mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-31 13:41:03 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			985 lines
		
	
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			985 lines
		
	
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /**************************************************************************/
 | |
| /*  geometry_3d.cpp                                                       */
 | |
| /**************************************************************************/
 | |
| /*                         This file is part of:                          */
 | |
| /*                             GODOT ENGINE                               */
 | |
| /*                        https://godotengine.org                         */
 | |
| /**************************************************************************/
 | |
| /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
 | |
| /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur.                  */
 | |
| /*                                                                        */
 | |
| /* Permission is hereby granted, free of charge, to any person obtaining  */
 | |
| /* a copy of this software and associated documentation files (the        */
 | |
| /* "Software"), to deal in the Software without restriction, including    */
 | |
| /* without limitation the rights to use, copy, modify, merge, publish,    */
 | |
| /* distribute, sublicense, and/or sell copies of the Software, and to     */
 | |
| /* permit persons to whom the Software is furnished to do so, subject to  */
 | |
| /* the following conditions:                                              */
 | |
| /*                                                                        */
 | |
| /* The above copyright notice and this permission notice shall be         */
 | |
| /* included in all copies or substantial portions of the Software.        */
 | |
| /*                                                                        */
 | |
| /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,        */
 | |
| /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF     */
 | |
| /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
 | |
| /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY   */
 | |
| /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,   */
 | |
| /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE      */
 | |
| /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                 */
 | |
| /**************************************************************************/
 | |
| 
 | |
| #include "geometry_3d.h"
 | |
| 
 | |
| #include "thirdparty/misc/polypartition.h"
 | |
| 
 | |
| void Geometry3D::get_closest_points_between_segments(const Vector3 &p_p0, const Vector3 &p_p1, const Vector3 &p_q0, const Vector3 &p_q1, Vector3 &r_ps, Vector3 &r_qt) {
 | |
| 	// Based on David Eberly's Computation of Distance Between Line Segments algorithm.
 | |
| 
 | |
| 	Vector3 p = p_p1 - p_p0;
 | |
| 	Vector3 q = p_q1 - p_q0;
 | |
| 	Vector3 r = p_p0 - p_q0;
 | |
| 
 | |
| 	real_t a = p.dot(p);
 | |
| 	real_t b = p.dot(q);
 | |
| 	real_t c = q.dot(q);
 | |
| 	real_t d = p.dot(r);
 | |
| 	real_t e = q.dot(r);
 | |
| 
 | |
| 	real_t s = 0.0f;
 | |
| 	real_t t = 0.0f;
 | |
| 
 | |
| 	real_t det = a * c - b * b;
 | |
| 	if (det > CMP_EPSILON) {
 | |
| 		// Non-parallel segments
 | |
| 		real_t bte = b * e;
 | |
| 		real_t ctd = c * d;
 | |
| 
 | |
| 		if (bte <= ctd) {
 | |
| 			// s <= 0.0f
 | |
| 			if (e <= 0.0f) {
 | |
| 				// t <= 0.0f
 | |
| 				s = (-d >= a ? 1 : (-d > 0.0f ? -d / a : 0.0f));
 | |
| 				t = 0.0f;
 | |
| 			} else if (e < c) {
 | |
| 				// 0.0f < t < 1
 | |
| 				s = 0.0f;
 | |
| 				t = e / c;
 | |
| 			} else {
 | |
| 				// t >= 1
 | |
| 				s = (b - d >= a ? 1 : (b - d > 0.0f ? (b - d) / a : 0.0f));
 | |
| 				t = 1;
 | |
| 			}
 | |
| 		} else {
 | |
| 			// s > 0.0f
 | |
| 			s = bte - ctd;
 | |
| 			if (s >= det) {
 | |
| 				// s >= 1
 | |
| 				if (b + e <= 0.0f) {
 | |
| 					// t <= 0.0f
 | |
| 					s = (-d <= 0.0f ? 0.0f : (-d < a ? -d / a : 1));
 | |
| 					t = 0.0f;
 | |
