mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-31 05:31:01 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			6632 lines
		
	
	
	
		
			224 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			6632 lines
		
	
	
	
		
			224 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*************************************************************************/
 | |
| /*  gltf_document.cpp                                                    */
 | |
| /*************************************************************************/
 | |
| /*                       This file is part of:                           */
 | |
| /*                           GODOT ENGINE                                */
 | |
| /*                      https://godotengine.org                          */
 | |
| /*************************************************************************/
 | |
| /* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur.                 */
 | |
| /* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md).   */
 | |
| /*                                                                       */
 | |
| /* Permission is hereby granted, free of charge, to any person obtaining */
 | |
| /* a copy of this software and associated documentation files (the       */
 | |
| /* "Software"), to deal in the Software without restriction, including   */
 | |
| /* without limitation the rights to use, copy, modify, merge, publish,   */
 | |
| /* distribute, sublicense, and/or sell copies of the Software, and to    */
 | |
| /* permit persons to whom the Software is furnished to do so, subject to */
 | |
| /* the following conditions:                                             */
 | |
| /*                                                                       */
 | |
| /* The above copyright notice and this permission notice shall be        */
 | |
| /* included in all copies or substantial portions of the Software.       */
 | |
| /*                                                                       */
 | |
| /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */
 | |
| /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */
 | |
| /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
 | |
| /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */
 | |
| /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */
 | |
| /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */
 | |
| /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */
 | |
| /*************************************************************************/
 | |
| 
 | |
| #include "gltf_document.h"
 | |
| 
 | |
| #include "gltf_accessor.h"
 | |
| #include "gltf_animation.h"
 | |
| #include "gltf_camera.h"
 | |
| #include "gltf_light.h"
 | |
| #include "gltf_mesh.h"
 | |
| #include "gltf_node.h"
 | |
| #include "gltf_skeleton.h"
 | |
| #include "gltf_skin.h"
 | |
| #include "gltf_spec_gloss.h"
 | |
| #include "gltf_state.h"
 | |
| #include "gltf_texture.h"
 | |
| 
 | |
| #include "core/crypto/crypto_core.h"
 | |
| #include "core/error/error_macros.h"
 | |
| #include "core/io/dir_access.h"
 | |
| #include "core/io/file_access.h"
 | |
| #include "core/io/json.h"
 | |
| #include "core/math/disjoint_set.h"
 | |
| #include "core/variant/typed_array.h"
 | |
| #include "core/variant/variant.h"
 | |
| #include "core/version.h"
 | |
| #include "core/version_hash.gen.h"
 | |
| #include "drivers/png/png_driver_common.h"
 | |
| #include "editor/import/resource_importer_scene.h"
 | |
| #include "scene/2d/node_2d.h"
 | |
| #include "scene/3d/camera_3d.h"
 | |
| #include "scene/3d/multimesh_instance_3d.h"
 | |
| #include "scene/animation/animation_player.h"
 | |
| #include "scene/resources/surface_tool.h"
 | |
| 
 | |
| #include "modules/modules_enabled.gen.h"
 | |
| #ifdef MODULE_CSG_ENABLED
 | |
| #include "modules/csg/csg_shape.h"
 | |
| #endif // MODULE_CSG_ENABLED
 | |
| #ifdef MODULE_GRIDMAP_ENABLED
 | |
| #include "modules/gridmap/grid_map.h"
 | |
| #endif // MODULE_GRIDMAP_ENABLED
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <limits>
 | |
| 
 | |
| Error GLTFDocument::serialize(Ref<GLTFState> state, Node *p_root, const String &p_path) {
 | |
| 	uint64_t begin_time = OS::get_singleton()->get_ticks_usec();
 | |
| 
 | |
| 	_convert_scene_node(state, p_root, p_root, -1, -1);
 | |
| 	if (!state->buffers.size()) {
 | |
| 		state->buffers.push_back(Vector<uint8_t>());
 | |
| 	}
 | |
| 
 | |
| 	/* STEP 1 CONVERT MESH INSTANCES */
 | |
| 	_convert_mesh_instances(state);
 | |
| 
 | |
| 	/* STEP 2 SERIALIZE CAMERAS */
 | |
| 	Error err = _serialize_cameras(state);
 | |
| 	if (err != OK) {
 | |
| 		return Error::FAILED;
 | |
| 	}
 | |
| 
 | |
| 	/* STEP 3 CREATE SKINS */
 | |
| 	err = _serialize_skins(state);
 | |
| 	if (err != OK) {
 | |
| 		return Error::FAILED;
 | |
| 	}
 | |
| 	/* STEP 4 CREATE BONE ATTACHMENTS */
 | |
| 	err = _serialize_bone_attachment(state);
 | |
| 	if (err != OK) {
 | |
| 		return Error::FAILED;
 | |
| 	}
 | |
| 	/* STEP 5 SERIALIZE MESHES (we have enough info now) */
 | |
| 	err = _serialize_meshes(state);
 | |
| 	if (err != OK) {
 | |
| 		return Error::FAILED;
 | |
| 	}
 | |
| 
 | |
| 	/* STEP 6 SERIALIZE TEXTURES */
 | |
| 	err = _serialize_materials(state);
 | |
| 	if (err != OK) {
 | |
| 		return Error::FAILED;
 | |
| 	}
 | |
| 
 | |
| 	/* STEP 7 SERIALIZE IMAGES */
 | |
| 	err = _serialize_images(state, p_path);
 | |
| 	if (err != OK) {
 | |
| 		return Error::FAILED;
 | |
| 	}
 | |
| 
 | |
| 	/* STEP 8 SERIALIZE TEXTURES */
 | |
| 	err = _serialize_textures(state);
 | |
| 	if (err != OK) {
 | |
| 		return Error::FAILED;
 | |
| 	}
 | |
| 
 | |
| 	// /* STEP 9 SERIALIZE ANIMATIONS */
 | |
| 	err = _serialize_animations(state);
 | |
| 	if (err != OK) {
 | |
| 		return Error::FAILED;
 | |
| 	}
 | |
| 
 | |
| 	/* STEP 10 SERIALIZE ACCESSORS */
 | |
| 	err = _encode_accessors(state);
 | |
| 	if (err != OK) {
 | |
| 		return Error::FAILED;
 | |
| 	}
 | |
| 
 | |
| 	for (GLTFBufferViewIndex i = 0; i < state->buffer_views.size(); i++) {
 | |
| 		state->buffer_views.write[i]->buffer = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* STEP 11 SERIALIZE BUFFER VIEWS */
 | |
| 	err = _encode_buffer_views(state);
 | |
| 	if (err != OK) {
 | |
| 		return Error::FAILED;
 | |
| 	}
 | |
| 
 | |
| 	/* STEP 12 SERIALIZE NODES */
 | |
| 	err = _serialize_nodes(state);
 | |
| 	if (err != OK) {
 | |
| 		return Error::FAILED;
 | |
| 	}
 | |
| 
 | |
| 	/* STEP 13 SERIALIZE SCENE */
 | |
| 	err = _serialize_scenes(state);
 | |
| 	if (err != OK) {
 | |
| 		return Error::FAILED;
 | |
| 	}
 | |
| 
 | |
| 	/* STEP 14 SERIALIZE SCENE */
 | |
| 	err = _serialize_lights(state);
 | |
| 	if (err != OK) {
 | |
| 		return Error::FAILED;
 | |
| 	}
 | |
| 
 | |
| 	/* STEP 15 SERIALIZE EXTENSIONS */
 | |
| 	err = _serialize_extensions(state);
 | |
| 	if (err != OK) {
 | |
| 		return Error::FAILED;
 | |
| 	}
 | |
| 
 | |
| 	/* STEP 16 SERIALIZE VERSION */
 | |
| 	err = _serialize_version(state);
 | |
| 	if (err != OK) {
 | |
| 		return Error::FAILED;
 | |
| 	}
 | |
| 
 | |
| 	/* STEP 17 SERIALIZE FILE */
 | |
| 	err = _serialize_file(state, p_path);
 | |
| 	if (err != OK) {
 | |
| 		return Error::FAILED;
 | |
| 	}
 | |
| 	uint64_t elapsed = OS::get_singleton()->get_ticks_usec() - begin_time;
 | |
| 	float elapsed_sec = double(elapsed) / 1000000.0;
 | |
| 	elapsed_sec = Math::snapped(elapsed_sec, 0.01f);
 | |
| 	print_line("glTF: Export time elapsed seconds " + rtos(elapsed_sec).pad_decimals(2));
 | |
| 
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| Error GLTFDocument::_serialize_extensions(Ref<GLTFState> state) const {
 | |
| 	const String texture_transform = "KHR_texture_transform";
 | |
| 	const String punctual_lights = "KHR_lights_punctual";
 | |
| 	Array extensions_used;
 | |
| 	extensions_used.push_back(punctual_lights);
 | |
| 	extensions_used.push_back(texture_transform);
 | |
| 	state->json["extensionsUsed"] = extensions_used;
 | |
| 	Array extensions_required;
 | |
| 	extensions_required.push_back(texture_transform);
 | |
| 	state->json["extensionsRequired"] = extensions_required;
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| Error GLTFDocument::_serialize_scenes(Ref<GLTFState> state) {
 | |
| 	Array scenes;
 | |
| 	const int loaded_scene = 0;
 | |
| 	state->json["scene"] = loaded_scene;
 | |
| 
 | |
| 	if (state->nodes.size()) {
 | |
| 		Dictionary s;
 | |
| 		if (!state->scene_name.is_empty()) {
 | |
| 			s["name"] = state->scene_name;
 | |
| 		}
 | |
| 
 | |
| 		Array nodes;
 | |
| 		nodes.push_back(0);
 | |
| 		s["nodes"] = nodes;
 | |
| 		scenes.push_back(s);
 | |
| 	}
 | |
| 	state->json["scenes"] = scenes;
 | |
| 
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| Error GLTFDocument::_parse_json(const String &p_path, Ref<GLTFState> state) {
 | |
| 	Error err;
 | |
| 	FileAccessRef f = FileAccess::open(p_path, FileAccess::READ, &err);
 | |
| 	if (!f) {
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	Vector<uint8_t> array;
 | |
| 	array.resize(f->get_length());
 | |
| 	f->get_buffer(array.ptrw(), array.size());
 | |
| 	String text;
 | |
| 	text.parse_utf8((const char *)array.ptr(), array.size());
 | |
| 
 | |
| 	JSON json;
 | |
| 	err = json.parse(text);
 | |
| 	if (err != OK) {
 | |
| 		_err_print_error("", p_path.utf8().get_data(), json.get_error_line(), json.get_error_message().utf8().get_data(), ERR_HANDLER_SCRIPT);
 | |
| 		return err;
 | |
| 	}
 | |
| 	state->json = json.get_data();
 | |
| 
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| Error GLTFDocument::_serialize_bone_attachment(Ref<GLTFState> state) {
 | |
| 	for (int skeleton_i = 0; skeleton_i < state->skeletons.size(); skeleton_i++) {
 | |
| 		for (int attachment_i = 0; attachment_i < state->skeletons[skeleton_i]->bone_attachments.size(); attachment_i++) {
 | |
| 			BoneAttachment3D *bone_attachment = state->skeletons[skeleton_i]->bone_attachments[attachment_i];
 | |
| 			String bone_name = bone_attachment->get_bone_name();
 | |
| 			bone_name = _sanitize_bone_name(bone_name);
 | |
| 			int32_t bone = state->skeletons[skeleton_i]->godot_skeleton->find_bone(bone_name);
 | |
| 			ERR_CONTINUE(bone == -1);
 | |
| 			for (int skin_i = 0; skin_i < state->skins.size(); skin_i++) {
 | |
| 				if (state->skins[skin_i]->skeleton != skeleton_i) {
 | |
| 					continue;
 | |
| 				}
 | |
| 
 | |
| 				for (int node_i = 0; node_i < bone_attachment->get_child_count(); node_i++) {
 | |
| 					ERR_CONTINUE(bone >= state->skins[skin_i]->joints.size());
 | |
| 					_convert_scene_node(state, bone_attachment->get_child(node_i), bone_attachment->get_owner(), state->skins[skin_i]->joints[bone], 0);
 | |
| 				}
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| Error GLTFDocument::_parse_glb(const String &p_path, Ref<GLTFState> state) {
 | |
| 	Error err;
 | |
| 	FileAccessRef f = FileAccess::open(p_path, FileAccess::READ, &err);
 | |
| 	if (!f) {
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	uint32_t magic = f->get_32();
 | |
| 	ERR_FAIL_COND_V(magic != 0x46546C67, ERR_FILE_UNRECOGNIZED); //glTF
 | |
| 	f->get_32(); // version
 | |
| 	f->get_32(); // length
 | |
| 
 | |
| 	uint32_t chunk_length = f->get_32();
 | |
| 	uint32_t chunk_type = f->get_32();
 | |
| 
 | |
| 	ERR_FAIL_COND_V(chunk_type != 0x4E4F534A, ERR_PARSE_ERROR); //JSON
 | |
| 	Vector<uint8_t> json_data;
 | |
| 	json_data.resize(chunk_length);
 | |
| 	uint32_t len = f->get_buffer(json_data.ptrw(), chunk_length);
 | |
| 	ERR_FAIL_COND_V(len != chunk_length, ERR_FILE_CORRUPT);
 | |
| 
 | |
| 	String text;
 | |
| 	text.parse_utf8((const char *)json_data.ptr(), json_data.size());
 | |
| 
 | |
| 	JSON json;
 | |
| 	err = json.parse(text);
 | |
| 	if (err != OK) {
 | |
| 		_err_print_error("", p_path.utf8().get_data(), json.get_error_line(), json.get_error_message().utf8().get_data(), ERR_HANDLER_SCRIPT);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	state->json = json.get_data();
 | |
| 
 | |
| 	//data?
 | |
| 
 | |
| 	chunk_length = f->get_32();
 | |
| 	chunk_type = f->get_32();
 | |
| 
 | |
| 	if (f->eof_reached()) {
 | |
| 		return OK; //all good
 | |
| 	}
 | |
| 
 | |
| 	ERR_FAIL_COND_V(chunk_type != 0x004E4942, ERR_PARSE_ERROR); //BIN
 | |
| 
 | |
| 	state->glb_data.resize(chunk_length);
 | |
| 	len = f->get_buffer(state->glb_data.ptrw(), chunk_length);
 | |
| 	ERR_FAIL_COND_V(len != chunk_length, ERR_FILE_CORRUPT);
 | |
| 
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| static Array _vec3_to_arr(const Vector3 &p_vec3) {
 | |
| 	Array array;
 | |
| 	array.resize(3);
 | |
| 	array[0] = p_vec3.x;
 | |
| 	array[1] = p_vec3.y;
 | |
| 	array[2] = p_vec3.z;
 | |
| 	return array;
 | |
| }
 | |
| 
 | |
| static Vector3 _arr_to_vec3(const Array &p_array) {
 | |
| 	ERR_FAIL_COND_V(p_array.size() != 3, Vector3());
 | |
| 	return Vector3(p_array[0], p_array[1], p_array[2]);
 | |
| }
 | |
| 
 | |
| static Array _quaternion_to_array(const Quaternion &p_quaternion) {
 | |
| 	Array array;
 | |
| 	array.resize(4);
 | |
| 	array[0] = p_quaternion.x;
 | |
| 	array[1] = p_quaternion.y;
 | |
| 	array[2] = p_quaternion.z;
 | |
| 	array[3] = p_quaternion.w;
 | |
| 	return array;
 | |
| }
 | |
| 
 | |
| static Quaternion _arr_to_quaternion(const Array &p_array) {
 | |
| 	ERR_FAIL_COND_V(p_array.size() != 4, Quaternion());
 | |
| 	return Quaternion(p_array[0], p_array[1], p_array[2], p_array[3]);
 | |
| }
 | |
| 
 | |
| static Transform3D _arr_to_xform(const Array &p_array) {
 | |
| 	ERR_FAIL_COND_V(p_array.size() != 16, Transform3D());
 | |
| 
 | |
| 	Transform3D xform;
 | |
| 	xform.basis.set_axis(Vector3::AXIS_X, Vector3(p_array[0], p_array[1], p_array[2]));
 | |
| 	xform.basis.set_axis(Vector3::AXIS_Y, Vector3(p_array[4], p_array[5], p_array[6]));
 | |
| 	xform.basis.set_axis(Vector3::AXIS_Z, Vector3(p_array[8], p_array[9], p_array[10]));
 | |
| 	xform.set_origin(Vector3(p_array[12], p_array[13], p_array[14]));
 | |
| 
 | |
| 	return xform;
 | |
| }
 | |
| 
 | |
| static Vector<real_t> _xform_to_array(const Transform3D p_transform) {
 | |
| 	Vector<real_t> array;
 | |
| 	array.resize(16);
 | |
| 	Vector3 axis_x = p_transform.get_basis().get_axis(Vector3::AXIS_X);
 | |
| 	array.write[0] = axis_x.x;
 | |
| 	array.write[1] = axis_x.y;
 | |
| 	array.write[2] = axis_x.z;
 | |
| 	array.write[3] = 0.0f;
 | |
| 	Vector3 axis_y = p_transform.get_basis().get_axis(Vector3::AXIS_Y);
 | |
| 	array.write[4] = axis_y.x;
 | |
| 	array.write[5] = axis_y.y;
 | |
| 	array.write[6] = axis_y.z;
 | |
| 	array.write[7] = 0.0f;
 | |
| 	Vector3 axis_z = p_transform.get_basis().get_axis(Vector3::AXIS_Z);
 | |
| 	array.write[8] = axis_z.x;
 | |
| 	array.write[9] = axis_z.y;
 | |
| 	array.write[10] = axis_z.z;
 | |
| 	array.write[11] = 0.0f;
 | |
| 	Vector3 origin = p_transform.get_origin();
 | |
| 	array.write[12] = origin.x;
 | |
| 	array.write[13] = origin.y;
 | |
| 	array.write[14] = origin.z;
 | |
| 	array.write[15] = 1.0f;
 | |
| 	return array;
 | |
| }
 | |
| 
 | |
| Error GLTFDocument::_serialize_nodes(Ref<GLTFState> state) {
 | |
| 	Array nodes;
 | |
| 	for (int i = 0; i < state->nodes.size(); i++) {
 | |
| 		Dictionary node;
 | |
| 		Ref<GLTFNode> n = state->nodes[i];
 | |
| 		Dictionary extensions;
 | |
| 		node["extensions"] = extensions;
 | |
| 		if (!n->get_name().is_empty()) {
 | |
| 			node["name"] = n->get_name();
 | |
| 		}
 | |
| 		if (n->camera != -1) {
 | |
| 			node["camera"] = n->camera;
 | |
| 		}
 | |
| 		if (n->light != -1) {
 | |
| 			Dictionary lights_punctual;
 | |
| 			extensions["KHR_lights_punctual"] = lights_punctual;
 | |
| 			lights_punctual["light"] = n->light;
 | |
| 		}
 | |
| 		if (n->mesh != -1) {
 | |
| 			node["mesh"] = n->mesh;
 | |
| 		}
 | |
| 		if (n->skin != -1) {
 | |
| 			node["skin"] = n->skin;
 | |
| 		}
 | |
| 		if (n->skeleton != -1 && n->skin < 0) {
 | |
| 		}
 | |
| 		if (n->xform != Transform3D()) {
 | |
| 			node["matrix"] = _xform_to_array(n->xform);
 | |
| 		}
 | |
| 
 | |
| 		if (!n->rotation.is_equal_approx(Quaternion())) {
 | |
| 			node["rotation"] = _quaternion_to_array(n->rotation);
 | |
| 		}
 | |
| 
 | |
| 		if (!n->scale.is_equal_approx(Vector3(1.0f, 1.0f, 1.0f))) {
 | |
| 			node["scale"] = _vec3_to_arr(n->scale);
 | |
| 		}
 | |
| 
 | |
| 		if (!n->translation.is_equal_approx(Vector3())) {
 | |
| 			node["translation"] = _vec3_to_arr(n->translation);
 | |
| 		}
 | |
| 		if (n->children.size()) {
 | |
| 			Array children;
 | |
| 			for (int j = 0; j < n->children.size(); j++) {
 | |
| 				children.push_back(n->children[j]);
 | |
| 			}
 | |
| 			node["children"] = children;
 | |
| 		}
 | |
| 		nodes.push_back(node);
 | |
| 	}
 | |
| 	state->json["nodes"] = nodes;
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| String GLTFDocument::_gen_unique_name(Ref<GLTFState> state, const String &p_name) {
 | |
| 	const String s_name = p_name.validate_node_name();
 | |
| 
 | |
| 	String name;
 | |
| 	int index = 1;
 | |
| 	while (true) {
 | |
| 		name = s_name;
 | |
| 
 | |
| 		if (index > 1) {
 | |
| 			name += itos(index);
 | |
| 		}
 | |
| 		if (!state->unique_names.has(name)) {
 | |
| 			break;
 | |
| 		}
 | |
| 		index++;
 | |
| 	}
 | |
| 
 | |
| 	state->unique_names.insert(name);
 | |
| 
 | |
| 	return name;
 | |
| }
 | |
| 
 | |
| String GLTFDocument::_sanitize_animation_name(const String &p_name) {
 | |
| 	// Animations disallow the normal node invalid characters as well as  "," and "["
 | |
| 	// (See animation/animation_player.cpp::add_animation)
 | |
| 
 | |
| 	// TODO: Consider adding invalid_characters or a validate_animation_name to animation_player to mirror Node.
 | |
| 	String name = p_name.validate_node_name();
 | |
| 	name = name.replace(",", "");
 | |
| 	name = name.replace("[", "");
 | |
| 	return name;
 | |
| }
 | |
| 
 | |
| String GLTFDocument::_gen_unique_animation_name(Ref<GLTFState> state, const String &p_name) {
 | |
| 	const String s_name = _sanitize_animation_name(p_name);
 | |
| 
 | |
| 	String name;
 | |
| 	int index = 1;
 | |
| 	while (true) {
 | |
| 		name = s_name;
 | |
| 
 | |
| 		if (index > 1) {
 | |
| 			name += itos(index);
 | |
| 		}
 | |
| 		if (!state->unique_animation_names.has(name)) {
 | |
| 			break;
 | |
| 		}
 | |
| 		index++;
 | |
| 	}
 | |
| 
 | |
| 	state->unique_animation_names.insert(name);
 | |
| 
 | |
| 	return name;
 | |
| }
 | |
| 
 | |
| String GLTFDocument::_sanitize_bone_name(const String &p_name) {
 | |
| 	String name = p_name;
 | |
| 	name = name.replace(":", "_");
 | |
| 	name = name.replace("/", "_");
 | |
| 	return name;
 | |
| }
 | |
| 
 | |
| String GLTFDocument::_gen_unique_bone_name(Ref<GLTFState> state, const GLTFSkeletonIndex skel_i, const String &p_name) {
 | |
| 	String s_name = _sanitize_bone_name(p_name);
 | |
| 	if (s_name.is_empty()) {
 | |
| 		s_name = "bone";
 | |
| 	}
 | |
| 	String name;
 | |
| 	int index = 1;
 | |
| 	while (true) {
 | |
| 		name = s_name;
 | |
| 
 | |
| 		if (index > 1) {
 | |
| 			name += "_" + itos(index);
 | |
| 		}
 | |
| 		if (!state->skeletons[skel_i]->unique_names.has(name)) {
 | |
| 			break;
 | |
| 		}
 | |
| 		index++;
 | |
| 	}
 | |
| 
 | |
| 	state->skeletons.write[skel_i]->unique_names.insert(name);
 | |
| 
 | |
| 	return name;
 | |
| }
 | |
| 
 | |
| Error GLTFDocument::_parse_scenes(Ref<GLTFState> state) {
 | |
| 	ERR_FAIL_COND_V(!state->json.has("scenes"), ERR_FILE_CORRUPT);
 | |
| 	const Array &scenes = state->json["scenes"];
 | |
| 	int loaded_scene = 0;
 | |
| 	if (state->json.has("scene")) {
 | |
| 		loaded_scene = state->json["scene"];
 | |
| 	} else {
 | |
| 		WARN_PRINT("The load-time scene is not defined in the glTF2 file. Picking the first scene.");
 | |
| 	}
 | |
| 
 | |
| 	if (scenes.size()) {
 | |
| 		ERR_FAIL_COND_V(loaded_scene >= scenes.size(), ERR_FILE_CORRUPT);
 | |
| 		const Dictionary &s = scenes[loaded_scene];
 | |
| 		ERR_FAIL_COND_V(!s.has("nodes"), ERR_UNAVAILABLE);
 | |
| 		const Array &nodes = s["nodes"];
 | |
| 		for (int j = 0; j < nodes.size(); j++) {
 | |
| 			state->root_nodes.push_back(nodes[j]);
 | |
| 		}
 | |
| 
 | |
| 		if (s.has("name") && !String(s["name"]).is_empty() && !((String)s["name"]).begins_with("Scene")) {
 | |
| 			state->scene_name = _gen_unique_name(state, s["name"]);
 | |
| 		} else {
 | |
| 			state->scene_name = _gen_unique_name(state, state->filename);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| Error GLTFDocument::_parse_nodes(Ref<GLTFState> state) {
 | |
| 	ERR_FAIL_COND_V(!state->json.has("nodes"), ERR_FILE_CORRUPT);
 | |
| 	const Array &nodes = state->json["nodes"];
 | |
| 	for (int i = 0; i < nodes.size(); i++) {
 | |
| 		Ref<GLTFNode> node;
 | |
| 		node.instantiate();
 | |
| 		const Dictionary &n = nodes[i];
 | |
| 
 | |
| 		if (n.has("name")) {
 | |
| 			node->set_name(n["name"]);
 | |
| 		}
 | |
| 		if (n.has("camera")) {
 | |
| 			node->camera = n["camera"];
 | |
| 		}
 | |
| 		if (n.has("mesh")) {
 | |
| 			node->mesh = n["mesh"];
 | |
| 		}
 | |
| 		if (n.has("skin")) {
 | |
| 			node->skin = n["skin"];
 | |
| 		}
 | |
| 		if (n.has("matrix")) {
 | |
| 			node->xform = _arr_to_xform(n["matrix"]);
 | |
| 		} else {
 | |
| 			if (n.has("translation")) {
 | |
| 				node->translation = _arr_to_vec3(n["translation"]);
 | |
| 			}
 | |
| 			if (n.has("rotation")) {
 | |
| 				node->rotation = _arr_to_quaternion(n["rotation"]);
 | |
| 			}
 | |
| 			if (n.has("scale")) {
 | |
| 				node->scale = _arr_to_vec3(n["scale"]);
 | |
| 			}
 | |
| 
 | |
| 			node->xform.basis.set_quaternion_scale(node->rotation, node->scale);
 | |
| 			node->xform.origin = node->translation;
 | |
| 		}
 | |
| 
 | |
| 		if (n.has("extensions")) {
 | |
| 			Dictionary extensions = n["extensions"];
 | |
| 			if (extensions.has("KHR_lights_punctual")) {
 | |
| 				Dictionary lights_punctual = extensions["KHR_lights_punctual"];
 | |
| 				if (lights_punctual.has("light")) {
 | |
| 					GLTFLightIndex light = lights_punctual["light"];
 | |
| 					node->light = light;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (n.has("children")) {
 | |
| 			const Array &children = n["children"];
 | |
| 			for (int j = 0; j < children.size(); j++) {
 | |
| 				node->children.push_back(children[j]);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		state->nodes.push_back(node);
 | |
| 	}
 | |
| 
 | |
| 	// build the hierarchy
 | |
| 	for (GLTFNodeIndex node_i = 0; node_i < state->nodes.size(); node_i++) {
 | |
| 		for (int j = 0; j < state->nodes[node_i]->children.size(); j++) {
 | |
| 			GLTFNodeIndex child_i = state->nodes[node_i]->children[j];
 | |
| 
 | |
| 			ERR_FAIL_INDEX_V(child_i, state->nodes.size(), ERR_FILE_CORRUPT);
 | |
| 			ERR_CONTINUE(state->nodes[child_i]->parent != -1); //node already has a parent, wtf.
 | |
| 
 | |
| 			state->nodes.write[child_i]->parent = node_i;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	_compute_node_heights(state);
 | |
| 
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| void GLTFDocument::_compute_node_heights(Ref<GLTFState> state) {
 | |
| 	state->root_nodes.clear();
 | |
| 	for (GLTFNodeIndex node_i = 0; node_i < state->nodes.size(); ++node_i) {
 | |
| 		Ref<GLTFNode> node = state->nodes[node_i];
 | |
| 		node->height = 0;
 | |
| 
 | |
| 		GLTFNodeIndex current_i = node_i;
 | |
| 		while (current_i >= 0) {
 | |
| 			const GLTFNodeIndex parent_i = state->nodes[current_i]->parent;
 | |
| 			if (parent_i >= 0) {
 | |
| 				++node->height;
 | |
| 			}
 | |
| 			current_i = parent_i;
 | |
| 		}
 | |
| 
 | |
| 		if (node->height == 0) {
 | |
| 			state->root_nodes.push_back(node_i);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static Vector<uint8_t> _parse_base64_uri(const String &uri) {
 | |
| 	int start = uri.find(",");
 | |
| 	ERR_FAIL_COND_V(start == -1, Vector<uint8_t>());
 | |
| 
 | |
| 	CharString substr = uri.substr(start + 1).ascii();
 | |
| 
 | |
| 	int strlen = substr.length();
 | |
| 
 | |
| 	Vector<uint8_t> buf;
 | |
| 	buf.resize(strlen / 4 * 3 + 1 + 1);
 | |
| 
 | |
| 	size_t len = 0;
 | |
| 	ERR_FAIL_COND_V(CryptoCore::b64_decode(buf.ptrw(), buf.size(), &len, (unsigned char *)substr.get_data(), strlen) != OK, Vector<uint8_t>());
 | |
| 
 | |
| 	buf.resize(len);
 | |
| 
 | |
| 	return buf;
 | |
| }
 | |
| Error GLTFDocument::_encode_buffer_glb(Ref<GLTFState> state, const String &p_path) {
 | |
| 	print_verbose("glTF: Total buffers: " + itos(state->buffers.size()));
 | |
| 
 | |
| 	if (!state->buffers.size()) {
 | |
| 		return OK;
 | |
| 	}
 | |
| 	Array buffers;
 | |
| 	if (state->buffers.size()) {
 | |
| 		Vector<uint8_t> buffer_data = state->buffers[0];
 | |
| 		Dictionary gltf_buffer;
 | |
| 
 | |
| 		gltf_buffer["byteLength"] = buffer_data.size();
 | |
| 		buffers.push_back(gltf_buffer);
 | |
| 	}
 | |
| 
 | |
| 	for (GLTFBufferIndex i = 1; i < state->buffers.size() - 1; i++) {
 | |
| 		Vector<uint8_t> buffer_data = state->buffers[i];
 | |
| 		Dictionary gltf_buffer;
 | |
| 		String filename = p_path.get_basename().get_file() + itos(i) + ".bin";
 | |
| 		String path = p_path.get_base_dir() + "/" + filename;
 | |
| 		Error err;
 | |
| 		FileAccessRef f = FileAccess::open(path, FileAccess::WRITE, &err);
 | |
| 		if (!f) {
 | |
| 			return err;
 | |
| 		}
 | |
| 		if (buffer_data.size() == 0) {
 | |
| 			return OK;
 | |
| 		}
 | |
| 		f->create(FileAccess::ACCESS_RESOURCES);
 | |
| 		f->store_buffer(buffer_data.ptr(), buffer_data.size());
 | |
| 		f->close();
 | |
| 		gltf_buffer["uri"] = filename;
 | |
| 		gltf_buffer["byteLength"] = buffer_data.size();
 | |
| 		buffers.push_back(gltf_buffer);
 | |
| 	}
 | |
| 	state->json["buffers"] = buffers;
 | |
| 
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| Error GLTFDocument::_encode_buffer_bins(Ref<GLTFState> state, const String &p_path) {
 | |
| 	print_verbose("glTF: Total buffers: " + itos(state->buffers.size()));
 | |
| 
 | |
| 	if (!state->buffers.size()) {
 | |
| 		return OK;
 | |
| 	}
 | |
| 	Array buffers;
 | |
| 
 | |
| 	for (GLTFBufferIndex i = 0; i < state->buffers.size(); i++) {
 | |
| 		Vector<uint8_t> buffer_data = state->buffers[i];
 | |
| 		Dictionary gltf_buffer;
 | |
| 		String filename = p_path.get_basename().get_file() + itos(i) + ".bin";
 | |
| 		String path = p_path.get_base_dir() + "/" + filename;
 | |
| 		Error err;
 | |
| 		FileAccessRef f = FileAccess::open(path, FileAccess::WRITE, &err);
 | |
| 		if (!f) {
 | |
| 			return err;
 | |
| 		}
 | |
| 		if (buffer_data.size() == 0) {
 | |
| 			return OK;
 | |
| 		}
 | |
| 		f->create(FileAccess::ACCESS_RESOURCES);
 | |
| 		f->store_buffer(buffer_data.ptr(), buffer_data.size());
 | |
| 		f->close();
 | |
| 		gltf_buffer["uri"] = filename;
 | |
| 		gltf_buffer["byteLength"] = buffer_data.size();
 | |
| 		buffers.push_back(gltf_buffer);
 | |
| 	}
 | |
| 	state->json["buffers"] = buffers;
 | |
| 
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| Error GLTFDocument::_parse_buffers(Ref<GLTFState> state, const String &p_base_path) {
 | |
| 	if (!state->json.has("buffers")) {
 | |
| 		return OK;
 | |
| 	}
 | |
| 
 | |
| 	const Array &buffers = state->json["buffers"];
 | |
| 	for (GLTFBufferIndex i = 0; i < buffers.size(); i++) {
 | |
| 		if (i == 0 && state->glb_data.size()) {
 | |
| 			state->buffers.push_back(state->glb_data);
 | |
| 
 | |
| 		} else {
 | |
| 			const Dictionary &buffer = buffers[i];
 | |
| 			if (buffer.has("uri")) {
 | |
| 				Vector<uint8_t> buffer_data;
 | |
| 				String uri = buffer["uri"];
 | |
| 
 | |
| 				if (uri.begins_with("data:")) { // Embedded data using base64.
