mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-31 13:41:03 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			326 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			326 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /**************************************************************************/
 | |
| /*  basis.h                                                               */
 | |
| /**************************************************************************/
 | |
| /*                         This file is part of:                          */
 | |
| /*                             GODOT ENGINE                               */
 | |
| /*                        https://godotengine.org                         */
 | |
| /**************************************************************************/
 | |
| /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
 | |
| /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur.                  */
 | |
| /*                                                                        */
 | |
| /* Permission is hereby granted, free of charge, to any person obtaining  */
 | |
| /* a copy of this software and associated documentation files (the        */
 | |
| /* "Software"), to deal in the Software without restriction, including    */
 | |
| /* without limitation the rights to use, copy, modify, merge, publish,    */
 | |
| /* distribute, sublicense, and/or sell copies of the Software, and to     */
 | |
| /* permit persons to whom the Software is furnished to do so, subject to  */
 | |
| /* the following conditions:                                              */
 | |
| /*                                                                        */
 | |
| /* The above copyright notice and this permission notice shall be         */
 | |
| /* included in all copies or substantial portions of the Software.        */
 | |
| /*                                                                        */
 | |
| /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,        */
 | |
| /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF     */
 | |
| /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
 | |
| /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY   */
 | |
| /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,   */
 | |
| /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE      */
 | |
| /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                 */
 | |
| /**************************************************************************/
 | |
| 
 | |
| #ifndef BASIS_H
 | |
| #define BASIS_H
 | |
| 
 | |
| #include "core/math/quaternion.h"
 | |
| #include "core/math/vector3.h"
 | |
| 
 | |
| struct _NO_DISCARD_ Basis {
 | |
| 	Vector3 rows[3] = {
 | |
| 		Vector3(1, 0, 0),
 | |
| 		Vector3(0, 1, 0),
 | |
| 		Vector3(0, 0, 1)
 | |
| 	};
 | |
| 
 | |
| 	_FORCE_INLINE_ const Vector3 &operator[](int p_axis) const {
