mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-31 13:41:03 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			330 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			330 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /**************************************************************************/
 | |
| /*  vector2.h                                                             */
 | |
| /**************************************************************************/
 | |
| /*                         This file is part of:                          */
 | |
| /*                             GODOT ENGINE                               */
 | |
| /*                        https://godotengine.org                         */
 | |
| /**************************************************************************/
 | |
| /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
 | |
| /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur.                  */
 | |
| /*                                                                        */
 | |
| /* Permission is hereby granted, free of charge, to any person obtaining  */
 | |
| /* a copy of this software and associated documentation files (the        */
 | |
| /* "Software"), to deal in the Software without restriction, including    */
 | |
| /* without limitation the rights to use, copy, modify, merge, publish,    */
 | |
| /* distribute, sublicense, and/or sell copies of the Software, and to     */
 | |
| /* permit persons to whom the Software is furnished to do so, subject to  */
 | |
| /* the following conditions:                                              */
 | |
| /*                                                                        */
 | |
| /* The above copyright notice and this permission notice shall be         */
 | |
| /* included in all copies or substantial portions of the Software.        */
 | |
| /*                                                                        */
 | |
| /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,        */
 | |
| /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF     */
 | |
| /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
 | |
| /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY   */
 | |
| /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,   */
 | |
| /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE      */
 | |
| /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                 */
 | |
| /**************************************************************************/
 | |
| 
 | |
| #ifndef VECTOR2_H
 | |
| #define VECTOR2_H
 | |
| 
 | |
| #include "core/error/error_macros.h"
 | |
| #include "core/math/math_funcs.h"
 | |
| 
 | |
| class String;
 | |
| struct Vector2i;
 | |
| 
 | |
| struct _NO_DISCARD_ Vector2 {
 | |
| 	static const int AXIS_COUNT = 2;
 | |
| 
 | |
| 	enum Axis {
 | |
| 		AXIS_X,
 | |
| 		AXIS_Y,
 | |
| 	};
 | |
| 
 | |
| 	union {
 | |
| 		struct {
 | |
| 			union {
 | |
| 				real_t x;
 | |
| 				real_t width;
 | |
| 			};
 | |
| 			union {
 | |
| 				real_t y;
 | |
| 				real_t height;
 | |
| 			};
 | |
| 		};
 | |
| 
 | |
| 		real_t coord[2] = { 0 };
 | |
| 	};
 | |
| 
 | |
| 	_FORCE_INLINE_ real_t &operator[](int p_axis) {
 | |
| 		DEV_ASSERT((unsigned int)p_axis < 2);
 | |
| 		return coord[p_axis];
 | |
| 	}
 | |
| 	_FORCE_INLINE_ const real_t &operator[](int p_axis) const {
 | |
| 		DEV_ASSERT((unsigned int)p_axis < 2);
 | |
| 		return coord[p_axis];
 | |
| 	}
 | |
| 
 | |
| 	_FORCE_INLINE_ Vector2::Axis min_axis_index() const {
 | |
| 		return x < y ? Vector2::AXIS_X : Vector2::AXIS_Y;
 | |
| 	}
 | |
| 
 | |
| 	_FORCE_INLINE_ Vector2::Axis max_axis_index() const {
 | |