 | |
| 					// Validate data MIME types and throw an error if it's one we don't know/support.
 | |
| 					if (!uri.begins_with("data:application/octet-stream;base64") &&
 | |
| 							!uri.begins_with("data:application/gltf-buffer;base64")) {
 | |
| 						ERR_PRINT("glTF: Got buffer with an unknown URI data type: " + uri);
 | |
| 					}
 | |
| 					buffer_data = _parse_base64_uri(uri);
 | |
| 				} else { // Relative path to an external image file.
 | |
| 					uri = p_base_path.plus_file(uri).replace("\\", "/"); // Fix for Windows.
 | |
| 					buffer_data = FileAccess::get_file_as_array(uri);
 | |
| 					ERR_FAIL_COND_V_MSG(buffer.size() == 0, ERR_PARSE_ERROR, "glTF: Couldn't load binary file as an array: " + uri);
 | |
| 				}
 | |
| 
 | |
| 				ERR_FAIL_COND_V(!buffer.has("byteLength"), ERR_PARSE_ERROR);
 | |
| 				int byteLength = buffer["byteLength"];
 | |
| 				ERR_FAIL_COND_V(byteLength < buffer_data.size(), ERR_PARSE_ERROR);
 | |
| 				state->buffers.push_back(buffer_data);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	print_verbose("glTF: Total buffers: " + itos(state->buffers.size()));
 | |
| 
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| Error GLTFDocument::_encode_buffer_views(Ref<GLTFState> state) {
 | |
| 	Array buffers;
 | |
| 	for (GLTFBufferViewIndex i = 0; i < state->buffer_views.size(); i++) {
 | |
| 		Dictionary d;
 | |
| 
 | |
| 		Ref<GLTFBufferView> buffer_view = state->buffer_views[i];
 | |
| 
 | |
| 		d["buffer"] = buffer_view->buffer;
 | |
| 		d["byteLength"] = buffer_view->byte_length;
 | |
| 
 | |
| 		d["byteOffset"] = buffer_view->byte_offset;
 | |
| 
 | |
| 		if (buffer_view->byte_stride != -1) {
 | |
| 			d["byteStride"] = buffer_view->byte_stride;
 | |
| 		}
 | |
| 
 | |
| 		// TODO Sparse
 | |
| 		// d["target"] = buffer_view->indices;
 | |
| 
 | |
| 		ERR_FAIL_COND_V(!d.has("buffer"), ERR_INVALID_DATA);
 | |
| 		ERR_FAIL_COND_V(!d.has("byteLength"), ERR_INVALID_DATA);
 | |
| 		buffers.push_back(d);
 | |
| 	}
 | |
| 	print_verbose("glTF: Total buffer views: " + itos(state->buffer_views.size()));
 | |
| 	state->json["bufferViews"] = buffers;
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| Error GLTFDocument::_parse_buffer_views(Ref<GLTFState> state) {
 | |
| 	if (!state->json.has("bufferViews")) {
 | |
| 		return OK;
 | |
| 	}
 | |
| 	const Array &buffers = state->json["bufferViews"];
 | |
| 	for (GLTFBufferViewIndex i = 0; i < buffers.size(); i++) {
 | |
| 		const Dictionary &d = buffers[i];
 | |
| 
 | |
| 		Ref<GLTFBufferView> buffer_view;
 | |
| 		buffer_view.instantiate();
 | |
| 
 | |
| 		ERR_FAIL_COND_V(!d.has("buffer"), ERR_PARSE_ERROR);
 | |
| 		buffer_view->buffer = d["buffer"];
 | |
| 		ERR_FAIL_COND_V(!d.has("byteLength"), ERR_PARSE_ERROR);
 | |
| 		buffer_view->byte_length = d["byteLength"];
 | |
| 
 | |
| 		if (d.has("byteOffset")) {
 | |
| 			buffer_view->byte_offset = d["byteOffset"];
 | |
| 		}
 | |
| 
 | |
| 		if (d.has("byteStride")) {
 | |
| 			buffer_view->byte_stride = d["byteStride"];
 | |
| 		}
 | |
| 
 | |
| 		if (d.has("target")) {
 | |
| 			const int target = d["target"];
 | |
| 			buffer_view->indices = target == GLTFDocument::ELEMENT_ARRAY_BUFFER;
 | |
| 		}
 | |
| 
 | |
| 		state->buffer_views.push_back(buffer_view);
 | |
| 	}
 | |
| 
 | |
| 	print_verbose("glTF: Total buffer views: " + itos(state->buffer_views.size()));
 | |
| 
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| Error GLTFDocument::_encode_accessors(Ref<GLTFState> state) {
 | |
| 	Array accessors;
 | |
| 	for (GLTFAccessorIndex i = 0; i < state->accessors.size(); i++) {
 | |
| 		Dictionary d;
 | |
| 
 | |
| 		Ref<GLTFAccessor> accessor = state->accessors[i];
 | |
| 		d["componentType"] = accessor->component_type;
 | |
| 		d["count"] = accessor->count;
 | |
| 		d["type"] = _get_accessor_type_name(accessor->type);
 | |
| 		d["byteOffset"] = accessor->byte_offset;
 | |
| 		d["normalized"] = accessor->normalized;
 | |
| 		d["max"] = accessor->max;
 | |
| 		d["min"] = accessor->min;
 | |
| 		d["bufferView"] = accessor->buffer_view; //optional because it may be sparse...
 | |
| 
 | |
| 		// Dictionary s;
 | |
| 		// s["count"] = accessor->sparse_count;
 | |
| 		// ERR_FAIL_COND_V(!s.has("count"), ERR_PARSE_ERROR);
 | |
| 
 | |
| 		// s["indices"] = accessor->sparse_accessors;
 | |
| 		// ERR_FAIL_COND_V(!s.has("indices"), ERR_PARSE_ERROR);
 | |
| 
 | |
| 		// Dictionary si;
 | |
| 
 | |
| 		// si["bufferView"] = accessor->sparse_indices_buffer_view;
 | |
| 
 | |
| 		// ERR_FAIL_COND_V(!si.has("bufferView"), ERR_PARSE_ERROR);
 | |
| 		// si["componentType"] = accessor->sparse_indices_component_type;
 | |
| 
 | |
| 		// if (si.has("byteOffset")) {
 | |
| 		// 	si["byteOffset"] = accessor->sparse_indices_byte_offset;
 | |
| 		// }
 | |
| 
 | |
| 		// ERR_FAIL_COND_V(!si.has("componentType"), ERR_PARSE_ERROR);
 | |
| 		// s["indices"] = si;
 | |
| 		// Dictionary sv;
 | |
| 
 | |
| 		// sv["bufferView"] = accessor->sparse_values_buffer_view;
 | |
| 		// if (sv.has("byteOffset")) {
 | |
| 		// 	sv["byteOffset"] = accessor->sparse_values_byte_offset;
 | |
| 		// }
 | |
| 		// ERR_FAIL_COND_V(!sv.has("bufferView"), ERR_PARSE_ERROR);
 | |
| 		// s["values"] = sv;
 | |
| 		// ERR_FAIL_COND_V(!s.has("values"), ERR_PARSE_ERROR);
 | |
| 		// d["sparse"] = s;
 | |
| 		accessors.push_back(d);
 | |
| 	}
 | |
| 
 | |
| 	state->json["accessors"] = accessors;
 | |
| 	ERR_FAIL_COND_V(!state->json.has("accessors"), ERR_FILE_CORRUPT);
 | |
| 	print_verbose("glTF: Total accessors: " + itos(state->accessors.size()));
 | |
| 
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| String GLTFDocument::_get_accessor_type_name(const GLTFDocument::GLTFType p_type) {
 | |
| 	if (p_type == GLTFDocument::TYPE_SCALAR) {
 | |
| 		return "SCALAR";
 | |
| 	}
 | |
| 	if (p_type == GLTFDocument::TYPE_VEC2) {
 | |
| 		return "VEC2";
 | |
| 	}
 | |
| 	if (p_type == GLTFDocument::TYPE_VEC3) {
 | |
| 		return "VEC3";
 | |
| 	}
 | |
| 	if (p_type == GLTFDocument::TYPE_VEC4) {
 | |
| 		return "VEC4";
 | |
| 	}
 | |
| 
 | |
| 	if (p_type == GLTFDocument::TYPE_MAT2) {
 | |
| 		return "MAT2";
 | |
| 	}
 | |
| 	if (p_type == GLTFDocument::TYPE_MAT3) {
 | |
| 		return "MAT3";
 | |
| 	}
 | |
| 	if (p_type == GLTFDocument::TYPE_MAT4) {
 | |
| 		return "MAT4";
 | |
| 	}
 | |
| 	ERR_FAIL_V("SCALAR");
 | |
| }
 | |
| 
 | |
| GLTFDocument::GLTFType GLTFDocument::_get_type_from_str(const String &p_string) {
 | |
| 	if (p_string == "SCALAR") {
 | |
| 		return GLTFDocument::TYPE_SCALAR;
 | |
| 	}
 | |
| 
 | |
| 	if (p_string == "VEC2") {
 | |
| 		return GLTFDocument::TYPE_VEC2;
 | |
| 	}
 | |
| 	if (p_string == "VEC3") {
 | |
| 		return GLTFDocument::TYPE_VEC3;
 | |
| 	}
 | |
| 	if (p_string == "VEC4") {
 | |
| 		return GLTFDocument::TYPE_VEC4;
 | |
| 	}
 | |
| 
 | |
| 	if (p_string == "MAT2") {
 | |
| 		return GLTFDocument::TYPE_MAT2;
 | |
| 	}
 | |
| 	if (p_string == "MAT3") {
 | |
| 		return GLTFDocument::TYPE_MAT3;
 | |
| 	}
 | |
| 	if (p_string == "MAT4") {
 | |
| 		return GLTFDocument::TYPE_MAT4;
 | |
| 	}
 | |
| 
 | |
| 	ERR_FAIL_V(GLTFDocument::TYPE_SCALAR);
 | |
| }
 | |
| 
 | |
| Error GLTFDocument::_parse_accessors(Ref<GLTFState> state) {
 | |
| 	if (!state->json.has("accessors")) {
 | |
| 		return OK;
 | |
| 	}
 | |
| 	const Array &accessors = state->json["accessors"];
 | |
| 	for (GLTFAccessorIndex i = 0; i < accessors.size(); i++) {
 | |
| 		const Dictionary &d = accessors[i];
 | |
| 
 | |
| 		Ref<GLTFAccessor> accessor;
 | |
| 		accessor.instantiate();
 | |
| 
 | |
| 		ERR_FAIL_COND_V(!d.has("componentType"), ERR_PARSE_ERROR);
 | |
| 		accessor->component_type = d["componentType"];
 | |
| 		ERR_FAIL_COND_V(!d.has("count"), ERR_PARSE_ERROR);
 | |
| 		accessor->count = d["count"];
 | |
| 		ERR_FAIL_COND_V(!d.has("type"), ERR_PARSE_ERROR);
 | |
| 		accessor->type = _get_type_from_str(d["type"]);
 | |
| 
 | |
| 		if (d.has("bufferView")) {
 | |
| 			accessor->buffer_view = d["bufferView"]; //optional because it may be sparse...
 | |
| 		}
 | |
| 
 | |
| 		if (d.has("byteOffset")) {
 | |
| 			accessor->byte_offset = d["byteOffset"];
 | |
| 		}
 | |
| 
 | |
| 		if (d.has("normalized")) {
 | |
| 			accessor->normalized = d["normalized"];
 | |
| 		}
 | |
| 
 | |
| 		if (d.has("max")) {
 | |
| 			accessor->max = d["max"];
 | |
| 		}
 | |
| 
 | |
| 		if (d.has("min")) {
 | |
| 			accessor->min = d["min"];
 | |
| 		}
 | |
| 
 | |
| 		if (d.has("sparse")) {
 | |
| 			//eeh..
 | |
| 
 | |
| 			const Dictionary &s = d["sparse"];
 | |
| 
 | |
| 			ERR_FAIL_COND_V(!s.has("count"), ERR_PARSE_ERROR);
 | |
| 			accessor->sparse_count = s["count"];
 | |
| 			ERR_FAIL_COND_V(!s.has("indices"), ERR_PARSE_ERROR);
 | |
| 			const Dictionary &si = s["indices"];
 | |
| 
 | |
| 			ERR_FAIL_COND_V(!si.has("bufferView"), ERR_PARSE_ERROR);
 | |
| 			accessor->sparse_indices_buffer_view = si["bufferView"];
 | |
| 			ERR_FAIL_COND_V(!si.has("componentType"), ERR_PARSE_ERROR);
 | |
| 			accessor->sparse_indices_component_type = si["componentType"];
 | |
| 
 | |
| 			if (si.has("byteOffset")) {
 | |
| 				accessor->sparse_indices_byte_offset = si["byteOffset"];
 | |
| 			}
 | |
| 
 | |
| 			ERR_FAIL_COND_V(!s.has("values"), ERR_PARSE_ERROR);
 | |
| 			const Dictionary &sv = s["values"];
 | |
| 
 | |
| 			ERR_FAIL_COND_V(!sv.has("bufferView"), ERR_PARSE_ERROR);
 | |
| 			accessor->sparse_values_buffer_view = sv["bufferView"];
 | |
| 			if (sv.has("byteOffset")) {
 | |
| 				accessor->sparse_values_byte_offset = sv["byteOffset"];
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		state->accessors.push_back(accessor);
 | |
| 	}
 | |
| 
 | |
| 	print_verbose("glTF: Total accessors: " + itos(state->accessors.size()));
 | |
| 
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| double GLTFDocument::_filter_number(double p_float) {
 | |
| 	if (Math::is_nan(p_float)) {
 | |
| 		return 0.0f;
 | |
| 	}
 | |
| 	return p_float;
 | |
| }
 | |
| 
 | |
| String GLTFDocument::_get_component_type_name(const uint32_t p_component) {
 | |
| 	switch (p_component) {
 | |
| 		case GLTFDocument::COMPONENT_TYPE_BYTE:
 | |
| 			return "Byte";
 | |
| 		case GLTFDocument::COMPONENT_TYPE_UNSIGNED_BYTE:
 | |
| 			return "UByte";
 | |
| 		case GLTFDocument::COMPONENT_TYPE_SHORT:
 | |
| 			return "Short";
 | |
| 		case GLTFDocument::COMPONENT_TYPE_UNSIGNED_SHORT:
 | |
| 			return "UShort";
 | |
| 		case GLTFDocument::COMPONENT_TYPE_INT:
 | |
| 			return "Int";
 | |
| 		case GLTFDocument::COMPONENT_TYPE_FLOAT:
 | |
| 			return "Float";
 | |
| 	}
 | |
| 
 | |
| 	return "<Error>";
 | |
| }
 | |
| 
 | |
| String GLTFDocument::_get_type_name(const GLTFType p_component) {
 | |
| 	static const char *names[] = {
 | |
| 		"float",
 | |
| 		"vec2",
 | |
| 		"vec3",
 | |
| 		"vec4",
 | |
| 		"mat2",
 | |
| 		"mat3",
 | |
| 		"mat4"
 | |
| 	};
 | |
| 
 | |
| 	return names[p_component];
 | |
| }
 | |
| 
 | |
| Error GLTFDocument::_encode_buffer_view(Ref<GLTFState> state, const double *src, const int count, const GLTFType type, const int component_type, const bool normalized, const int byte_offset, const bool for_vertex, GLTFBufferViewIndex &r_accessor) {
 | |
| 	const int component_count_for_type[7] = {
 | |
| 		1, 2, 3, 4, 4, 9, 16
 | |
| 	};
 | |
| 
 | |
| 	const int component_count = component_count_for_type[type];
 | |
| 	const int component_size = _get_component_type_size(component_type);
 | |
| 	ERR_FAIL_COND_V(component_size == 0, FAILED);
 | |
| 
 | |
| 	int skip_every = 0;
 | |
| 	int skip_bytes = 0;
 | |
| 	//special case of alignments, as described in spec
 | |
| 	switch (component_type) {
 | |
| 		case COMPONENT_TYPE_BYTE:
 | |
| 		case COMPONENT_TYPE_UNSIGNED_BYTE: {
 | |
| 			if (type == TYPE_MAT2) {
 | |
| 				skip_every = 2;
 | |
| 				skip_bytes = 2;
 | |
| 			}
 | |
| 			if (type == TYPE_MAT3) {
 | |
| 				skip_every = 3;
 | |
| 				skip_bytes = 1;
 | |
| 			}
 | |
| 		} break;
 | |
| 		case COMPONENT_TYPE_SHORT:
 | |
| 		case COMPONENT_TYPE_UNSIGNED_SHORT: {
 | |
| 			if (type == TYPE_MAT3) {
 | |
| 				skip_every = 6;
 | |
| 				skip_bytes = 4;
 | |
| 			}
 | |
| 		} break;
 | |
| 		default: {
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	Ref<GLTFBufferView> bv;
 | |
| 	bv.instantiate();
 | |
| 	const uint32_t offset = bv->byte_offset = byte_offset;
 | |
| 	Vector<uint8_t> &gltf_buffer = state->buffers.write[0];
 | |
| 
 | |
| 	int stride = _get_component_type_size(component_type);
 | |
| 	if (for_vertex && stride % 4) {
 | |
| 		stride += 4 - (stride % 4); //according to spec must be multiple of 4
 | |
| 	}
 | |
| 	//use to debug
 | |
| 	print_verbose("glTF: encoding type " + _get_type_name(type) + " component type: " + _get_component_type_name(component_type) + " stride: " + itos(stride) + " amount " + itos(count));
 | |
| 
 | |
| 	print_verbose("glTF: encoding accessor offset " + itos(byte_offset) + " view offset: " + itos(bv->byte_offset) + " total buffer len: " + itos(gltf_buffer.size()) + " view len " + itos(bv->byte_length));
 | |
| 
 | |
| 	const int buffer_end = (stride * (count - 1)) + _get_component_type_size(component_type);
 | |
| 	// TODO define bv->byte_stride
 | |
| 	bv->byte_offset = gltf_buffer.size();
 | |
| 
 | |
| 	switch (component_type) {
 | |
| 		case COMPONENT_TYPE_BYTE: {
 | |
| 			Vector<int8_t> buffer;
 | |
| 			buffer.resize(count * component_count);
 | |
| 			int32_t dst_i = 0;
 | |
| 			for (int i = 0; i < count; i++) {
 | |
| 				for (int j = 0; j < component_count; j++) {
 | |
| 					if (skip_every && j > 0 && (j % skip_every) == 0) {
 | |
| 						dst_i += skip_bytes;
 | |
| 					}
 | |
| 					double d = *src;
 | |
| 					if (normalized) {
 | |
| 						buffer.write[dst_i] = d * 128.0;
 | |
| 					} else {
 | |
| 						buffer.write[dst_i] = d;
 | |
| 					}
 | |
| 					src++;
 | |
| 					dst_i++;
 | |
| 				}
 | |
| 			}
 | |
| 			int64_t old_size = gltf_buffer.size();
 | |
| 			gltf_buffer.resize(old_size + (buffer.size() * sizeof(int8_t)));
 | |
| 			memcpy(gltf_buffer.ptrw() + old_size, buffer.ptrw(), buffer.size() * sizeof(int8_t));
 | |
| 			bv->byte_length = buffer.size() * sizeof(int8_t);
 | |
| 		} break;
 | |
| 		case COMPONENT_TYPE_UNSIGNED_BYTE: {
 | |
| 			Vector<uint8_t> buffer;
 | |
| 			buffer.resize(count * component_count);
 | |
| 			int32_t dst_i = 0;
 | |
| 			for (int i = 0; i < count; i++) {
 | |
| 				for (int j = 0; j < component_count; j++) {
 | |
| 					if (skip_every && j > 0 && (j % skip_every) == 0) {
 | |
| 						dst_i += skip_bytes;
 | |
| 					}
 | |
| 					double d = *src;
 | |
| 					if (normalized) {
 | |
| 						buffer.write[dst_i] = d * 255.0;
 | |
| 					} else {
 | |
| 						buffer.write[dst_i] = d;
 | |
| 					}
 | |
| 					src++;
 | |
| 					dst_i++;
 | |
| 				}
 | |
| 			}
 | |
| 			gltf_buffer.append_array(buffer);
 | |
| 			bv->byte_length = buffer.size() * sizeof(uint8_t);
 | |
| 		} break;
 | |
| 		case COMPONENT_TYPE_SHORT: {
 | |
| 			Vector<int16_t> buffer;
 | |
| 			buffer.resize(count * component_count);
 | |
| 			int32_t dst_i = 0;
 | |
| 			for (int i = 0; i < count; i++) {
 | |
| 				for (int j = 0; j < component_count; j++) {
 | |
| 					if (skip_every && j > 0 && (j % skip_every) == 0) {
 | |
| 						dst_i += skip_bytes;
 | |
| 					}
 | |
| 					double d = *src;
 | |
| 					if (normalized) {
 | |
| 						buffer.write[dst_i] = d * 32768.0;
 | |
| 					} else {
 | |
| 						buffer.write[dst_i] = d;
 | |
| 					}
 | |
| 					src++;
 | |
| 					dst_i++;
 | |
| 				}
 | |
| 			}
 | |
| 			int64_t old_size = gltf_buffer.size();
 | |
| 			gltf_buffer.resize(old_size + (buffer.size() * sizeof(int16_t)));
 | |
| 			memcpy(gltf_buffer.ptrw() + old_size, buffer.ptrw(), buffer.size() * sizeof(int16_t));
 | |
| 			bv->byte_length = buffer.size() * sizeof(int16_t);
 | |
| 		} break;
 | |
| 		case COMPONENT_TYPE_UNSIGNED_SHORT: {
 | |
| 			Vector<uint16_t> buffer;
 | |
| 			buffer.resize(count * component_count);
 | |
| 			int32_t dst_i = 0;
 | |
| 			for (int i = 0; i < count; i++) {
 | |
| 				for (int j = 0; j < component_count; j++) {
 | |
| 					if (skip_every && j > 0 && (j % skip_every) == 0) {
 | |
| 						dst_i += skip_bytes;
 | |
| 					}
 | |
| 					double d = *src;
 | |
| 					if (normalized) {
 | |
| 						buffer.write[dst_i] = d * 65535.0;
 | |
| 					} else {
 | |
| 						buffer.write[dst_i] = d;
 | |
| 					}
 | |
| 					src++;
 | |
| 					dst_i++;
 | |
| 				}
 | |
| 			}
 | |
| 			int64_t old_size = gltf_buffer.size();
 | |
| 			gltf_buffer.resize(old_size + (buffer.size() * sizeof(uint16_t)));
 | |
| 			memcpy(gltf_buffer.ptrw() + old_size, buffer.ptrw(), buffer.size() * sizeof(uint16_t));
 | |
| 			bv->byte_length = buffer.size() * sizeof(uint16_t);
 | |
| 		} break;
 | |
| 		case COMPONENT_TYPE_INT: {
 | |
| 			Vector<int> buffer;
 | |
| 			buffer.resize(count * component_count);
 | |
| 			int32_t dst_i = 0;
 | |
| 			for (int i = 0; i < count; i++) {
 | |
| 				for (int j = 0; j < component_count; j++) {
 | |
| 					if (skip_every && j > 0 && (j % skip_every) == 0) {
 | |
| 						dst_i += skip_bytes;
 | |
| 					}
 | |
| 					double d = *src;
 | |
| 					buffer.write[dst_i] = d;
 | |
| 					src++;
 | |
| 					dst_i++;
 | |
| 				}
 | |
| 			}
 | |
| 			int64_t old_size = gltf_buffer.size();
 | |
| 			gltf_buffer.resize(old_size + (buffer.size() * sizeof(int32_t)));
 | |
| 			memcpy(gltf_buffer.ptrw() + old_size, buffer.ptrw(), buffer.size() * sizeof(int32_t));
 | |
| 			bv->byte_length = buffer.size() * sizeof(int32_t);
 | |
| 		} break;
 | |
| 		case COMPONENT_TYPE_FLOAT: {
 | |
| 			Vector<float> buffer;
 | |
| 			buffer.resize(count * component_count);
 | |
| 			int32_t dst_i = 0;
 | |
| 			for (int i = 0; i < count; i++) {
 | |
| 				for (int j = 0; j < component_count; j++) {
 | |
| 					if (skip_every && j > 0 && (j % skip_every) == 0) {
 | |
| 						dst_i += skip_bytes;
 | |
| 					}
 | |
| 					double d = *src;
 | |
| 					buffer.write[dst_i] = d;
 | |
| 					src++;
 | |
| 					dst_i++;
 | |
| 				}
 | |
| 			}
 | |
| 			int64_t old_size = gltf_buffer.size();
 | |
| 			gltf_buffer.resize(old_size + (buffer.size() * sizeof(float)));
 | |
| 			memcpy(gltf_buffer.ptrw() + old_size, buffer.ptrw(), buffer.size() * sizeof(float));
 | |
| 			bv->byte_length = buffer.size() * sizeof(float);
 | |
| 		} break;
 | |
| 	}
 | |
| 	ERR_FAIL_COND_V(buffer_end > bv->byte_length, ERR_INVALID_DATA);
 | |
| 
 | |
| 	ERR_FAIL_COND_V((int)(offset + buffer_end) > gltf_buffer.size(), ERR_INVALID_DATA);
 | |
| 	r_accessor = bv->buffer = state->buffer_views.size();
 | |
| 	state->buffer_views.push_back(bv);
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| Error GLTFDocument::_decode_buffer_view(Ref<GLTFState> state, double *dst, const GLTFBufferViewIndex p_buffer_view, const int skip_every, const int skip_bytes, const int element_size, const int count, const GLTFType type, const int component_count, const int component_type, const int component_size, const bool normalized, const int byte_offset, const bool for_vertex) {
 | |
| 	const Ref<GLTFBufferView> bv = state->buffer_views[p_buffer_view];
 | |
| 
 | |
| 	int stride = element_size;
 | |
| 	if (bv->byte_stride != -1) {
 | |
| 		stride = bv->byte_stride;
 | |
| 	}
 | |
| 	if (for_vertex && stride % 4) {
 | |
| 		stride += 4 - (stride % 4); //according to spec must be multiple of 4
 | |
| 	}
 | |
| 
 | |
| 	ERR_FAIL_INDEX_V(bv->buffer, state->buffers.size(), ERR_PARSE_ERROR);
 | |
| 
 | |
| 	const uint32_t offset = bv->byte_offset + byte_offset;
 | |
| 	Vector<uint8_t> buffer = state->buffers[bv->buffer]; //copy on write, so no performance hit
 | |
| 	const uint8_t *bufptr = buffer.ptr();
 | |
| 
 | |
| 	//use to debug
 | |
| 	print_verbose("glTF: type " + _get_type_name(type) + " component type: " + _get_component_type_name(component_type) + " stride: " + itos(stride) + " amount " + itos(count));
 | |
| 	print_verbose("glTF: accessor offset " + itos(byte_offset) + " view offset: " + itos(bv->byte_offset) + " total buffer len: " + itos(buffer.size()) + " view len " + itos(bv->byte_length));
 | |
| 
 | |
| 	const int buffer_end = (stride * (count - 1)) + element_size;
 | |
| 	ERR_FAIL_COND_V(buffer_end > bv->byte_length, ERR_PARSE_ERROR);
 | |
| 
 | |
| 	ERR_FAIL_COND_V((int)(offset + buffer_end) > buffer.size(), ERR_PARSE_ERROR);
 | |
| 
 | |
| 	//fill everything as doubles
 | |
| 
 | |
| 	for (int i = 0; i < count; i++) {
 | |
| 		const uint8_t *src = &bufptr[offset + i * stride];
 | |
| 
 | |
| 		for (int j = 0; j < component_count; j++) {
 | |
| 			if (skip_every && j > 0 && (j % skip_every) == 0) {
 | |
| 				src += skip_bytes;
 | |
| 			}
 | |
| 
 | |
| 			double d = 0;
 | |
| 
 | |
| 			switch (component_type) {
 | |
| 				case COMPONENT_TYPE_BYTE: {
 | |
| 					int8_t b = int8_t(*src);
 | |
| 					if (normalized) {
 | |
| 						d = (double(b) / 128.0);
 | |
| 					} else {
 | |
| 						d = double(b);
 | |
| 					}
 | |
| 				} break;
 | |
| 				case COMPONENT_TYPE_UNSIGNED_BYTE: {
 | |
| 					uint8_t b = *src;
 | |
| 					if (normalized) {
 | |
| 						d = (double(b) / 255.0);
 | |
| 					} else {
 | |
| 						d = double(b);
 | |
| 					}
 | |
| 				} break;
 | |
| 				case COMPONENT_TYPE_SHORT: {
 | |
| 					int16_t s = *(int16_t *)src;
 | |
| 					if (normalized) {
 | |
| 						d = (double(s) / 32768.0);
 | |
| 					} else {
 | |
| 						d = double(s);
 | |
| 					}
 | |
| 				} break;
 | |
| 				case COMPONENT_TYPE_UNSIGNED_SHORT: {
 | |
| 					uint16_t s = *(uint16_t *)src;
 | |
| 					if (normalized) {
 | |
| 						d = (double(s) / 65535.0);
 | |
| 					} else {
 | |
| 						d = double(s);
 | |
| 					}
 | |
| 				} break;
 | |
| 				case COMPONENT_TYPE_INT: {
 | |
| 					d = *(int *)src;
 | |
| 				} break;
 | |
| 				case COMPONENT_TYPE_FLOAT: {
 | |
| 					d = *(float *)src;
 | |
| 				} break;
 | |
| 			}
 | |
| 
 | |
| 			*dst++ = d;
 | |
| 			src += component_size;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| int GLTFDocument::_get_component_type_size(const int component_type) {
 | |
| 	switch (component_type) {
 | |
| 		case COMPONENT_TYPE_BYTE:
 | |
| 		case COMPONENT_TYPE_UNSIGNED_BYTE:
 | |
| 			return 1;
 | |
| 			break;
 | |
| 		case COMPONENT_TYPE_SHORT:
 | |
| 		case COMPONENT_TYPE_UNSIGNED_SHORT:
 | |
| 			return 2;
 | |
| 			break;
 | |
| 		case COMPONENT_TYPE_INT:
 | |
| 		case COMPONENT_TYPE_FLOAT:
 | |
| 			return 4;
 | |
| 			break;
 | |
| 		default: {
 | |
| 			ERR_FAIL_V(0);
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| Vector<double> GLTFDocument::_decode_accessor(Ref<GLTFState> state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) {
 | |
| 	//spec, for reference:
 | |
| 	//https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#data-alignment
 | |
| 
 | |
| 	ERR_FAIL_INDEX_V(p_accessor, state->accessors.size(), Vector<double>());
 | |
| 
 | |
| 	const Ref<GLTFAccessor> a = state->accessors[p_accessor];
 | |
| 
 | |
| 	const int component_count_for_type[7] = {
 | |
| 		1, 2, 3, 4, 4, 9, 16
 | |
| 	};
 | |
| 
 | |
| 	const int component_count = component_count_for_type[a->type];
 | |
| 	const int component_size = _get_component_type_size(a->component_type);
 | |
| 	ERR_FAIL_COND_V(component_size == 0, Vector<double>());
 | |
| 	int element_size = component_count * component_size;
 | |
| 
 | |
| 	int skip_every = 0;
 | |
| 	int skip_bytes = 0;
 | |
| 	//special case of alignments, as described in spec
 | |
| 	switch (a->component_type) {
 | |
| 		case COMPONENT_TYPE_BYTE:
 | |
| 		case COMPONENT_TYPE_UNSIGNED_BYTE: {
 | |
| 			if (a->type == TYPE_MAT2) {
 | |
| 				skip_every = 2;
 | |
| 				skip_bytes = 2;
 | |
| 				element_size = 8; //override for this case
 | |
| 			}
 | |
| 			if (a->type == TYPE_MAT3) {
 | |
| 				skip_every = 3;
 | |
| 				skip_bytes = 1;
 | |
| 				element_size = 12; //override for this case
 | |
| 			}
 | |
| 		} break;
 | |
| 		case COMPONENT_TYPE_SHORT:
 | |
| 		case COMPONENT_TYPE_UNSIGNED_SHORT: {
 | |
| 			if (a->type == TYPE_MAT3) {
 | |
| 				skip_every = 6;
 | |
| 				skip_bytes = 4;
 | |
| 				element_size = 16; //override for this case
 | |
| 			}
 | |
| 		} break;
 | |
| 		default: {
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	Vector<double> dst_buffer;
 | |
| 	dst_buffer.resize(component_count * a->count);
 | |
| 	double *dst = dst_buffer.ptrw();
 | |
| 
 | |
| 	if (a->buffer_view >= 0) {
 | |
| 		ERR_FAIL_INDEX_V(a->buffer_view, state->buffer_views.size(), Vector<double>());
 | |
| 
 | |
| 		const Error err = _decode_buffer_view(state, dst, a->buffer_view, skip_every, skip_bytes, element_size, a->count, a->type, component_count, a->component_type, component_size, a->normalized, a->byte_offset, p_for_vertex);
 | |
| 		if (err != OK) {
 | |
| 			return Vector<double>();
 | |
| 		}
 | |
| 	} else {
 | |
| 		//fill with zeros, as bufferview is not defined.