| 				} else if (b + e < c) {
 | |
| 					// 0.0f < t < 1
 | |
| 					s = 1;
 | |
| 					t = (b + e) / c;
 | |
| 				} else {
 | |
| 					// t >= 1
 | |
| 					s = (b - d <= 0.0f ? 0.0f : (b - d < a ? (b - d) / a : 1));
 | |
| 					t = 1;
 | |
| 				}
 | |
| 			} else {
 | |
| 				// 0.0f < s < 1
 | |
| 				real_t ate = a * e;
 | |
| 				real_t btd = b * d;
 | |
| 
 | |
| 				if (ate <= btd) {
 | |
| 					// t <= 0.0f
 | |
| 					s = (-d <= 0.0f ? 0.0f : (-d >= a ? 1 : -d / a));
 | |
| 					t = 0.0f;
 | |
| 				} else {
 | |
| 					// t > 0.0f
 | |
| 					t = ate - btd;
 | |
| 					if (t >= det) {
 | |
| 						// t >= 1
 | |
| 						s = (b - d <= 0.0f ? 0.0f : (b - d >= a ? 1 : (b - d) / a));
 | |
| 						t = 1;
 | |
| 					} else {
 | |
| 						// 0.0f < t < 1
 | |
| 						s /= det;
 | |
| 						t /= det;
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	} else {
 | |
| 		// Parallel segments
 | |
| 		if (e <= 0.0f) {
 | |
| 			s = (-d <= 0.0f ? 0.0f : (-d >= a ? 1 : -d / a));
 | |
| 			t = 0.0f;
 | |
| 		} else if (e >= c) {
 | |
| 			s = (b - d <= 0.0f ? 0.0f : (b - d >= a ? 1 : (b - d) / a));
 | |
| 			t = 1;
 | |
| 		} else {
 | |
| 			s = 0.0f;
 | |
| 			t = e / c;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	r_ps = (1 - s) * p_p0 + s * p_p1;
 | |
| 	r_qt = (1 - t) * p_q0 + t * p_q1;
 | |
| }
 | |
| 
 | |
| real_t Geometry3D::get_closest_distance_between_segments(const Vector3 &p_p0, const Vector3 &p_p1, const Vector3 &p_q0, const Vector3 &p_q1) {
 | |
| 	Vector3 ps;
 | |
| 	Vector3 qt;
 | |
| 	get_closest_points_between_segments(p_p0, p_p1, p_q0, p_q1, ps, qt);
 | |
| 	Vector3 st = qt - ps;
 | |
| 	return st.length();
 | |
| }
 | |
| 
 | |
| void Geometry3D::MeshData::optimize_vertices() {
 | |
| 	HashMap<int, int> vtx_remap;
 | |
| 
 | |
| 	for (MeshData::Face &face : faces) {
 | |
| 		for (int &index : face.indices) {
 | |
| 			if (!vtx_remap.has(index)) {
 | |
| 				int ni = vtx_remap.size();
 | |
| 				vtx_remap[index] = ni;
 | |
| 			}
 | |
| 			index = vtx_remap[index];
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (MeshData::Edge &edge : edges) {
 | |
| 		int a = edge.vertex_a;
 | |
| 		int b = edge.vertex_b;
 | |
| 
 | |
| 		if (!vtx_remap.has(a)) {
 | |
| 			int ni = vtx_remap.size();
 | |
| 			vtx_remap[a] = ni;
 | |
| 		}
 | |
| 		if (!vtx_remap.has(b)) {
 | |
| 			int ni = vtx_remap.size();
 | |
| 			vtx_remap[b] = ni;
 | |
| 		}
 | |
| 
 | |
| 		edge.vertex_a = vtx_remap[a];
 | |
| 		edge.vertex_b = vtx_remap[b];
 | |
| 	}
 | |
| 
 | |
| 	LocalVector<Vector3> new_vertices;
 | |
| 	new_vertices.resize(vtx_remap.size());
 | |
| 
 | |
| 	for (uint32_t i = 0; i < vertices.size(); i++) {
 | |
| 		if (vtx_remap.has(i)) {
 | |
| 			new_vertices[vtx_remap[i]] = vertices[i];
 | |
| 		}
 | |
| 	}
 | |
| 	vertices = new_vertices;
 | |
| }
 | |
| 
 | |
| struct _FaceClassify {
 | |
| 	struct _Link {
 | |
| 		int face = -1;
 | |
| 		int edge = -1;
 | |
| 		void clear() {
 | |
| 			face = -1;
 | |
| 			edge = -1;
 | |
| 		}
 | |
| 		_Link() {}
 | |
| 	};
 | |
| 	bool valid = false;
 | |
| 	int group = -1;
 | |
| 	_Link links[3];
 | |
| 	Face3 face;
 | |
| 	_FaceClassify() {}
 | |
| };
 | |
| 
 | |
| /*** GEOMETRY WRAPPER ***/
 | |
| 
 | |
| enum _CellFlags {
 | |
| 	_CELL_SOLID = 1,
 | |
| 	_CELL_EXTERIOR = 2,
 | |
| 	_CELL_STEP_MASK = 0x1C,
 | |
| 	_CELL_STEP_NONE = 0 << 2,
 | |
| 	_CELL_STEP_Y_POS = 1 << 2,
 | |
| 	_CELL_STEP_Y_NEG = 2 << 2,
 | |
| 	_CELL_STEP_X_POS = 3 << 2,
 | |
| 	_CELL_STEP_X_NEG = 4 << 2,
 | |
| 	_CELL_STEP_Z_POS = 5 << 2,
 | |
| 	_CELL_STEP_Z_NEG = 6 << 2,
 | |
| 	_CELL_STEP_DONE = 7 << 2,
 | |
| 	_CELL_PREV_MASK = 0xE0,
 | |
| 	_CELL_PREV_NONE = 0 << 5,
 | |
| 	_CELL_PREV_Y_POS = 1 << 5,
 | |
| 	_CELL_PREV_Y_NEG = 2 << 5,
 | |
| 	_CELL_PREV_X_POS = 3 << 5,
 | |
| 	_CELL_PREV_X_NEG = 4 << 5,
 | |
| 	_CELL_PREV_Z_POS = 5 << 5,
 | |
| 	_CELL_PREV_Z_NEG = 6 << 5,
 | |
| 	_CELL_PREV_FIRST = 7 << 5,
 | |
| };
 | |
| 
 | |
| static inline void _plot_face(uint8_t ***p_cell_status, int x, int y, int z, int len_x, int len_y, int len_z, const Vector3 &voxelsize, const Face3 &p_face) {
 | |