| 		return x < y ? Vector2::AXIS_Y : Vector2::AXIS_X;
 | |
| 	}
 | |
| 
 | |
| 	void normalize();
 | |
| 	Vector2 normalized() const;
 | |
| 	bool is_normalized() const;
 | |
| 
 | |
| 	real_t length() const;
 | |
| 	real_t length_squared() const;
 | |
| 	Vector2 limit_length(real_t p_len = 1.0) const;
 | |
| 
 | |
| 	Vector2 min(const Vector2 &p_vector2) const {
 | |
| 		return Vector2(MIN(x, p_vector2.x), MIN(y, p_vector2.y));
 | |
| 	}
 | |
| 
 | |
| 	Vector2 minf(real_t p_scalar) const {
 | |
| 		return Vector2(MIN(x, p_scalar), MIN(y, p_scalar));
 | |
| 	}
 | |
| 
 | |
| 	Vector2 max(const Vector2 &p_vector2) const {
 | |
| 		return Vector2(MAX(x, p_vector2.x), MAX(y, p_vector2.y));
 | |
| 	}
 | |
| 
 | |
| 	Vector2 maxf(real_t p_scalar) const {
 | |
| 		return Vector2(MAX(x, p_scalar), MAX(y, p_scalar));
 | |
| 	}
 | |
| 
 | |
| 	real_t distance_to(const Vector2 &p_vector2) const;
 | |
| 	real_t distance_squared_to(const Vector2 &p_vector2) const;
 | |
| 	real_t angle_to(const Vector2 &p_vector2) const;
 | |
| 	real_t angle_to_point(const Vector2 &p_vector2) const;
 | |
| 	_FORCE_INLINE_ Vector2 direction_to(const Vector2 &p_to) const;
 | |
| 
 | |
| 	real_t dot(const Vector2 &p_other) const;
 | |
| 	real_t cross(const Vector2 &p_other) const;
 | |
| 	Vector2 posmod(real_t p_mod) const;
 | |
| 	Vector2 posmodv(const Vector2 &p_modv) const;
 | |
| 	Vector2 project(const Vector2 &p_to) const;
 | |
| 
 | |
| 	Vector2 plane_project(real_t p_d, const Vector2 &p_vec) const;
 | |
| 
 | |
| 	_FORCE_INLINE_ Vector2 lerp(const Vector2 &p_to, real_t p_weight) const;
 | |
| 	_FORCE_INLINE_ Vector2 slerp(const Vector2 &p_to, real_t p_weight) const;
 | |
| 	_FORCE_INLINE_ Vector2 cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, real_t p_weight) const;
 | |
| 	_FORCE_INLINE_ Vector2 cubic_interpolate_in_time(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, real_t p_weight, real_t p_b_t, real_t p_pre_a_t, real_t p_post_b_t) const;
 | |
| 	_FORCE_INLINE_ Vector2 bezier_interpolate(const Vector2 &p_control_1, const Vector2 &p_control_2, const Vector2 &p_end, real_t p_t) const;
 | |
| 	_FORCE_INLINE_ Vector2 bezier_derivative(const Vector2 &p_control_1, const Vector2 &p_control_2, const Vector2 &p_end, real_t p_t) const;
 | |
| 
 | |
| 	Vector2 move_toward(const Vector2 &p_to, real_t p_delta) const;
 | |
| 
 | |
| 	Vector2 slide(const Vector2 &p_normal) const;
 | |
| 	Vector2 bounce(const Vector2 &p_normal) const;
 | |
| 	Vector2 reflect(const Vector2 &p_normal) const;
 | |
| 
 | |
| 	bool is_equal_approx(const Vector2 &p_v) const;
 | |
| 	bool is_zero_approx() const;
 | |
| 	bool is_finite() const;
 | |
| 
 | |
| 	Vector2 operator+(const Vector2 &p_v) const;
 | |
| 	void operator+=(const Vector2 &p_v);
 | |
| 	Vector2 operator-(const Vector2 &p_v) const;
 | |
| 	void operator-=(const Vector2 &p_v);
 | |
| 	Vector2 operator*(const Vector2 &p_v1) const;
 | |
| 
 | |
| 	Vector2 operator*(real_t p_rvalue) const;
 | |
| 	void operator*=(real_t p_rvalue);
 | |
| 	void operator*=(const Vector2 &p_rvalue) { *this = *this * p_rvalue; }
 | |
| 
 | |
| 	Vector2 operator/(const Vector2 &p_v1) const;
 | |
| 
 | |
| 	Vector2 operator/(real_t p_rvalue) const;
 | |
| 
 | |
| 	void operator/=(real_t p_rvalue);
 | |
| 	void operator/=(const Vector2 &p_rvalue) { *this = *this / p_rvalue; }
 | |
| 
 | |
| 	Vector2 operator-() const;
 | |
| 
 | |
| 	bool operator==(const Vector2 &p_vec2) const;
 | |
| 	bool operator!=(const Vector2 &p_vec2) const;
 | |
| 
 | |
| 	bool operator<(const Vector2 &p_vec2) const { return x == p_vec2.x ? (y < p_vec2.y) : (x < p_vec2.x); }
 | |
| 	bool operator>(const Vector2 &p_vec2) const { return x == p_vec2.x ? (y > p_vec2.y) : (x > p_vec2.x); }
 | |