 | |
| 		for (int i = 0; i < (a->count * component_count); i++) {
 | |
| 			dst_buffer.write[i] = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (a->sparse_count > 0) {
 | |
| 		// I could not find any file using this, so this code is so far untested
 | |
| 		Vector<double> indices;
 | |
| 		indices.resize(a->sparse_count);
 | |
| 		const int indices_component_size = _get_component_type_size(a->sparse_indices_component_type);
 | |
| 
 | |
| 		Error err = _decode_buffer_view(state, indices.ptrw(), a->sparse_indices_buffer_view, 0, 0, indices_component_size, a->sparse_count, TYPE_SCALAR, 1, a->sparse_indices_component_type, indices_component_size, false, a->sparse_indices_byte_offset, false);
 | |
| 		if (err != OK) {
 | |
| 			return Vector<double>();
 | |
| 		}
 | |
| 
 | |
| 		Vector<double> data;
 | |
| 		data.resize(component_count * a->sparse_count);
 | |
| 		err = _decode_buffer_view(state, data.ptrw(), a->sparse_values_buffer_view, skip_every, skip_bytes, element_size, a->sparse_count, a->type, component_count, a->component_type, component_size, a->normalized, a->sparse_values_byte_offset, p_for_vertex);
 | |
| 		if (err != OK) {
 | |
| 			return Vector<double>();
 | |
| 		}
 | |
| 
 | |
| 		for (int i = 0; i < indices.size(); i++) {
 | |
| 			const int write_offset = int(indices[i]) * component_count;
 | |
| 
 | |
| 			for (int j = 0; j < component_count; j++) {
 | |
| 				dst[write_offset + j] = data[i * component_count + j];
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return dst_buffer;
 | |
| }
 | |
| 
 | |
| GLTFAccessorIndex GLTFDocument::_encode_accessor_as_ints(Ref<GLTFState> state, const Vector<int32_t> p_attribs, const bool p_for_vertex) {
 | |
| 	if (p_attribs.size() == 0) {
 | |
| 		return -1;
 | |
| 	}
 | |
| 	const int element_count = 1;
 | |
| 	const int ret_size = p_attribs.size();
 | |
| 	Vector<double> attribs;
 | |
| 	attribs.resize(ret_size);
 | |
| 	Vector<double> type_max;
 | |
| 	type_max.resize(element_count);
 | |
| 	Vector<double> type_min;
 | |
| 	type_min.resize(element_count);
 | |
| 	for (int i = 0; i < p_attribs.size(); i++) {
 | |
| 		attribs.write[i] = Math::snapped(p_attribs[i], 1.0);
 | |
| 		if (i == 0) {
 | |
| 			for (int32_t type_i = 0; type_i < element_count; type_i++) {
 | |
| 				type_max.write[type_i] = attribs[(i * element_count) + type_i];
 | |
| 				type_min.write[type_i] = attribs[(i * element_count) + type_i];
 | |
| 			}
 | |
| 		}
 | |
| 		for (int32_t type_i = 0; type_i < element_count; type_i++) {
 | |
| 			type_max.write[type_i] = MAX(attribs[(i * element_count) + type_i], type_max[type_i]);
 | |
| 			type_min.write[type_i] = MIN(attribs[(i * element_count) + type_i], type_min[type_i]);
 | |
| 			type_max.write[type_i] = _filter_number(type_max.write[type_i]);
 | |
| 			type_min.write[type_i] = _filter_number(type_min.write[type_i]);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ERR_FAIL_COND_V(attribs.size() == 0, -1);
 | |
| 
 | |
| 	Ref<GLTFAccessor> accessor;
 | |
| 	accessor.instantiate();
 | |
| 	GLTFBufferIndex buffer_view_i;
 | |
| 	int64_t size = state->buffers[0].size();
 | |
| 	const GLTFDocument::GLTFType type = GLTFDocument::TYPE_SCALAR;
 | |
| 	const int component_type = GLTFDocument::COMPONENT_TYPE_INT;
 | |
| 
 | |
| 	accessor->max = type_max;
 | |
| 	accessor->min = type_min;
 | |
| 	accessor->normalized = false;
 | |
| 	accessor->count = ret_size;
 | |
| 	accessor->type = type;
 | |
| 	accessor->component_type = component_type;
 | |
| 	accessor->byte_offset = 0;
 | |
| 	Error err = _encode_buffer_view(state, attribs.ptr(), attribs.size(), type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i);
 | |
| 	if (err != OK) {
 | |
| 		return -1;
 | |
| 	}
 | |
| 	accessor->buffer_view = buffer_view_i;
 | |
| 	state->accessors.push_back(accessor);
 | |
| 	return state->accessors.size() - 1;
 | |
| }
 | |
| 
 | |
| Vector<int> GLTFDocument::_decode_accessor_as_ints(Ref<GLTFState> state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) {
 | |
| 	const Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex);
 | |
| 	Vector<int> ret;
 | |
| 
 | |
| 	if (attribs.size() == 0) {
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	const double *attribs_ptr = attribs.ptr();
 | |
| 	const int ret_size = attribs.size();
 | |
| 	ret.resize(ret_size);
 | |
| 	{
 | |
| 		for (int i = 0; i < ret_size; i++) {
 | |
| 			ret.write[i] = int(attribs_ptr[i]);
 | |
| 		}
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| Vector<float> GLTFDocument::_decode_accessor_as_floats(Ref<GLTFState> state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) {
 | |
| 	const Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex);
 | |
| 	Vector<float> ret;
 | |
| 
 | |
| 	if (attribs.size() == 0) {
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	const double *attribs_ptr = attribs.ptr();
 | |
| 	const int ret_size = attribs.size();
 | |
| 	ret.resize(ret_size);
 | |
| 	{
 | |
| 		for (int i = 0; i < ret_size; i++) {
 | |
| 			ret.write[i] = float(attribs_ptr[i]);
 | |
| 		}
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| GLTFAccessorIndex GLTFDocument::_encode_accessor_as_vec2(Ref<GLTFState> state, const Vector<Vector2> p_attribs, const bool p_for_vertex) {
 | |
| 	if (p_attribs.size() == 0) {
 | |
| 		return -1;
 | |
| 	}
 | |
| 	const int element_count = 2;
 | |
| 
 | |
| 	const int ret_size = p_attribs.size() * element_count;
 | |
| 	Vector<double> attribs;
 | |
| 	attribs.resize(ret_size);
 | |
| 	Vector<double> type_max;
 | |
| 	type_max.resize(element_count);
 | |
| 	Vector<double> type_min;
 | |
| 	type_min.resize(element_count);
 | |
| 
 | |
| 	for (int i = 0; i < p_attribs.size(); i++) {
 | |
| 		Vector2 attrib = p_attribs[i];
 | |
| 		attribs.write[(i * element_count) + 0] = Math::snapped(attrib.x, CMP_NORMALIZE_TOLERANCE);
 | |
| 		attribs.write[(i * element_count) + 1] = Math::snapped(attrib.y, CMP_NORMALIZE_TOLERANCE);
 | |
| 		_calc_accessor_min_max(i, element_count, type_max, attribs, type_min);
 | |
| 	}
 | |
| 
 | |
| 	ERR_FAIL_COND_V(attribs.size() % element_count != 0, -1);
 | |
| 
 | |
| 	Ref<GLTFAccessor> accessor;
 | |
| 	accessor.instantiate();
 | |
| 	GLTFBufferIndex buffer_view_i;
 | |
| 	int64_t size = state->buffers[0].size();
 | |
| 	const GLTFDocument::GLTFType type = GLTFDocument::TYPE_VEC2;
 | |
| 	const int component_type = GLTFDocument::COMPONENT_TYPE_FLOAT;
 | |
| 
 | |
| 	accessor->max = type_max;
 | |
| 	accessor->min = type_min;
 | |
| 	accessor->normalized = false;
 | |
| 	accessor->count = p_attribs.size();
 | |
| 	accessor->type = type;
 | |
| 	accessor->component_type = component_type;
 | |
| 	accessor->byte_offset = 0;
 | |
| 	Error err = _encode_buffer_view(state, attribs.ptr(), p_attribs.size(), type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i);
 | |
| 	if (err != OK) {
 | |
| 		return -1;
 | |
| 	}
 | |
| 	accessor->buffer_view = buffer_view_i;
 | |
| 	state->accessors.push_back(accessor);
 | |
| 	return state->accessors.size() - 1;
 | |
| }
 | |
| 
 | |
| GLTFAccessorIndex GLTFDocument::_encode_accessor_as_color(Ref<GLTFState> state, const Vector<Color> p_attribs, const bool p_for_vertex) {
 | |
| 	if (p_attribs.size() == 0) {
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	const int ret_size = p_attribs.size() * 4;
 | |
| 	Vector<double> attribs;
 | |
| 	attribs.resize(ret_size);
 | |
| 
 | |
| 	const int element_count = 4;
 | |
| 	Vector<double> type_max;
 | |
| 	type_max.resize(element_count);
 | |
| 	Vector<double> type_min;
 | |
| 	type_min.resize(element_count);
 | |
| 	for (int i = 0; i < p_attribs.size(); i++) {
 | |
| 		Color attrib = p_attribs[i];
 | |
| 		attribs.write[(i * element_count) + 0] = Math::snapped(attrib.r, CMP_NORMALIZE_TOLERANCE);
 | |
| 		attribs.write[(i * element_count) + 1] = Math::snapped(attrib.g, CMP_NORMALIZE_TOLERANCE);
 | |
| 		attribs.write[(i * element_count) + 2] = Math::snapped(attrib.b, CMP_NORMALIZE_TOLERANCE);
 | |
| 		attribs.write[(i * element_count) + 3] = Math::snapped(attrib.a, CMP_NORMALIZE_TOLERANCE);
 | |
| 
 | |
| 		_calc_accessor_min_max(i, element_count, type_max, attribs, type_min);
 | |
| 	}
 | |
| 
 | |
| 	ERR_FAIL_COND_V(attribs.size() % element_count != 0, -1);
 | |
| 
 | |
| 	Ref<GLTFAccessor> accessor;
 | |
| 	accessor.instantiate();
 | |
| 	GLTFBufferIndex buffer_view_i;
 | |
| 	int64_t size = state->buffers[0].size();
 | |
| 	const GLTFDocument::GLTFType type = GLTFDocument::TYPE_VEC4;
 | |
| 	const int component_type = GLTFDocument::COMPONENT_TYPE_FLOAT;
 | |
| 
 | |
| 	accessor->max = type_max;
 | |
| 	accessor->min = type_min;
 | |
| 	accessor->normalized = false;
 | |
| 	accessor->count = p_attribs.size();
 | |
| 	accessor->type = type;
 | |
| 	accessor->component_type = component_type;
 | |
| 	accessor->byte_offset = 0;
 | |
| 	Error err = _encode_buffer_view(state, attribs.ptr(), p_attribs.size(), type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i);
 | |
| 	if (err != OK) {
 | |
| 		return -1;
 | |
| 	}
 | |
| 	accessor->buffer_view = buffer_view_i;
 | |
| 	state->accessors.push_back(accessor);
 | |
| 	return state->accessors.size() - 1;
 | |
| }
 | |
| 
 | |
| void GLTFDocument::_calc_accessor_min_max(int i, const int element_count, Vector<double> &type_max, Vector<double> attribs, Vector<double> &type_min) {
 | |
| 	if (i == 0) {
 | |
| 		for (int32_t type_i = 0; type_i < element_count; type_i++) {
 | |
| 			type_max.write[type_i] = attribs[(i * element_count) + type_i];
 | |
| 			type_min.write[type_i] = attribs[(i * element_count) + type_i];
 | |
| 		}
 | |
| 	}
 | |
| 	for (int32_t type_i = 0; type_i < element_count; type_i++) {
 | |
| 		type_max.write[type_i] = MAX(attribs[(i * element_count) + type_i], type_max[type_i]);
 | |
| 		type_min.write[type_i] = MIN(attribs[(i * element_count) + type_i], type_min[type_i]);
 | |
| 		type_max.write[type_i] = _filter_number(type_max.write[type_i]);
 | |
| 		type_min.write[type_i] = _filter_number(type_min.write[type_i]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| GLTFAccessorIndex GLTFDocument::_encode_accessor_as_weights(Ref<GLTFState> state, const Vector<Color> p_attribs, const bool p_for_vertex) {
 | |
| 	if (p_attribs.size() == 0) {
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	const int ret_size = p_attribs.size() * 4;
 | |
| 	Vector<double> attribs;
 | |
| 	attribs.resize(ret_size);
 | |
| 
 | |
| 	const int element_count = 4;
 | |
| 
 | |
| 	Vector<double> type_max;
 | |
| 	type_max.resize(element_count);
 | |
| 	Vector<double> type_min;
 | |
| 	type_min.resize(element_count);
 | |
| 	for (int i = 0; i < p_attribs.size(); i++) {
 | |
| 		Color attrib = p_attribs[i];
 | |
| 		attribs.write[(i * element_count) + 0] = Math::snapped(attrib.r, CMP_NORMALIZE_TOLERANCE);
 | |
| 		attribs.write[(i * element_count) + 1] = Math::snapped(attrib.g, CMP_NORMALIZE_TOLERANCE);
 | |
| 		attribs.write[(i * element_count) + 2] = Math::snapped(attrib.b, CMP_NORMALIZE_TOLERANCE);
 | |
| 		attribs.write[(i * element_count) + 3] = Math::snapped(attrib.a, CMP_NORMALIZE_TOLERANCE);
 | |
| 
 | |
| 		_calc_accessor_min_max(i, element_count, type_max, attribs, type_min);
 | |
| 	}
 | |
| 
 | |
| 	ERR_FAIL_COND_V(attribs.size() % element_count != 0, -1);
 | |
| 
 | |
| 	Ref<GLTFAccessor> accessor;
 | |
| 	accessor.instantiate();
 | |
| 	GLTFBufferIndex buffer_view_i;
 | |
| 	int64_t size = state->buffers[0].size();
 | |
| 	const GLTFDocument::GLTFType type = GLTFDocument::TYPE_VEC4;
 | |
| 	const int component_type = GLTFDocument::COMPONENT_TYPE_FLOAT;
 | |
| 
 | |
| 	accessor->max = type_max;
 | |
| 	accessor->min = type_min;
 | |
| 	accessor->normalized = false;
 | |
| 	accessor->count = p_attribs.size();
 | |
| 	accessor->type = type;
 | |
| 	accessor->component_type = component_type;
 | |
| 	accessor->byte_offset = 0;
 | |
| 	Error err = _encode_buffer_view(state, attribs.ptr(), p_attribs.size(), type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i);
 | |
| 	if (err != OK) {
 | |
| 		return -1;
 | |
| 	}
 | |
| 	accessor->buffer_view = buffer_view_i;
 | |
| 	state->accessors.push_back(accessor);
 | |
| 	return state->accessors.size() - 1;
 | |
| }
 | |
| 
 | |
| GLTFAccessorIndex GLTFDocument::_encode_accessor_as_joints(Ref<GLTFState> state, const Vector<Color> p_attribs, const bool p_for_vertex) {
 | |
| 	if (p_attribs.size() == 0) {
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	const int element_count = 4;
 | |
| 	const int ret_size = p_attribs.size() * element_count;
 | |
| 	Vector<double> attribs;
 | |
| 	attribs.resize(ret_size);
 | |
| 
 | |
| 	Vector<double> type_max;
 | |
| 	type_max.resize(element_count);
 | |
| 	Vector<double> type_min;
 | |
| 	type_min.resize(element_count);
 | |
| 	for (int i = 0; i < p_attribs.size(); i++) {
 | |
| 		Color attrib = p_attribs[i];
 | |
| 		attribs.write[(i * element_count) + 0] = Math::snapped(attrib.r, CMP_NORMALIZE_TOLERANCE);
 | |
| 		attribs.write[(i * element_count) + 1] = Math::snapped(attrib.g, CMP_NORMALIZE_TOLERANCE);
 | |
| 		attribs.write[(i * element_count) + 2] = Math::snapped(attrib.b, CMP_NORMALIZE_TOLERANCE);
 | |
| 		attribs.write[(i * element_count) + 3] = Math::snapped(attrib.a, CMP_NORMALIZE_TOLERANCE);
 | |
| 		_calc_accessor_min_max(i, element_count, type_max, attribs, type_min);
 | |
| 	}
 | |
| 	ERR_FAIL_COND_V(attribs.size() % element_count != 0, -1);
 | |
| 
 | |
| 	Ref<GLTFAccessor> accessor;
 | |
| 	accessor.instantiate();
 | |
| 	GLTFBufferIndex buffer_view_i;
 | |
| 	int64_t size = state->buffers[0].size();
 | |
| 	const GLTFDocument::GLTFType type = GLTFDocument::TYPE_VEC4;
 | |
| 	const int component_type = GLTFDocument::COMPONENT_TYPE_UNSIGNED_SHORT;
 | |
| 
 | |
| 	accessor->max = type_max;
 | |
| 	accessor->min = type_min;
 | |
| 	accessor->normalized = false;
 | |
| 	accessor->count = p_attribs.size();
 | |
| 	accessor->type = type;
 | |
| 	accessor->component_type = component_type;
 | |
| 	accessor->byte_offset = 0;
 | |
| 	Error err = _encode_buffer_view(state, attribs.ptr(), p_attribs.size(), type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i);
 | |
| 	if (err != OK) {
 | |
| 		return -1;
 | |
| 	}
 | |
| 	accessor->buffer_view = buffer_view_i;
 | |
| 	state->accessors.push_back(accessor);
 | |
| 	return state->accessors.size() - 1;
 | |
| }
 | |
| 
 | |
| GLTFAccessorIndex GLTFDocument::_encode_accessor_as_quaternions(Ref<GLTFState> state, const Vector<Quaternion> p_attribs, const bool p_for_vertex) {
 | |
| 	if (p_attribs.size() == 0) {
 | |
| 		return -1;
 | |
| 	}
 | |
| 	const int element_count = 4;
 | |
| 
 | |
| 	const int ret_size = p_attribs.size() * element_count;
 | |
| 	Vector<double> attribs;
 | |
| 	attribs.resize(ret_size);
 | |
| 
 | |
| 	Vector<double> type_max;
 | |
| 	type_max.resize(element_count);
 | |
| 	Vector<double> type_min;
 | |
| 	type_min.resize(element_count);
 | |
| 	for (int i = 0; i < p_attribs.size(); i++) {
 | |
| 		Quaternion quaternion = p_attribs[i];
 | |
| 		attribs.write[(i * element_count) + 0] = Math::snapped(quaternion.x, CMP_NORMALIZE_TOLERANCE);
 | |
| 		attribs.write[(i * element_count) + 1] = Math::snapped(quaternion.y, CMP_NORMALIZE_TOLERANCE);
 | |
| 		attribs.write[(i * element_count) + 2] = Math::snapped(quaternion.z, CMP_NORMALIZE_TOLERANCE);
 | |
| 		attribs.write[(i * element_count) + 3] = Math::snapped(quaternion.w, CMP_NORMALIZE_TOLERANCE);
 | |
| 
 | |
| 		_calc_accessor_min_max(i, element_count, type_max, attribs, type_min);
 | |
| 	}
 | |
| 
 | |
| 	ERR_FAIL_COND_V(attribs.size() % element_count != 0, -1);
 | |
| 
 | |
| 	Ref<GLTFAccessor> accessor;
 | |
| 	accessor.instantiate();
 | |
| 	GLTFBufferIndex buffer_view_i;
 | |
| 	int64_t size = state->buffers[0].size();
 | |
| 	const GLTFDocument::GLTFType type = GLTFDocument::TYPE_VEC4;
 | |
| 	const int component_type = GLTFDocument::COMPONENT_TYPE_FLOAT;
 | |
| 
 | |
| 	accessor->max = type_max;
 | |
| 	accessor->min = type_min;
 | |
| 	accessor->normalized = false;
 | |
| 	accessor->count = p_attribs.size();
 | |
| 	accessor->type = type;
 | |
| 	accessor->component_type = component_type;
 | |
| 	accessor->byte_offset = 0;
 | |
| 	Error err = _encode_buffer_view(state, attribs.ptr(), p_attribs.size(), type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i);
 | |
| 	if (err != OK) {
 | |
| 		return -1;
 | |
| 	}
 | |
| 	accessor->buffer_view = buffer_view_i;
 | |
| 	state->accessors.push_back(accessor);
 | |
| 	return state->accessors.size() - 1;
 | |
| }
 | |
| 
 | |
| Vector<Vector2> GLTFDocument::_decode_accessor_as_vec2(Ref<GLTFState> state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) {
 | |
| 	const Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex);
 | |
| 	Vector<Vector2> ret;
 | |
| 
 | |
| 	if (attribs.size() == 0) {
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	ERR_FAIL_COND_V(attribs.size() % 2 != 0, ret);
 | |
| 	const double *attribs_ptr = attribs.ptr();
 | |
| 	const int ret_size = attribs.size() / 2;
 | |
| 	ret.resize(ret_size);
 | |
| 	{
 | |
| 		for (int i = 0; i < ret_size; i++) {
 | |
| 			ret.write[i] = Vector2(attribs_ptr[i * 2 + 0], attribs_ptr[i * 2 + 1]);
 | |
| 		}
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| GLTFAccessorIndex GLTFDocument::_encode_accessor_as_floats(Ref<GLTFState> state, const Vector<real_t> p_attribs, const bool p_for_vertex) {
 | |
| 	if (p_attribs.size() == 0) {
 | |
| 		return -1;
 | |
| 	}
 | |
| 	const int element_count = 1;
 | |
| 	const int ret_size = p_attribs.size();
 | |
| 	Vector<double> attribs;
 | |
| 	attribs.resize(ret_size);
 | |
| 
 | |
| 	Vector<double> type_max;
 | |
| 	type_max.resize(element_count);
 | |
| 	Vector<double> type_min;
 | |
| 	type_min.resize(element_count);
 | |
| 
 | |
| 	for (int i = 0; i < p_attribs.size(); i++) {
 | |
| 		attribs.write[i] = Math::snapped(p_attribs[i], CMP_NORMALIZE_TOLERANCE);
 | |
| 
 | |
| 		_calc_accessor_min_max(i, element_count, type_max, attribs, type_min);
 | |
| 	}
 | |
| 
 | |
| 	ERR_FAIL_COND_V(!attribs.size(), -1);
 | |
| 
 | |
| 	Ref<GLTFAccessor> accessor;
 | |
| 	accessor.instantiate();
 | |
| 	GLTFBufferIndex buffer_view_i;
 | |
| 	int64_t size = state->buffers[0].size();
 | |
| 	const GLTFDocument::GLTFType type = GLTFDocument::TYPE_SCALAR;
 | |
| 	const int component_type = GLTFDocument::COMPONENT_TYPE_FLOAT;
 | |
| 
 | |
| 	accessor->max = type_max;
 | |
| 	accessor->min = type_min;
 | |
| 	accessor->normalized = false;
 | |
| 	accessor->count = ret_size;
 | |
| 	accessor->type = type;
 | |
| 	accessor->component_type = component_type;
 | |
| 	accessor->byte_offset = 0;
 | |
| 	Error err = _encode_buffer_view(state, attribs.ptr(), attribs.size(), type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i);
 | |
| 	if (err != OK) {
 | |
| 		return -1;
 | |
| 	}
 | |
| 	accessor->buffer_view = buffer_view_i;
 | |
| 	state->accessors.push_back(accessor);
 | |
| 	return state->accessors.size() - 1;
 | |
| }
 | |
| 
 | |
| GLTFAccessorIndex GLTFDocument::_encode_accessor_as_vec3(Ref<GLTFState> state, const Vector<Vector3> p_attribs, const bool p_for_vertex) {
 | |
| 	if (p_attribs.size() == 0) {
 | |
| 		return -1;
 | |
| 	}
 | |
| 	const int element_count = 3;
 | |
| 	const int ret_size = p_attribs.size() * element_count;
 | |
| 	Vector<double> attribs;
 | |
| 	attribs.resize(ret_size);
 | |
| 
 | |
| 	Vector<double> type_max;
 | |
| 	type_max.resize(element_count);
 | |
| 	Vector<double> type_min;
 | |
| 	type_min.resize(element_count);
 | |
| 	for (int i = 0; i < p_attribs.size(); i++) {
 | |
| 		Vector3 attrib = p_attribs[i];
 | |
| 		attribs.write[(i * element_count) + 0] = Math::snapped(attrib.x, CMP_NORMALIZE_TOLERANCE);
 | |
| 		attribs.write[(i * element_count) + 1] = Math::snapped(attrib.y, CMP_NORMALIZE_TOLERANCE);
 | |
| 		attribs.write[(i * element_count) + 2] = Math::snapped(attrib.z, CMP_NORMALIZE_TOLERANCE);
 | |
| 
 | |
| 		_calc_accessor_min_max(i, element_count, type_max, attribs, type_min);
 | |
| 	}
 | |
| 	ERR_FAIL_COND_V(attribs.size() % element_count != 0, -1);
 | |
| 
 | |
| 	Ref<GLTFAccessor> accessor;
 | |
| 	accessor.instantiate();
 | |
| 	GLTFBufferIndex buffer_view_i;
 | |
| 	int64_t size = state->buffers[0].size();
 | |
| 	const GLTFDocument::GLTFType type = GLTFDocument::TYPE_VEC3;
 | |
| 	const int component_type = GLTFDocument::COMPONENT_TYPE_FLOAT;
 | |
| 
 | |
| 	accessor->max = type_max;
 | |
| 	accessor->min = type_min;
 | |
| 	accessor->normalized = false;
 | |
| 	accessor->count = p_attribs.size();
 | |
| 	accessor->type = type;
 | |
| 	accessor->component_type = component_type;
 | |
| 	accessor->byte_offset = 0;
 | |
| 	Error err = _encode_buffer_view(state, attribs.ptr(), p_attribs.size(), type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i);
 | |
| 	if (err != OK) {
 | |
| 		return -1;
 | |
| 	}
 | |
| 	accessor->buffer_view = buffer_view_i;
 | |
| 	state->accessors.push_back(accessor);
 | |
| 	return state->accessors.size() - 1;
 | |
| }
 | |
| 
 | |
| GLTFAccessorIndex GLTFDocument::_encode_accessor_as_xform(Ref<GLTFState> state, const Vector<Transform3D> p_attribs, const bool p_for_vertex) {
 | |
| 	if (p_attribs.size() == 0) {
 | |
| 		return -1;
 | |
| 	}
 | |
| 	const int element_count = 16;
 | |
| 	const int ret_size = p_attribs.size() * element_count;
 | |
| 	Vector<double> attribs;
 | |
| 	attribs.resize(ret_size);
 | |
| 
 | |
| 	Vector<double> type_max;
 | |
| 	type_max.resize(element_count);
 | |
| 	Vector<double> type_min;
 | |
| 	type_min.resize(element_count);
 | |
| 	for (int i = 0; i < p_attribs.size(); i++) {
 | |
| 		Transform3D attrib = p_attribs[i];
 | |
| 		Basis basis = attrib.get_basis();
 | |
| 		Vector3 axis_0 = basis.get_axis(Vector3::AXIS_X);
 | |
| 
 | |
| 		attribs.write[i * element_count + 0] = Math::snapped(axis_0.x, CMP_NORMALIZE_TOLERANCE);
 | |
| 		attribs.write[i * element_count + 1] = Math::snapped(axis_0.y, CMP_NORMALIZE_TOLERANCE);
 | |
| 		attribs.write[i * element_count + 2] = Math::snapped(axis_0.z, CMP_NORMALIZE_TOLERANCE);
 | |
| 		attribs.write[i * element_count + 3] = 0.0;
 | |
| 
 | |
| 		Vector3 axis_1 = basis.get_axis(Vector3::AXIS_Y);
 | |
| 		attribs.write[i * element_count + 4] = Math::snapped(axis_1.x, CMP_NORMALIZE_TOLERANCE);
 | |
| 		attribs.write[i * element_count + 5] = Math::snapped(axis_1.y, CMP_NORMALIZE_TOLERANCE);
 | |
| 		attribs.write[i * element_count + 6] = Math::snapped(axis_1.z, CMP_NORMALIZE_TOLERANCE);
 | |
| 		attribs.write[i * element_count + 7] = 0.0;
 | |
| 
 | |
| 		Vector3 axis_2 = basis.get_axis(Vector3::AXIS_Z);
 | |
| 		attribs.write[i * element_count + 8] = Math::snapped(axis_2.x, CMP_NORMALIZE_TOLERANCE);
 | |
| 		attribs.write[i * element_count + 9] = Math::snapped(axis_2.y, CMP_NORMALIZE_TOLERANCE);
 | |
| 		attribs.write[i * element_count + 10] = Math::snapped(axis_2.z, CMP_NORMALIZE_TOLERANCE);
 | |
| 		attribs.write[i * element_count + 11] = 0.0;
 | |
| 
 | |
| 		Vector3 origin = attrib.get_origin();
 | |
| 		attribs.write[i * element_count + 12] = Math::snapped(origin.x, CMP_NORMALIZE_TOLERANCE);
 | |
| 		attribs.write[i * element_count + 13] = Math::snapped(origin.y, CMP_NORMALIZE_TOLERANCE);
 | |
| 		attribs.write[i * element_count + 14] = Math::snapped(origin.z, CMP_NORMALIZE_TOLERANCE);
 | |
| 		attribs.write[i * element_count + 15] = 1.0;
 | |
| 
 | |
| 		_calc_accessor_min_max(i, element_count, type_max, attribs, type_min);
 | |
| 	}
 | |
| 	ERR_FAIL_COND_V(attribs.size() % element_count != 0, -1);
 | |
| 
 | |
| 	Ref<GLTFAccessor> accessor;
 | |
| 	accessor.instantiate();
 | |
| 	GLTFBufferIndex buffer_view_i;
 | |
| 	int64_t size = state->buffers[0].size();
 | |
| 	const GLTFDocument::GLTFType type = GLTFDocument::TYPE_MAT4;
 | |
| 	const int component_type = GLTFDocument::COMPONENT_TYPE_FLOAT;
 | |
| 
 | |
| 	accessor->max = type_max;
 | |
| 	accessor->min = type_min;
 | |
| 	accessor->normalized = false;
 | |
| 	accessor->count = p_attribs.size();
 | |
| 	accessor->type = type;
 | |
| 	accessor->component_type = component_type;
 | |