 | |
| 		return rows[p_axis];
 | |
| 	}
 | |
| 	_FORCE_INLINE_ Vector3 &operator[](int p_axis) {
 | |
| 		return rows[p_axis];
 | |
| 	}
 | |
| 
 | |
| 	void invert();
 | |
| 	void transpose();
 | |
| 
 | |
| 	Basis inverse() const;
 | |
| 	Basis transposed() const;
 | |
| 
 | |
| 	_FORCE_INLINE_ real_t determinant() const;
 | |
| 
 | |
| 	void rotate(const Vector3 &p_axis, real_t p_angle);
 | |
| 	Basis rotated(const Vector3 &p_axis, real_t p_angle) const;
 | |
| 
 | |
| 	void rotate_local(const Vector3 &p_axis, real_t p_angle);
 | |
| 	Basis rotated_local(const Vector3 &p_axis, real_t p_angle) const;
 | |
| 
 | |
| 	void rotate(const Vector3 &p_euler, EulerOrder p_order = EulerOrder::YXZ);
 | |
| 	Basis rotated(const Vector3 &p_euler, EulerOrder p_order = EulerOrder::YXZ) const;
 | |
| 
 | |
| 	void rotate(const Quaternion &p_quaternion);
 | |
| 	Basis rotated(const Quaternion &p_quaternion) const;
 | |
| 
 | |
| 	Vector3 get_euler_normalized(EulerOrder p_order = EulerOrder::YXZ) const;
 | |
| 	void get_rotation_axis_angle(Vector3 &p_axis, real_t &p_angle) const;
 | |
| 	void get_rotation_axis_angle_local(Vector3 &p_axis, real_t &p_angle) const;
 | |
| 	Quaternion get_rotation_quaternion() const;
 | |
| 
 | |
| 	void rotate_to_align(Vector3 p_start_direction, Vector3 p_end_direction);
 | |
| 
 | |
| 	Vector3 rotref_posscale_decomposition(Basis &rotref) const;
 | |
| 
 | |
| 	Vector3 get_euler(EulerOrder p_order = EulerOrder::YXZ) const;
 | |
| 	void set_euler(const Vector3 &p_euler, EulerOrder p_order = EulerOrder::YXZ);
 | |
| 	static Basis from_euler(const Vector3 &p_euler, EulerOrder p_order = EulerOrder::YXZ) {
 | |
| 		Basis b;
 | |
| 		b.set_euler(p_euler, p_order);
 | |
| 		return b;
 | |
| 	}
 | |
| 
 | |
| 	Quaternion get_quaternion() const;
 | |
| 	void set_quaternion(const Quaternion &p_quaternion);
 | |
| 
 | |
| 	void get_axis_angle(Vector3 &r_axis, real_t &r_angle) const;
 | |
| 	void set_axis_angle(const Vector3 &p_axis, real_t p_angle);
 | |
| 
 | |
| 	void scale(const Vector3 &p_scale);
 | |
| 	Basis scaled(const Vector3 &p_scale) const;
 | |
| 
 | |
| 	void scale_local(const Vector3 &p_scale);
 | |
| 	Basis scaled_local(const Vector3 &p_scale) const;
 | |
| 
 | |
| 	void scale_orthogonal(const Vector3 &p_scale);
 | |
| 	Basis scaled_orthogonal(const Vector3 &p_scale) const;
 | |
| 	real_t get_uniform_scale() const;
 | |
| 
 | |
| 	Vector3 get_scale() const;
 | |
| 	Vector3 get_scale_abs() const;
 | |
| 	Vector3 get_scale_global() const;
 | |
| 
 | |
| 	void set_axis_angle_scale(const Vector3 &p_axis, real_t p_angle, const Vector3 &p_scale);
 | |
| 	void set_euler_scale(const Vector3 &p_euler, const Vector3 &p_scale, EulerOrder p_order = EulerOrder::YXZ);
 | |
| 	void set_quaternion_scale(const Quaternion &p_quaternion, const Vector3 &p_scale);
 | |
| 
 | |
| 	// transposed dot products
 | |