| 	AABB aabb(Vector3(x, y, z), Vector3(len_x, len_y, len_z));
 | |
| 	aabb.position = aabb.position * voxelsize;
 | |
| 	aabb.size = aabb.size * voxelsize;
 | |
| 
 | |
| 	if (!p_face.intersects_aabb(aabb)) {
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (len_x == 1 && len_y == 1 && len_z == 1) {
 | |
| 		p_cell_status[x][y][z] = _CELL_SOLID;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	int div_x = len_x > 1 ? 2 : 1;
 | |
| 	int div_y = len_y > 1 ? 2 : 1;
 | |
| 	int div_z = len_z > 1 ? 2 : 1;
 | |
| 
 | |
| #define SPLIT_DIV(m_i, m_div, m_v, m_len_v, m_new_v, m_new_len_v) \
 | |
| 	if (m_div == 1) {                                             \
 | |
| 		m_new_v = m_v;                                            \
 | |
| 		m_new_len_v = 1;                                          \
 | |
| 	} else if (m_i == 0) {                                        \
 | |
| 		m_new_v = m_v;                                            \
 | |
| 		m_new_len_v = m_len_v / 2;                                \
 | |
| 	} else {                                                      \
 | |
| 		m_new_v = m_v + m_len_v / 2;                              \
 | |
| 		m_new_len_v = m_len_v - m_len_v / 2;                      \
 | |
| 	}
 | |
| 
 | |
| 	int new_x;
 | |
| 	int new_len_x;
 | |
| 	int new_y;
 | |
| 	int new_len_y;
 | |
| 	int new_z;
 | |
| 	int new_len_z;
 | |
| 
 | |
| 	for (int i = 0; i < div_x; i++) {
 | |
| 		SPLIT_DIV(i, div_x, x, len_x, new_x, new_len_x);
 | |
| 
 | |
| 		for (int j = 0; j < div_y; j++) {
 | |
| 			SPLIT_DIV(j, div_y, y, len_y, new_y, new_len_y);
 | |
| 
 | |
| 			for (int k = 0; k < div_z; k++) {
 | |
| 				SPLIT_DIV(k, div_z, z, len_z, new_z, new_len_z);
 | |
| 
 | |
| 				_plot_face(p_cell_status, new_x, new_y, new_z, new_len_x, new_len_y, new_len_z, voxelsize, p_face);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| #undef SPLIT_DIV
 | |
| }
 | |
| 
 | |
| static inline void _mark_outside(uint8_t ***p_cell_status, int x, int y, int z, int len_x, int len_y, int len_z) {
 | |
| 	if (p_cell_status[x][y][z] & 3) {
 | |
| 		return; // Nothing to do, already used and/or visited.
 | |
| 	}
 | |
| 
 | |
| 	p_cell_status[x][y][z] = _CELL_PREV_FIRST;
 | |
| 
 | |
| 	while (true) {
 | |
| 		uint8_t &c = p_cell_status[x][y][z];
 | |
| 
 | |
| 		if ((c & _CELL_STEP_MASK) == _CELL_STEP_NONE) {
 | |
| 			// Haven't been in here, mark as outside.
 | |
| 			p_cell_status[x][y][z] |= _CELL_EXTERIOR;
 | |
| 		}
 | |
| 
 | |
| 		if ((c & _CELL_STEP_MASK) != _CELL_STEP_DONE) {
 | |
| 			// If not done, increase step.
 | |
| 			c += 1 << 2;
 | |
| 		}
 | |
| 
 | |
| 		if ((c & _CELL_STEP_MASK) == _CELL_STEP_DONE) {
 | |
| 			// Go back.
 | |
| 			switch (c & _CELL_PREV_MASK) {
 | |
| 				case _CELL_PREV_FIRST: {
 | |
| 					return;
 | |
| 				} break;
 | |
| 				case _CELL_PREV_Y_POS: {
 | |
| 					y++;
 | |
| 					ERR_FAIL_COND(y >= len_y);
 | |
| 				} break;
 | |
| 				case _CELL_PREV_Y_NEG: {
 | |
| 					y--;
 | |
| 					ERR_FAIL_COND(y < 0);
 | |
| 				} break;
 | |
| 				case _CELL_PREV_X_POS: {
 | |
| 					x++;
 | |
| 					ERR_FAIL_COND(x >= len_x);
 | |
| 				} break;
 | |
| 				case _CELL_PREV_X_NEG: {
 | |
| 					x--;
 | |
| 					ERR_FAIL_COND(x < 0);
 | |
| 				} break;
 | |
| 				case _CELL_PREV_Z_POS: {
 | |
| 					z++;
 | |
| 					ERR_FAIL_COND(z >= len_z);
 | |
| 				} break;
 | |
| 				case _CELL_PREV_Z_NEG: {
 | |
| 					z--;
 | |
| 					ERR_FAIL_COND(z < 0);
 | |
| 				} break;
 | |
| 				default: {
 | |
| 					ERR_FAIL();
 | |
| 				}
 | |
| 			}
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		int next_x = x, next_y = y, next_z = z;
 | |
| 		uint8_t prev = 0;
 | |
| 
 | |
| 		switch (c & _CELL_STEP_MASK) {
 | |
| 			case _CELL_STEP_Y_POS: {
 | |
| 				next_y++;
 | |
| 				prev = _CELL_PREV_Y_NEG;
 | |
| 			} break;
 | |
| 			case _CELL_STEP_Y_NEG: {
 | |
| 				next_y--;
 | |
| 				prev = _CELL_PREV_Y_POS;
 | |
| 			} break;
 | |
| 			case _CELL_STEP_X_POS: {
 | |
| 				next_x++;
 | |
| 				prev = _CELL_PREV_X_NEG;
 | |
| 			} break;
 | |
| 			case _CELL_STEP_X_NEG: {
 | |
| 				next_x--;
 | |
| 				prev = _CELL_PREV_X_POS;
 | |