| 	accessor->byte_offset = 0;
 | |
| 	Error err = _encode_buffer_view(state, attribs.ptr(), p_attribs.size(), type, component_type, accessor->normalized, size, p_for_vertex, buffer_view_i);
 | |
| 	if (err != OK) {
 | |
| 		return -1;
 | |
| 	}
 | |
| 	accessor->buffer_view = buffer_view_i;
 | |
| 	state->accessors.push_back(accessor);
 | |
| 	return state->accessors.size() - 1;
 | |
| }
 | |
| 
 | |
| Vector<Vector3> GLTFDocument::_decode_accessor_as_vec3(Ref<GLTFState> state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) {
 | |
| 	const Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex);
 | |
| 	Vector<Vector3> ret;
 | |
| 
 | |
| 	if (attribs.size() == 0) {
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	ERR_FAIL_COND_V(attribs.size() % 3 != 0, ret);
 | |
| 	const double *attribs_ptr = attribs.ptr();
 | |
| 	const int ret_size = attribs.size() / 3;
 | |
| 	ret.resize(ret_size);
 | |
| 	{
 | |
| 		for (int i = 0; i < ret_size; i++) {
 | |
| 			ret.write[i] = Vector3(attribs_ptr[i * 3 + 0], attribs_ptr[i * 3 + 1], attribs_ptr[i * 3 + 2]);
 | |
| 		}
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| Vector<Color> GLTFDocument::_decode_accessor_as_color(Ref<GLTFState> state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) {
 | |
| 	const Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex);
 | |
| 	Vector<Color> ret;
 | |
| 
 | |
| 	if (attribs.size() == 0) {
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	const int type = state->accessors[p_accessor]->type;
 | |
| 	ERR_FAIL_COND_V(!(type == TYPE_VEC3 || type == TYPE_VEC4), ret);
 | |
| 	int vec_len = 3;
 | |
| 	if (type == TYPE_VEC4) {
 | |
| 		vec_len = 4;
 | |
| 	}
 | |
| 
 | |
| 	ERR_FAIL_COND_V(attribs.size() % vec_len != 0, ret);
 | |
| 	const double *attribs_ptr = attribs.ptr();
 | |
| 	const int ret_size = attribs.size() / vec_len;
 | |
| 	ret.resize(ret_size);
 | |
| 	{
 | |
| 		for (int i = 0; i < ret_size; i++) {
 | |
| 			ret.write[i] = Color(attribs_ptr[i * vec_len + 0], attribs_ptr[i * vec_len + 1], attribs_ptr[i * vec_len + 2], vec_len == 4 ? attribs_ptr[i * 4 + 3] : 1.0);
 | |
| 		}
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| Vector<Quaternion> GLTFDocument::_decode_accessor_as_quaternion(Ref<GLTFState> state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) {
 | |
| 	const Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex);
 | |
| 	Vector<Quaternion> ret;
 | |
| 
 | |
| 	if (attribs.size() == 0) {
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	ERR_FAIL_COND_V(attribs.size() % 4 != 0, ret);
 | |
| 	const double *attribs_ptr = attribs.ptr();
 | |
| 	const int ret_size = attribs.size() / 4;
 | |
| 	ret.resize(ret_size);
 | |
| 	{
 | |
| 		for (int i = 0; i < ret_size; i++) {
 | |
| 			ret.write[i] = Quaternion(attribs_ptr[i * 4 + 0], attribs_ptr[i * 4 + 1], attribs_ptr[i * 4 + 2], attribs_ptr[i * 4 + 3]).normalized();
 | |
| 		}
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| Vector<Transform2D> GLTFDocument::_decode_accessor_as_xform2d(Ref<GLTFState> state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) {
 | |
| 	const Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex);
 | |
| 	Vector<Transform2D> ret;
 | |
| 
 | |
| 	if (attribs.size() == 0) {
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	ERR_FAIL_COND_V(attribs.size() % 4 != 0, ret);
 | |
| 	ret.resize(attribs.size() / 4);
 | |
| 	for (int i = 0; i < ret.size(); i++) {
 | |
| 		ret.write[i][0] = Vector2(attribs[i * 4 + 0], attribs[i * 4 + 1]);
 | |
| 		ret.write[i][1] = Vector2(attribs[i * 4 + 2], attribs[i * 4 + 3]);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| Vector<Basis> GLTFDocument::_decode_accessor_as_basis(Ref<GLTFState> state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) {
 | |
| 	const Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex);
 | |
| 	Vector<Basis> ret;
 | |
| 
 | |
| 	if (attribs.size() == 0) {
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	ERR_FAIL_COND_V(attribs.size() % 9 != 0, ret);
 | |
| 	ret.resize(attribs.size() / 9);
 | |
| 	for (int i = 0; i < ret.size(); i++) {
 | |
| 		ret.write[i].set_axis(0, Vector3(attribs[i * 9 + 0], attribs[i * 9 + 1], attribs[i * 9 + 2]));
 | |
| 		ret.write[i].set_axis(1, Vector3(attribs[i * 9 + 3], attribs[i * 9 + 4], attribs[i * 9 + 5]));
 | |
| 		ret.write[i].set_axis(2, Vector3(attribs[i * 9 + 6], attribs[i * 9 + 7], attribs[i * 9 + 8]));
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| Vector<Transform3D> GLTFDocument::_decode_accessor_as_xform(Ref<GLTFState> state, const GLTFAccessorIndex p_accessor, const bool p_for_vertex) {
 | |
| 	const Vector<double> attribs = _decode_accessor(state, p_accessor, p_for_vertex);
 | |
| 	Vector<Transform3D> ret;
 | |
| 
 | |
| 	if (attribs.size() == 0) {
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	ERR_FAIL_COND_V(attribs.size() % 16 != 0, ret);
 | |
| 	ret.resize(attribs.size() / 16);
 | |
| 	for (int i = 0; i < ret.size(); i++) {
 | |
| 		ret.write[i].basis.set_axis(0, Vector3(attribs[i * 16 + 0], attribs[i * 16 + 1], attribs[i * 16 + 2]));
 | |
| 		ret.write[i].basis.set_axis(1, Vector3(attribs[i * 16 + 4], attribs[i * 16 + 5], attribs[i * 16 + 6]));
 | |
| 		ret.write[i].basis.set_axis(2, Vector3(attribs[i * 16 + 8], attribs[i * 16 + 9], attribs[i * 16 + 10]));
 | |
| 		ret.write[i].set_origin(Vector3(attribs[i * 16 + 12], attribs[i * 16 + 13], attribs[i * 16 + 14]));
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| Error GLTFDocument::_serialize_meshes(Ref<GLTFState> state) {
 | |
| 	Array meshes;
 | |
| 	for (GLTFMeshIndex gltf_mesh_i = 0; gltf_mesh_i < state->meshes.size(); gltf_mesh_i++) {
 | |
| 		print_verbose("glTF: Serializing mesh: " + itos(gltf_mesh_i));
 | |
| 		Ref<EditorSceneImporterMesh> import_mesh = state->meshes.write[gltf_mesh_i]->get_mesh();
 | |
| 		if (import_mesh.is_null()) {
 | |
| 			continue;
 | |
| 		}
 | |
| 		Array primitives;
 | |
| 		Array targets;
 | |
| 		Dictionary gltf_mesh;
 | |
| 		Array target_names;
 | |
| 		Array weights;
 | |
| 		for (int surface_i = 0; surface_i < import_mesh->get_surface_count(); surface_i++) {
 | |
| 			Dictionary primitive;
 | |
| 			Mesh::PrimitiveType primitive_type = import_mesh->get_surface_primitive_type(surface_i);
 | |
| 			switch (primitive_type) {
 | |
| 				case Mesh::PRIMITIVE_POINTS: {
 | |
| 					primitive["mode"] = 0;
 | |
| 					break;
 | |
| 				}
 | |
| 				case Mesh::PRIMITIVE_LINES: {
 | |
| 					primitive["mode"] = 1;
 | |
| 					break;
 | |
| 				}
 | |
| 				// case Mesh::PRIMITIVE_LINE_LOOP: {
 | |
| 				// 	primitive["mode"] = 2;
 | |
| 				// 	break;
 | |
| 				// }
 | |
| 				case Mesh::PRIMITIVE_LINE_STRIP: {
 | |
| 					primitive["mode"] = 3;
 | |
| 					break;
 | |
| 				}
 | |
| 				case Mesh::PRIMITIVE_TRIANGLES: {
 | |
| 					primitive["mode"] = 4;
 | |
| 					break;
 | |
| 				}
 | |
| 				case Mesh::PRIMITIVE_TRIANGLE_STRIP: {
 | |
| 					primitive["mode"] = 5;
 | |
| 					break;
 | |
| 				}
 | |
| 				// case Mesh::PRIMITIVE_TRIANGLE_FAN: {
 | |
| 				// 	primitive["mode"] = 6;
 | |
| 				// 	break;
 | |
| 				// }
 | |
| 				default: {
 | |
| 					ERR_FAIL_V(FAILED);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			Array array = import_mesh->get_surface_arrays(surface_i);
 | |
| 			Dictionary attributes;
 | |
| 			{
 | |
| 				Vector<Vector3> a = array[Mesh::ARRAY_VERTEX];
 | |
| 				ERR_FAIL_COND_V(!a.size(), ERR_INVALID_DATA);
 | |
| 				attributes["POSITION"] = _encode_accessor_as_vec3(state, a, true);
 | |
| 			}
 | |
| 			{
 | |
| 				Vector<real_t> a = array[Mesh::ARRAY_TANGENT];
 | |
| 				if (a.size()) {
 | |
| 					const int ret_size = a.size() / 4;
 | |
| 					Vector<Color> attribs;
 | |
| 					attribs.resize(ret_size);
 | |
| 					for (int i = 0; i < ret_size; i++) {
 | |
| 						Color out;
 | |
| 						out.r = a[(i * 4) + 0];
 | |
| 						out.g = a[(i * 4) + 1];
 | |
| 						out.b = a[(i * 4) + 2];
 | |
| 						out.a = a[(i * 4) + 3];
 | |
| 						attribs.write[i] = out;
 | |
| 					}
 | |
| 					attributes["TANGENT"] = _encode_accessor_as_color(state, attribs, true);
 | |
| 				}
 | |
| 			}
 | |
| 			{
 | |
| 				Vector<Vector3> a = array[Mesh::ARRAY_NORMAL];
 | |
| 				if (a.size()) {
 | |
| 					const int ret_size = a.size();
 | |
| 					Vector<Vector3> attribs;
 | |
| 					attribs.resize(ret_size);
 | |
| 					for (int i = 0; i < ret_size; i++) {
 | |
| 						attribs.write[i] = Vector3(a[i]).normalized();
 | |
| 					}
 | |
| 					attributes["NORMAL"] = _encode_accessor_as_vec3(state, attribs, true);
 | |
| 				}
 | |
| 			}
 | |
| 			{
 | |
| 				Vector<Vector2> a = array[Mesh::ARRAY_TEX_UV];
 | |
| 				if (a.size()) {
 | |
| 					attributes["TEXCOORD_0"] = _encode_accessor_as_vec2(state, a, true);
 | |
| 				}
 | |
| 			}
 | |
| 			{
 | |
| 				Vector<Vector2> a = array[Mesh::ARRAY_TEX_UV2];
 | |
| 				if (a.size()) {
 | |
| 					attributes["TEXCOORD_1"] = _encode_accessor_as_vec2(state, a, true);
 | |
| 				}
 | |
| 			}
 | |
| 			{
 | |
| 				Vector<Color> a = array[Mesh::ARRAY_COLOR];
 | |
| 				if (a.size()) {
 | |
| 					attributes["COLOR_0"] = _encode_accessor_as_color(state, a, true);
 | |
| 				}
 | |
| 			}
 | |
| 			Map<int, int> joint_i_to_bone_i;
 | |
| 			for (GLTFNodeIndex node_i = 0; node_i < state->nodes.size(); node_i++) {
 | |
| 				GLTFSkinIndex skin_i = -1;
 | |
| 				if (state->nodes[node_i]->mesh == gltf_mesh_i) {
 | |
| 					skin_i = state->nodes[node_i]->skin;
 | |
| 				}
 | |
| 				if (skin_i != -1) {
 | |
| 					joint_i_to_bone_i = state->skins[skin_i]->joint_i_to_bone_i;
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 			{
 | |
| 				const Array &a = array[Mesh::ARRAY_BONES];
 | |
| 				const Vector<Vector3> &vertex_array = array[Mesh::ARRAY_VERTEX];
 | |
| 				if ((a.size() / JOINT_GROUP_SIZE) == vertex_array.size()) {
 | |
| 					const int ret_size = a.size() / JOINT_GROUP_SIZE;
 | |
| 					Vector<Color> attribs;
 | |
| 					attribs.resize(ret_size);
 | |
| 					{
 | |
| 						for (int array_i = 0; array_i < attribs.size(); array_i++) {
 | |
| 							int32_t joint_0 = a[(array_i * JOINT_GROUP_SIZE) + 0];
 | |
| 							int32_t joint_1 = a[(array_i * JOINT_GROUP_SIZE) + 1];
 | |
| 							int32_t joint_2 = a[(array_i * JOINT_GROUP_SIZE) + 2];
 | |
| 							int32_t joint_3 = a[(array_i * JOINT_GROUP_SIZE) + 3];
 | |
| 							attribs.write[array_i] = Color(joint_0, joint_1, joint_2, joint_3);
 | |
| 						}
 | |
| 					}
 | |
| 					attributes["JOINTS_0"] = _encode_accessor_as_joints(state, attribs, true);
 | |
| 				} else if ((a.size() / (JOINT_GROUP_SIZE * 2)) >= vertex_array.size()) {
 | |
| 					int32_t vertex_count = vertex_array.size();
 | |
| 					Vector<Color> joints_0;
 | |
| 					joints_0.resize(vertex_count);
 | |
| 					Vector<Color> joints_1;
 | |
| 					joints_1.resize(vertex_count);
 | |
| 					int32_t weights_8_count = JOINT_GROUP_SIZE * 2;
 | |
| 					for (int32_t vertex_i = 0; vertex_i < vertex_count; vertex_i++) {
 | |
| 						Color joint_0;
 | |
| 						joint_0.r = a[vertex_i * weights_8_count + 0];
 | |
| 						joint_0.g = a[vertex_i * weights_8_count + 1];
 | |
| 						joint_0.b = a[vertex_i * weights_8_count + 2];
 | |
| 						joint_0.a = a[vertex_i * weights_8_count + 3];
 | |
| 						joints_0.write[vertex_i] = joint_0;
 | |
| 						Color joint_1;
 | |
| 						joint_1.r = a[vertex_i * weights_8_count + 4];
 | |
| 						joint_1.g = a[vertex_i * weights_8_count + 5];
 | |
| 						joint_1.b = a[vertex_i * weights_8_count + 6];
 | |
| 						joint_1.a = a[vertex_i * weights_8_count + 7];
 | |
| 						joints_1.write[vertex_i] = joint_1;
 | |
| 					}
 | |
| 					attributes["JOINTS_0"] = _encode_accessor_as_joints(state, joints_0, true);
 | |
| 					attributes["JOINTS_1"] = _encode_accessor_as_joints(state, joints_1, true);
 | |
| 				}
 | |
| 			}
 | |
| 			{
 | |
| 				const Array &a = array[Mesh::ARRAY_WEIGHTS];
 | |
| 				const Vector<Vector3> &vertex_array = array[Mesh::ARRAY_VERTEX];
 | |
| 				if ((a.size() / JOINT_GROUP_SIZE) == vertex_array.size()) {
 | |
| 					const int ret_size = a.size() / JOINT_GROUP_SIZE;
 | |
| 					Vector<Color> attribs;
 | |
| 					attribs.resize(ret_size);
 | |
| 					for (int i = 0; i < ret_size; i++) {
 | |
| 						attribs.write[i] = Color(a[(i * JOINT_GROUP_SIZE) + 0], a[(i * JOINT_GROUP_SIZE) + 1], a[(i * JOINT_GROUP_SIZE) + 2], a[(i * JOINT_GROUP_SIZE) + 3]);
 | |
| 					}
 | |
| 					attributes["WEIGHTS_0"] = _encode_accessor_as_weights(state, attribs, true);
 | |
| 				} else if ((a.size() / (JOINT_GROUP_SIZE * 2)) >= vertex_array.size()) {
 | |
| 					int32_t vertex_count = vertex_array.size();
 | |
| 					Vector<Color> weights_0;
 | |
| 					weights_0.resize(vertex_count);
 | |
| 					Vector<Color> weights_1;
 | |
| 					weights_1.resize(vertex_count);
 | |
| 					int32_t weights_8_count = JOINT_GROUP_SIZE * 2;
 | |
| 					for (int32_t vertex_i = 0; vertex_i < vertex_count; vertex_i++) {
 | |
| 						Color weight_0;
 | |
| 						weight_0.r = a[vertex_i * weights_8_count + 0];
 | |
| 						weight_0.g = a[vertex_i * weights_8_count + 1];
 | |
| 						weight_0.b = a[vertex_i * weights_8_count + 2];
 | |
| 						weight_0.a = a[vertex_i * weights_8_count + 3];
 | |
| 						weights_0.write[vertex_i] = weight_0;
 | |
| 						Color weight_1;
 | |
| 						weight_1.r = a[vertex_i * weights_8_count + 4];
 | |
| 						weight_1.g = a[vertex_i * weights_8_count + 5];
 | |
| 						weight_1.b = a[vertex_i * weights_8_count + 6];
 | |
| 						weight_1.a = a[vertex_i * weights_8_count + 7];
 | |
| 						weights_1.write[vertex_i] = weight_1;
 | |
| 					}
 | |
| 					attributes["WEIGHTS_0"] = _encode_accessor_as_weights(state, weights_0, true);
 | |
| 					attributes["WEIGHTS_1"] = _encode_accessor_as_weights(state, weights_1, true);
 | |
| 				}
 | |
| 			}
 | |
| 			{
 | |
| 				Vector<int32_t> mesh_indices = array[Mesh::ARRAY_INDEX];
 | |
| 				if (mesh_indices.size()) {
 | |
| 					if (primitive_type == Mesh::PRIMITIVE_TRIANGLES) {
 | |
| 						//swap around indices, convert ccw to cw for front face
 | |
| 						const int is = mesh_indices.size();
 | |
| 						for (int k = 0; k < is; k += 3) {
 | |
| 							SWAP(mesh_indices.write[k + 0], mesh_indices.write[k + 2]);
 | |
| 						}
 | |
| 					}
 | |
| 					primitive["indices"] = _encode_accessor_as_ints(state, mesh_indices, true);
 | |
| 				} else {
 | |
| 					if (primitive_type == Mesh::PRIMITIVE_TRIANGLES) {
 | |
| 						//generate indices because they need to be swapped for CW/CCW
 | |
| 						const Vector<Vector3> &vertices = array[Mesh::ARRAY_VERTEX];
 | |
| 						Ref<SurfaceTool> st;
 | |
| 						st.instantiate();
 | |
| 						st->create_from_triangle_arrays(array);
 | |
| 						st->index();
 | |
| 						Vector<int32_t> generated_indices = st->commit_to_arrays()[Mesh::ARRAY_INDEX];
 | |
| 						const int vs = vertices.size();
 | |
| 						generated_indices.resize(vs);
 | |
| 						{
 | |
| 							for (int k = 0; k < vs; k += 3) {
 | |
| 								generated_indices.write[k] = k;
 | |
| 								generated_indices.write[k + 1] = k + 2;
 | |
| 								generated_indices.write[k + 2] = k + 1;
 | |
| 							}
 | |
| 						}
 | |
| 						primitive["indices"] = _encode_accessor_as_ints(state, generated_indices, true);
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			primitive["attributes"] = attributes;
 | |
| 
 | |
| 			//blend shapes
 | |
| 			print_verbose("glTF: Mesh has targets");
 | |
| 			if (import_mesh->get_blend_shape_count()) {
 | |
| 				ArrayMesh::BlendShapeMode shape_mode = import_mesh->get_blend_shape_mode();
 | |
| 				for (int morph_i = 0; morph_i < import_mesh->get_blend_shape_count(); morph_i++) {
 | |
| 					Array array_morph = import_mesh->get_surface_blend_shape_arrays(surface_i, morph_i);
 | |
| 					target_names.push_back(import_mesh->get_blend_shape_name(morph_i));
 | |
| 					Dictionary t;
 | |
| 					Vector<Vector3> varr = array_morph[Mesh::ARRAY_VERTEX];
 | |
| 					Array mesh_arrays = import_mesh->get_surface_arrays(surface_i);
 | |
| 					if (varr.size()) {
 | |
| 						Vector<Vector3> src_varr = array[Mesh::ARRAY_VERTEX];
 | |
| 						if (shape_mode == ArrayMesh::BlendShapeMode::BLEND_SHAPE_MODE_NORMALIZED) {
 | |
| 							const int max_idx = src_varr.size();
 | |
| 							for (int blend_i = 0; blend_i < max_idx; blend_i++) {
 | |
| 								varr.write[blend_i] = Vector3(varr[blend_i]) - src_varr[blend_i];
 | |
| 							}
 | |
| 						}
 | |
| 
 | |
| 						t["POSITION"] = _encode_accessor_as_vec3(state, varr, true);
 | |
| 					}
 | |
| 
 | |
| 					Vector<Vector3> narr = array_morph[Mesh::ARRAY_NORMAL];
 | |
| 					if (varr.size()) {
 | |
| 						t["NORMAL"] = _encode_accessor_as_vec3(state, narr, true);
 | |
| 					}
 | |
| 					Vector<real_t> tarr = array_morph[Mesh::ARRAY_TANGENT];
 | |
| 					if (tarr.size()) {
 | |
| 						const int ret_size = tarr.size() / 4;
 | |
| 						Vector<Color> attribs;
 | |
| 						attribs.resize(ret_size);
 | |
| 						for (int i = 0; i < ret_size; i++) {
 | |
| 							Color tangent;
 | |
| 							tangent.r = tarr[(i * 4) + 0];
 | |
| 							tangent.g = tarr[(i * 4) + 1];
 | |
| 							tangent.b = tarr[(i * 4) + 2];
 | |
| 							tangent.a = tarr[(i * 4) + 3];
 | |
| 						}
 | |
| 						t["TANGENT"] = _encode_accessor_as_color(state, attribs, true);
 | |
| 					}
 | |
| 					targets.push_back(t);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			Ref<BaseMaterial3D> mat = import_mesh->get_surface_material(surface_i);
 | |
| 			if (mat.is_valid()) {
 | |
| 				Map<Ref<BaseMaterial3D>, GLTFMaterialIndex>::Element *material_cache_i = state->material_cache.find(mat);
 | |
| 				if (material_cache_i && material_cache_i->get() != -1) {
 | |
| 					primitive["material"] = material_cache_i->get();
 | |
| 				} else {
 | |
| 					GLTFMaterialIndex mat_i = state->materials.size();
 | |
| 					state->materials.push_back(mat);
 | |
| 					primitive["material"] = mat_i;
 | |
| 					state->material_cache.insert(mat, mat_i);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if (targets.size()) {
 | |
| 				primitive["targets"] = targets;
 | |
| 			}
 | |
| 
 | |
| 			primitives.push_back(primitive);
 | |
| 		}
 | |
| 
 | |
| 		Dictionary e;
 | |
| 		e["targetNames"] = target_names;
 | |
| 
 | |
| 		for (int j = 0; j < target_names.size(); j++) {
 | |
| 			real_t weight = 0.0;
 | |
| 			if (j < state->meshes.write[gltf_mesh_i]->get_blend_weights().size()) {
 | |
| 				weight = state->meshes.write[gltf_mesh_i]->get_blend_weights()[j];
 | |
| 			}
 | |
| 			weights.push_back(weight);
 | |
| 		}
 | |
| 		if (weights.size()) {
 | |
| 			gltf_mesh["weights"] = weights;
 | |
| 		}
 | |
| 
 | |
| 		ERR_FAIL_COND_V(target_names.size() != weights.size(), FAILED);
 | |
| 
 | |
| 		gltf_mesh["extras"] = e;
 | |
| 
 | |
| 		gltf_mesh["primitives"] = primitives;
 | |
| 
 | |
| 		meshes.push_back(gltf_mesh);
 | |
| 	}
 | |
| 
 | |
| 	state->json["meshes"] = meshes;
 | |
| 	print_verbose("glTF: Total meshes: " + itos(meshes.size()));
 | |
| 
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| Error GLTFDocument::_parse_meshes(Ref<GLTFState> state) {
 | |
| 	if (!state->json.has("meshes")) {
 | |
| 		return OK;
 | |
| 	}
 | |
| 
 | |
| 	Array meshes = state->json["meshes"];
 | |
| 	for (GLTFMeshIndex i = 0; i < meshes.size(); i++) {
 | |
| 		print_verbose("glTF: Parsing mesh: " + itos(i));
 | |
| 		Dictionary d = meshes[i];
 | |
| 
 | |
| 		Ref<GLTFMesh> mesh;
 | |
| 		mesh.instantiate();
 | |
| 		bool has_vertex_color = false;
 | |
| 
 | |
| 		ERR_FAIL_COND_V(!d.has("primitives"), ERR_PARSE_ERROR);
 | |
| 
 | |
| 		Array primitives = d["primitives"];
 | |
| 		const Dictionary &extras = d.has("extras") ? (Dictionary)d["extras"] : Dictionary();
 | |
| 		Ref<EditorSceneImporterMesh> import_mesh;
 | |
| 		import_mesh.instantiate();
 | |
| 		String mesh_name = "mesh";
 | |
| 		if (d.has("name") && !String(d["name"]).is_empty()) {
 | |
| 			mesh_name = d["name"];
 | |
| 		}
 | |
| 		import_mesh->set_name(_gen_unique_name(state, vformat("%s_%s", state->scene_name, mesh_name)));
 | |
| 
 | |
| 		for (int j = 0; j < primitives.size(); j++) {
 | |
| 			Dictionary p = primitives[j];
 | |
| 
 | |
| 			Array array;
 | |
| 			array.resize(Mesh::ARRAY_MAX);
 | |
| 
 | |
| 			ERR_FAIL_COND_V(!p.has("attributes"), ERR_PARSE_ERROR);
 | |
| 
 | |
| 			Dictionary a = p["attributes"];
 | |
| 
 | |
| 			Mesh::PrimitiveType primitive = Mesh::PRIMITIVE_TRIANGLES;
 | |
| 			if (p.has("mode")) {
 | |
| 				const int mode = p["mode"];
 | |
| 				ERR_FAIL_INDEX_V(mode, 7, ERR_FILE_CORRUPT);
 | |
| 				static const Mesh::PrimitiveType primitives2[7] = {
 | |
| 					Mesh::PRIMITIVE_POINTS,
 | |
| 					Mesh::PRIMITIVE_LINES,
 | |
| 					Mesh::PRIMITIVE_LINES, //loop not supported, should ce converted
 | |
| 					Mesh::PRIMITIVE_LINES,
 | |
| 					Mesh::PRIMITIVE_TRIANGLES,
 | |
| 					Mesh::PRIMITIVE_TRIANGLE_STRIP,
 | |
| 					Mesh::PRIMITIVE_TRIANGLES, //fan not supported, should be converted
 | |
| #ifndef _MSC_VER
 | |
| #warning line loop and triangle fan are not supported and need to be converted to lines and triangles
 | |
| #endif
 | |
| 
 | |
| 				};
 | |
| 
 | |
| 				primitive = primitives2[mode];
 | |
| 			}
 | |
| 
 | |
| 			ERR_FAIL_COND_V(!a.has("POSITION"), ERR_PARSE_ERROR);
 | |
| 			if (a.has("POSITION")) {
 | |
| 				array[Mesh::ARRAY_VERTEX] = _decode_accessor_as_vec3(state, a["POSITION"], true);
 | |
| 			}
 | |
| 			if (a.has("NORMAL")) {
 | |
| 				array[Mesh::ARRAY_NORMAL] = _decode_accessor_as_vec3(state, a["NORMAL"], true);
 | |
| 			}
 | |
| 			if (a.has("TANGENT")) {
 | |
| 				array[Mesh::ARRAY_TANGENT] = _decode_accessor_as_floats(state, a["TANGENT"], true);
 | |
| 			}
 | |
| 			if (a.has("TEXCOORD_0")) {
 | |
| 				array[Mesh::ARRAY_TEX_UV] = _decode_accessor_as_vec2(state, a["TEXCOORD_0"], true);
 | |
| 			}
 | |
| 			if (a.has("TEXCOORD_1")) {
 | |
| 				array[Mesh::ARRAY_TEX_UV2] = _decode_accessor_as_vec2(state, a["TEXCOORD_1"], true);
 | |
| 			}
 | |
| 			if (a.has("COLOR_0")) {
 | |
| 				array[Mesh::ARRAY_COLOR] = _decode_accessor_as_color(state, a["COLOR_0"], true);
 | |
| 				has_vertex_color = true;
 | |
| 			}
 | |
| 			if (a.has("JOINTS_0") && !a.has("JOINTS_1")) {
 | |
| 				array[Mesh::ARRAY_BONES] = _decode_accessor_as_ints(state, a["JOINTS_0"], true);
 | |
| 			} else if (a.has("JOINTS_0") && a.has("JOINTS_1")) {
 | |
| 				PackedInt32Array joints_0 = _decode_accessor_as_ints(state, a["JOINTS_0"], true);
 | |
| 				PackedInt32Array joints_1 = _decode_accessor_as_ints(state, a["JOINTS_1"], true);
 | |
| 				ERR_FAIL_COND_V(joints_0.size() != joints_0.size(), ERR_INVALID_DATA);
 | |
| 				int32_t weight_8_count = JOINT_GROUP_SIZE * 2;
 | |
| 				int32_t vertex_count = joints_0.size() / JOINT_GROUP_SIZE;
 | |
| 				Vector<int> joints;
 | |
| 				joints.resize(vertex_count * weight_8_count);
 | |
| 				for (int32_t vertex_i = 0; vertex_i < vertex_count; vertex_i++) {
 | |
| 					joints.write[vertex_i * weight_8_count + 0] = joints_0[vertex_i * JOINT_GROUP_SIZE + 0];
 | |
| 					joints.write[vertex_i * weight_8_count + 1] = joints_0[vertex_i * JOINT_GROUP_SIZE + 1];
 | |
| 					joints.write[vertex_i * weight_8_count + 2] = joints_0[vertex_i * JOINT_GROUP_SIZE + 2];
 | |
| 					joints.write[vertex_i * weight_8_count + 3] = joints_0[vertex_i * JOINT_GROUP_SIZE + 3];
 | |
| 					joints.write[vertex_i * weight_8_count + 4] = joints_1[vertex_i * JOINT_GROUP_SIZE + 0];
 | |
| 					joints.write[vertex_i * weight_8_count + 5] = joints_1[vertex_i * JOINT_GROUP_SIZE + 1];
 | |
| 					joints.write[vertex_i * weight_8_count + 6] = joints_1[vertex_i * JOINT_GROUP_SIZE + 2];
 | |
| 					joints.write[vertex_i * weight_8_count + 7] = joints_1[vertex_i * JOINT_GROUP_SIZE + 3];
 | |
| 				}
 | |
| 				array[Mesh::ARRAY_BONES] = joints;
 | |
| 			}
 | |
| 			if (a.has("WEIGHTS_0") && !a.has("WEIGHTS_1")) {
 | |
| 				Vector<float> weights = _decode_accessor_as_floats(state, a["WEIGHTS_0"], true);
 | |
| 				{ //gltf does not seem to normalize the weights for some reason..