| 	_FORCE_INLINE_ real_t tdotx(const Vector3 &p_v) const {
 | |
| 		return rows[0][0] * p_v[0] + rows[1][0] * p_v[1] + rows[2][0] * p_v[2];
 | |
| 	}
 | |
| 	_FORCE_INLINE_ real_t tdoty(const Vector3 &p_v) const {
 | |
| 		return rows[0][1] * p_v[0] + rows[1][1] * p_v[1] + rows[2][1] * p_v[2];
 | |
| 	}
 | |
| 	_FORCE_INLINE_ real_t tdotz(const Vector3 &p_v) const {
 | |
| 		return rows[0][2] * p_v[0] + rows[1][2] * p_v[1] + rows[2][2] * p_v[2];
 | |
| 	}
 | |
| 
 | |
| 	bool is_equal_approx(const Basis &p_basis) const;
 | |
| 	bool is_finite() const;
 | |
| 
 | |
| 	bool operator==(const Basis &p_matrix) const;
 | |
| 	bool operator!=(const Basis &p_matrix) const;
 | |
| 
 | |
| 	_FORCE_INLINE_ Vector3 xform(const Vector3 &p_vector) const;
 | |
| 	_FORCE_INLINE_ Vector3 xform_inv(const Vector3 &p_vector) const;
 | |
| 	_FORCE_INLINE_ void operator*=(const Basis &p_matrix);
 | |
| 	_FORCE_INLINE_ Basis operator*(const Basis &p_matrix) const;
 | |
| 	_FORCE_INLINE_ void operator+=(const Basis &p_matrix);
 | |
| 	_FORCE_INLINE_ Basis operator+(const Basis &p_matrix) const;
 | |
| 	_FORCE_INLINE_ void operator-=(const Basis &p_matrix);
 | |
| 	_FORCE_INLINE_ Basis operator-(const Basis &p_matrix) const;
 | |
| 	_FORCE_INLINE_ void operator*=(real_t p_val);
 | |
| 	_FORCE_INLINE_ Basis operator*(real_t p_val) const;
 | |
| 	_FORCE_INLINE_ void operator/=(real_t p_val);
 | |
| 	_FORCE_INLINE_ Basis operator/(real_t p_val) const;
 | |
| 
 | |
| 	bool is_orthogonal() const;
 | |
| 	bool is_orthonormal() const;
 | |
| 	bool is_conformal() const;
 | |
| 	bool is_diagonal() const;
 | |
| 	bool is_rotation() const;
 | |
| 
 | |
| 	Basis lerp(const Basis &p_to, real_t p_weight) const;
 | |
| 	Basis slerp(const Basis &p_to, real_t p_weight) const;
 | |
| 	void rotate_sh(real_t *p_values);
 | |
| 
 | |
| 	operator String() const;
 | |
| 
 | |
| 	/* create / set */
 | |
| 
 | |
| 	_FORCE_INLINE_ void set(real_t p_xx, real_t p_xy, real_t p_xz, real_t p_yx, real_t p_yy, real_t p_yz, real_t p_zx, real_t p_zy, real_t p_zz) {
 | |
| 		rows[0][0] = p_xx;
 | |
| 		rows[0][1] = p_xy;
 | |
| 		rows[0][2] = p_xz;
 | |
| 		rows[1][0] = p_yx;
 | |
| 		rows[1][1] = p_yy;
 | |
| 		rows[1][2] = p_yz;
 | |
| 		rows[2][0] = p_zx;
 | |
| 		rows[2][1] = p_zy;
 | |
| 		rows[2][2] = p_zz;
 | |
| 	}
 | |
| 	_FORCE_INLINE_ void set_columns(const Vector3 &p_x, const Vector3 &p_y, const Vector3 &p_z) {
 | |
| 		set_column(0, p_x);
 | |
| 		set_column(1, p_y);
 | |
| 		set_column(2, p_z);
 | |
| 	}
 | |
| 
 | |
| 	_FORCE_INLINE_ Vector3 get_column(int p_index) const {
 | |
| 		// Get actual basis axis column (we store transposed as rows for performance).
 | |
| 		return Vector3(rows[0][p_index], rows[1][p_index], rows[2][p_index]);
 | |
| 	}
 | |
| 
 | |
| 	_FORCE_INLINE_ void set_column(int p_index, const Vector3 &p_value) {
 | |
| 		// Set actual basis axis column (we store transposed as rows for performance).