| 			} break;
 | |
| 			case _CELL_STEP_Z_POS: {
 | |
| 				next_z++;
 | |
| 				prev = _CELL_PREV_Z_NEG;
 | |
| 			} break;
 | |
| 			case _CELL_STEP_Z_NEG: {
 | |
| 				next_z--;
 | |
| 				prev = _CELL_PREV_Z_POS;
 | |
| 			} break;
 | |
| 			default:
 | |
| 				ERR_FAIL();
 | |
| 		}
 | |
| 
 | |
| 		if (next_x < 0 || next_x >= len_x) {
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (next_y < 0 || next_y >= len_y) {
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (next_z < 0 || next_z >= len_z) {
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (p_cell_status[next_x][next_y][next_z] & 3) {
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		x = next_x;
 | |
| 		y = next_y;
 | |
| 		z = next_z;
 | |
| 		p_cell_status[x][y][z] |= prev;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void _build_faces(uint8_t ***p_cell_status, int x, int y, int z, int len_x, int len_y, int len_z, Vector<Face3> &p_faces) {
 | |
| 	ERR_FAIL_INDEX(x, len_x);
 | |
| 	ERR_FAIL_INDEX(y, len_y);
 | |
| 	ERR_FAIL_INDEX(z, len_z);
 | |
| 
 | |
| 	if (p_cell_status[x][y][z] & _CELL_EXTERIOR) {
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| #define vert(m_idx) Vector3(((m_idx) & 4) >> 2, ((m_idx) & 2) >> 1, (m_idx) & 1)
 | |
| 
 | |
| 	static const uint8_t indices[6][4] = {
 | |
| 		{ 7, 6, 4, 5 },
 | |
| 		{ 7, 3, 2, 6 },
 | |
| 		{ 7, 5, 1, 3 },
 | |
| 		{ 0, 2, 3, 1 },
 | |
| 		{ 0, 1, 5, 4 },
 | |
| 		{ 0, 4, 6, 2 },
 | |
| 
 | |
| 	};
 | |
| 
 | |
| 	for (int i = 0; i < 6; i++) {
 | |
| 		Vector3 face_points[4];
 | |
| 		int disp_x = x + ((i % 3) == 0 ? ((i < 3) ? 1 : -1) : 0);
 | |
| 		int disp_y = y + (((i - 1) % 3) == 0 ? ((i < 3) ? 1 : -1) : 0);
 | |
| 		int disp_z = z + (((i - 2) % 3) == 0 ? ((i < 3) ? 1 : -1) : 0);
 | |
| 
 | |
| 		bool plot = false;
 | |
| 
 | |
| 		if (disp_x < 0 || disp_x >= len_x) {
 | |
| 			plot = true;
 | |
| 		}
 | |
| 		if (disp_y < 0 || disp_y >= len_y) {
 | |
| 			plot = true;
 | |
| 		}
 | |
| 		if (disp_z < 0 || disp_z >= len_z) {
 | |
| 			plot = true;
 | |
| 		}
 | |
| 
 | |
| 		if (!plot && (p_cell_status[disp_x][disp_y][disp_z] & _CELL_EXTERIOR)) {
 | |
| 			plot = true;
 | |
| 		}
 | |
| 
 | |
| 		if (!plot) {
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		for (int j = 0; j < 4; j++) {
 | |
| 			face_points[j] = vert(indices[i][j]) + Vector3(x, y, z);
 | |
| 		}
 | |
| 
 | |
| 		p_faces.push_back(
 | |
| 				Face3(
 | |
| 						face_points[0],
 | |
| 						face_points[1],
 | |
| 						face_points[2]));
 | |
| 
 | |
| 		p_faces.push_back(
 | |
| 				Face3(
 | |
| 						face_points[2],
 | |
| 						face_points[3],
 | |
| 						face_points[0]));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| Vector<Face3> Geometry3D::wrap_geometry(const Vector<Face3> &p_array, real_t *p_error) {
 | |
| 	int face_count = p_array.size();
 | |
| 	const Face3 *faces = p_array.ptr();
 | |
| 	constexpr double min_size = 1.0;
 | |
| 	constexpr int max_length = 20;
 | |
| 
 | |
| 	AABB global_aabb;
 | |
| 
 | |
| 	for (int i = 0; i < face_count; i++) {
 | |
| 		if (i == 0) {
 | |
| 			global_aabb = faces[i].get_aabb();
 | |
| 		} else {
 | |
| 			global_aabb.merge_with(faces[i].get_aabb());
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	global_aabb.grow_by(0.01f); // Avoid numerical error.
 | |
| 
 | |
| 	// Determine amount of cells in grid axis.
 | |
| 	int div_x, div_y, div_z;
 | |
| 
 | |
| 	if (global_aabb.size.x / min_size < max_length) {
 | |
| 		div_x = (int)(global_aabb.size.x / min_size) + 1;
 | |
| 	} else {
 | |
| 		div_x = max_length;
 | |
| 	}
 | |
| 
 | |
| 	if (global_aabb.size.y / min_size < max_length) {
 | |
| 		div_y = (int)(global_aabb.size.y / min_size) + 1;
 | |
| 	} else {
 | |
| 		div_y = max_length;
 | |
| 	}
 | |
| 
 | |
| 	if (global_aabb.size.z / min_size < max_length) {
 | |
| 		div_z = (int)(global_aabb.size.z / min_size) + 1;
 | |
| 	} else {
 | |
| 		div_z = max_length;
 | |
| 	}
 | |
| 
 | |
| 	Vector3 voxelsize = global_aabb.size;
 | |
| 	voxelsize.x /= div_x;
 | |
| 	voxelsize.y /= div_y;
 | |
| 	voxelsize.z /= div_z;
 | |
| 
 | |
| 	// Create and initialize cells to zero.
