typed;
 | |
| 	if (p_deep) {
 | |
| 		recursion_count++;
 | |
| 		for (int i = 0; i < element_count; i++) {
 | |
| 			new_arr[i] = get(i).recursive_duplicate(true, recursion_count);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (int i = 0; i < element_count; i++) {
 | |
| 			new_arr[i] = get(i);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return new_arr;
 | |
| }
 | |
| 
 | |
| Array Array::slice(int p_begin, int p_end, int p_step, bool p_deep) const {
 | |
| 	Array result;
 | |
| 	result._p->typed = _p->typed;
 | |
| 
 | |
| 	ERR_FAIL_COND_V_MSG(p_step == 0, result, "Slice step cannot be zero.");
 | |
| 
 | |
| 	const int s = size();
 | |
| 
 | |
| 	int begin = CLAMP(p_begin, -s, s);
 | |
| 	if (begin < 0) {
 | |
| 		begin += s;
 | |
| 	}
 | |
| 	int end = CLAMP(p_end, -s, s);
 | |
| 	if (end < 0) {
 | |
| 		end += s;
 | |
| 	}
 | |
| 
 | |
| 	ERR_FAIL_COND_V_MSG(p_step > 0 && begin > end, result, "Slice is positive, but bounds is decreasing.");
 | |
| 	ERR_FAIL_COND_V_MSG(p_step < 0 && begin < end, result, "Slice is negative, but bounds is increasing.");
 | |
| 
 | |
| 	int result_size = (end - begin) / p_step;
 | |
| 	result.resize(result_size);
 | |
| 
 | |
| 	for (int src_idx = begin, dest_idx = 0; dest_idx < result_size; ++dest_idx) {
 | |
| 		result[dest_idx] = p_deep ? get(src_idx).duplicate(true) : get(src_idx);
 | |
| 		src_idx += p_step;
 | |
| 	}
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| Array Array::filter(const Callable &p_callable) const {
 | |
| 	Array new_arr;
 | |
| 	new_arr.resize(size());
 | |
| 	new_arr._p->typed = _p->typed;
 | |
| 	int accepted_count = 0;
 | |
| 
 | |
| 	const Variant *argptrs[1];
 | |
| 	for (int i = 0; i < size(); i++) {
 | |
| 		argptrs[0] = &get(i);
 | |
| 
 | |
| 		Variant result;
 | |
| 		Callable::CallError ce;
 | |
| 		p_callable.callp(argptrs, 1, result, ce);
 | |
| 		if (ce.error != Callable::CallError::CALL_OK) {
 | |
| 			ERR_FAIL_V_MSG(Array(), "Error calling method from 'filter': " + Variant::get_callable_error_text(p_callable, argptrs, 1, ce));
 | |
| 		}
 | |
| 
 | |
| 		if (result.operator bool()) {
 | |
| 			new_arr[accepted_count] = get(i);
 | |
| 			accepted_count++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	new_arr.resize(accepted_count);
 | |
| 
 | |
| 	return new_arr;
 | |
| }
 | |
| 
 | |
| Array Array::map(const Callable &p_callable) const {
 | |
| 	Array new_arr;
 | |
| 	new_arr.resize(size());
 | |
| 
 | |
| 	const Variant *argptrs[1];
 | |
| 	for (int i = 0; i < size(); i++) {
 | |
| 		argptrs[0] = &get(i);
 | |
| 
 | |
| 		Variant result;
 | |
| 		Callable::CallError ce;
 | |
| 		p_callable.callp(argptrs, 1, result, ce);
 | |
| 		if (ce.error != Callable::CallError::CALL_OK) {
 | |
| 			ERR_FAIL_V_MSG(Array(), "Error calling method from 'map': " + Variant::get_callable_error_text(p_callable, argptrs, 1, ce));
 | |
| 		}
 | |
| 
 | |
| 		new_arr[i] = result;
 | |
| 	}
 | |
| 
 | |
| 	return new_arr;
 | |
| }
 | |
| 
 | |
| Variant Array::reduce(const Callable &p_callable, const Variant &p_accum) const {
 | |
| 	int start = 0;
 | |
| 	Variant ret = p_accum;
 | |
| 	if (ret == Variant() && size() > 0) {
 | |
| 		ret = front();
 | |