| 	bool operator<=(const Vector2 &p_vec2) const { return x == p_vec2.x ? (y <= p_vec2.y) : (x < p_vec2.x); }
 | |
| 	bool operator>=(const Vector2 &p_vec2) const { return x == p_vec2.x ? (y >= p_vec2.y) : (x > p_vec2.x); }
 | |
| 
 | |
| 	real_t angle() const;
 | |
| 	static Vector2 from_angle(real_t p_angle);
 | |
| 
 | |
| 	_FORCE_INLINE_ Vector2 abs() const {
 | |
| 		return Vector2(Math::abs(x), Math::abs(y));
 | |
| 	}
 | |
| 
 | |
| 	Vector2 rotated(real_t p_by) const;
 | |
| 	Vector2 orthogonal() const {
 | |
| 		return Vector2(y, -x);
 | |
| 	}
 | |
| 
 | |
| 	Vector2 sign() const;
 | |
| 	Vector2 floor() const;
 | |
| 	Vector2 ceil() const;
 | |
| 	Vector2 round() const;
 | |
| 	Vector2 snapped(const Vector2 &p_by) const;
 | |
| 	Vector2 snappedf(real_t p_by) const;
 | |
| 	Vector2 clamp(const Vector2 &p_min, const Vector2 &p_max) const;
 | |
| 	Vector2 clampf(real_t p_min, real_t p_max) const;
 | |
| 	real_t aspect() const { return width / height; }
 | |
| 
 | |
| 	operator String() const;
 | |
| 	operator Vector2i() const;
 | |
| 
 | |
| 	_FORCE_INLINE_ Vector2() {}
 | |
| 	_FORCE_INLINE_ Vector2(real_t p_x, real_t p_y) {
 | |
| 		x = p_x;
 | |
| 		y = p_y;
 | |
| 	}
 | |
| };
 | |
| 
 | |
| _FORCE_INLINE_ Vector2 Vector2::plane_project(real_t p_d, const Vector2 &p_vec) const {
 | |
| 	return p_vec - *this * (dot(p_vec) - p_d);
 | |
| }
 | |
| 
 | |
| _FORCE_INLINE_ Vector2 Vector2::operator+(const Vector2 &p_v) const {
 | |
| 	return Vector2(x + p_v.x, y + p_v.y);
 | |
| }
 | |
| 
 | |
| _FORCE_INLINE_ void Vector2::operator+=(const Vector2 &p_v) {
 | |
| 	x += p_v.x;
 | |
| 	y += p_v.y;
 | |
| }
 | |
| 
 | |
| _FORCE_INLINE_ Vector2 Vector2::operator-(const Vector2 &p_v) const {
 | |
| 	return Vector2(x - p_v.x, y - p_v.y);
 | |
| }
 | |
| 
 | |
| _FORCE_INLINE_ void Vector2::operator-=(const Vector2 &p_v) {
 | |
| 	x -= p_v.x;
 | |
| 	y -= p_v.y;
 | |
| }
 | |
| 
 | |
| _FORCE_INLINE_ Vector2 Vector2::operator*(const Vector2 &p_v1) const {
 | |
| 	return Vector2(x * p_v1.x, y * p_v1.y);
 | |
| }
 | |
| 
 | |
| _FORCE_INLINE_ Vector2 Vector2::operator*(real_t p_rvalue) const {
 | |
| 	return Vector2(x * p_rvalue, y * p_rvalue);
 | |
| }
 | |
| 
 | |
| _FORCE_INLINE_ void Vector2::operator*=(real_t p_rvalue) {
 | |
| 	x *= p_rvalue;
 | |
| 	y *= p_rvalue;
 | |
| }
 | |
| 
 | |
| _FORCE_INLINE_ Vector2 Vector2::operator/(const Vector2 &p_v1) const {
 | |
| 	return Vector2(x / p_v1.x, y / p_v1.y);
 | |
| }
 | |
| 
 | |
| _FORCE_INLINE_ Vector2 Vector2::operator/(real_t p_rvalue) const {
 | |
| 	return Vector2(x / p_rvalue, y / p_rvalue);
 | |
| }
 | |
| 
 | |
| _FORCE_INLINE_ void Vector2::operator/=(real_t p_rvalue) {
 | |
| 	x /= p_rvalue;
 | |
| 	y /= p_rvalue;
 | |
| }
 | |
| 
 | |
| _FORCE_INLINE_ Vector2 Vector2::operator-() const {
 | |
| 	return Vector2(-x, -y);
 | |
| }
 | |
| 
 | |
| _FORCE_INLINE_ bool Vector2::operator==(const Vector2 &p_vec2) const {
 | |
| 	return x == p_vec2.x && y == p_vec2.y;
 | |
| }
 | |
| 
 | |
| _FORCE_INLINE_ bool Vector2::operator!=(const Vector2 &p_vec2) const {
 | |
| 	return x != p_vec2.x || y != p_vec2.y;
 | |
| }
 | |
| 
 | |
| Vector2 Vector2::lerp(const Vector2 &p_to, real_t p_weight) const {
 | |
| 	Vector2 res = *this;
 | |
| 	res.x = Math::lerp(res.x, p_to.x, p_weight);
 | |
| 	res.y = Math::lerp(res.y, p_to.y, p_weight);
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| Vector2 Vector2::slerp(const Vector2 &p_to, real_t p_weight) const {
 | |
| 	real_t start_length_sq = length_squared();
 | |
| 	real_t end_length_sq = p_to.length_squared();
 | |
| 	if (unlikely(start_length_sq == 0.0f || end_length_sq == 0.0f)) {
 | |
| 		// Zero length vectors have no angle, so the best we can do is either lerp or throw an error.