 | |
| 
 | |
| 	uint8_t ***cell_status = memnew_arr(uint8_t **, div_x);
 | |
| 	for (int i = 0; i < div_x; i++) {
 | |
| 		cell_status[i] = memnew_arr(uint8_t *, div_y);
 | |
| 
 | |
| 		for (int j = 0; j < div_y; j++) {
 | |
| 			cell_status[i][j] = memnew_arr(uint8_t, div_z);
 | |
| 
 | |
| 			for (int k = 0; k < div_z; k++) {
 | |
| 				cell_status[i][j][k] = 0;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// Plot faces into cells.
 | |
| 
 | |
| 	for (int i = 0; i < face_count; i++) {
 | |
| 		Face3 f = faces[i];
 | |
| 		for (int j = 0; j < 3; j++) {
 | |
| 			f.vertex[j] -= global_aabb.position;
 | |
| 		}
 | |
| 		_plot_face(cell_status, 0, 0, 0, div_x, div_y, div_z, voxelsize, f);
 | |
| 	}
 | |
| 
 | |
| 	// Determine which cells connect to the outside by traversing the outside and recursively flood-fill marking.
 | |
| 
 | |
| 	for (int i = 0; i < div_x; i++) {
 | |
| 		for (int j = 0; j < div_y; j++) {
 | |
| 			_mark_outside(cell_status, i, j, 0, div_x, div_y, div_z);
 | |
| 			_mark_outside(cell_status, i, j, div_z - 1, div_x, div_y, div_z);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (int i = 0; i < div_z; i++) {
 | |
| 		for (int j = 0; j < div_y; j++) {
 | |
| 			_mark_outside(cell_status, 0, j, i, div_x, div_y, div_z);
 | |
| 			_mark_outside(cell_status, div_x - 1, j, i, div_x, div_y, div_z);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (int i = 0; i < div_x; i++) {
 | |
| 		for (int j = 0; j < div_z; j++) {
 | |
| 			_mark_outside(cell_status, i, 0, j, div_x, div_y, div_z);
 | |
| 			_mark_outside(cell_status, i, div_y - 1, j, div_x, div_y, div_z);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// Build faces for the inside-outside cell divisors.
 | |
| 
 | |
| 	Vector<Face3> wrapped_faces;
 | |
| 
 | |
| 	for (int i = 0; i < div_x; i++) {
 | |
| 		for (int j = 0; j < div_y; j++) {
 | |
| 			for (int k = 0; k < div_z; k++) {
 | |
| 				_build_faces(cell_status, i, j, k, div_x, div_y, div_z, wrapped_faces);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// Transform face vertices to global coords.
 | |
| 
 | |
| 	int wrapped_faces_count = wrapped_faces.size();
 | |
| 	Face3 *wrapped_faces_ptr = wrapped_faces.ptrw();
 | |
| 
 | |
| 	for (int i = 0; i < wrapped_faces_count; i++) {
 | |
| 		for (int j = 0; j < 3; j++) {
 | |
| 			Vector3 &v = wrapped_faces_ptr[i].vertex[j];
 | |
| 			v = v * voxelsize;
 | |
| 			v += global_aabb.position;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// clean up grid
 | |
| 
 | |
| 	for (int i = 0; i < div_x; i++) {
 | |
| 		for (int j = 0; j < div_y; j++) {
 | |
| 			memdelete_arr(cell_status[i][j]);
 | |
| 		}
 | |
| 
 | |
| 		memdelete_arr(cell_status[i]);
 | |
| 	}
 | |
| 
 | |
| 	memdelete_arr(cell_status);
 | |
| 	if (p_error) {
 | |
| 		*p_error = voxelsize.length();
 | |
| 	}
 | |
| 
 | |
| 	return wrapped_faces;
 | |
| }
 | |
| 
 | |
| Geometry3D::MeshData Geometry3D::build_convex_mesh(const Vector<Plane> &p_planes) {
 | |
| 	MeshData mesh;
 | |
| 
 | |
| #define SUBPLANE_SIZE 1024.0
 | |
| 
 | |
| 	real_t subplane_size = 1024.0; // Should compute this from the actual plane.
 | |
| 	for (int i = 0; i < p_planes.size(); i++) {
 | |
| 		Plane p = p_planes[i];
 | |
| 
 | |
| 		Vector3 ref = Vector3(0.0, 1.0, 0.0);
 | |
| 
 | |
| 		if (ABS(p.normal.dot(ref)) > 0.95f) {
 | |
| 			ref = Vector3(0.0, 0.0, 1.0); // Change axis.