 | |
| 					int wc = weights.size();
 | |
| 					float *w = weights.ptrw();
 | |
| 
 | |
| 					for (int k = 0; k < wc; k += 4) {
 | |
| 						float total = 0.0;
 | |
| 						total += w[k + 0];
 | |
| 						total += w[k + 1];
 | |
| 						total += w[k + 2];
 | |
| 						total += w[k + 3];
 | |
| 						if (total > 0.0) {
 | |
| 							w[k + 0] /= total;
 | |
| 							w[k + 1] /= total;
 | |
| 							w[k + 2] /= total;
 | |
| 							w[k + 3] /= total;
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 				array[Mesh::ARRAY_WEIGHTS] = weights;
 | |
| 			} else if (a.has("WEIGHTS_0") && a.has("WEIGHTS_1")) {
 | |
| 				Vector<float> weights_0 = _decode_accessor_as_floats(state, a["WEIGHTS_0"], true);
 | |
| 				Vector<float> weights_1 = _decode_accessor_as_floats(state, a["WEIGHTS_1"], true);
 | |
| 				Vector<float> weights;
 | |
| 				ERR_FAIL_COND_V(weights_0.size() != weights_1.size(), ERR_INVALID_DATA);
 | |
| 				int32_t weight_8_count = JOINT_GROUP_SIZE * 2;
 | |
| 				int32_t vertex_count = weights_0.size() / JOINT_GROUP_SIZE;
 | |
| 				weights.resize(vertex_count * weight_8_count);
 | |
| 				for (int32_t vertex_i = 0; vertex_i < vertex_count; vertex_i++) {
 | |
| 					weights.write[vertex_i * weight_8_count + 0] = weights_0[vertex_i * JOINT_GROUP_SIZE + 0];
 | |
| 					weights.write[vertex_i * weight_8_count + 1] = weights_0[vertex_i * JOINT_GROUP_SIZE + 1];
 | |
| 					weights.write[vertex_i * weight_8_count + 2] = weights_0[vertex_i * JOINT_GROUP_SIZE + 2];
 | |
| 					weights.write[vertex_i * weight_8_count + 3] = weights_0[vertex_i * JOINT_GROUP_SIZE + 3];
 | |
| 					weights.write[vertex_i * weight_8_count + 4] = weights_1[vertex_i * JOINT_GROUP_SIZE + 0];
 | |
| 					weights.write[vertex_i * weight_8_count + 5] = weights_1[vertex_i * JOINT_GROUP_SIZE + 1];
 | |
| 					weights.write[vertex_i * weight_8_count + 6] = weights_1[vertex_i * JOINT_GROUP_SIZE + 2];
 | |
| 					weights.write[vertex_i * weight_8_count + 7] = weights_1[vertex_i * JOINT_GROUP_SIZE + 3];
 | |
| 				}
 | |
| 				{ //gltf does not seem to normalize the weights for some reason..
 | |
| 					int wc = weights.size();
 | |
| 					float *w = weights.ptrw();
 | |
| 
 | |
| 					for (int k = 0; k < wc; k += weight_8_count) {
 | |
| 						float total = 0.0;
 | |
| 						total += w[k + 0];
 | |
| 						total += w[k + 1];
 | |
| 						total += w[k + 2];
 | |
| 						total += w[k + 3];
 | |
| 						total += w[k + 4];
 | |
| 						total += w[k + 5];
 | |
| 						total += w[k + 6];
 | |
| 						total += w[k + 7];
 | |
| 						if (total > 0.0) {
 | |
| 							w[k + 0] /= total;
 | |
| 							w[k + 1] /= total;
 | |
| 							w[k + 2] /= total;
 | |
| 							w[k + 3] /= total;
 | |
| 							w[k + 4] /= total;
 | |
| 							w[k + 5] /= total;
 | |
| 							w[k + 6] /= total;
 | |
| 							w[k + 7] /= total;
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 				array[Mesh::ARRAY_WEIGHTS] = weights;
 | |
| 			}
 | |
| 
 | |
| 			if (p.has("indices")) {
 | |
| 				Vector<int> indices = _decode_accessor_as_ints(state, p["indices"], false);
 | |
| 
 | |
| 				if (primitive == Mesh::PRIMITIVE_TRIANGLES) {
 | |
| 					//swap around indices, convert ccw to cw for front face
 | |
| 
 | |
| 					const int is = indices.size();
 | |
| 					int *w = indices.ptrw();
 | |
| 					for (int k = 0; k < is; k += 3) {
 | |
| 						SWAP(w[k + 1], w[k + 2]);
 | |
| 					}
 | |
| 				}
 | |
| 				array[Mesh::ARRAY_INDEX] = indices;
 | |
| 
 | |
| 			} else if (primitive == Mesh::PRIMITIVE_TRIANGLES) {
 | |
| 				//generate indices because they need to be swapped for CW/CCW
 | |
| 				const Vector<Vector3> &vertices = array[Mesh::ARRAY_VERTEX];
 | |
| 				ERR_FAIL_COND_V(vertices.size() == 0, ERR_PARSE_ERROR);
 | |
| 				Vector<int> indices;
 | |
| 				const int vs = vertices.size();
 | |
| 				indices.resize(vs);
 | |
| 				{
 | |
| 					int *w = indices.ptrw();
 | |
| 					for (int k = 0; k < vs; k += 3) {
 | |
| 						w[k] = k;
 | |
| 						w[k + 1] = k + 2;
 | |
| 						w[k + 2] = k + 1;
 | |
| 					}
 | |
| 				}
 | |
| 				array[Mesh::ARRAY_INDEX] = indices;
 | |
| 			}
 | |
| 
 | |
| 			bool generate_tangents = (primitive == Mesh::PRIMITIVE_TRIANGLES && !a.has("TANGENT") && a.has("TEXCOORD_0") && a.has("NORMAL"));
 | |
| 
 | |
| 			if (generate_tangents) {
 | |
| 				//must generate mikktspace tangents.. ergh..
 | |
| 				Ref<SurfaceTool> st;
 | |
| 				st.instantiate();
 | |
| 				st->create_from_triangle_arrays(array);
 | |
| 				if (a.has("JOINTS_0") && a.has("JOINTS_1")) {
 | |
| 					st->set_skin_weight_count(SurfaceTool::SKIN_8_WEIGHTS);
 | |
| 				}
 | |
| 				st->generate_tangents();
 | |
| 				array = st->commit_to_arrays();
 | |
| 			}
 | |
| 
 | |
| 			Array morphs;
 | |
| 			//blend shapes
 | |
| 			if (p.has("targets")) {
 | |
| 				print_verbose("glTF: Mesh has targets");
 | |
| 				const Array &targets = p["targets"];
 | |
| 
 | |
| 				//ideally BLEND_SHAPE_MODE_RELATIVE since gltf2 stores in displacement
 | |
| 				//but it could require a larger refactor?
 | |
| 				import_mesh->set_blend_shape_mode(Mesh::BLEND_SHAPE_MODE_NORMALIZED);
 | |
| 
 | |
| 				if (j == 0) {
 | |
| 					const Array &target_names = extras.has("targetNames") ? (Array)extras["targetNames"] : Array();
 | |
| 					for (int k = 0; k < targets.size(); k++) {
 | |
| 						const String name = k < target_names.size() ? (String)target_names[k] : String("morph_") + itos(k);
 | |
| 						import_mesh->add_blend_shape(name);
 | |
| 					}
 | |
| 				}
 | |
| 
 | |
| 				for (int k = 0; k < targets.size(); k++) {
 | |
| 					const Dictionary &t = targets[k];
 | |
| 
 | |
| 					Array array_copy;
 | |
| 					array_copy.resize(Mesh::ARRAY_MAX);
 | |
| 
 | |
| 					for (int l = 0; l < Mesh::ARRAY_MAX; l++) {
 | |
| 						array_copy[l] = array[l];
 | |
| 					}
 | |
| 
 | |
| 					array_copy[Mesh::ARRAY_INDEX] = Variant();
 | |
| 
 | |
| 					if (t.has("POSITION")) {
 | |
| 						Vector<Vector3> varr = _decode_accessor_as_vec3(state, t["POSITION"], true);
 | |
| 						const Vector<Vector3> src_varr = array[Mesh::ARRAY_VERTEX];
 | |
| 						const int size = src_varr.size();
 | |
| 						ERR_FAIL_COND_V(size == 0, ERR_PARSE_ERROR);
 | |
| 						{
 | |
| 							const int max_idx = varr.size();
 | |
| 							varr.resize(size);
 | |
| 
 | |
| 							Vector3 *w_varr = varr.ptrw();
 | |
| 							const Vector3 *r_varr = varr.ptr();
 | |
| 							const Vector3 *r_src_varr = src_varr.ptr();
 | |
| 							for (int l = 0; l < size; l++) {
 | |
| 								if (l < max_idx) {
 | |
| 									w_varr[l] = r_varr[l] + r_src_varr[l];
 | |
| 								} else {
 | |
| 									w_varr[l] = r_src_varr[l];
 | |
| 								}
 | |
| 							}
 | |
| 						}
 | |
| 						array_copy[Mesh::ARRAY_VERTEX] = varr;
 | |
| 					}
 | |
| 					if (t.has("NORMAL")) {
 | |
| 						Vector<Vector3> narr = _decode_accessor_as_vec3(state, t["NORMAL"], true);
 | |
| 						const Vector<Vector3> src_narr = array[Mesh::ARRAY_NORMAL];
 | |
| 						int size = src_narr.size();
 | |
| 						ERR_FAIL_COND_V(size == 0, ERR_PARSE_ERROR);
 | |
| 						{
 | |
| 							int max_idx = narr.size();
 | |
| 							narr.resize(size);
 | |
| 
 | |
| 							Vector3 *w_narr = narr.ptrw();
 | |
| 							const Vector3 *r_narr = narr.ptr();
 | |
| 							const Vector3 *r_src_narr = src_narr.ptr();
 | |
| 							for (int l = 0; l < size; l++) {
 | |
| 								if (l < max_idx) {
 | |
| 									w_narr[l] = r_narr[l] + r_src_narr[l];
 | |
| 								} else {
 | |
| 									w_narr[l] = r_src_narr[l];
 | |
| 								}
 | |
| 							}
 | |
| 						}
 | |
| 						array_copy[Mesh::ARRAY_NORMAL] = narr;
 | |
| 					}
 | |
| 					if (t.has("TANGENT")) {
 | |
| 						const Vector<Vector3> tangents_v3 = _decode_accessor_as_vec3(state, t["TANGENT"], true);
 | |
| 						const Vector<float> src_tangents = array[Mesh::ARRAY_TANGENT];
 | |
| 						ERR_FAIL_COND_V(src_tangents.size() == 0, ERR_PARSE_ERROR);
 | |
| 
 | |
| 						Vector<float> tangents_v4;
 | |
| 
 | |
| 						{
 | |
| 							int max_idx = tangents_v3.size();
 | |
| 
 | |
| 							int size4 = src_tangents.size();
 | |
| 							tangents_v4.resize(size4);
 | |
| 							float *w4 = tangents_v4.ptrw();
 | |
| 
 | |
| 							const Vector3 *r3 = tangents_v3.ptr();
 | |
| 							const float *r4 = src_tangents.ptr();
 | |
| 
 | |
| 							for (int l = 0; l < size4 / 4; l++) {
 | |
| 								if (l < max_idx) {
 | |
| 									w4[l * 4 + 0] = r3[l].x + r4[l * 4 + 0];
 | |
| 									w4[l * 4 + 1] = r3[l].y + r4[l * 4 + 1];
 | |
| 									w4[l * 4 + 2] = r3[l].z + r4[l * 4 + 2];
 | |
| 								} else {
 | |
| 									w4[l * 4 + 0] = r4[l * 4 + 0];
 | |
| 									w4[l * 4 + 1] = r4[l * 4 + 1];
 | |
| 									w4[l * 4 + 2] = r4[l * 4 + 2];
 | |
| 								}
 | |
| 								w4[l * 4 + 3] = r4[l * 4 + 3]; //copy flip value
 | |
| 							}
 | |
| 						}
 | |
| 
 | |
| 						array_copy[Mesh::ARRAY_TANGENT] = tangents_v4;
 | |
| 					}
 | |
| 
 | |
| 					if (generate_tangents) {
 | |
| 						Ref<SurfaceTool> st;
 | |
| 						st.instantiate();
 | |
| 						st->create_from_triangle_arrays(array_copy);
 | |
| 						if (a.has("JOINTS_0") && a.has("JOINTS_1")) {
 | |
| 							st->set_skin_weight_count(SurfaceTool::SKIN_8_WEIGHTS);
 | |
| 						}
 | |
| 						st->deindex();
 | |
| 						st->generate_tangents();
 | |
| 						array_copy = st->commit_to_arrays();
 | |
| 					}
 | |
| 
 | |
| 					morphs.push_back(array_copy);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			//just add it
 | |
| 
 | |
| 			Ref<BaseMaterial3D> mat;
 | |
| 			if (p.has("material")) {
 | |
| 				const int material = p["material"];
 | |
| 				ERR_FAIL_INDEX_V(material, state->materials.size(), ERR_FILE_CORRUPT);
 | |
| 				Ref<BaseMaterial3D> mat3d = state->materials[material];
 | |
| 				if (has_vertex_color) {
 | |
| 					mat3d->set_flag(BaseMaterial3D::FLAG_ALBEDO_FROM_VERTEX_COLOR, true);
 | |
| 				}
 | |
| 				mat = mat3d;
 | |
| 
 | |
| 			} else if (has_vertex_color) {
 | |
| 				Ref<StandardMaterial3D> mat3d;
 | |
| 				mat3d.instantiate();
 | |
| 				mat3d->set_flag(BaseMaterial3D::FLAG_ALBEDO_FROM_VERTEX_COLOR, true);
 | |
| 				mat = mat3d;
 | |
| 			}
 | |
| 
 | |
| 			import_mesh->add_surface(primitive, array, morphs, Dictionary(), mat, mat.is_valid() ? mat->get_name() : String());
 | |
| 		}
 | |
| 
 | |
| 		Vector<float> blend_weights;
 | |
| 		blend_weights.resize(import_mesh->get_blend_shape_count());
 | |
| 		for (int32_t weight_i = 0; weight_i < blend_weights.size(); weight_i++) {
 | |
| 			blend_weights.write[weight_i] = 0.0f;
 | |
| 		}
 | |
| 
 | |
| 		if (d.has("weights")) {
 | |
| 			const Array &weights = d["weights"];
 | |
| 			for (int j = 0; j < weights.size(); j++) {
 | |
| 				if (j >= blend_weights.size()) {
 | |
| 					break;
 | |
| 				}
 | |
| 				blend_weights.write[j] = weights[j];
 | |
| 			}
 | |
| 		}
 | |
| 		mesh->set_blend_weights(blend_weights);
 | |
| 		mesh->set_mesh(import_mesh);
 | |
| 
 | |
| 		state->meshes.push_back(mesh);
 | |
| 	}
 | |
| 
 | |
| 	print_verbose("glTF: Total meshes: " + itos(state->meshes.size()));
 | |
| 
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| Error GLTFDocument::_serialize_images(Ref<GLTFState> state, const String &p_path) {
 | |
| 	Array images;
 | |
| 	for (int i = 0; i < state->images.size(); i++) {
 | |
| 		Dictionary d;
 | |
| 
 | |
| 		ERR_CONTINUE(state->images[i].is_null());
 | |
| 
 | |
| 		Ref<Image> image = state->images[i]->get_image();
 | |
| 		ERR_CONTINUE(image.is_null());
 | |
| 
 | |
| 		if (p_path.to_lower().ends_with("glb")) {
 | |
| 			GLTFBufferViewIndex bvi;
 | |
| 
 | |
| 			Ref<GLTFBufferView> bv;
 | |
| 			bv.instantiate();
 | |
| 
 | |
| 			const GLTFBufferIndex bi = 0;
 | |
| 			bv->buffer = bi;
 | |
| 			bv->byte_offset = state->buffers[bi].size();
 | |
| 			ERR_FAIL_INDEX_V(bi, state->buffers.size(), ERR_PARAMETER_RANGE_ERROR);
 | |
| 
 | |
| 			Vector<uint8_t> buffer;
 | |
| 			Ref<ImageTexture> img_tex = image;
 | |
| 			if (img_tex.is_valid()) {
 | |
| 				image = img_tex->get_image();
 | |
| 			}
 | |
| 			Error err = PNGDriverCommon::image_to_png(image, buffer);
 | |
| 			ERR_FAIL_COND_V_MSG(err, err, "Can't convert image to PNG.");
 | |
| 
 | |
| 			bv->byte_length = buffer.size();
 | |
| 			state->buffers.write[bi].resize(state->buffers[bi].size() + bv->byte_length);
 | |
| 			memcpy(&state->buffers.write[bi].write[bv->byte_offset], buffer.ptr(), buffer.size());
 | |
| 			ERR_FAIL_COND_V(bv->byte_offset + bv->byte_length > state->buffers[bi].size(), ERR_FILE_CORRUPT);
 | |
| 
 | |
| 			state->buffer_views.push_back(bv);
 | |
| 			bvi = state->buffer_views.size() - 1;
 | |
| 			d["bufferView"] = bvi;
 | |
| 			d["mimeType"] = "image/png";
 | |
| 		} else {
 | |
| 			String name = state->images[i]->get_name();
 | |
| 			if (name.is_empty()) {
 | |
| 				name = itos(i);
 | |
| 			}
 | |
| 			name = _gen_unique_name(state, name);
 | |
| 			name = name.pad_zeros(3) + ".png";
 | |
| 			String texture_dir = "textures";
 | |
| 			String new_texture_dir = p_path.get_base_dir() + "/" + texture_dir;
 | |
| 			DirAccessRef da = DirAccess::open(p_path.get_base_dir());
 | |
| 			if (!da->dir_exists(new_texture_dir)) {
 | |
| 				da->make_dir(new_texture_dir);
 | |
| 			}
 | |
| 			image->save_png(new_texture_dir.plus_file(name));
 | |
| 			d["uri"] = texture_dir.plus_file(name);
 | |
| 		}
 | |
| 		images.push_back(d);
 | |
| 	}
 | |
| 
 | |
| 	print_verbose("Total images: " + itos(state->images.size()));
 | |
| 
 | |
| 	if (!images.size()) {
 | |
| 		return OK;
 | |
| 	}
 | |
| 	state->json["images"] = images;
 | |
| 
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| Error GLTFDocument::_parse_images(Ref<GLTFState> state, const String &p_base_path) {
 | |
| 	if (!state->json.has("images")) {
 | |
| 		return OK;
 | |
| 	}
 | |
| 
 | |
| 	// Ref: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#images
 | |
| 
 | |
| 	const Array &images = state->json["images"];
 | |
| 	for (int i = 0; i < images.size(); i++) {
 | |
| 		const Dictionary &d = images[i];
 | |
| 
 | |
| 		// glTF 2.0 supports PNG and JPEG types, which can be specified as (from spec):
 | |
| 		// "- a URI to an external file in one of the supported images formats, or
 | |
| 		//  - a URI with embedded base64-encoded data, or
 | |
| 		//  - a reference to a bufferView; in that case mimeType must be defined."
 | |
| 		// Since mimeType is optional for external files and base64 data, we'll have to
 | |
| 		// fall back on letting Godot parse the data to figure out if it's PNG or JPEG.
 | |
| 
 | |
| 		// We'll assume that we use either URI or bufferView, so let's warn the user
 | |
| 		// if their image somehow uses both. And fail if it has neither.
 | |
| 		ERR_CONTINUE_MSG(!d.has("uri") && !d.has("bufferView"), "Invalid image definition in glTF file, it should specific an 'uri' or 'bufferView'.");
 | |
| 		if (d.has("uri") && d.has("bufferView")) {
 | |
| 			WARN_PRINT("Invalid image definition in glTF file using both 'uri' and 'bufferView'. 'bufferView' will take precedence.");
 | |
| 		}
 | |
| 
 | |
| 		String mimetype;
 | |
| 		if (d.has("mimeType")) { // Should be "image/png" or "image/jpeg".
 | |
| 			mimetype = d["mimeType"];
 | |
| 		}
 | |
| 
 | |
| 		Vector<uint8_t> data;
 | |
| 		const uint8_t *data_ptr = nullptr;
 | |
| 		int data_size = 0;
 | |
| 
 | |
| 		if (d.has("uri")) {
 | |
| 			// Handles the first two bullet points from the spec (embedded data, or external file).
 | |
| 			String uri = d["uri"];
 | |
| 
 | |
| 			if (uri.begins_with("data:")) { // Embedded data using base64.
 | |
| 				// Validate data MIME types and throw a warning if it's one we don't know/support.
 | |
| 				if (!uri.begins_with("data:application/octet-stream;base64") &&
 | |
| 						!uri.begins_with("data:application/gltf-buffer;base64") &&
 | |
| 						!uri.begins_with("data:image/png;base64") &&
 | |
| 						!uri.begins_with("data:image/jpeg;base64")) {
 | |
| 					WARN_PRINT(vformat("glTF: Image index '%d' uses an unsupported URI data type: %s. Skipping it.", i, uri));
 | |
| 					state->images.push_back(Ref<Texture2D>()); // Placeholder to keep count.
 | |
| 					continue;
 | |
| 				}
 | |
| 				data = _parse_base64_uri(uri);
 | |
| 				data_ptr = data.ptr();
 | |
| 				data_size = data.size();
 | |
| 				// mimeType is optional, but if we have it defined in the URI, let's use it.
 | |
| 				if (mimetype.is_empty()) {
 | |
| 					if (uri.begins_with("data:image/png;base64")) {
 | |
| 						mimetype = "image/png";
 | |
| 					} else if (uri.begins_with("data:image/jpeg;base64")) {
 | |
| 						mimetype = "image/jpeg";
 | |
| 					}
 | |
| 				}
 | |
| 			} else { // Relative path to an external image file.
 | |
| 				uri = p_base_path.plus_file(uri).replace("\\", "/"); // Fix for Windows.
 | |
| 				// ResourceLoader will rely on the file extension to use the relevant loader.
 | |
| 				// The spec says that if mimeType is defined, it should take precedence (e.g.
 | |
| 				// there could be a `.png` image which is actually JPEG), but there's no easy
 | |
| 				// API for that in Godot, so we'd have to load as a buffer (i.e. embedded in
 | |
| 				// the material), so we do this only as fallback.
 | |
| 				Ref<Texture2D> texture = ResourceLoader::load(uri);
 | |
| 				if (texture.is_valid()) {
 | |
| 					state->images.push_back(texture);
 | |
| 					continue;
 | |
| 				} else if (mimetype == "image/png" || mimetype == "image/jpeg") {
 | |
| 					// Fallback to loading as byte array.
 | |
| 					// This enables us to support the spec's requirement that we honor mimetype
 | |
| 					// regardless of file URI.
 | |
| 					data = FileAccess::get_file_as_array(uri);
 | |
| 					if (data.size() == 0) {
 | |
| 						WARN_PRINT(vformat("glTF: Image index '%d' couldn't be loaded as a buffer of MIME type '%s' from URI: %s. Skipping it.", i, mimetype, uri));
 | |
| 						state->images.push_back(Ref<Texture2D>()); // Placeholder to keep count.
 | |
| 						continue;
 | |
| 					}
 | |
| 					data_ptr = data.ptr();
 | |
| 					data_size = data.size();
 | |
| 				} else {
 | |
| 					WARN_PRINT(vformat("glTF: Image index '%d' couldn't be loaded from URI: %s. Skipping it.", i, uri));
 | |
| 					state->images.push_back(Ref<Texture2D>()); // Placeholder to keep count.
 | |
| 					continue;
 | |
| 				}
 | |
| 			}
 | |
| 		} else if (d.has("bufferView")) {
 | |
| 			// Handles the third bullet point from the spec (bufferView).
 | |
| 			ERR_FAIL_COND_V_MSG(mimetype.is_empty(), ERR_FILE_CORRUPT,
 | |
| 					vformat("glTF: Image index '%d' specifies 'bufferView' but no 'mimeType', which is invalid.", i));
 | |
| 
 | |
| 			const GLTFBufferViewIndex bvi = d["bufferView"];
 | |
| 
 | |
| 			ERR_FAIL_INDEX_V(bvi, state->buffer_views.size(), ERR_PARAMETER_RANGE_ERROR);
 | |
| 
 | |
| 			Ref<GLTFBufferView> bv = state->buffer_views[bvi];
 | |
| 
 | |
| 			const GLTFBufferIndex bi = bv->buffer;
 | |
| 			ERR_FAIL_INDEX_V(bi, state->buffers.size(), ERR_PARAMETER_RANGE_ERROR);
 | |
| 
 | |
| 			ERR_FAIL_COND_V(bv->byte_offset + bv->byte_length > state->buffers[bi].size(), ERR_FILE_CORRUPT);
 | |
| 
 | |
| 			data_ptr = &state->buffers[bi][bv->byte_offset];
 | |
| 			data_size = bv->byte_length;
 | |
| 		}
 | |
| 
 | |
| 		Ref<Image> img;
 | |
| 
 | |
| 		// First we honor the mime types if they were defined.
 | |
| 		if (mimetype == "image/png") { // Load buffer as PNG.
 | |
| 			ERR_FAIL_COND_V(Image::_png_mem_loader_func == nullptr, ERR_UNAVAILABLE);
 | |
| 			img = Image::_png_mem_loader_func(data_ptr, data_size);
 | |
| 		} else if (mimetype == "image/jpeg") { // Loader buffer as JPEG.
 | |
| 			ERR_FAIL_COND_V(Image::_jpg_mem_loader_func == nullptr, ERR_UNAVAILABLE);
 | |
| 			img = Image::_jpg_mem_loader_func(data_ptr, data_size);
 | |
| 		}
 | |
| 
 | |
| 		// If we didn't pass the above tests, we attempt loading as PNG and then
 | |
| 		// JPEG directly.
 | |
| 		// This covers URIs with base64-encoded data with application/* type but
 | |
| 		// no optional mimeType property, or bufferViews with a bogus mimeType
 | |
| 		// (e.g. `image/jpeg` but the data is actually PNG).
 | |
| 		// That's not *exactly* what the spec mandates but this lets us be
 | |
| 		// lenient with bogus glb files which do exist in production.
 | |
| 		if (img.is_null()) { // Try PNG first.
 | |
| 			ERR_FAIL_COND_V(Image::_png_mem_loader_func == nullptr, ERR_UNAVAILABLE);
 | |
| 			img = Image::_png_mem_loader_func(data_ptr, data_size);
 | |
| 		}
 | |
| 		if (img.is_null()) { // And then JPEG.
 | |
| 			ERR_FAIL_COND_V(Image::_jpg_mem_loader_func == nullptr, ERR_UNAVAILABLE);
 | |
| 			img = Image::_jpg_mem_loader_func(data_ptr, data_size);
 | |
| 		}
 | |
| 		// Now we've done our best, fix your scenes.