 | |
| 		return lerp(p_to, p_weight);
 | |
| 	}
 | |
| 	real_t start_length = Math::sqrt(start_length_sq);
 | |
| 	real_t result_length = Math::lerp(start_length, Math::sqrt(end_length_sq), p_weight);
 | |
| 	real_t angle = angle_to(p_to);
 | |
| 	return rotated(angle * p_weight) * (result_length / start_length);
 | |
| }
 | |
| 
 | |
| Vector2 Vector2::cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, real_t p_weight) const {
 | |
| 	Vector2 res = *this;
 | |
| 	res.x = Math::cubic_interpolate(res.x, p_b.x, p_pre_a.x, p_post_b.x, p_weight);
 | |
| 	res.y = Math::cubic_interpolate(res.y, p_b.y, p_pre_a.y, p_post_b.y, p_weight);
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| Vector2 Vector2::cubic_interpolate_in_time(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, real_t p_weight, real_t p_b_t, real_t p_pre_a_t, real_t p_post_b_t) const {
 | |
| 	Vector2 res = *this;
 | |
| 	res.x = Math::cubic_interpolate_in_time(res.x, p_b.x, p_pre_a.x, p_post_b.x, p_weight, p_b_t, p_pre_a_t, p_post_b_t);
 | |
| 	res.y = Math::cubic_interpolate_in_time(res.y, p_b.y, p_pre_a.y, p_post_b.y, p_weight, p_b_t, p_pre_a_t, p_post_b_t);
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| Vector2 Vector2::bezier_interpolate(const Vector2 &p_control_1, const Vector2 &p_control_2, const Vector2 &p_end, real_t p_t) const {
 | |
| 	Vector2 res = *this;
 | |
| 	res.x = Math::bezier_interpolate(res.x, p_control_1.x, p_control_2.x, p_end.x, p_t);
 | |
| 	res.y = Math::bezier_interpolate(res.y, p_control_1.y, p_control_2.y, p_end.y, p_t);
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| Vector2 Vector2::bezier_derivative(const Vector2 &p_control_1, const Vector2 &p_control_2, const Vector2 &p_end, real_t p_t) const {
 | |
| 	Vector2 res = *this;
 | |
| 	res.x = Math::bezier_derivative(res.x, p_control_1.x, p_control_2.x, p_end.x, p_t);
 | |
| 	res.y = Math::bezier_derivative(res.y, p_control_1.y, p_control_2.y, p_end.y, p_t);
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| Vector2 Vector2::direction_to(const Vector2 &p_to) const {
 | |
| 	Vector2 ret(p_to.x - x, p_to.y - y);
 | |
| 	ret.normalize();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| // Multiplication operators required to workaround issues with LLVM using implicit conversion
 | |
| // to Vector2i instead for integers where it should not.
 | |
| 
 | |
| _FORCE_INLINE_ Vector2 operator*(float p_scalar, const Vector2 &p_vec) {
 | |
| 	return p_vec * p_scalar;
 | |
| }
 | |
| 
 | |
| _FORCE_INLINE_ Vector2 operator*(double p_scalar, const Vector2 &p_vec) {
 | |
| 	return p_vec * p_scalar;
 | |
| }
 | |
| 
 | |
| _FORCE_INLINE_ Vector2 operator*(int32_t p_scalar, const Vector2 &p_vec) {
 | |
| 	return p_vec * p_scalar;
 | |
| }
 | |
| 
 | |
| _FORCE_INLINE_ Vector2 operator*(int64_t p_scalar, const Vector2 &p_vec) {
 | |
| 	return p_vec * p_scalar;
 | |
| }
 | |
| 
 | |
| typedef Vector2 Size2;
 | |
| typedef Vector2 Point2;
 | |
| 
 | |
| #endif // VECTOR2_H
 | 