 | |
| 		}
 | |
| 
 | |
| 		Vector3 right = p.normal.cross(ref).normalized();
 | |
| 		Vector3 up = p.normal.cross(right).normalized();
 | |
| 
 | |
| 		Vector3 center = p.get_center();
 | |
| 
 | |
| 		// make a quad clockwise
 | |
| 		LocalVector<Vector3> vertices = {
 | |
| 			center - up * subplane_size + right * subplane_size,
 | |
| 			center - up * subplane_size - right * subplane_size,
 | |
| 			center + up * subplane_size - right * subplane_size,
 | |
| 			center + up * subplane_size + right * subplane_size
 | |
| 		};
 | |
| 
 | |
| 		for (int j = 0; j < p_planes.size(); j++) {
 | |
| 			if (j == i) {
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			LocalVector<Vector3> new_vertices;
 | |
| 			Plane clip = p_planes[j];
 | |
| 
 | |
| 			if (clip.normal.dot(p.normal) > 0.95f) {
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			if (vertices.size() < 3) {
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			for (uint32_t k = 0; k < vertices.size(); k++) {
 | |
| 				int k_n = (k + 1) % vertices.size();
 | |
| 
 | |
| 				Vector3 edge0_A = vertices[k];
 | |
| 				Vector3 edge1_A = vertices[k_n];
 | |
| 
 | |
| 				real_t dist0 = clip.distance_to(edge0_A);
 | |
| 				real_t dist1 = clip.distance_to(edge1_A);
 | |
| 
 | |
| 				if (dist0 <= 0) { // Behind plane.
 | |
| 
 | |
| 					new_vertices.push_back(vertices[k]);
 | |
| 				}
 | |
| 
 | |
| 				// Check for different sides and non coplanar.
 | |
| 				if ((dist0 * dist1) < 0) {
 | |
| 					// Calculate intersection.
 | |
| 					Vector3 rel = edge1_A - edge0_A;
 | |
| 
 | |
| 					real_t den = clip.normal.dot(rel);
 | |
| 					if (Math::is_zero_approx(den)) {
 | |
| 						continue; // Point too short.
 | |
| 					}
 | |
| 
 | |
| 					real_t dist = -(clip.normal.dot(edge0_A) - clip.d) / den;
 | |
| 					Vector3 inters = edge0_A + rel * dist;
 | |
| 					new_vertices.push_back(inters);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			vertices = new_vertices;
 | |
| 		}
 | |
| 
 | |
| 		if (vertices.size() < 3) {
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		// Result is a clockwise face.
 | |
| 
 | |
| 		MeshData::Face face;
 | |
| 
 | |
| 		// Add face indices.
 | |
| 		for (const Vector3 &vertex : vertices) {
 | |
| 			int idx = -1;
 | |
| 			for (uint32_t k = 0; k < mesh.vertices.size(); k++) {
 | |
| 				if (mesh.vertices[k].distance_to(vertex) < 0.001f) {
 | |
| 					idx = k;
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if (idx == -1) {
 | |
| 				idx = mesh.vertices.size();
 | |
| 				mesh.vertices.push_back(vertex);
 | |
| 			}
 | |
| 
 | |
| 			face.indices.push_back(idx);
 | |
| 		}
 | |
| 		face.plane = p;
 | |
| 		mesh.faces.push_back(face);
 | |
| 
 | |
| 		// Add edge.
 | |
| 
 | |
| 		for (uint32_t j = 0; j < face.indices.size(); j++) {
 | |
| 			int a = face.indices[j];
 | |
| 			int b = face.indices[(j + 1) % face.indices.size()];
 | |
| 
 | |
| 			bool found = false;
 | |
| 			int found_idx = -1;
 | |
| 			for (uint32_t k = 0; k < mesh.edges.size(); k++) {
 | |
| 				if (mesh.edges[k].vertex_a == a && mesh.edges[k].vertex_b == b) {
 | |
| 					found = true;
 | |
| 					found_idx = k;
 | |
| 					break;
 | |
| 				}
 | |
| 				if (mesh.edges[k].vertex_b == a && mesh.edges[k].vertex_a == b) {
 | |
| 					found = true;
 | |
| 					found_idx = k;
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if (found) {
 | |
| 				mesh.edges[found_idx].face_b = j;
 | |
| 				continue;
 | |
| 			}
 | |
| 			MeshData::Edge edge;
 | |
| 			edge.vertex_a = a;
 | |
| 			edge.vertex_b = b;
 | |
| 			edge.face_a = j;
 | |
| 			edge.face_b = -1;
 | |
| 			mesh.edges.push_back(edge);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return mesh;
 | |
| }
 | |
| 
 | |
| Vector<Plane> Geometry3D::build_box_planes(const Vector3 &p_extents) {
 | |
| 	Vector<Plane> planes = {
 | |
| 		Plane(Vector3(1, 0, 0), p_extents.x),
 | |
| 		Plane(Vector3(-1, 0, 0), p_extents.x),
 | |
| 		Plane(Vector3(0, 1, 0), p_extents.y),
 | |
| 		Plane(Vector3(0, -1, 0), p_extents.y),
 | |
| 		Plane(Vector3(0, 0, 1), p_extents.z),
 | |
| 		Plane(Vector3(0, 0, -1), p_extents.z)
 | |
| 	};
 | |
| 
 | |
| 	return planes;
 | |
| }
 | |
| 