 | |
| 		if (img.is_null()) {
 | |
| 			ERR_PRINT(vformat("glTF: Couldn't load image index '%d' with its given mimetype: %s.", i, mimetype));
 | |
| 			state->images.push_back(Ref<Texture2D>());
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		Ref<ImageTexture> t;
 | |
| 		t.instantiate();
 | |
| 		t->create_from_image(img);
 | |
| 
 | |
| 		state->images.push_back(t);
 | |
| 	}
 | |
| 
 | |
| 	print_verbose("glTF: Total images: " + itos(state->images.size()));
 | |
| 
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| Error GLTFDocument::_serialize_textures(Ref<GLTFState> state) {
 | |
| 	if (!state->textures.size()) {
 | |
| 		return OK;
 | |
| 	}
 | |
| 
 | |
| 	Array textures;
 | |
| 	for (int32_t i = 0; i < state->textures.size(); i++) {
 | |
| 		Dictionary d;
 | |
| 		Ref<GLTFTexture> t = state->textures[i];
 | |
| 		ERR_CONTINUE(t->get_src_image() == -1);
 | |
| 		d["source"] = t->get_src_image();
 | |
| 		textures.push_back(d);
 | |
| 	}
 | |
| 	state->json["textures"] = textures;
 | |
| 
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| Error GLTFDocument::_parse_textures(Ref<GLTFState> state) {
 | |
| 	if (!state->json.has("textures")) {
 | |
| 		return OK;
 | |
| 	}
 | |
| 
 | |
| 	const Array &textures = state->json["textures"];
 | |
| 	for (GLTFTextureIndex i = 0; i < textures.size(); i++) {
 | |
| 		const Dictionary &d = textures[i];
 | |
| 
 | |
| 		ERR_FAIL_COND_V(!d.has("source"), ERR_PARSE_ERROR);
 | |
| 
 | |
| 		Ref<GLTFTexture> t;
 | |
| 		t.instantiate();
 | |
| 		t->set_src_image(d["source"]);
 | |
| 		state->textures.push_back(t);
 | |
| 	}
 | |
| 
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| GLTFTextureIndex GLTFDocument::_set_texture(Ref<GLTFState> state, Ref<Texture2D> p_texture) {
 | |
| 	ERR_FAIL_COND_V(p_texture.is_null(), -1);
 | |
| 	Ref<GLTFTexture> gltf_texture;
 | |
| 	gltf_texture.instantiate();
 | |
| 	ERR_FAIL_COND_V(p_texture->get_image().is_null(), -1);
 | |
| 	GLTFImageIndex gltf_src_image_i = state->images.size();
 | |
| 	state->images.push_back(p_texture);
 | |
| 	gltf_texture->set_src_image(gltf_src_image_i);
 | |
| 	GLTFTextureIndex gltf_texture_i = state->textures.size();
 | |
| 	state->textures.push_back(gltf_texture);
 | |
| 	return gltf_texture_i;
 | |
| }
 | |
| 
 | |
| Ref<Texture2D> GLTFDocument::_get_texture(Ref<GLTFState> state, const GLTFTextureIndex p_texture) {
 | |
| 	ERR_FAIL_INDEX_V(p_texture, state->textures.size(), Ref<Texture2D>());
 | |
| 	const GLTFImageIndex image = state->textures[p_texture]->get_src_image();
 | |
| 
 | |
| 	ERR_FAIL_INDEX_V(image, state->images.size(), Ref<Texture2D>());
 | |
| 
 | |
| 	return state->images[image];
 | |
| }
 | |
| 
 | |
| Error GLTFDocument::_serialize_materials(Ref<GLTFState> state) {
 | |
| 	Array materials;
 | |
| 	for (int32_t i = 0; i < state->materials.size(); i++) {
 | |
| 		Dictionary d;
 | |
| 
 | |
| 		Ref<BaseMaterial3D> material = state->materials[i];
 | |
| 		if (material.is_null()) {
 | |
| 			materials.push_back(d);
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (!material->get_name().is_empty()) {
 | |
| 			d["name"] = _gen_unique_name(state, material->get_name());
 | |
| 		}
 | |
| 		{
 | |
| 			Dictionary mr;
 | |
| 			{
 | |
| 				Array arr;
 | |
| 				const Color c = material->get_albedo().to_linear();
 | |
| 				arr.push_back(c.r);
 | |
| 				arr.push_back(c.g);
 | |
| 				arr.push_back(c.b);
 | |
| 				arr.push_back(c.a);
 | |
| 				mr["baseColorFactor"] = arr;
 | |
| 			}
 | |
| 			{
 | |
| 				Dictionary bct;
 | |
| 				Ref<Texture2D> albedo_texture = material->get_texture(BaseMaterial3D::TEXTURE_ALBEDO);
 | |
| 				GLTFTextureIndex gltf_texture_index = -1;
 | |
| 
 | |
| 				if (albedo_texture.is_valid() && albedo_texture->get_image().is_valid()) {
 | |
| 					albedo_texture->set_name(material->get_name() + "_albedo");
 | |
| 					gltf_texture_index = _set_texture(state, albedo_texture);
 | |
| 				}
 | |
| 				if (gltf_texture_index != -1) {
 | |
| 					bct["index"] = gltf_texture_index;
 | |
| 					bct["extensions"] = _serialize_texture_transform_uv1(material);
 | |
| 					mr["baseColorTexture"] = bct;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			mr["metallicFactor"] = material->get_metallic();
 | |
| 			mr["roughnessFactor"] = material->get_roughness();
 | |
| 			bool has_roughness = material->get_texture(BaseMaterial3D::TEXTURE_ROUGHNESS).is_valid() && material->get_texture(BaseMaterial3D::TEXTURE_ROUGHNESS)->get_image().is_valid();
 | |
| 			bool has_ao = material->get_feature(BaseMaterial3D::FEATURE_AMBIENT_OCCLUSION) && material->get_texture(BaseMaterial3D::TEXTURE_AMBIENT_OCCLUSION).is_valid();
 | |
| 			bool has_metalness = material->get_texture(BaseMaterial3D::TEXTURE_METALLIC).is_valid() && material->get_texture(BaseMaterial3D::TEXTURE_METALLIC)->get_image().is_valid();
 | |
| 			if (has_ao || has_roughness || has_metalness) {
 | |
| 				Dictionary mrt;
 | |
| 				Ref<Texture2D> roughness_texture = material->get_texture(BaseMaterial3D::TEXTURE_ROUGHNESS);
 | |
| 				BaseMaterial3D::TextureChannel roughness_channel = material->get_roughness_texture_channel();
 | |
| 				Ref<Texture2D> metallic_texture = material->get_texture(BaseMaterial3D::TEXTURE_METALLIC);
 | |
| 				BaseMaterial3D::TextureChannel metalness_channel = material->get_metallic_texture_channel();
 | |
| 				Ref<Texture2D> ao_texture = material->get_texture(BaseMaterial3D::TEXTURE_AMBIENT_OCCLUSION);
 | |
| 				BaseMaterial3D::TextureChannel ao_channel = material->get_ao_texture_channel();
 | |
| 				Ref<ImageTexture> orm_texture;
 | |
| 				orm_texture.instantiate();
 | |
| 				Ref<Image> orm_image;
 | |
| 				orm_image.instantiate();
 | |
| 				int32_t height = 0;
 | |
| 				int32_t width = 0;
 | |
| 				Ref<Image> ao_image;
 | |
| 				if (has_ao) {
 | |
| 					height = ao_texture->get_height();
 | |
| 					width = ao_texture->get_width();
 | |
| 					ao_image = ao_texture->get_image();
 | |
| 					Ref<ImageTexture> img_tex = ao_image;
 | |
| 					if (img_tex.is_valid()) {
 | |
| 						ao_image = img_tex->get_image();
 | |
| 					}
 | |
| 					if (ao_image->is_compressed()) {
 | |
| 						ao_image->decompress();
 | |
| 					}
 | |
| 				}
 | |
| 				Ref<Image> roughness_image;
 | |
| 				if (has_roughness) {
 | |
| 					height = roughness_texture->get_height();
 | |
| 					width = roughness_texture->get_width();
 | |
| 					roughness_image = roughness_texture->get_image();
 | |
| 					Ref<ImageTexture> img_tex = roughness_image;
 | |
| 					if (img_tex.is_valid()) {
 | |
| 						roughness_image = img_tex->get_image();
 | |
| 					}
 | |
| 					if (roughness_image->is_compressed()) {
 | |
| 						roughness_image->decompress();
 | |
| 					}
 | |
| 				}
 | |
| 				Ref<Image> metallness_image;
 | |
| 				if (has_metalness) {
 | |
| 					height = metallic_texture->get_height();
 | |
| 					width = metallic_texture->get_width();
 | |
| 					metallness_image = metallic_texture->get_image();
 | |
| 					Ref<ImageTexture> img_tex = metallness_image;
 | |
| 					if (img_tex.is_valid()) {
 | |
| 						metallness_image = img_tex->get_image();
 | |
| 					}
 | |
| 					if (metallness_image->is_compressed()) {
 | |
| 						metallness_image->decompress();
 | |
| 					}
 | |
| 				}
 | |
| 				Ref<Texture2D> albedo_texture = material->get_texture(BaseMaterial3D::TEXTURE_ALBEDO);
 | |
| 				if (albedo_texture.is_valid() && albedo_texture->get_image().is_valid()) {
 | |
| 					height = albedo_texture->get_height();
 | |
| 					width = albedo_texture->get_width();
 | |
| 				}
 | |
| 				orm_image->create(width, height, false, Image::FORMAT_RGBA8);
 | |
| 				if (ao_image.is_valid() && ao_image->get_size() != Vector2(width, height)) {
 | |
| 					ao_image->resize(width, height, Image::INTERPOLATE_LANCZOS);
 | |
| 				}
 | |
| 				if (roughness_image.is_valid() && roughness_image->get_size() != Vector2(width, height)) {
 | |
| 					roughness_image->resize(width, height, Image::INTERPOLATE_LANCZOS);
 | |
| 				}
 | |
| 				if (metallness_image.is_valid() && metallness_image->get_size() != Vector2(width, height)) {
 | |
| 					metallness_image->resize(width, height, Image::INTERPOLATE_LANCZOS);
 | |
| 				}
 | |
| 				for (int32_t h = 0; h < height; h++) {
 | |
| 					for (int32_t w = 0; w < width; w++) {
 | |
| 						Color c = Color(1.0f, 1.0f, 1.0f);
 | |
| 						if (has_ao) {
 | |
| 							if (BaseMaterial3D::TextureChannel::TEXTURE_CHANNEL_RED == ao_channel) {
 | |
| 								c.r = ao_image->get_pixel(w, h).r;
 | |
| 							} else if (BaseMaterial3D::TextureChannel::TEXTURE_CHANNEL_GREEN == ao_channel) {
 | |
| 								c.r = ao_image->get_pixel(w, h).g;
 | |
| 							} else if (BaseMaterial3D::TextureChannel::TEXTURE_CHANNEL_BLUE == ao_channel) {
 | |
| 								c.r = ao_image->get_pixel(w, h).b;
 | |
| 							} else if (BaseMaterial3D::TextureChannel::TEXTURE_CHANNEL_ALPHA == ao_channel) {
 | |
| 								c.r = ao_image->get_pixel(w, h).a;
 | |
| 							}
 | |
| 						}
 | |
| 						if (has_roughness) {
 | |
| 							if (BaseMaterial3D::TextureChannel::TEXTURE_CHANNEL_RED == roughness_channel) {
 | |
| 								c.g = roughness_image->get_pixel(w, h).r;
 | |
| 							} else if (BaseMaterial3D::TextureChannel::TEXTURE_CHANNEL_GREEN == roughness_channel) {
 | |
| 								c.g = roughness_image->get_pixel(w, h).g;
 | |
| 							} else if (BaseMaterial3D::TextureChannel::TEXTURE_CHANNEL_BLUE == roughness_channel) {
 | |
| 								c.g = roughness_image->get_pixel(w, h).b;
 | |
| 							} else if (BaseMaterial3D::TextureChannel::TEXTURE_CHANNEL_ALPHA == roughness_channel) {
 | |
| 								c.g = roughness_image->get_pixel(w, h).a;
 | |
| 							}
 | |
| 						}
 | |
| 						if (has_metalness) {
 | |
| 							if (BaseMaterial3D::TextureChannel::TEXTURE_CHANNEL_RED == metalness_channel) {
 | |
| 								c.b = metallness_image->get_pixel(w, h).r;
 | |
| 							} else if (BaseMaterial3D::TextureChannel::TEXTURE_CHANNEL_GREEN == metalness_channel) {
 | |
| 								c.b = metallness_image->get_pixel(w, h).g;
 | |
| 							} else if (BaseMaterial3D::TextureChannel::TEXTURE_CHANNEL_BLUE == metalness_channel) {
 | |
| 								c.b = metallness_image->get_pixel(w, h).b;
 | |
| 							} else if (BaseMaterial3D::TextureChannel::TEXTURE_CHANNEL_ALPHA == metalness_channel) {
 | |
| 								c.b = metallness_image->get_pixel(w, h).a;
 | |
| 							}
 | |
| 						}
 | |
| 						orm_image->set_pixel(w, h, c);
 | |
| 					}
 | |
| 				}
 | |
| 				orm_image->generate_mipmaps();
 | |
| 				orm_texture->create_from_image(orm_image);
 | |
| 				GLTFTextureIndex orm_texture_index = -1;
 | |
| 				if (has_ao || has_roughness || has_metalness) {
 | |
| 					orm_texture->set_name(material->get_name() + "_orm");
 | |
| 					orm_texture_index = _set_texture(state, orm_texture);
 | |
| 				}
 | |
| 				if (has_ao) {
 | |
| 					Dictionary ot;
 | |
| 					ot["index"] = orm_texture_index;
 | |
| 					d["occlusionTexture"] = ot;
 | |
| 				}
 | |
| 				if (has_roughness || has_metalness) {
 | |
| 					mrt["index"] = orm_texture_index;
 | |
| 					mrt["extensions"] = _serialize_texture_transform_uv1(material);
 | |
| 					mr["metallicRoughnessTexture"] = mrt;
 | |
| 				}
 | |
| 			}
 | |
| 			d["pbrMetallicRoughness"] = mr;
 | |
| 		}
 | |
| 
 | |
| 		if (material->get_feature(BaseMaterial3D::FEATURE_NORMAL_MAPPING)) {
 | |
| 			Dictionary nt;
 | |
| 			Ref<ImageTexture> tex;
 | |
| 			tex.instantiate();
 | |
| 			{
 | |
| 				Ref<Texture2D> normal_texture = material->get_texture(BaseMaterial3D::TEXTURE_NORMAL);
 | |
| 				// Code for uncompressing RG normal maps
 | |
| 				Ref<Image> img = normal_texture->get_image();
 | |
| 				Ref<ImageTexture> img_tex = img;
 | |
| 				if (img_tex.is_valid()) {
 | |
| 					img = img_tex->get_image();
 | |
| 				}
 | |
| 				img->decompress();
 | |
| 				img->convert(Image::FORMAT_RGBA8);
 | |
| 				img->convert_ra_rgba8_to_rg();
 | |
| 				for (int32_t y = 0; y < img->get_height(); y++) {
 | |
| 					for (int32_t x = 0; x < img->get_width(); x++) {
 | |
| 						Color c = img->get_pixel(x, y);
 | |
| 						Vector2 red_green = Vector2(c.r, c.g);
 | |
| 						red_green = red_green * Vector2(2.0f, 2.0f) - Vector2(1.0f, 1.0f);
 | |
| 						float blue = 1.0f - red_green.dot(red_green);
 | |
| 						blue = MAX(0.0f, blue);
 | |
| 						c.b = Math::sqrt(blue);
 | |
| 						img->set_pixel(x, y, c);
 | |
| 					}
 | |
| 				}
 | |
| 				tex->create_from_image(img);
 | |
| 			}
 | |
| 			Ref<Texture2D> normal_texture = material->get_texture(BaseMaterial3D::TEXTURE_NORMAL);
 | |
| 			GLTFTextureIndex gltf_texture_index = -1;
 | |
| 			if (tex.is_valid() && tex->get_image().is_valid()) {
 | |
| 				tex->set_name(material->get_name() + "_normal");
 | |
| 				gltf_texture_index = _set_texture(state, tex);
 | |
| 			}
 | |
| 			nt["scale"] = material->get_normal_scale();
 | |
| 			if (gltf_texture_index != -1) {
 | |
| 				nt["index"] = gltf_texture_index;
 | |
| 				d["normalTexture"] = nt;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (material->get_feature(BaseMaterial3D::FEATURE_EMISSION)) {
 | |
| 			const Color c = material->get_emission().to_srgb();
 | |
| 			Array arr;
 | |
| 			arr.push_back(c.r);
 | |
| 			arr.push_back(c.g);
 | |
| 			arr.push_back(c.b);
 | |
| 			d["emissiveFactor"] = arr;
 | |
| 		}
 | |
| 		if (material->get_feature(BaseMaterial3D::FEATURE_EMISSION)) {
 | |
| 			Dictionary et;
 | |
| 			Ref<Texture2D> emission_texture = material->get_texture(BaseMaterial3D::TEXTURE_EMISSION);
 | |
| 			GLTFTextureIndex gltf_texture_index = -1;
 | |
| 			if (emission_texture.is_valid() && emission_texture->get_image().is_valid()) {
 | |
| 				emission_texture->set_name(material->get_name() + "_emission");
 | |
| 				gltf_texture_index = _set_texture(state, emission_texture);
 | |
| 			}
 | |
| 
 | |
| 			if (gltf_texture_index != -1) {
 | |
| 				et["index"] = gltf_texture_index;
 | |
| 				d["emissiveTexture"] = et;
 | |
| 			}
 | |
| 		}
 | |
| 		const bool ds = material->get_cull_mode() == BaseMaterial3D::CULL_DISABLED;
 | |
| 		if (ds) {
 | |
| 			d["doubleSided"] = ds;
 | |
| 		}
 | |
| 		if (material->get_transparency() == BaseMaterial3D::TRANSPARENCY_ALPHA_SCISSOR) {
 | |
| 			d["alphaMode"] = "MASK";
 | |
| 			d["alphaCutoff"] = material->get_alpha_scissor_threshold();
 | |
| 		} else if (material->get_transparency() != BaseMaterial3D::TRANSPARENCY_DISABLED) {
 | |
| 			d["alphaMode"] = "BLEND";
 | |
| 		}
 | |
| 		materials.push_back(d);
 | |
| 	}
 | |
| 	state->json["materials"] = materials;
 | |
| 	print_verbose("Total materials: " + itos(state->materials.size()));
 | |
| 
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| Error GLTFDocument::_parse_materials(Ref<GLTFState> state) {
 | |
| 	if (!state->json.has("materials")) {
 | |
| 		return OK;
 | |
| 	}
 | |
| 
 | |
| 	const Array &materials = state->json["materials"];
 | |
| 	for (GLTFMaterialIndex i = 0; i < materials.size(); i++) {
 | |
| 		const Dictionary &d = materials[i];
 | |
| 
 | |
| 		Ref<StandardMaterial3D> material;
 | |
| 		material.instantiate();
 | |
| 		if (d.has("name") && !String(d["name"]).is_empty()) {
 | |
| 			material->set_name(d["name"]);
 | |
| 		} else {
 | |
| 			material->set_name(vformat("material_%s", itos(i)));
 | |
| 		}
 | |
| 		material->set_flag(BaseMaterial3D::FLAG_ALBEDO_FROM_VERTEX_COLOR, true);
 | |
| 		Dictionary pbr_spec_gloss_extensions;
 | |
| 		if (d.has("extensions")) {
 | |
| 			pbr_spec_gloss_extensions = d["extensions"];
 | |
| 		}
 | |
| 		if (pbr_spec_gloss_extensions.has("KHR_materials_pbrSpecularGlossiness")) {
 | |
| 			WARN_PRINT("Material uses a specular and glossiness workflow. Textures will be converted to roughness and metallic workflow, which may not be 100% accurate.");
 | |
| 			Dictionary sgm = pbr_spec_gloss_extensions["KHR_materials_pbrSpecularGlossiness"];
 | |
| 
 | |
| 			Ref<GLTFSpecGloss> spec_gloss;
 | |
| 			spec_gloss.instantiate();
 | |
| 			if (sgm.has("diffuseTexture")) {
 | |
| 				const Dictionary &diffuse_texture_dict = sgm["diffuseTexture"];
 | |
| 				if (diffuse_texture_dict.has("index")) {
 | |
| 					Ref<Texture2D> diffuse_texture = _get_texture(state, diffuse_texture_dict["index"]);
 | |
| 					if (diffuse_texture.is_valid()) {
 | |
| 						spec_gloss->diffuse_img = diffuse_texture->get_image();
 | |
| 						material->set_texture(BaseMaterial3D::TEXTURE_ALBEDO, diffuse_texture);
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 			if (sgm.has("diffuseFactor")) {
 | |
| 				const Array &arr = sgm["diffuseFactor"];
 | |
| 				ERR_FAIL_COND_V(arr.size() != 4, ERR_PARSE_ERROR);
 | |
| 				const Color c = Color(arr[0], arr[1], arr[2], arr[3]).to_srgb();
 | |
| 				spec_gloss->diffuse_factor = c;
 | |
| 				material->set_albedo(spec_gloss->diffuse_factor);
 | |
| 			}
 | |
| 
 | |
| 			if (sgm.has("specularFactor")) {
 | |
| 				const Array &arr = sgm["specularFactor"];
 | |
| 				ERR_FAIL_COND_V(arr.size() != 3, ERR_PARSE_ERROR);
 | |
| 				spec_gloss->specular_factor = Color(arr[0], arr[1], arr[2]);
 | |
| 			}
 | |
| 
 | |
| 			if (sgm.has("glossinessFactor")) {
 | |
| 				spec_gloss->gloss_factor = sgm["glossinessFactor"];
 | |
| 				material->set_roughness(1.0f - CLAMP(spec_gloss->gloss_factor, 0.0f, 1.0f));
 | |
| 			}
 | |
| 			if (sgm.has("specularGlossinessTexture")) {
 | |
| 				const Dictionary &spec_gloss_texture = sgm["specularGlossinessTexture"];
 | |
| 				if (spec_gloss_texture.has("index")) {
 | |
| 					const Ref<Texture2D> orig_texture = _get_texture(state, spec_gloss_texture["index"]);
 | |
| 					if (orig_texture.is_valid()) {
 | |
| 						spec_gloss->spec_gloss_img = orig_texture->get_image();
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 			spec_gloss_to_rough_metal(spec_gloss, material);
 | |
| 
 | |
| 		} else if (d.has("pbrMetallicRoughness")) {
 | |
| 			const Dictionary &mr = d["pbrMetallicRoughness"];
 | |
| 			if (mr.has("baseColorFactor")) {
 | |
| 				const Array &arr = mr["baseColorFactor"];
 | |
| 				ERR_FAIL_COND_V(arr.size() != 4, ERR_PARSE_ERROR);
 | |
| 				const Color c = Color(arr[0], arr[1], arr[2], arr[3]).to_srgb();
 | |
| 				material->set_albedo(c);
 | |
| 			}
 | |
| 
 | |
| 			if (mr.has("baseColorTexture")) {
 | |
| 				const Dictionary &bct = mr["baseColorTexture"];
 | |
| 				if (bct.has("index")) {
 | |
| 					material->set_texture(BaseMaterial3D::TEXTURE_ALBEDO, _get_texture(state, bct["index"]));
 | |
| 				}
 | |
| 				if (!mr.has("baseColorFactor")) {
 | |
| 					material->set_albedo(Color(1, 1, 1));
 | |
| 				}
 | |
| 				_set_texture_transform_uv1(bct, material);
 | |
| 			}
 | |
| 
 | |
| 			if (mr.has("metallicFactor")) {
 | |
| 				material->set_metallic(mr["metallicFactor"]);
 | |
| 			} else {
 | |
| 				material->set_metallic(1.0);
 | |
| 			}
 | |
| 
 | |
| 			if (mr.has("roughnessFactor")) {
 | |
| 				material->set_roughness(mr["roughnessFactor"]);
 | |
| 			} else {
 | |
| 				material->set_roughness(1.0);
 | |
| 			}
 | |
| 
 | |
| 			if (mr.has("metallicRoughnessTexture")) {
 | |
| 				const Dictionary &bct = mr["metallicRoughnessTexture"];
 | |
| 				if (bct.has("index")) {
 | |
| 					const Ref<Texture2D> t = _get_texture(state, bct["index"]);
 | |
| 					material->set_texture(BaseMaterial3D::TEXTURE_METALLIC, t);
 | |
| 					material->set_metallic_texture_channel(BaseMaterial3D::TEXTURE_CHANNEL_BLUE);
 | |
| 					material->set_texture(BaseMaterial3D::TEXTURE_ROUGHNESS, t);
 | |
| 					material->set_roughness_texture_channel(BaseMaterial3D::TEXTURE_CHANNEL_GREEN);
 | |
| 					if (!mr.has("metallicFactor")) {
 | |
| 						material->set_metallic(1);
 | |
| 					}
 | |
| 					if (!mr.has("roughnessFactor")) {
 | |
| 						material->set_roughness(1);
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (d.has("normalTexture")) {
 | |
| 			const Dictionary &bct = d["normalTexture"];
 | |
| 			if (bct.has("index")) {
 | |
| 				material->set_texture(BaseMaterial3D::TEXTURE_NORMAL, _get_texture(state, bct["index"]));
 | |
| 				material->set_feature(BaseMaterial3D::FEATURE_NORMAL_MAPPING, true);
 | |
| 			}
 | |
| 			if (bct.has("scale")) {
 | |
| 				material->set_normal_scale(bct["scale"]);
 | |
| 			}
 | |
| 		}
 | |
| 		if (d.has("occlusionTexture")) {
 | |
| 			const Dictionary &bct = d["occlusionTexture"];
 | |
| 			if (bct.has("index")) {
 | |
| 				material->set_texture(BaseMaterial3D::TEXTURE_AMBIENT_OCCLUSION, _get_texture(state, bct["index"]));
 | |
| 				material->set_ao_texture_channel(BaseMaterial3D::TEXTURE_CHANNEL_RED);
 | |
| 				material->set_feature(BaseMaterial3D::FEATURE_AMBIENT_OCCLUSION, true);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (d.has("emissiveFactor")) {
 | |
| 			const Array &arr = d["emissiveFactor"];
 | |
| 			ERR_FAIL_COND_V(arr.size() != 3, ERR_PARSE_ERROR);
 | |
| 			const Color c = Color(arr[0], arr[1], arr[2]).to_srgb();
 | |
| 			material->set_feature(BaseMaterial3D::FEATURE_EMISSION, true);
 | |
| 
 | |
| 			material->set_emission(c);
 | |
| 		}
 | |
| 
 | |
| 		if (d.has("emissiveTexture")) {
 | |
| 			const Dictionary &bct = d["emissiveTexture"];
 | |
| 			if (bct.has("index")) {
 | |
| 				material->set_texture(BaseMaterial3D::TEXTURE_EMISSION, _get_texture(state, bct["index"]));
 | |
| 				material->set_feature(BaseMaterial3D::FEATURE_EMISSION, true);
 | |
| 				material->set_emission(Color(0, 0, 0));
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (d.has("doubleSided")) {
 | |
| 			const bool ds = d["doubleSided"];
 | |
| 			if (ds) {
 | |
| 				material->set_cull_mode(BaseMaterial3D::CULL_DISABLED);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (d.has("alphaMode")) {
 | |
| 			const String &am = d["alphaMode"];
 | |
| 			if (am == "BLEND") {
 | |
| 				material->set_transparency(BaseMaterial3D::TRANSPARENCY_ALPHA_DEPTH_PRE_PASS);
 | |
| 			} else if (am == "MASK") {
 | |
| 				material->set_transparency(BaseMaterial3D::TRANSPARENCY_ALPHA_SCISSOR);
 | |
| 				if (d.has("alphaCutoff")) {
 | |
| 					material->set_alpha_scissor_threshold(d["alphaCutoff"]);
 | |
| 				} else {
 | |
| 					material->set_alpha_scissor_threshold(0.5f);
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		state->materials.push_back(material);
 | |
| 	}
 | |
| 
 | |
| 	print_verbose("Total materials: " + itos(state->materials.size()));
 | |
| 
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| void GLTFDocument::_set_texture_transform_uv1(const Dictionary &d, Ref<BaseMaterial3D> material) {
 | |
| 	if (d.has("extensions")) {
 | |
| 		const Dictionary &extensions = d["extensions"];
 | |
| 		if (extensions.has("KHR_texture_transform")) {
 | |
| 			const Dictionary &texture_transform = extensions["KHR_texture_transform"];
 | |
| 			const Array &offset_arr = texture_transform["offset"];
 | |
| 			if (offset_arr.size() == 2) {
 | |
| 				const Vector3 offset_vector3 = Vector3(offset_arr[0], offset_arr[1], 0.0f);
 | |
| 				material->set_uv1_offset(offset_vector3);
 | |
| 			}
 | |
| 
 | |
| 			const Array &scale_arr = texture_transform["scale"];
 | |
| 			if (scale_arr.size() == 2) {
 | |
| 				const Vector3 scale_vector3 = Vector3(scale_arr[0], scale_arr[1], 1.0f);
 | |
| 				material->set_uv1_scale(scale_vector3);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void GLTFDocument::spec_gloss_to_rough_metal(Ref<GLTFSpecGloss> r_spec_gloss, Ref<BaseMaterial3D> p_material) {
 | |
| 	if (r_spec_gloss->spec_gloss_img.is_null()) {
 | |
| 		return;
 | |
| 	}
 | |
| 	if (r_spec_gloss->diffuse_img.is_null()) {
 | |
| 		return;
 | |
| 	}
 | |
| 	Ref<Image> rm_img;
 | |
| 	rm_img.instantiate();
 | |
| 	bool has_roughness = false;
 | |
| 	bool has_metal = false;
 | |
| 	p_material->set_roughness(1.0f);
 | |
| 	p_material->set_metallic(1.0f);
 | |
| 	rm_img->create(r_spec_gloss->spec_gloss_img->get_width(), r_spec_gloss->spec_gloss_img->get_height(), false, Image::FORMAT_RGBA8);
 | |
| 	r_spec_gloss->spec_gloss_img->decompress();
 | |
| 	if (r_spec_gloss->diffuse_img.is_valid()) {
 | |
| 		r_spec_gloss->diffuse_img->decompress();
 | |
| 		r_spec_gloss->diffuse_img->resize(r_spec_gloss->spec_gloss_img->get_width(), r_spec_gloss->spec_gloss_img->get_height(), Image::INTERPOLATE_LANCZOS);
 | |
| 		r_spec_gloss->spec_gloss_img->resize(r_spec_gloss->diffuse_img->get_width(), r_spec_gloss->diffuse_img->get_height(), Image::INTERPOLATE_LANCZOS);
 | |
| 	}
 | |
| 	for (int32_t y = 0; y < r_spec_gloss->spec_gloss_img->get_height(); y++) {
 | |
| 		for (int32_t x = 0; x < r_spec_gloss->spec_gloss_img->get_width(); x++) {
 | |
| 			const Color specular_pixel = r_spec_gloss->spec_gloss_img->get_pixel(x, y).to_linear();
 | |
| 			Color specular = Color(specular_pixel.r, specular_pixel.g, specular_pixel.b);
 | |
| 			specular *= r_spec_gloss->specular_factor;
 | |
| 			Color diffuse = Color(1.0f, 1.0f, 1.0f);
 | |
| 			diffuse *= r_spec_gloss->diffuse_img->get_pixel(x, y).to_linear();
 | |
| 			float metallic = 0.0f;
 | |
| 			Color base_color;
 | |
| 			spec_gloss_to_metal_base_color(specular, diffuse, base_color, metallic);
 | |
| 			Color mr = Color(1.0f, 1.0f, 1.0f);
 | |
| 			mr.g = specular_pixel.a;
 | |
| 			mr.b = metallic;
 | |
| 			if (!Math::is_equal_approx(mr.g, 1.0f)) {
 | |
| 				has_roughness = true;
 | |
| 			}
 | |
| 			if (!Math::is_zero_approx(mr.b)) {
 | |
| 				has_metal = true;
 | |
| 			}
 | |
| 			mr.g *= r_spec_gloss->gloss_factor;
 | |
| 			mr.g = 1.0f - mr.g;
 | |
| 			rm_img->set_pixel(x, y, mr);
 | |
| 			if (r_spec_gloss->diffuse_img.is_valid()) {
 | |
| 				r_spec_gloss->diffuse_img->set_pixel(x, y, base_color.to_srgb());
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	rm_img->generate_mipmaps();
 | |
| 	r_spec_gloss->diffuse_img->generate_mipmaps();
 | |
| 	Ref<ImageTexture> diffuse_image_texture;
 | |
| 	diffuse_image_texture.instantiate();
 | |
| 	diffuse_image_texture->create_from_image(r_spec_gloss->diffuse_img);
 | |
| 	p_material->set_texture(BaseMaterial3D::TEXTURE_ALBEDO, diffuse_image_texture);
 | |
| 	Ref<ImageTexture> rm_image_texture;
 | |
| 	rm_image_texture.instantiate();
 | |
| 	rm_image_texture->create_from_image(rm_img);
 | |
| 	if (has_roughness) {
 | |
| 		p_material->set_texture(BaseMaterial3D::TEXTURE_ROUGHNESS, rm_image_texture);
 | |
| 		p_material->set_roughness_texture_channel(BaseMaterial3D::TEXTURE_CHANNEL_GREEN);
 | |
| 	}
 | |
| 
 | |
| 	if (has_metal) {
 | |
| 		p_material->set_texture(BaseMaterial3D::TEXTURE_METALLIC, rm_image_texture);
 | |
| 		p_material->set_metallic_texture_channel(BaseMaterial3D::TEXTURE_CHANNEL_BLUE);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void GLTFDocument::spec_gloss_to_metal_base_color(const Color &p_specular_factor, const Color &p_diffuse, Color &r_base_color, float &r_metallic) {
 | |
| 	const Color DIELECTRIC_SPECULAR = Color(0.04f, 0.04f, 0.04f);
 | |
| 	Color specular = Color(p_specular_factor.r, p_specular_factor.g, p_specular_factor.b);
 | |
| 	const float one_minus_specular_strength = 1.0f - get_max_component(specular);
 | |
| 	const float dielectric_specular_red = DIELECTRIC_SPECULAR.r;
 | |
| 	float brightness_diffuse = get_perceived_brightness(p_diffuse);
 | |
| 	const float brightness_specular = get_perceived_brightness(specular);
 | |
| 	r_metallic = solve_metallic(dielectric_specular_red, brightness_diffuse, brightness_specular, one_minus_specular_strength);
 | |
| 	const float one_minus_metallic = 1.0f - r_metallic;
 | |
| 	const Color base_color_from_diffuse = p_diffuse * (one_minus_specular_strength / (1.0f - dielectric_specular_red) / MAX(one_minus_metallic, CMP_EPSILON));
 | |
| 	const Color base_color_from_specular = (specular - (DIELECTRIC_SPECULAR * (one_minus_metallic))) * (1.0f / MAX(r_metallic, CMP_EPSILON));
 | |
| 	r_base_color.r = Math::lerp(base_color_from_diffuse.r, base_color_from_specular.r, r_metallic * r_metallic);
 | |
| 	r_base_color.g = Math::lerp(base_color_from_diffuse.g, base_color_from_specular.g, r_metallic * r_metallic);
 | |
| 	r_base_color.b = Math::lerp(base_color_from_diffuse.b, base_color_from_specular.b, r_metallic * r_metallic);
 | |
| 	r_base_color.a = p_diffuse.a;
 | |
| 	r_base_color.r = CLAMP(r_base_color.r, 0.0f, 1.0f);
 | |
| 	r_base_color.g = CLAMP(r_base_color.g, 0.0f, 1.0f);
 | |
| 	r_base_color.b = CLAMP(r_base_color.b, 0.0f, 1.0f);
 | |
| 	r_base_color.a = CLAMP(r_base_color.a, 0.0f, 1.0f);
 | |
| }
 | |
| 
 | |
| GLTFNodeIndex GLTFDocument::_find_highest_node(Ref<GLTFState> state, const Vector<GLTFNodeIndex> &subset) {
 | |
| 	int highest = -1;
 | |
| 	GLTFNodeIndex best_node = -1;
 | |
| 
 | |
| 	for (int i = 0; i < subset.size(); ++i) {
 | |
| 		const GLTFNodeIndex node_i = subset[i];
 | |
| 		const Ref<GLTFNode> node = state->nodes[node_i];
 | |
| 
 | |
| 		if (highest == -1 || node->height < highest) {
 | |
| 			highest = node->height;
 | |
| 			best_node = node_i;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return best_node;
 | |
| }
 | |
| 
 | |
| bool GLTFDocument::_capture_nodes_in_skin(Ref<GLTFState> state, Ref<GLTFSkin> skin, const GLTFNodeIndex node_index) {
 | |
| 	bool found_joint = false;
 | |
| 
 | |
| 	for (int i = 0; i < state->nodes[node_index]->children.size(); ++i) {
 | |
| 		found_joint |= _capture_nodes_in_skin(state, skin, state->nodes[node_index]->children[i]);
 | |
| 	}
 | |
| 
 | |
| 	if (found_joint) {
 | |
| 		// Mark it if we happen to find another skins joint...