| 		start = 1;
 | |
| 	}
 | |
| 
 | |
| 	const Variant *argptrs[2];
 | |
| 	for (int i = start; i < size(); i++) {
 | |
| 		argptrs[0] = &ret;
 | |
| 		argptrs[1] = &get(i);
 | |
| 
 | |
| 		Variant result;
 | |
| 		Callable::CallError ce;
 | |
| 		p_callable.callp(argptrs, 2, result, ce);
 | |
| 		if (ce.error != Callable::CallError::CALL_OK) {
 | |
| 			ERR_FAIL_V_MSG(Variant(), "Error calling method from 'reduce': " + Variant::get_callable_error_text(p_callable, argptrs, 2, ce));
 | |
| 		}
 | |
| 		ret = result;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| bool Array::any(const Callable &p_callable) const {
 | |
| 	const Variant *argptrs[1];
 | |
| 	for (int i = 0; i < size(); i++) {
 | |
| 		argptrs[0] = &get(i);
 | |
| 
 | |
| 		Variant result;
 | |
| 		Callable::CallError ce;
 | |
| 		p_callable.callp(argptrs, 1, result, ce);
 | |
| 		if (ce.error != Callable::CallError::CALL_OK) {
 | |
| 			ERR_FAIL_V_MSG(false, "Error calling method from 'any': " + Variant::get_callable_error_text(p_callable, argptrs, 1, ce));
 | |
| 		}
 | |
| 
 | |
| 		if (result.operator bool()) {
 | |
| 			// Return as early as possible when one of the conditions is `true`.
 | |
| 			// This improves performance compared to relying on `filter(...).size() >= 1`.
 | |
| 			return true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| bool Array::all(const Callable &p_callable) const {
 | |
| 	const Variant *argptrs[1];
 | |
| 	for (int i = 0; i < size(); i++) {
 | |
| 		argptrs[0] = &get(i);
 | |
| 
 | |
| 		Variant result;
 | |
| 		Callable::CallError ce;
 | |
| 		p_callable.callp(argptrs, 1, result, ce);
 | |
| 		if (ce.error != Callable::CallError::CALL_OK) {
 | |
| 			ERR_FAIL_V_MSG(false, "Error calling method from 'all': " + Variant::get_callable_error_text(p_callable, argptrs, 1, ce));
 | |
| 		}
 | |
| 
 | |
| 		if (!(result.operator bool())) {
 | |
| 			// Return as early as possible when one of the inverted conditions is `false`.
 | |
| 			// This improves performance compared to relying on `filter(...).size() >= array_size().`.
 | |
| 			return false;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| struct _ArrayVariantSort {
 | |
| 	_FORCE_INLINE_ bool operator()(const Variant &p_l, const Variant &p_r) const {
 | |
| 		bool valid = false;
 | |
| 		Variant res;
 | |
| 		Variant::evaluate(Variant::OP_LESS, p_l, p_r, res, valid);
 | |
| 		if (!valid) {
 | |
| 			res = false;
 | |
| 		}
 | |
| 		return res;
 | |
| 	}
 | |
| };
 | |
| 
 | |
| void Array::sort() {
 | |
| 	ERR_FAIL_COND_MSG(_p->read_only, "Array is in read-only state.");
 | |
| 	_p->array.sort_custom<_ArrayVariantSort>();
 | |
| }
 | |
| 
 | |
| void Array::sort_custom(const Callable &p_callable) {
 | |
| 	ERR_FAIL_COND_MSG(_p->read_only, "Array is in read-only state.");
 | |
| 	_p->array.sort_custom<CallableComparator, true>(p_callable);
 | |
| }
 | |
| 
 | |
| void Array::shuffle() {
 | |
| 	ERR_FAIL_COND_MSG(_p->read_only, "Array is in read-only state.");
 | |
| 	const int n = _p->array.size();
 | |
| 	if (n < 2) {
 | |
| 		return;
 | |
| 	}
 | |
| 	Variant *data = _p->array.ptrw();
 | |
| 	for (int i = n - 1; i >= 1; i--) {
 | |
| 		const int j = Math::rand() % (i + 1);