 | |
| Vector<Plane> Geometry3D::build_cylinder_planes(real_t p_radius, real_t p_height, int p_sides, Vector3::Axis p_axis) {
 | |
| 	ERR_FAIL_INDEX_V(p_axis, 3, Vector<Plane>());
 | |
| 
 | |
| 	Vector<Plane> planes;
 | |
| 
 | |
| 	const double sides_step = Math_TAU / p_sides;
 | |
| 	for (int i = 0; i < p_sides; i++) {
 | |
| 		Vector3 normal;
 | |
| 		normal[(p_axis + 1) % 3] = Math::cos(i * sides_step);
 | |
| 		normal[(p_axis + 2) % 3] = Math::sin(i * sides_step);
 | |
| 
 | |
| 		planes.push_back(Plane(normal, p_radius));
 | |
| 	}
 | |
| 
 | |
| 	Vector3 axis;
 | |
| 	axis[p_axis] = 1.0;
 | |
| 
 | |
| 	planes.push_back(Plane(axis, p_height * 0.5f));
 | |
| 	planes.push_back(Plane(-axis, p_height * 0.5f));
 | |
| 
 | |
| 	return planes;
 | |
| }
 | |
| 
 | |
| Vector<Plane> Geometry3D::build_sphere_planes(real_t p_radius, int p_lats, int p_lons, Vector3::Axis p_axis) {
 | |
| 	ERR_FAIL_INDEX_V(p_axis, 3, Vector<Plane>());
 | |
| 
 | |
| 	Vector<Plane> planes;
 | |
| 
 | |
| 	Vector3 axis;
 | |
| 	axis[p_axis] = 1.0;
 | |
| 
 | |
| 	Vector3 axis_neg;
 | |
| 	axis_neg[(p_axis + 1) % 3] = 1.0;
 | |
| 	axis_neg[(p_axis + 2) % 3] = 1.0;
 | |
| 	axis_neg[p_axis] = -1.0;
 | |
| 
 | |
| 	const double lon_step = Math_TAU / p_lons;
 | |
| 	for (int i = 0; i < p_lons; i++) {
 | |
| 		Vector3 normal;
 | |
| 		normal[(p_axis + 1) % 3] = Math::cos(i * lon_step);
 | |
| 		normal[(p_axis + 2) % 3] = Math::sin(i * lon_step);
 | |
| 
 | |
| 		planes.push_back(Plane(normal, p_radius));
 | |
| 
 | |
| 		for (int j = 1; j <= p_lats; j++) {
 | |
| 			Vector3 plane_normal = normal.lerp(axis, j / (real_t)p_lats).normalized();
 | |
| 			planes.push_back(Plane(plane_normal, p_radius));
 | |
| 			planes.push_back(Plane(plane_normal * axis_neg, p_radius));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return planes;
 | |
| }
 | |
| 
 | |
| Vector<Plane> Geometry3D::build_capsule_planes(real_t p_radius, real_t p_height, int p_sides, int p_lats, Vector3::Axis p_axis) {
 | |
| 	ERR_FAIL_INDEX_V(p_axis, 3, Vector<Plane>());
 | |
| 
 | |
| 	Vector<Plane> planes;
 | |
| 
 | |
| 	Vector3 axis;
 | |
| 	axis[p_axis] = 1.0;
 | |
| 
 | |
| 	Vector3 axis_neg;
 | |
| 	axis_neg[(p_axis + 1) % 3] = 1.0;
 | |
| 	axis_neg[(p_axis + 2) % 3] = 1.0;
 | |
| 	axis_neg[p_axis] = -1.0;
 | |
| 
 | |
| 	const double sides_step = Math_TAU / p_sides;
 | |
| 	for (int i = 0; i < p_sides; i++) {
 | |
| 		Vector3 normal;
 | |
| 		normal[(p_axis + 1) % 3] = Math::cos(i * sides_step);
 | |
| 		normal[(p_axis + 2) % 3] = Math::sin(i * sides_step);
 | |
| 
 | |
| 		planes.push_back(Plane(normal, p_radius));
 | |
| 
 | |
| 		for (int j = 1; j <= p_lats; j++) {
 | |
| 			Vector3 plane_normal = normal.lerp(axis, j / (real_t)p_lats).normalized();
 | |
| 			Vector3 position = axis * p_height * 0.5f + plane_normal * p_radius;
 | |
| 			planes.push_back(Plane(plane_normal, position));
 | |
| 			planes.push_back(Plane(plane_normal * axis_neg, position * axis_neg));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return planes;
 | |
| }
 | |
| 
 | |
| Vector<Vector3> Geometry3D::compute_convex_mesh_points(const Plane *p_planes, int p_plane_count) {
 | |
| 	Vector<Vector3> points;
 | |
| 
 | |
| 	// Iterate through every unique combination of any three planes.
 | |
| 	for (int i = p_plane_count - 1; i >= 0; i--) {
 | |
| 		for (int j = i - 1; j >= 0; j--) {
 | |
| 			for (int k = j - 1; k >= 0; k--) {
 | |
| 				// Find the point where these planes all cross over (if they
 | |
| 				// do at all).
 | |
| 				Vector3 convex_shape_point;
 | |
| 				if (p_planes[i].intersect_3(p_planes[j], p_planes[k], &convex_shape_point)) {
 | |
| 					// See if any *other* plane excludes this point because it's
 | |
| 					// on the wrong side.
 | |
| 					bool excluded = false;
 | |
| 					for (int n = 0; n < p_plane_count; n++) {
 | |
| 						if (n != i && n != j && n != k) {
 | |
| 							real_t dp = p_planes[n].normal.dot(convex_shape_point);
 | |
| 							if (dp - p_planes[n].d > (real_t)CMP_EPSILON) {
 | |
| 								excluded = true;
 | |
| 								break;
 | |
| 							}
 | |
| 						}
 | |
| 					}
 | |
| 
 | |
| 					// Only add the point if it passed all tests.