 | |
| 		rows[0][p_index] = p_value.x;
 | |
| 		rows[1][p_index] = p_value.y;
 | |
| 		rows[2][p_index] = p_value.z;
 | |
| 	}
 | |
| 
 | |
| 	_FORCE_INLINE_ Vector3 get_main_diagonal() const {
 | |
| 		return Vector3(rows[0][0], rows[1][1], rows[2][2]);
 | |
| 	}
 | |
| 
 | |
| 	_FORCE_INLINE_ void set_zero() {
 | |
| 		rows[0].zero();
 | |
| 		rows[1].zero();
 | |
| 		rows[2].zero();
 | |
| 	}
 | |
| 
 | |
| 	_FORCE_INLINE_ Basis transpose_xform(const Basis &p_m) const {
 | |
| 		return Basis(
 | |
| 				rows[0].x * p_m[0].x + rows[1].x * p_m[1].x + rows[2].x * p_m[2].x,
 | |
| 				rows[0].x * p_m[0].y + rows[1].x * p_m[1].y + rows[2].x * p_m[2].y,
 | |
| 				rows[0].x * p_m[0].z + rows[1].x * p_m[1].z + rows[2].x * p_m[2].z,
 | |
| 				rows[0].y * p_m[0].x + rows[1].y * p_m[1].x + rows[2].y * p_m[2].x,
 | |
| 				rows[0].y * p_m[0].y + rows[1].y * p_m[1].y + rows[2].y * p_m[2].y,
 | |
| 				rows[0].y * p_m[0].z + rows[1].y * p_m[1].z + rows[2].y * p_m[2].z,
 | |
| 				rows[0].z * p_m[0].x + rows[1].z * p_m[1].x + rows[2].z * p_m[2].x,
 | |
| 				rows[0].z * p_m[0].y + rows[1].z * p_m[1].y + rows[2].z * p_m[2].y,
 | |
| 				rows[0].z * p_m[0].z + rows[1].z * p_m[1].z + rows[2].z * p_m[2].z);
 | |
| 	}
 | |
| 	Basis(real_t p_xx, real_t p_xy, real_t p_xz, real_t p_yx, real_t p_yy, real_t p_yz, real_t p_zx, real_t p_zy, real_t p_zz) {
 | |
| 		set(p_xx, p_xy, p_xz, p_yx, p_yy, p_yz, p_zx, p_zy, p_zz);
 | |
| 	}
 | |
| 
 | |
| 	void orthonormalize();
 | |
| 	Basis orthonormalized() const;
 | |
| 
 | |
| 	void orthogonalize();
 | |
| 	Basis orthogonalized() const;
 | |
| 
 | |
| #ifdef MATH_CHECKS
 | |
| 	bool is_symmetric() const;
 | |
| #endif
 | |
| 	Basis diagonalize();
 | |
| 
 | |
| 	operator Quaternion() const { return get_quaternion(); }
 | |
| 
 | |
| 	static Basis looking_at(const Vector3 &p_target, const Vector3 &p_up = Vector3(0, 1, 0), bool p_use_model_front = false);
 | |
| 
 | |
| 	Basis(const Quaternion &p_quaternion) { set_quaternion(p_quaternion); };
 | |
| 	Basis(const Quaternion &p_quaternion, const Vector3 &p_scale) { set_quaternion_scale(p_quaternion, p_scale); }
 | |
| 
 | |
| 	Basis(const Vector3 &p_axis, real_t p_angle) { set_axis_angle(p_axis, p_angle); }
 | |
| 	Basis(const Vector3 &p_axis, real_t p_angle, const Vector3 &p_scale) { set_axis_angle_scale(p_axis, p_angle, p_scale); }
 | |
| 	static Basis from_scale(const Vector3 &p_scale);
 | |
| 
 | |
| 	_FORCE_INLINE_ Basis(const Vector3 &p_x_axis, const Vector3 &p_y_axis, const Vector3 &p_z_axis) {
 | |
| 		set_columns(p_x_axis, p_y_axis, p_z_axis);
 | |
| 	}
 | |
| 
 | |
| 	_FORCE_INLINE_ Basis() {}
 | |
| 
 | |
| private:
 | |
| 	// Helper method.