 | |
| 		const Variant tmp = data[j];
 | |
| 		data[j] = data[i];
 | |
| 		data[i] = tmp;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int Array::bsearch(const Variant &p_value, bool p_before) {
 | |
| 	ERR_FAIL_COND_V(!_p->typed.validate(p_value, "binary search"), -1);
 | |
| 	SearchArray<Variant, _ArrayVariantSort> avs;
 | |
| 	return avs.bisect(_p->array.ptrw(), _p->array.size(), p_value, p_before);
 | |
| }
 | |
| 
 | |
| int Array::bsearch_custom(const Variant &p_value, const Callable &p_callable, bool p_before) {
 | |
| 	ERR_FAIL_COND_V(!_p->typed.validate(p_value, "custom binary search"), -1);
 | |
| 
 | |
| 	return _p->array.bsearch_custom<CallableComparator>(p_value, p_before, p_callable);
 | |
| }
 | |
| 
 | |
| void Array::reverse() {
 | |
| 	ERR_FAIL_COND_MSG(_p->read_only, "Array is in read-only state.");
 | |
| 	_p->array.reverse();
 | |
| }
 | |
| 
 | |
| void Array::push_front(const Variant &p_value) {
 | |
| 	ERR_FAIL_COND_MSG(_p->read_only, "Array is in read-only state.");
 | |
| 	ERR_FAIL_COND(!_p->typed.validate(p_value, "push_front"));
 | |
| 	_p->array.insert(0, p_value);
 | |
| }
 | |
| 
 | |
| Variant Array::pop_back() {
 | |
| 	ERR_FAIL_COND_V_MSG(_p->read_only, Variant(), "Array is in read-only state.");
 | |
| 	if (!_p->array.is_empty()) {
 | |
| 		const int n = _p->array.size() - 1;
 | |
| 		const Variant ret = _p->array.get(n);
 | |
| 		_p->array.resize(n);
 | |
| 		return ret;
 | |
| 	}
 | |
| 	return Variant();
 | |
| }
 | |
| 
 | |
| Variant Array::pop_front() {
 | |
| 	ERR_FAIL_COND_V_MSG(_p->read_only, Variant(), "Array is in read-only state.");
 | |
| 	if (!_p->array.is_empty()) {
 | |
| 		const Variant ret = _p->array.get(0);
 | |
| 		_p->array.remove_at(0);
 | |
| 		return ret;
 | |
| 	}
 | |
| 	return Variant();
 | |
| }
 | |
| 
 | |
| Variant Array::pop_at(int p_pos) {
 | |
| 	ERR_FAIL_COND_V_MSG(_p->read_only, Variant(), "Array is in read-only state.");
 | |
| 	if (_p->array.is_empty()) {
 | |
| 		// Return `null` without printing an error to mimic `pop_back()` and `pop_front()` behavior.
 | |
| 		return Variant();
 | |
| 	}
 | |
| 
 | |
| 	if (p_pos < 0) {
 | |
| 		// Relative offset from the end
 | |
| 		p_pos = _p->array.size() + p_pos;
 | |
| 	}
 | |
| 
 | |
| 	ERR_FAIL_INDEX_V_MSG(
 | |
| 			p_pos,
 | |
| 			_p->array.size(),
 | |
| 			Variant(),
 | |
| 			vformat(
 | |
| 					"The calculated index %s is out of bounds (the array has %s elements). Leaving the array untouched and returning `null`.",
 | |
| 					p_pos,
 | |
| 					_p->array.size()));
 | |
| 
 | |
| 	const Variant ret = _p->array.get(p_pos);
 | |
| 	_p->array.remove_at(p_pos);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| Variant Array::min() const {
 | |
| 	Variant minval;
 | |
| 	for (int i = 0; i < size(); i++) {
 | |
| 		if (i == 0) {
 | |
| 			minval = get(i);
 | |
| 		} else {
 | |
| 			bool valid;
 | |
| 			Variant ret;
 | |
| 			Variant test = get(i);
 | |
| 			Variant::evaluate(Variant::OP_LESS, test, minval, ret, valid);
 | |
| 			if (!valid) {
 | |
| 				return Variant(); //not a valid comparison
 | |
| 			}
 | |
| 			if (bool(ret)) {
 | |
| 				//is less
 | |