 | |
| 		if (state->nodes[node_index]->joint && skin->joints.find(node_index) < 0) {
 | |
| 			skin->joints.push_back(node_index);
 | |
| 		} else if (skin->non_joints.find(node_index) < 0) {
 | |
| 			skin->non_joints.push_back(node_index);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (skin->joints.find(node_index) > 0) {
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| void GLTFDocument::_capture_nodes_for_multirooted_skin(Ref<GLTFState> state, Ref<GLTFSkin> skin) {
 | |
| 	DisjointSet<GLTFNodeIndex> disjoint_set;
 | |
| 
 | |
| 	for (int i = 0; i < skin->joints.size(); ++i) {
 | |
| 		const GLTFNodeIndex node_index = skin->joints[i];
 | |
| 		const GLTFNodeIndex parent = state->nodes[node_index]->parent;
 | |
| 		disjoint_set.insert(node_index);
 | |
| 
 | |
| 		if (skin->joints.find(parent) >= 0) {
 | |
| 			disjoint_set.create_union(parent, node_index);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	Vector<GLTFNodeIndex> roots;
 | |
| 	disjoint_set.get_representatives(roots);
 | |
| 
 | |
| 	if (roots.size() <= 1) {
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	int maxHeight = -1;
 | |
| 
 | |
| 	// Determine the max height rooted tree
 | |
| 	for (int i = 0; i < roots.size(); ++i) {
 | |
| 		const GLTFNodeIndex root = roots[i];
 | |
| 
 | |
| 		if (maxHeight == -1 || state->nodes[root]->height < maxHeight) {
 | |
| 			maxHeight = state->nodes[root]->height;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// Go up the tree till all of the multiple roots of the skin are at the same hierarchy level.
 | |
| 	// This sucks, but 99% of all game engines (not just Godot) would have this same issue.
 | |
| 	for (int i = 0; i < roots.size(); ++i) {
 | |
| 		GLTFNodeIndex current_node = roots[i];
 | |
| 		while (state->nodes[current_node]->height > maxHeight) {
 | |
| 			GLTFNodeIndex parent = state->nodes[current_node]->parent;
 | |
| 
 | |
| 			if (state->nodes[parent]->joint && skin->joints.find(parent) < 0) {
 | |
| 				skin->joints.push_back(parent);
 | |
| 			} else if (skin->non_joints.find(parent) < 0) {
 | |
| 				skin->non_joints.push_back(parent);
 | |
| 			}
 | |
| 
 | |
| 			current_node = parent;
 | |
| 		}
 | |
| 
 | |
| 		// replace the roots
 | |
| 		roots.write[i] = current_node;
 | |
| 	}
 | |
| 
 | |
| 	// Climb up the tree until they all have the same parent
 | |
| 	bool all_same;
 | |
| 
 | |
| 	do {
 | |
| 		all_same = true;
 | |
| 		const GLTFNodeIndex first_parent = state->nodes[roots[0]]->parent;
 | |
| 
 | |
| 		for (int i = 1; i < roots.size(); ++i) {
 | |
| 			all_same &= (first_parent == state->nodes[roots[i]]->parent);
 | |
| 		}
 | |
| 
 | |
| 		if (!all_same) {
 | |
| 			for (int i = 0; i < roots.size(); ++i) {
 | |
| 				const GLTFNodeIndex current_node = roots[i];
 | |
| 				const GLTFNodeIndex parent = state->nodes[current_node]->parent;
 | |
| 
 | |
| 				if (state->nodes[parent]->joint && skin->joints.find(parent) < 0) {
 | |
| 					skin->joints.push_back(parent);
 | |
| 				} else if (skin->non_joints.find(parent) < 0) {
 | |
| 					skin->non_joints.push_back(parent);
 | |
| 				}
 | |
| 
 | |
| 				roots.write[i] = parent;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 	} while (!all_same);
 | |
| }
 | |
| 
 | |
| Error GLTFDocument::_expand_skin(Ref<GLTFState> state, Ref<GLTFSkin> skin) {
 | |
| 	_capture_nodes_for_multirooted_skin(state, skin);
 | |
| 
 | |
| 	// Grab all nodes that lay in between skin joints/nodes
 | |
| 	DisjointSet<GLTFNodeIndex> disjoint_set;
 | |
| 
 | |
| 	Vector<GLTFNodeIndex> all_skin_nodes;
 | |
| 	all_skin_nodes.append_array(skin->joints);
 | |
| 	all_skin_nodes.append_array(skin->non_joints);
 | |
| 
 | |
| 	for (int i = 0; i < all_skin_nodes.size(); ++i) {
 | |
| 		const GLTFNodeIndex node_index = all_skin_nodes[i];
 | |
| 		const GLTFNodeIndex parent = state->nodes[node_index]->parent;
 | |
| 		disjoint_set.insert(node_index);
 | |
| 
 | |
| 		if (all_skin_nodes.find(parent) >= 0) {
 | |
| 			disjoint_set.create_union(parent, node_index);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	Vector<GLTFNodeIndex> out_owners;
 | |
| 	disjoint_set.get_representatives(out_owners);
 | |
| 
 | |
| 	Vector<GLTFNodeIndex> out_roots;
 | |
| 
 | |
| 	for (int i = 0; i < out_owners.size(); ++i) {
 | |
| 		Vector<GLTFNodeIndex> set;
 | |
| 		disjoint_set.get_members(set, out_owners[i]);
 | |
| 
 | |
| 		const GLTFNodeIndex root = _find_highest_node(state, set);
 | |
| 		ERR_FAIL_COND_V(root < 0, FAILED);
 | |
| 		out_roots.push_back(root);
 | |
| 	}
 | |
| 
 | |
| 	out_roots.sort();
 | |
| 
 | |
| 	for (int i = 0; i < out_roots.size(); ++i) {
 | |
| 		_capture_nodes_in_skin(state, skin, out_roots[i]);
 | |
| 	}
 | |
| 
 | |
| 	skin->roots = out_roots;
 | |
| 
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| Error GLTFDocument::_verify_skin(Ref<GLTFState> state, Ref<GLTFSkin> skin) {
 | |
| 	// This may seem duplicated from expand_skins, but this is really a sanity check! (so it kinda is)
 | |
| 	// In case additional interpolating logic is added to the skins, this will help ensure that you
 | |
| 	// do not cause it to self implode into a fiery blaze
 | |
| 
 | |
| 	// We are going to re-calculate the root nodes and compare them to the ones saved in the skin,
 | |
| 	// then ensure the multiple trees (if they exist) are on the same sublevel
 | |
| 
 | |
| 	// Grab all nodes that lay in between skin joints/nodes
 | |
| 	DisjointSet<GLTFNodeIndex> disjoint_set;
 | |
| 
 | |
| 	Vector<GLTFNodeIndex> all_skin_nodes;
 | |
| 	all_skin_nodes.append_array(skin->joints);
 | |
| 	all_skin_nodes.append_array(skin->non_joints);
 | |
| 
 | |
| 	for (int i = 0; i < all_skin_nodes.size(); ++i) {
 | |
| 		const GLTFNodeIndex node_index = all_skin_nodes[i];
 | |
| 		const GLTFNodeIndex parent = state->nodes[node_index]->parent;
 | |
| 		disjoint_set.insert(node_index);
 | |
| 
 | |
| 		if (all_skin_nodes.find(parent) >= 0) {
 | |
| 			disjoint_set.create_union(parent, node_index);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	Vector<GLTFNodeIndex> out_owners;
 | |
| 	disjoint_set.get_representatives(out_owners);
 | |
| 
 | |
| 	Vector<GLTFNodeIndex> out_roots;
 | |
| 
 | |
| 	for (int i = 0; i < out_owners.size(); ++i) {
 | |
| 		Vector<GLTFNodeIndex> set;
 | |
| 		disjoint_set.get_members(set, out_owners[i]);
 | |
| 
 | |
| 		const GLTFNodeIndex root = _find_highest_node(state, set);
 | |
| 		ERR_FAIL_COND_V(root < 0, FAILED);
 | |
| 		out_roots.push_back(root);
 | |
| 	}
 | |
| 
 | |
| 	out_roots.sort();
 | |
| 
 | |
| 	ERR_FAIL_COND_V(out_roots.size() == 0, FAILED);
 | |
| 
 | |
| 	// Make sure the roots are the exact same (they better be)
 | |
| 	ERR_FAIL_COND_V(out_roots.size() != skin->roots.size(), FAILED);
 | |
| 	for (int i = 0; i < out_roots.size(); ++i) {
 | |
| 		ERR_FAIL_COND_V(out_roots[i] != skin->roots[i], FAILED);
 | |
| 	}
 | |
| 
 | |
| 	// Single rooted skin? Perfectly ok!
 | |
| 	if (out_roots.size() == 1) {
 | |
| 		return OK;
 | |
| 	}
 | |
| 
 | |
| 	// Make sure all parents of a multi-rooted skin are the SAME
 | |
| 	const GLTFNodeIndex parent = state->nodes[out_roots[0]]->parent;
 | |
| 	for (int i = 1; i < out_roots.size(); ++i) {
 | |
| 		if (state->nodes[out_roots[i]]->parent != parent) {
 | |
| 			return FAILED;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| Error GLTFDocument::_parse_skins(Ref<GLTFState> state) {
 | |
| 	if (!state->json.has("skins")) {
 | |
| 		return OK;
 | |
| 	}
 | |
| 
 | |
| 	const Array &skins = state->json["skins"];
 | |
| 
 | |
| 	// Create the base skins, and mark nodes that are joints
 | |
| 	for (int i = 0; i < skins.size(); i++) {
 | |
| 		const Dictionary &d = skins[i];
 | |
| 
 | |
| 		Ref<GLTFSkin> skin;
 | |
| 		skin.instantiate();
 | |
| 
 | |
| 		ERR_FAIL_COND_V(!d.has("joints"), ERR_PARSE_ERROR);
 | |
| 
 | |
| 		const Array &joints = d["joints"];
 | |
| 
 | |
| 		if (d.has("inverseBindMatrices")) {
 | |
| 			skin->inverse_binds = _decode_accessor_as_xform(state, d["inverseBindMatrices"], false);
 | |
| 			ERR_FAIL_COND_V(skin->inverse_binds.size() != joints.size(), ERR_PARSE_ERROR);
 | |
| 		}
 | |
| 
 | |
| 		for (int j = 0; j < joints.size(); j++) {
 | |
| 			const GLTFNodeIndex node = joints[j];
 | |
| 			ERR_FAIL_INDEX_V(node, state->nodes.size(), ERR_PARSE_ERROR);
 | |
| 
 | |
| 			skin->joints.push_back(node);
 | |
| 			skin->joints_original.push_back(node);
 | |
| 
 | |
| 			state->nodes.write[node]->joint = true;
 | |
| 		}
 | |
| 
 | |
| 		if (d.has("name") && !String(d["name"]).is_empty()) {
 | |
| 			skin->set_name(d["name"]);
 | |
| 		} else {
 | |
| 			skin->set_name(vformat("skin_%s", itos(i)));
 | |
| 		}
 | |
| 
 | |
| 		if (d.has("skeleton")) {
 | |
| 			skin->skin_root = d["skeleton"];
 | |
| 		}
 | |
| 
 | |
| 		state->skins.push_back(skin);
 | |
| 	}
 | |
| 
 | |
| 	for (GLTFSkinIndex i = 0; i < state->skins.size(); ++i) {
 | |
| 		Ref<GLTFSkin> skin = state->skins.write[i];
 | |
| 
 | |
| 		// Expand the skin to capture all the extra non-joints that lie in between the actual joints,
 | |
| 		// and expand the hierarchy to ensure multi-rooted trees lie on the same height level
 | |
| 		ERR_FAIL_COND_V(_expand_skin(state, skin), ERR_PARSE_ERROR);
 | |
| 		ERR_FAIL_COND_V(_verify_skin(state, skin), ERR_PARSE_ERROR);
 | |
| 	}
 | |
| 
 | |
| 	print_verbose("glTF: Total skins: " + itos(state->skins.size()));
 | |
| 
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| Error GLTFDocument::_determine_skeletons(Ref<GLTFState> state) {
 | |
| 	// Using a disjoint set, we are going to potentially combine all skins that are actually branches
 | |
| 	// of a main skeleton, or treat skins defining the same set of nodes as ONE skeleton.
 | |
| 	// This is another unclear issue caused by the current glTF specification.
 | |
| 
 | |
| 	DisjointSet<GLTFNodeIndex> skeleton_sets;
 | |
| 
 | |
| 	for (GLTFSkinIndex skin_i = 0; skin_i < state->skins.size(); ++skin_i) {
 | |
| 		const Ref<GLTFSkin> skin = state->skins[skin_i];
 | |
| 
 | |
| 		Vector<GLTFNodeIndex> all_skin_nodes;
 | |
| 		all_skin_nodes.append_array(skin->joints);
 | |
| 		all_skin_nodes.append_array(skin->non_joints);
 | |
| 
 | |
| 		for (int i = 0; i < all_skin_nodes.size(); ++i) {
 | |
| 			const GLTFNodeIndex node_index = all_skin_nodes[i];
 | |
| 			const GLTFNodeIndex parent = state->nodes[node_index]->parent;
 | |
| 			skeleton_sets.insert(node_index);
 | |
| 
 | |
| 			if (all_skin_nodes.find(parent) >= 0) {
 | |
| 				skeleton_sets.create_union(parent, node_index);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// We are going to connect the separate skin subtrees in each skin together
 | |
| 		// so that the final roots are entire sets of valid skin trees
 | |
| 		for (int i = 1; i < skin->roots.size(); ++i) {
 | |
| 			skeleton_sets.create_union(skin->roots[0], skin->roots[i]);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	{ // attempt to joint all touching subsets (siblings/parent are part of another skin)
 | |
| 		Vector<GLTFNodeIndex> groups_representatives;
 | |
| 		skeleton_sets.get_representatives(groups_representatives);
 | |
| 
 | |
| 		Vector<GLTFNodeIndex> highest_group_members;
 | |
| 		Vector<Vector<GLTFNodeIndex>> groups;
 | |
| 		for (int i = 0; i < groups_representatives.size(); ++i) {
 | |
| 			Vector<GLTFNodeIndex> group;
 | |
| 			skeleton_sets.get_members(group, groups_representatives[i]);
 | |
| 			highest_group_members.push_back(_find_highest_node(state, group));
 | |
| 			groups.push_back(group);
 | |
| 		}
 | |
| 
 | |
| 		for (int i = 0; i < highest_group_members.size(); ++i) {
 | |
| 			const GLTFNodeIndex node_i = highest_group_members[i];
 | |
| 
 | |
| 			// Attach any siblings together (this needs to be done n^2/2 times)
 | |
| 			for (int j = i + 1; j < highest_group_members.size(); ++j) {
 | |
| 				const GLTFNodeIndex node_j = highest_group_members[j];
 | |
| 
 | |
| 				// Even if they are siblings under the root! :)
 | |
| 				if (state->nodes[node_i]->parent == state->nodes[node_j]->parent) {
 | |
| 					skeleton_sets.create_union(node_i, node_j);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			// Attach any parenting going on together (we need to do this n^2 times)
 | |
| 			const GLTFNodeIndex node_i_parent = state->nodes[node_i]->parent;
 | |
| 			if (node_i_parent >= 0) {
 | |
| 				for (int j = 0; j < groups.size() && i != j; ++j) {
 | |
| 					const Vector<GLTFNodeIndex> &group = groups[j];
 | |
| 
 | |
| 					if (group.find(node_i_parent) >= 0) {
 | |
| 						const GLTFNodeIndex node_j = highest_group_members[j];
 | |
| 						skeleton_sets.create_union(node_i, node_j);
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// At this point, the skeleton groups should be finalized
 | |
| 	Vector<GLTFNodeIndex> skeleton_owners;
 | |
| 	skeleton_sets.get_representatives(skeleton_owners);
 | |
| 
 | |
| 	// Mark all the skins actual skeletons, after we have merged them
 | |
| 	for (GLTFSkeletonIndex skel_i = 0; skel_i < skeleton_owners.size(); ++skel_i) {
 | |
| 		const GLTFNodeIndex skeleton_owner = skeleton_owners[skel_i];
 | |
| 		Ref<GLTFSkeleton> skeleton;
 | |
| 		skeleton.instantiate();
 | |
| 
 | |
| 		Vector<GLTFNodeIndex> skeleton_nodes;
 | |
| 		skeleton_sets.get_members(skeleton_nodes, skeleton_owner);
 | |
| 
 | |
| 		for (GLTFSkinIndex skin_i = 0; skin_i < state->skins.size(); ++skin_i) {
 | |
| 			Ref<GLTFSkin> skin = state->skins.write[skin_i];
 | |
| 
 | |
| 			// If any of the the skeletons nodes exist in a skin, that skin now maps to the skeleton
 | |
| 			for (int i = 0; i < skeleton_nodes.size(); ++i) {
 | |
| 				GLTFNodeIndex skel_node_i = skeleton_nodes[i];
 | |
| 				if (skin->joints.find(skel_node_i) >= 0 || skin->non_joints.find(skel_node_i) >= 0) {
 | |
| 					skin->skeleton = skel_i;
 | |
| 					continue;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		Vector<GLTFNodeIndex> non_joints;
 | |
| 		for (int i = 0; i < skeleton_nodes.size(); ++i) {
 | |
| 			const GLTFNodeIndex node_i = skeleton_nodes[i];
 | |
| 
 | |
| 			if (state->nodes[node_i]->joint) {
 | |
| 				skeleton->joints.push_back(node_i);
 | |
| 			} else {
 | |
| 				non_joints.push_back(node_i);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		state->skeletons.push_back(skeleton);
 | |
| 
 | |
| 		_reparent_non_joint_skeleton_subtrees(state, state->skeletons.write[skel_i], non_joints);
 | |
| 	}
 | |
| 
 | |
| 	for (GLTFSkeletonIndex skel_i = 0; skel_i < state->skeletons.size(); ++skel_i) {
 | |
| 		Ref<GLTFSkeleton> skeleton = state->skeletons.write[skel_i];
 | |
| 
 | |
| 		for (int i = 0; i < skeleton->joints.size(); ++i) {
 | |
| 			const GLTFNodeIndex node_i = skeleton->joints[i];
 | |
| 			Ref<GLTFNode> node = state->nodes[node_i];
 | |
| 
 | |
| 			ERR_FAIL_COND_V(!node->joint, ERR_PARSE_ERROR);
 | |
| 			ERR_FAIL_COND_V(node->skeleton >= 0, ERR_PARSE_ERROR);
 | |
| 			node->skeleton = skel_i;
 | |
| 		}
 | |
| 
 | |
| 		ERR_FAIL_COND_V(_determine_skeleton_roots(state, skel_i), ERR_PARSE_ERROR);
 | |
| 	}
 | |
| 
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| Error GLTFDocument::_reparent_non_joint_skeleton_subtrees(Ref<GLTFState> state, Ref<GLTFSkeleton> skeleton, const Vector<GLTFNodeIndex> &non_joints) {
 | |
| 	DisjointSet<GLTFNodeIndex> subtree_set;
 | |
| 
 | |
| 	// Populate the disjoint set with ONLY non joints that are in the skeleton hierarchy (non_joints vector)
 | |
| 	// This way we can find any joints that lie in between joints, as the current glTF specification
 | |
| 	// mentions nothing about non-joints being in between joints of the same skin. Hopefully one day we
 | |
| 	// can remove this code.
 | |
| 
 | |
| 	// skinD depicted here explains this issue:
 | |
| 	// https://github.com/KhronosGroup/glTF-Asset-Generator/blob/master/Output/Positive/Animation_Skin
 | |
| 
 | |
| 	for (int i = 0; i < non_joints.size(); ++i) {
 | |
| 		const GLTFNodeIndex node_i = non_joints[i];
 | |
| 
 | |
| 		subtree_set.insert(node_i);
 | |
| 
 | |
| 		const GLTFNodeIndex parent_i = state->nodes[node_i]->parent;
 | |
| 		if (parent_i >= 0 && non_joints.find(parent_i) >= 0 && !state->nodes[parent_i]->joint) {
 | |
| 			subtree_set.create_union(parent_i, node_i);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// Find all the non joint subtrees and re-parent them to a new "fake" joint
 | |
| 
 | |
| 	Vector<GLTFNodeIndex> non_joint_subtree_roots;
 | |
| 	subtree_set.get_representatives(non_joint_subtree_roots);
 | |
| 
 | |
| 	for (int root_i = 0; root_i < non_joint_subtree_roots.size(); ++root_i) {
 | |
| 		const GLTFNodeIndex subtree_root = non_joint_subtree_roots[root_i];
 | |
| 
 | |
| 		Vector<GLTFNodeIndex> subtree_nodes;
 | |
| 		subtree_set.get_members(subtree_nodes, subtree_root);
 | |
| 
 | |
| 		for (int subtree_i = 0; subtree_i < subtree_nodes.size(); ++subtree_i) {
 | |
| 			Ref<GLTFNode> node = state->nodes[subtree_nodes[subtree_i]];
 | |
| 			node->joint = true;
 | |
| 			// Add the joint to the skeletons joints
 | |
| 			skeleton->joints.push_back(subtree_nodes[subtree_i]);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| Error GLTFDocument::_determine_skeleton_roots(Ref<GLTFState> state, const GLTFSkeletonIndex skel_i) {
 | |
| 	DisjointSet<GLTFNodeIndex> disjoint_set;
 | |
| 
 | |
| 	for (GLTFNodeIndex i = 0; i < state->nodes.size(); ++i) {
 | |
| 		const Ref<GLTFNode> node = state->nodes[i];
 | |
| 
 | |
| 		if (node->skeleton != skel_i) {
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		disjoint_set.insert(i);
 | |
| 
 | |
| 		if (node->parent >= 0 && state->nodes[node->parent]->skeleton == skel_i) {
 | |
| 			disjoint_set.create_union(node->parent, i);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	Ref<GLTFSkeleton> skeleton = state->skeletons.write[skel_i];
 | |
| 
 | |
| 	Vector<GLTFNodeIndex> owners;
 | |
| 	disjoint_set.get_representatives(owners);
 | |
| 
 | |
| 	Vector<GLTFNodeIndex> roots;
 | |
| 
 | |
| 	for (int i = 0; i < owners.size(); ++i) {
 | |
| 		Vector<GLTFNodeIndex> set;
 | |
| 		disjoint_set.get_members(set, owners[i]);
 | |
| 		const GLTFNodeIndex root = _find_highest_node(state, set);
 | |
| 		ERR_FAIL_COND_V(root < 0, FAILED);
 | |
| 		roots.push_back(root);
 | |
| 	}
 | |
| 
 | |
| 	roots.sort();
 | |
| 
 | |
| 	skeleton->roots = roots;
 | |
| 
 | |
| 	if (roots.size() == 0) {
 | |
| 		return FAILED;
 | |
| 	} else if (roots.size() == 1) {
 | |
| 		return OK;
 | |
| 	}
 | |
| 
 | |
| 	// Check that the subtrees have the same parent root
 | |
| 	const GLTFNodeIndex parent = state->nodes[roots[0]]->parent;
 | |
| 	for (int i = 1; i < roots.size(); ++i) {
 | |
| 		if (state->nodes[roots[i]]->parent != parent) {
 | |
| 			return FAILED;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| Error GLTFDocument::_create_skeletons(Ref<GLTFState> state) {
 | |
| 	for (GLTFSkeletonIndex skel_i = 0; skel_i < state->skeletons.size(); ++skel_i) {
 | |
| 		Ref<GLTFSkeleton> gltf_skeleton = state->skeletons.write[skel_i];
 | |
| 
 | |
| 		Skeleton3D *skeleton = memnew(Skeleton3D);
 | |
| 		gltf_skeleton->godot_skeleton = skeleton;
 | |
| 
 | |
| 		// Make a unique name, no gltf node represents this skeleton
 | |
| 		skeleton->set_name(_gen_unique_name(state, "Skeleton3D"));
 | |
| 
 | |
| 		List<GLTFNodeIndex> bones;
 | |
| 
 | |
| 		for (int i = 0; i < gltf_skeleton->roots.size(); ++i) {
 | |
| 			bones.push_back(gltf_skeleton->roots[i]);
 | |
| 		}
 | |
| 
 | |
| 		// Make the skeleton creation deterministic by going through the roots in
 | |
| 		// a sorted order, and DEPTH FIRST
 | |
| 		bones.sort();
 | |
| 
 | |
| 		while (!bones.is_empty()) {
 | |
| 			const GLTFNodeIndex node_i = bones.front()->get();
 | |
| 			bones.pop_front();
 | |
| 
 | |
| 			Ref<GLTFNode> node = state->nodes[node_i];
 | |
| 			ERR_FAIL_COND_V(node->skeleton != skel_i, FAILED);
 | |
| 
 | |
| 			{ // Add all child nodes to the stack (deterministically)
 | |
| 				Vector<GLTFNodeIndex> child_nodes;
 | |
| 				for (int i = 0; i < node->children.size(); ++i) {
 | |
| 					const GLTFNodeIndex child_i = node->children[i];
 | |
| 					if (state->nodes[child_i]->skeleton == skel_i) {
 | |
| 						child_nodes.push_back(child_i);
 | |
| 					}
 | |
| 				}
 | |
| 
 | |
| 				// Depth first insertion
 | |
| 				child_nodes.sort();
 | |
| 				for (int i = child_nodes.size() - 1; i >= 0; --i) {
 | |
| 					bones.push_front(child_nodes[i]);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			const int bone_index = skeleton->get_bone_count();
 | |
| 
 | |
| 			if (node->get_name().is_empty()) {
 | |
| 				node->set_name("bone");
 | |
| 			}
 | |
| 
 | |
| 			node->set_name(_gen_unique_bone_name(state, skel_i, node->get_name()));
 | |
| 
 | |
| 			skeleton->add_bone(node->get_name());
 | |
| 			skeleton->set_bone_rest(bone_index, node->xform);
 | |
| 
 | |
| 			if (node->parent >= 0 && state->nodes[node->parent]->skeleton == skel_i) {
 | |
| 				const int bone_parent = skeleton->find_bone(state->nodes[node->parent]->get_name());
 | |
| 				ERR_FAIL_COND_V(bone_parent < 0, FAILED);
 | |
| 				skeleton->set_bone_parent(bone_index, skeleton->find_bone(state->nodes[node->parent]->get_name()));
 | |
| 			}
 | |
| 
 | |
| 			state->scene_nodes.insert(node_i, skeleton);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ERR_FAIL_COND_V(_map_skin_joints_indices_to_skeleton_bone_indices(state), ERR_PARSE_ERROR);
 | |
| 
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| Error GLTFDocument::_map_skin_joints_indices_to_skeleton_bone_indices(Ref<GLTFState> state) {
 | |
| 	for (GLTFSkinIndex skin_i = 0; skin_i < state->skins.size(); ++skin_i) {
 | |
| 		Ref<GLTFSkin> skin = state->skins.write[skin_i];
 | |
| 
 | |
| 		Ref<GLTFSkeleton> skeleton = state->skeletons[skin->skeleton];
 | |
| 
 | |
| 		for (int joint_index = 0; joint_index < skin->joints_original.size(); ++joint_index) {
 | |
| 			const GLTFNodeIndex node_i = skin->joints_original[joint_index];
 | |
| 			const Ref<GLTFNode> node = state->nodes[node_i];
 | |
| 
 | |
| 			const int bone_index = skeleton->godot_skeleton->find_bone(node->get_name());
 | |
| 			ERR_FAIL_COND_V(bone_index < 0, FAILED);
 | |
| 
 | |
| 			skin->joint_i_to_bone_i.insert(joint_index, bone_index);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| Error GLTFDocument::_serialize_skins(Ref<GLTFState> state) {
 | |
| 	_remove_duplicate_skins(state);
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| Error GLTFDocument::_create_skins(Ref<GLTFState> state) {
 | |
| 	for (GLTFSkinIndex skin_i = 0; skin_i < state->skins.size(); ++skin_i) {
 | |
| 		Ref<GLTFSkin> gltf_skin = state->skins.write[skin_i];
 | |
| 
 | |
| 		Ref<Skin> skin;
 | |
| 		skin.instantiate();
 | |
| 
 | |
| 		// Some skins don't have IBM's! What absolute monsters!