 | |
| 	void _set_diagonal(const Vector3 &p_diag);
 | |
| };
 | |
| 
 | |
| _FORCE_INLINE_ void Basis::operator*=(const Basis &p_matrix) {
 | |
| 	set(
 | |
| 			p_matrix.tdotx(rows[0]), p_matrix.tdoty(rows[0]), p_matrix.tdotz(rows[0]),
 | |
| 			p_matrix.tdotx(rows[1]), p_matrix.tdoty(rows[1]), p_matrix.tdotz(rows[1]),
 | |
| 			p_matrix.tdotx(rows[2]), p_matrix.tdoty(rows[2]), p_matrix.tdotz(rows[2]));
 | |
| }
 | |
| 
 | |
| _FORCE_INLINE_ Basis Basis::operator*(const Basis &p_matrix) const {
 | |
| 	return Basis(
 | |
| 			p_matrix.tdotx(rows[0]), p_matrix.tdoty(rows[0]), p_matrix.tdotz(rows[0]),
 | |
| 			p_matrix.tdotx(rows[1]), p_matrix.tdoty(rows[1]), p_matrix.tdotz(rows[1]),
 | |
| 			p_matrix.tdotx(rows[2]), p_matrix.tdoty(rows[2]), p_matrix.tdotz(rows[2]));
 | |
| }
 | |
| 
 | |
| _FORCE_INLINE_ void Basis::operator+=(const Basis &p_matrix) {
 | |
| 	rows[0] += p_matrix.rows[0];
 | |
| 	rows[1] += p_matrix.rows[1];
 | |
| 	rows[2] += p_matrix.rows[2];
 | |
| }
 | |
| 
 | |
| _FORCE_INLINE_ Basis Basis::operator+(const Basis &p_matrix) const {
 | |
| 	Basis ret(*this);
 | |
| 	ret += p_matrix;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| _FORCE_INLINE_ void Basis::operator-=(const Basis &p_matrix) {
 | |
| 	rows[0] -= p_matrix.rows[0];
 | |
| 	rows[1] -= p_matrix.rows[1];
 | |
| 	rows[2] -= p_matrix.rows[2];
 | |
| }
 | |
| 
 | |
| _FORCE_INLINE_ Basis Basis::operator-(const Basis &p_matrix) const {
 | |
| 	Basis ret(*this);
 | |
| 	ret -= p_matrix;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| _FORCE_INLINE_ void Basis::operator*=(real_t p_val) {
 | |
| 	rows[0] *= p_val;
 | |
| 	rows[1] *= p_val;
 | |
| 	rows[2] *= p_val;
 | |
| }
 | |
| 
 | |
| _FORCE_INLINE_ Basis Basis::operator*(real_t p_val) const {
 | |
| 	Basis ret(*this);
 | |
| 	ret *= p_val;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| _FORCE_INLINE_ void Basis::operator/=(real_t p_val) {
 | |
| 	rows[0] /= p_val;
 | |
| 	rows[1] /= p_val;
 | |
| 	rows[2] /= p_val;
 | |
| }
 | |
| 
 | |
| _FORCE_INLINE_ Basis Basis::operator/(real_t p_val) const {
 | |
| 	Basis ret(*this);
 | |
| 	ret /= p_val;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| Vector3 Basis::xform(const Vector3 &p_vector) const {
 | |
| 	return Vector3(
 | |
| 			rows[0].dot(p_vector),
 | |
| 			rows[1].dot(p_vector),
 | |
| 			rows[2].dot(p_vector));
 | |
| }
 | |
| 
 | |
| Vector3 Basis::xform_inv(const Vector3 &p_vector) const {
 | |
| 	return Vector3(
 | |
| 			(rows[0][0] * p_vector.x) + (rows[1][0] * p_vector.y) + (rows[2][0] * p_vector.z),
 | |
| 			(rows[0][1] * p_vector.x) + (rows[1][1] * p_vector.y) + (rows[2][1] * p_vector.z),
 | |
| 			(rows[0][2] * p_vector.x) + (rows[1][2] * p_vector.y) + (rows[2][2] * p_vector.z));
 | |
| }
 | |
| 
 | |
| real_t Basis::determinant() const {
 | |
| 	return rows[0][0] * (rows[1][1] * rows[2][2] - rows[2][1] * rows[1][2]) -
 | |
| 			rows[1][0] * (rows[0][1] * rows[2][2] - rows[2][1] * rows[0][2]) +
 | |
| 			rows[2][0] * (rows[0][1] * rows[1][2] - rows[1][1] * rows[0][2]);
 | |
| }
 | |
| 
 | |
| #endif // BASIS_H
 | 