| 				minval = test;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return minval;
 | |
| }
 | |
| 
 | |
| Variant Array::max() const {
 | |
| 	Variant maxval;
 | |
| 	for (int i = 0; i < size(); i++) {
 | |
| 		if (i == 0) {
 | |
| 			maxval = get(i);
 | |
| 		} else {
 | |
| 			bool valid;
 | |
| 			Variant ret;
 | |
| 			Variant test = get(i);
 | |
| 			Variant::evaluate(Variant::OP_GREATER, test, maxval, ret, valid);
 | |
| 			if (!valid) {
 | |
| 				return Variant(); //not a valid comparison
 | |
| 			}
 | |
| 			if (bool(ret)) {
 | |
| 				//is less
 | |
| 				maxval = test;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return maxval;
 | |
| }
 | |
| 
 | |
| const void *Array::id() const {
 | |
| 	return _p;
 | |
| }
 | |
| 
 | |
| Array::Array(const Array &p_from, uint32_t p_type, const StringName &p_class_name, const Variant &p_script) {
 | |
| 	_p = memnew(ArrayPrivate);
 | |
| 	_p->refcount.init();
 | |
| 	set_typed(p_type, p_class_name, p_script);
 | |
| 	_assign(p_from);
 | |
| }
 | |
| 
 | |
| bool Array::typed_assign(const Array &p_other) {
 | |
| 	return _assign(p_other);
 | |
| }
 | |
| 
 | |
| void Array::set_typed(uint32_t p_type, const StringName &p_class_name, const Variant &p_script) {
 | |
| 	ERR_FAIL_COND_MSG(_p->read_only, "Array is in read-only state.");
 | |
| 	ERR_FAIL_COND_MSG(_p->array.size() > 0, "Type can only be set when array is empty.");
 | |
| 	ERR_FAIL_COND_MSG(_p->refcount.get() > 1, "Type can only be set when array has no more than one user.");
 | |
| 	ERR_FAIL_COND_MSG(_p->typed.type != Variant::NIL, "Type can only be set once.");
 | |
| 	ERR_FAIL_COND_MSG(p_class_name != StringName() && p_type != Variant::OBJECT, "Class names can only be set for type OBJECT");
 | |
| 	Ref<Script> script = p_script;
 | |
| 	ERR_FAIL_COND_MSG(script.is_valid() && p_class_name == StringName(), "Script class can only be set together with base class name");
 | |
| 
 | |
| 	_p->typed.type = Variant::Type(p_type);
 | |
| 	_p->typed.class_name = p_class_name;
 | |
| 	_p->typed.script = script;
 | |
| 	_p->typed.where = "TypedArray";
 | |
| }
 | |
| 
 | |
| bool Array::is_typed() const {
 | |
| 	return _p->typed.type != Variant::NIL;
 | |
| }
 | |
| 
 | |
| uint32_t Array::get_typed_builtin() const {
 | |
| 	return _p->typed.type;
 | |
| }
 | |
| 
 | |
| StringName Array::get_typed_class_name() const {
 | |
| 	return _p->typed.class_name;
 | |
| }
 | |
| 
 | |
| Variant Array::get_typed_script() const {
 | |
| 	return _p->typed.script;
 | |
| }
 | |
| 
 | |
| void Array::set_read_only(bool p_enable) {
 | |
| 	if (p_enable == bool(_p->read_only != nullptr)) {
 | |
| 		return;
 | |
| 	}
 | |
| 	if (p_enable) {
 | |
| 		_p->read_only = memnew(Variant);
 | |
| 	} else {
 | |
| 		memdelete(_p->read_only);
 | |
| 		_p->read_only = nullptr;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| bool Array::is_read_only() const {
 | |
| 	return _p->read_only != nullptr;
 | |
| }
 | |
| 
 | |
| Array::Array(const Array &p_from) {
 | |
| 	_p = nullptr;
 | |
| 	_ref(p_from);
 | |
| }
 | |
| 
 | |
| Array::Array() {
 | |
| 	_p = memnew(ArrayPrivate);
 | |
| 	_p->refcount.init();
 | |
| }
 | |
| 
 | |
| Array::~Array() {
 | |
| 	_unref();
 | |
| }
 | 