 | |
| 					if (!excluded) {
 | |
| 						points.push_back(convex_shape_point);
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return points;
 | |
| }
 | |
| 
 | |
| #define square(m_s) ((m_s) * (m_s))
 | |
| #define INF 1e20
 | |
| 
 | |
| /* dt of 1d function using squared distance */
 | |
| static void edt(float *f, int stride, int n) {
 | |
| 	float *d = (float *)alloca(sizeof(float) * n + sizeof(int) * n + sizeof(float) * (n + 1));
 | |
| 	int *v = reinterpret_cast<int *>(&(d[n]));
 | |
| 	float *z = reinterpret_cast<float *>(&v[n]);
 | |
| 
 | |
| 	int k = 0;
 | |
| 	v[0] = 0;
 | |
| 	z[0] = -INF;
 | |
| 	z[1] = +INF;
 | |
| 	for (int q = 1; q <= n - 1; q++) {
 | |
| 		float s = ((f[q * stride] + square(q)) - (f[v[k] * stride] + square(v[k]))) / (2 * q - 2 * v[k]);
 | |
| 		while (s <= z[k]) {
 | |
| 			k--;
 | |
| 			s = ((f[q * stride] + square(q)) - (f[v[k] * stride] + square(v[k]))) / (2 * q - 2 * v[k]);
 | |
| 		}
 | |
| 		k++;
 | |
| 		v[k] = q;
 | |
| 
 | |
| 		z[k] = s;
 | |
| 		z[k + 1] = +INF;
 | |
| 	}
 | |
| 
 | |
| 	k = 0;
 | |
| 	for (int q = 0; q <= n - 1; q++) {
 | |
| 		while (z[k + 1] < q) {
 | |
| 			k++;
 | |
| 		}
 | |
| 		d[q] = square(q - v[k]) + f[v[k] * stride];
 | |
| 	}
 | |
| 
 | |
| 	for (int i = 0; i < n; i++) {
 | |
| 		f[i * stride] = d[i];
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #undef square
 | |
| 
 | |
| Vector<uint32_t> Geometry3D::generate_edf(const Vector<bool> &p_voxels, const Vector3i &p_size, bool p_negative) {
 | |
| 	uint32_t float_count = p_size.x * p_size.y * p_size.z;
 | |
| 
 | |
| 	ERR_FAIL_COND_V((uint32_t)p_voxels.size() != float_count, Vector<uint32_t>());
 | |
| 
 | |
| 	float *work_memory = memnew_arr(float, float_count);
 | |
| 	for (uint32_t i = 0; i < float_count; i++) {
 | |
| 		work_memory[i] = INF;
 | |
| 	}
 | |
| 
 | |
| 	uint32_t y_mult = p_size.x;
 | |
| 	uint32_t z_mult = y_mult * p_size.y;
 | |
| 
 | |
| 	//plot solid cells
 | |
| 	{
 | |
| 		const bool *voxr = p_voxels.ptr();
 | |
| 		for (uint32_t i = 0; i < float_count; i++) {
 | |
| 			bool plot = voxr[i];
 | |
| 			if (p_negative) {
 | |
| 				plot = !plot;
 | |
| 			}
 | |
| 			if (plot) {
 | |
| 				work_memory[i] = 0;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	//process in each direction
 | |
| 
 | |
| 	//xy->z
 | |
| 
 | |
| 	for (int i = 0; i < p_size.x; i++) {
 | |
| 		for (int j = 0; j < p_size.y; j++) {
 | |
| 			edt(&work_memory[i + j * y_mult], z_mult, p_size.z);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	//xz->y
 | |
| 
 | |
| 	for (int i = 0; i < p_size.x; i++) {
 | |
| 		for (int j = 0; j < p_size.z; j++) {
 | |
| 			edt(&work_memory[i + j * z_mult], y_mult, p_size.y);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	//yz->x
 | |
| 	for (int i = 0; i < p_size.y; i++) {
 | |
| 		for (int j = 0; j < p_size.z; j++) {
 | |
| 			edt(&work_memory[i * y_mult + j * z_mult], 1, p_size.x);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	Vector<uint32_t> ret;
 | |
| 	ret.resize(float_count);
 | |
| 	{
 | |
| 		uint32_t *w = ret.ptrw();
 | |
| 		for (uint32_t i = 0; i < float_count; i++) {
 | |
| 			w[i] = uint32_t(Math::sqrt(work_memory[i]));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	memdelete_arr(work_memory);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| Vector<int8_t> Geometry3D::generate_sdf8(const Vector<uint32_t> &p_positive, const Vector<uint32_t> &p_negative) {
 | |
| 	ERR_FAIL_COND_V(p_positive.size() != p_negative.size(), Vector<int8_t>());
 | |
| 	Vector<int8_t> sdf8;
 | |
| 	int s = p_positive.size();
 | |
| 	sdf8.resize(s);
 | |
| 
 | |
| 	const uint32_t *rpos = p_positive.ptr();
 | |
| 	const uint32_t *rneg = p_negative.ptr();
 | |
| 	int8_t *wsdf = sdf8.ptrw();
 | |
| 	for (int i = 0; i < s; i++) {
 | |
| 		int32_t diff = int32_t(rpos[i]) - int32_t(rneg[i]);
 | |
| 		wsdf[i] = CLAMP(diff, -128, 127);
 | |
| 	}
 | |
| 	return sdf8;
 | |
| }
 | 