 | |
| 		const bool has_ibms = !gltf_skin->inverse_binds.is_empty();
 | |
| 
 | |
| 		for (int joint_i = 0; joint_i < gltf_skin->joints_original.size(); ++joint_i) {
 | |
| 			GLTFNodeIndex node = gltf_skin->joints_original[joint_i];
 | |
| 			String bone_name = state->nodes[node]->get_name();
 | |
| 
 | |
| 			Transform3D xform;
 | |
| 			if (has_ibms) {
 | |
| 				xform = gltf_skin->inverse_binds[joint_i];
 | |
| 			}
 | |
| 
 | |
| 			if (state->use_named_skin_binds) {
 | |
| 				skin->add_named_bind(bone_name, xform);
 | |
| 			} else {
 | |
| 				int32_t bone_i = gltf_skin->joint_i_to_bone_i[joint_i];
 | |
| 				skin->add_bind(bone_i, xform);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		gltf_skin->godot_skin = skin;
 | |
| 	}
 | |
| 
 | |
| 	// Purge the duplicates!
 | |
| 	_remove_duplicate_skins(state);
 | |
| 
 | |
| 	// Create unique names now, after removing duplicates
 | |
| 	for (GLTFSkinIndex skin_i = 0; skin_i < state->skins.size(); ++skin_i) {
 | |
| 		Ref<Skin> skin = state->skins.write[skin_i]->godot_skin;
 | |
| 		if (skin->get_name().is_empty()) {
 | |
| 			// Make a unique name, no gltf node represents this skin
 | |
| 			skin->set_name(_gen_unique_name(state, "Skin"));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| bool GLTFDocument::_skins_are_same(const Ref<Skin> skin_a, const Ref<Skin> skin_b) {
 | |
| 	if (skin_a->get_bind_count() != skin_b->get_bind_count()) {
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	for (int i = 0; i < skin_a->get_bind_count(); ++i) {
 | |
| 		if (skin_a->get_bind_bone(i) != skin_b->get_bind_bone(i)) {
 | |
| 			return false;
 | |
| 		}
 | |
| 		if (skin_a->get_bind_name(i) != skin_b->get_bind_name(i)) {
 | |
| 			return false;
 | |
| 		}
 | |
| 
 | |
| 		Transform3D a_xform = skin_a->get_bind_pose(i);
 | |
| 		Transform3D b_xform = skin_b->get_bind_pose(i);
 | |
| 
 | |
| 		if (a_xform != b_xform) {
 | |
| 			return false;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| void GLTFDocument::_remove_duplicate_skins(Ref<GLTFState> state) {
 | |
| 	for (int i = 0; i < state->skins.size(); ++i) {
 | |
| 		for (int j = i + 1; j < state->skins.size(); ++j) {
 | |
| 			const Ref<Skin> skin_i = state->skins[i]->godot_skin;
 | |
| 			const Ref<Skin> skin_j = state->skins[j]->godot_skin;
 | |
| 
 | |
| 			if (_skins_are_same(skin_i, skin_j)) {
 | |
| 				// replace it and delete the old
 | |
| 				state->skins.write[j]->godot_skin = skin_i;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| Error GLTFDocument::_serialize_lights(Ref<GLTFState> state) {
 | |
| 	Array lights;
 | |
| 	for (GLTFLightIndex i = 0; i < state->lights.size(); i++) {
 | |
| 		Dictionary d;
 | |
| 		Ref<GLTFLight> light = state->lights[i];
 | |
| 		Array color;
 | |
| 		color.resize(3);
 | |
| 		color[0] = light->color.r;
 | |
| 		color[1] = light->color.g;
 | |
| 		color[2] = light->color.b;
 | |
| 		d["color"] = color;
 | |
| 		d["type"] = light->type;
 | |
| 		if (light->type == "spot") {
 | |
| 			Dictionary s;
 | |
| 			float inner_cone_angle = light->inner_cone_angle;
 | |
| 			s["innerConeAngle"] = inner_cone_angle;
 | |
| 			float outer_cone_angle = light->outer_cone_angle;
 | |
| 			s["outerConeAngle"] = outer_cone_angle;
 | |
| 			d["spot"] = s;
 | |
| 		}
 | |
| 		float intensity = light->intensity;
 | |
| 		d["intensity"] = intensity;
 | |
| 		float range = light->range;
 | |
| 		d["range"] = range;
 | |
| 		lights.push_back(d);
 | |
| 	}
 | |
| 
 | |
| 	if (!state->lights.size()) {
 | |
| 		return OK;
 | |
| 	}
 | |
| 
 | |
| 	Dictionary extensions;
 | |
| 	if (state->json.has("extensions")) {
 | |
| 		extensions = state->json["extensions"];
 | |
| 	} else {
 | |
| 		state->json["extensions"] = extensions;
 | |
| 	}
 | |
| 	Dictionary lights_punctual;
 | |
| 	extensions["KHR_lights_punctual"] = lights_punctual;
 | |
| 	lights_punctual["lights"] = lights;
 | |
| 
 | |
| 	print_verbose("glTF: Total lights: " + itos(state->lights.size()));
 | |
| 
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| Error GLTFDocument::_serialize_cameras(Ref<GLTFState> state) {
 | |
| 	Array cameras;
 | |
| 	cameras.resize(state->cameras.size());
 | |
| 	for (GLTFCameraIndex i = 0; i < state->cameras.size(); i++) {
 | |
| 		Dictionary d;
 | |
| 
 | |
| 		Ref<GLTFCamera> camera = state->cameras[i];
 | |
| 
 | |
| 		if (camera->get_perspective() == false) {
 | |
| 			Dictionary og;
 | |
| 			og["ymag"] = Math::deg2rad(camera->get_fov_size());
 | |
| 			og["xmag"] = Math::deg2rad(camera->get_fov_size());
 | |
| 			og["zfar"] = camera->get_zfar();
 | |
| 			og["znear"] = camera->get_znear();
 | |
| 			d["orthographic"] = og;
 | |
| 			d["type"] = "orthographic";
 | |
| 		} else if (camera->get_perspective()) {
 | |
| 			Dictionary ppt;
 | |
| 			// GLTF spec is in radians, Godot's camera is in degrees.
 | |
| 			ppt["yfov"] = Math::deg2rad(camera->get_fov_size());
 | |
| 			ppt["zfar"] = camera->get_zfar();
 | |
| 			ppt["znear"] = camera->get_znear();
 | |
| 			d["perspective"] = ppt;
 | |
| 			d["type"] = "perspective";
 | |
| 		}
 | |
| 		cameras[i] = d;
 | |
| 	}
 | |
| 
 | |
| 	if (!state->cameras.size()) {
 | |
| 		return OK;
 | |
| 	}
 | |
| 
 | |
| 	state->json["cameras"] = cameras;
 | |
| 
 | |
| 	print_verbose("glTF: Total cameras: " + itos(state->cameras.size()));
 | |
| 
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| Error GLTFDocument::_parse_lights(Ref<GLTFState> state) {
 | |
| 	if (!state->json.has("extensions")) {
 | |
| 		return OK;
 | |
| 	}
 | |
| 	Dictionary extensions = state->json["extensions"];
 | |
| 	if (!extensions.has("KHR_lights_punctual")) {
 | |
| 		return OK;
 | |
| 	}
 | |
| 	Dictionary lights_punctual = extensions["KHR_lights_punctual"];
 | |
| 	if (!lights_punctual.has("lights")) {
 | |
| 		return OK;
 | |
| 	}
 | |
| 
 | |
| 	const Array &lights = lights_punctual["lights"];
 | |
| 
 | |
| 	for (GLTFLightIndex light_i = 0; light_i < lights.size(); light_i++) {
 | |
| 		const Dictionary &d = lights[light_i];
 | |
| 
 | |
| 		Ref<GLTFLight> light;
 | |
| 		light.instantiate();
 | |
| 		ERR_FAIL_COND_V(!d.has("type"), ERR_PARSE_ERROR);
 | |
| 		const String &type = d["type"];
 | |
| 		light->type = type;
 | |
| 
 | |
| 		if (d.has("color")) {
 | |
| 			const Array &arr = d["color"];
 | |
| 			ERR_FAIL_COND_V(arr.size() != 3, ERR_PARSE_ERROR);
 | |
| 			const Color c = Color(arr[0], arr[1], arr[2]).to_srgb();
 | |
| 			light->color = c;
 | |
| 		}
 | |
| 		if (d.has("intensity")) {
 | |
| 			light->intensity = d["intensity"];
 | |
| 		}
 | |
| 		if (d.has("range")) {
 | |
| 			light->range = d["range"];
 | |
| 		}
 | |
| 		if (type == "spot") {
 | |
| 			const Dictionary &spot = d["spot"];
 | |
| 			light->inner_cone_angle = spot["innerConeAngle"];
 | |
| 			light->outer_cone_angle = spot["outerConeAngle"];
 | |
| 			ERR_CONTINUE_MSG(light->inner_cone_angle >= light->outer_cone_angle, "The inner angle must be smaller than the outer angle.");
 | |
| 		} else if (type != "point" && type != "directional") {
 | |
| 			ERR_CONTINUE_MSG(ERR_PARSE_ERROR, "Light type is unknown.");
 | |
| 		}
 | |
| 
 | |
| 		state->lights.push_back(light);
 | |
| 	}
 | |
| 
 | |
| 	print_verbose("glTF: Total lights: " + itos(state->lights.size()));
 | |
| 
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| Error GLTFDocument::_parse_cameras(Ref<GLTFState> state) {
 | |
| 	if (!state->json.has("cameras")) {
 | |
| 		return OK;
 | |
| 	}
 | |
| 
 | |
| 	const Array cameras = state->json["cameras"];
 | |
| 
 | |
| 	for (GLTFCameraIndex i = 0; i < cameras.size(); i++) {
 | |
| 		const Dictionary &d = cameras[i];
 | |
| 
 | |
| 		Ref<GLTFCamera> camera;
 | |
| 		camera.instantiate();
 | |
| 		ERR_FAIL_COND_V(!d.has("type"), ERR_PARSE_ERROR);
 | |
| 		const String &type = d["type"];
 | |
| 		if (type == "orthographic") {
 | |
| 			camera->set_perspective(false);
 | |
| 			if (d.has("orthographic")) {
 | |
| 				const Dictionary &og = d["orthographic"];
 | |
| 				// GLTF spec is in radians, Godot's camera is in degrees.
 | |
| 				camera->set_fov_size(Math::rad2deg(real_t(og["ymag"])));
 | |
| 				camera->set_zfar(og["zfar"]);
 | |
| 				camera->set_znear(og["znear"]);
 | |
| 			} else {
 | |
| 				camera->set_fov_size(10);
 | |
| 			}
 | |
| 		} else if (type == "perspective") {
 | |
| 			camera->set_perspective(true);
 | |
| 			if (d.has("perspective")) {
 | |
| 				const Dictionary &ppt = d["perspective"];
 | |
| 				// GLTF spec is in radians, Godot's camera is in degrees.
 | |
| 				camera->set_fov_size(Math::rad2deg(real_t(ppt["yfov"])));
 | |
| 				camera->set_zfar(ppt["zfar"]);
 | |
| 				camera->set_znear(ppt["znear"]);
 | |
| 			} else {
 | |
| 				camera->set_fov_size(10);
 | |
| 			}
 | |
| 		} else {
 | |
| 			ERR_FAIL_V_MSG(ERR_PARSE_ERROR, "Camera3D should be in 'orthographic' or 'perspective'");
 | |
| 		}
 | |
| 
 | |
| 		state->cameras.push_back(camera);
 | |
| 	}
 | |
| 
 | |
| 	print_verbose("glTF: Total cameras: " + itos(state->cameras.size()));
 | |
| 
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| String GLTFDocument::interpolation_to_string(const GLTFAnimation::Interpolation p_interp) {
 | |
| 	String interp = "LINEAR";
 | |
| 	if (p_interp == GLTFAnimation::INTERP_STEP) {
 | |
| 		interp = "STEP";
 | |
| 	} else if (p_interp == GLTFAnimation::INTERP_LINEAR) {
 | |
| 		interp = "LINEAR";
 | |
| 	} else if (p_interp == GLTFAnimation::INTERP_CATMULLROMSPLINE) {
 | |
| 		interp = "CATMULLROMSPLINE";
 | |
| 	} else if (p_interp == GLTFAnimation::INTERP_CUBIC_SPLINE) {
 | |
| 		interp = "CUBICSPLINE";
 | |
| 	}
 | |
| 
 | |
| 	return interp;
 | |
| }
 | |
| 
 | |
| Error GLTFDocument::_serialize_animations(Ref<GLTFState> state) {
 | |
| 	if (!state->animation_players.size()) {
 | |
| 		return OK;
 | |
| 	}
 | |
| 	for (int32_t player_i = 0; player_i < state->animation_players.size(); player_i++) {
 | |
| 		List<StringName> animation_names;
 | |
| 		AnimationPlayer *animation_player = state->animation_players[player_i];
 | |
| 		animation_player->get_animation_list(&animation_names);
 | |
| 		if (animation_names.size()) {
 | |
| 			for (int animation_name_i = 0; animation_name_i < animation_names.size(); animation_name_i++) {
 | |
| 				_convert_animation(state, animation_player, animation_names[animation_name_i]);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	Array animations;
 | |
| 	for (GLTFAnimationIndex animation_i = 0; animation_i < state->animations.size(); animation_i++) {
 | |
| 		Dictionary d;
 | |
| 		Ref<GLTFAnimation> gltf_animation = state->animations[animation_i];
 | |
| 		if (!gltf_animation->get_tracks().size()) {
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (!gltf_animation->get_name().is_empty()) {
 | |
| 			d["name"] = gltf_animation->get_name();
 | |
| 		}
 | |
| 		Array channels;
 | |
| 		Array samplers;
 | |
| 
 | |
| 		for (Map<int, GLTFAnimation::Track>::Element *track_i = gltf_animation->get_tracks().front(); track_i; track_i = track_i->next()) {
 | |
| 			GLTFAnimation::Track track = track_i->get();
 | |
| 			if (track.translation_track.times.size()) {
 | |
| 				Dictionary t;
 | |
| 				t["sampler"] = samplers.size();
 | |
| 				Dictionary s;
 | |
| 
 | |
| 				s["interpolation"] = interpolation_to_string(track.translation_track.interpolation);
 | |
| 				Vector<real_t> times = Variant(track.translation_track.times);
 | |
| 				s["input"] = _encode_accessor_as_floats(state, times, false);
 | |
| 				Vector<Vector3> values = Variant(track.translation_track.values);
 | |
| 				s["output"] = _encode_accessor_as_vec3(state, values, false);
 | |
| 
 | |
| 				samplers.push_back(s);
 | |
| 
 | |
| 				Dictionary target;
 | |
| 				target["path"] = "translation";
 | |
| 				target["node"] = track_i->key();
 | |
| 
 | |
| 				t["target"] = target;
 | |
| 				channels.push_back(t);
 | |
| 			}
 | |
| 			if (track.rotation_track.times.size()) {
 | |
| 				Dictionary t;
 | |
| 				t["sampler"] = samplers.size();
 | |
| 				Dictionary s;
 | |
| 
 | |
| 				s["interpolation"] = interpolation_to_string(track.rotation_track.interpolation);
 | |
| 				Vector<real_t> times = Variant(track.rotation_track.times);
 | |
| 				s["input"] = _encode_accessor_as_floats(state, times, false);
 | |
| 				Vector<Quaternion> values = track.rotation_track.values;
 | |
| 				s["output"] = _encode_accessor_as_quaternions(state, values, false);
 | |
| 
 | |
| 				samplers.push_back(s);
 | |
| 
 | |
| 				Dictionary target;
 | |
| 				target["path"] = "rotation";
 | |
| 				target["node"] = track_i->key();
 | |
| 
 | |
| 				t["target"] = target;
 | |
| 				channels.push_back(t);
 | |
| 			}
 | |
| 			if (track.scale_track.times.size()) {
 | |
| 				Dictionary t;
 | |
| 				t["sampler"] = samplers.size();
 | |
| 				Dictionary s;
 | |
| 
 | |
| 				s["interpolation"] = interpolation_to_string(track.scale_track.interpolation);
 | |
| 				Vector<real_t> times = Variant(track.scale_track.times);
 | |
| 				s["input"] = _encode_accessor_as_floats(state, times, false);
 | |
| 				Vector<Vector3> values = Variant(track.scale_track.values);
 | |
| 				s["output"] = _encode_accessor_as_vec3(state, values, false);
 | |
| 
 | |
| 				samplers.push_back(s);
 | |
| 
 | |
| 				Dictionary target;
 | |
| 				target["path"] = "scale";
 | |
| 				target["node"] = track_i->key();
 | |
| 
 | |
| 				t["target"] = target;
 | |
| 				channels.push_back(t);
 | |
| 			}
 | |
| 			if (track.weight_tracks.size()) {
 | |
| 				Dictionary t;
 | |
| 				t["sampler"] = samplers.size();
 | |
| 				Dictionary s;
 | |
| 
 | |
| 				Vector<real_t> times;
 | |
| 				Vector<real_t> values;
 | |
| 
 | |
| 				for (int32_t times_i = 0; times_i < track.weight_tracks[0].times.size(); times_i++) {
 | |
| 					real_t time = track.weight_tracks[0].times[times_i];
 | |
| 					times.push_back(time);
 | |
| 				}
 | |
| 
 | |
| 				values.resize(times.size() * track.weight_tracks.size());
 | |
| 				// TODO Sort by order in blend shapes
 | |
| 				for (int k = 0; k < track.weight_tracks.size(); k++) {
 | |
| 					Vector<float> wdata = track.weight_tracks[k].values;
 | |
| 					for (int l = 0; l < wdata.size(); l++) {
 | |
| 						values.write[l * track.weight_tracks.size() + k] = wdata.write[l];
 | |
| 					}
 | |
| 				}
 | |
| 
 | |
| 				s["interpolation"] = interpolation_to_string(track.weight_tracks[track.weight_tracks.size() - 1].interpolation);
 | |
| 				s["input"] = _encode_accessor_as_floats(state, times, false);
 | |
| 				s["output"] = _encode_accessor_as_floats(state, values, false);
 | |
| 
 | |
| 				samplers.push_back(s);
 | |
| 
 | |
| 				Dictionary target;
 | |
| 				target["path"] = "weights";
 | |
| 				target["node"] = track_i->key();
 | |
| 
 | |
| 				t["target"] = target;
 | |
| 				channels.push_back(t);
 | |
| 			}
 | |
| 		}
 | |
| 		if (channels.size() && samplers.size()) {
 | |
| 			d["channels"] = channels;
 | |
| 			d["samplers"] = samplers;
 | |
| 			animations.push_back(d);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	state->json["animations"] = animations;
 | |
| 
 | |
| 	print_verbose("glTF: Total animations '" + itos(state->animations.size()) + "'.");
 | |
| 
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| Error GLTFDocument::_parse_animations(Ref<GLTFState> state) {
 | |
| 	if (!state->json.has("animations")) {
 | |
| 		return OK;
 | |
| 	}
 | |
| 
 | |
| 	const Array &animations = state->json["animations"];
 | |
| 
 | |
| 	for (GLTFAnimationIndex i = 0; i < animations.size(); i++) {
 | |
| 		const Dictionary &d = animations[i];
 | |
| 
 | |
| 		Ref<GLTFAnimation> animation;
 | |
| 		animation.instantiate();
 | |
| 
 | |
| 		if (!d.has("channels") || !d.has("samplers")) {
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		Array channels = d["channels"];
 | |
| 		Array samplers = d["samplers"];
 | |
| 
 | |
| 		if (d.has("name")) {
 | |
| 			const String name = d["name"];
 | |
| 			if (name.begins_with("loop") || name.ends_with("loop") || name.begins_with("cycle") || name.ends_with("cycle")) {
 | |
| 				animation->set_loop(true);
 | |
| 			}
 | |
| 			animation->set_name(_gen_unique_animation_name(state, name));
 | |
| 		}
 | |
| 
 | |
| 		for (int j = 0; j < channels.size(); j++) {
 | |
| 			const Dictionary &c = channels[j];
 | |
| 			if (!c.has("target")) {
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			const Dictionary &t = c["target"];
 | |
| 			if (!t.has("node") || !t.has("path")) {
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			ERR_FAIL_COND_V(!c.has("sampler"), ERR_PARSE_ERROR);
 | |
| 			const int sampler = c["sampler"];
 | |
| 			ERR_FAIL_INDEX_V(sampler, samplers.size(), ERR_PARSE_ERROR);
 | |
| 
 | |
| 			GLTFNodeIndex node = t["node"];
 | |
| 			String path = t["path"];
 | |
| 
 | |
| 			ERR_FAIL_INDEX_V(node, state->nodes.size(), ERR_PARSE_ERROR);
 | |
| 
 | |
| 			GLTFAnimation::Track *track = nullptr;
 | |
| 
 | |
| 			if (!animation->get_tracks().has(node)) {
 | |
| 				animation->get_tracks()[node] = GLTFAnimation::Track();
 | |
| 			}
 | |
| 
 | |
| 			track = &animation->get_tracks()[node];
 | |
| 
 | |
| 			const Dictionary &s = samplers[sampler];
 | |
| 
 | |
| 			ERR_FAIL_COND_V(!s.has("input"), ERR_PARSE_ERROR);
 | |
| 			ERR_FAIL_COND_V(!s.has("output"), ERR_PARSE_ERROR);
 | |
| 
 | |
| 			const int input = s["input"];
 | |
| 			const int output = s["output"];
 | |
| 
 | |
| 			GLTFAnimation::Interpolation interp = GLTFAnimation::INTERP_LINEAR;
 | |
| 			int output_count = 1;
 | |
| 			if (s.has("interpolation")) {
 | |
| 				const String &in = s["interpolation"];
 | |
| 				if (in == "STEP") {
 | |
| 					interp = GLTFAnimation::INTERP_STEP;
 | |
| 				} else if (in == "LINEAR") {
 | |
| 					interp = GLTFAnimation::INTERP_LINEAR;
 | |
| 				} else if (in == "CATMULLROMSPLINE") {
 | |
| 					interp = GLTFAnimation::INTERP_CATMULLROMSPLINE;
 | |
| 					output_count = 3;
 | |
| 				} else if (in == "CUBICSPLINE") {
 | |
| 					interp = GLTFAnimation::INTERP_CUBIC_SPLINE;
 | |
| 					output_count = 3;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			const Vector<float> times = _decode_accessor_as_floats(state, input, false);
 | |
| 			if (path == "translation") {
 | |
| 				const Vector<Vector3> translations = _decode_accessor_as_vec3(state, output, false);
 | |
| 				track->translation_track.interpolation = interp;
 | |
| 				track->translation_track.times = Variant(times); //convert via variant
 | |
| 				track->translation_track.values = Variant(translations); //convert via variant
 | |
| 			} else if (path == "rotation") {
 | |
| 				const Vector<Quaternion> rotations = _decode_accessor_as_quaternion(state, output, false);
 | |
| 				track->rotation_track.interpolation = interp;
 | |
| 				track->rotation_track.times = Variant(times); //convert via variant
 | |
| 				track->rotation_track.values = rotations;
 | |
| 			} else if (path == "scale") {
 | |
| 				const Vector<Vector3> scales = _decode_accessor_as_vec3(state, output, false);
 | |
| 				track->scale_track.interpolation = interp;
 | |
| 				track->scale_track.times = Variant(times); //convert via variant
 | |
| 				track->scale_track.values = Variant(scales); //convert via variant
 | |
| 			} else if (path == "weights") {
 | |
| 				const Vector<float> weights = _decode_accessor_as_floats(state, output, false);
 | |
| 
 | |
| 				ERR_FAIL_INDEX_V(state->nodes[node]->mesh, state->meshes.size(), ERR_PARSE_ERROR);
 | |
| 				Ref<GLTFMesh> mesh = state->meshes[state->nodes[node]->mesh];
 | |
| 				ERR_CONTINUE(!mesh->get_blend_weights().size());
 | |
| 				const int wc = mesh->get_blend_weights().size();
 | |
| 
 | |
| 				track->weight_tracks.resize(wc);
 | |
| 
 | |
| 				const int expected_value_count = times.size() * output_count * wc;
 | |
| 				ERR_FAIL_COND_V_MSG(weights.size() != expected_value_count, ERR_PARSE_ERROR, "Invalid weight data, expected " + itos(expected_value_count) + " weight values, got " + itos(weights.size()) + " instead.");
 | |
| 
 | |
| 				const int wlen = weights.size() / wc;
 | |
| 				for (int k = 0; k < wc; k++) { //separate tracks, having them together is not such a good idea
 | |
| 					GLTFAnimation::Channel<float> cf;
 | |
| 					cf.interpolation = interp;
 | |
| 					cf.times = Variant(times);
 | |
| 					Vector<float> wdata;
 | |
| 					wdata.resize(wlen);
 | |
| 					for (int l = 0; l < wlen; l++) {
 | |
| 						wdata.write[l] = weights[l * wc + k];
 | |
| 					}
 | |
| 
 | |
| 					cf.values = wdata;
 | |
| 					track->weight_tracks.write[k] = cf;
 | |
| 				}
 | |
| 			} else {
 | |
| 				WARN_PRINT("Invalid path '" + path + "'.");
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		state->animations.push_back(animation);
 | |
| 	}
 | |
| 
 | |
| 	print_verbose("glTF: Total animations '" + itos(state->animations.size()) + "'.");
 | |
| 
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| void GLTFDocument::_assign_scene_names(Ref<GLTFState> state) {
 | |
| 	for (int i = 0; i < state->nodes.size(); i++) {
 | |
| 		Ref<GLTFNode> n = state->nodes[i];
 | |
| 
 | |
| 		// Any joints get unique names generated when the skeleton is made, unique to the skeleton
 | |
| 		if (n->skeleton >= 0) {
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (n->get_name().is_empty()) {
 | |
| 			if (n->mesh >= 0) {
 | |
| 				n->set_name(_gen_unique_name(state, "Mesh"));
 | |
| 			} else if (n->camera >= 0) {
 | |
| 				n->set_name(_gen_unique_name(state, "Camera3D"));
 | |
| 			} else {
 | |
| 				n->set_name(_gen_unique_name(state, "Node"));
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		n->set_name(_gen_unique_name(state, n->get_name()));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| BoneAttachment3D *GLTFDocument::_generate_bone_attachment(Ref<GLTFState> state, Skeleton3D *skeleton, const GLTFNodeIndex node_index, const GLTFNodeIndex bone_index) {
 | |
| 	Ref<GLTFNode> gltf_node = state->nodes[node_index];
 | |
| 	Ref<GLTFNode> bone_node = state->nodes[bone_index];
 | |
| 	BoneAttachment3D *bone_attachment = memnew(BoneAttachment3D);
 | |
| 	print_verbose("glTF: Creating bone attachment for: " + gltf_node->get_name());
 | |
| 
 | |
| 	ERR_FAIL_COND_V(!bone_node->joint, nullptr);
 | |
| 
 | |
| 	bone_attachment->set_bone_name(bone_node->get_name());
 | |
| 
 | |
| 	return bone_attachment;
 | |
| }
 | |
| 
 | |
| GLTFMeshIndex GLTFDocument::_convert_mesh_instance(Ref<GLTFState> state, MeshInstance3D *p_mesh_instance) {
 | |
| 	ERR_FAIL_NULL_V(p_mesh_instance, -1);
 | |
| 	if (p_mesh_instance->get_mesh().is_null()) {
 | |
| 		return -1;
 | |
| 	}
 | |
| 	Ref<EditorSceneImporterMesh> import_mesh;
 | |
| 	import_mesh.instantiate();
 | |
| 	Ref<Mesh> godot_mesh = p_mesh_instance->get_mesh();
 | |
| 	if (godot_mesh.is_null()) {
 | |
| 		return -1;
 | |
| 	}
 | |
| 	Vector<float> blend_weights;
 | |
| 	Vector<String> blend_names;
 | |
| 	int32_t blend_count = godot_mesh->get_blend_shape_count();
 | |
| 	blend_names.resize(blend_count);
 | |
| 	blend_weights.resize(blend_count);
 | |
| 	for (int32_t blend_i = 0; blend_i < godot_mesh->get_blend_shape_count(); blend_i++) {
 | |
| 		String blend_name = godot_mesh->get_blend_shape_name(blend_i);
 | |
| 		blend_names.write[blend_i] = blend_name;
 | |
| 		import_mesh->add_blend_shape(blend_name);
 | |
| 	}
 | |
| 	for (int32_t surface_i = 0; surface_i < godot_mesh->get_surface_count(); surface_i++) {
 | |
| 		Mesh::PrimitiveType primitive_type = godot_mesh->surface_get_primitive_type(surface_i);
 | |
| 		Array arrays = godot_mesh->surface_get_arrays(surface_i);
 | |
| 		Array blend_shape_arrays = godot_mesh->surface_get_blend_shape_arrays(surface_i);
 | |
| 		Ref<Material> mat = godot_mesh->surface_get_material(surface_i);
 | |
| 		Ref<ArrayMesh> godot_array_mesh = godot_mesh;
 | |
| 		String surface_name;
 | |
| 		if (godot_array_mesh.is_valid()) {
 | |
| 			surface_name = godot_array_mesh->surface_get_name(surface_i);
 | |
| 		}
 | |
| 		if (p_mesh_instance->get_surface_override_material(surface_i).is_valid()) {
 | |
| 			mat = p_mesh_instance->get_surface_override_material(surface_i);
 | |
| 		}
 | |
| 		if (p_mesh_instance->get_material_override().is_valid()) {
 | |
| 			mat = p_mesh_instance->get_material_override();
 | |
| 		}
 | |
| 		import_mesh->add_surface(primitive_type, arrays, blend_shape_arrays, Dictionary(), mat, surface_name);
 | |
| 	}
 | |
| 	for (int32_t blend_i = 0; blend_i < blend_count; blend_i++) {
 | |
| 		blend_weights.write[blend_i] = 0.0f;
 | |
| 	}
 | |
| 	Ref<GLTFMesh> gltf_mesh;
 | |
| 	gltf_mesh.instantiate();
 | |
| 	gltf_mesh->set_mesh(import_mesh);
 | |
| 	gltf_mesh->set_blend_weights(blend_weights);
 | |
| 	GLTFMeshIndex mesh_i = state->meshes.size();
 | |
| 	state->meshes.push_back(gltf_mesh);
 | |
| 	return mesh_i;
 | |
| }
 | |
| 
 | |
| EditorSceneImporterMeshNode3D *GLTFDocument::_generate_mesh_instance(Ref<GLTFState> state, Node *scene_parent, const GLTFNodeIndex node_index) {
 | |
| 	Ref<GLTFNode> gltf_node = state->nodes[node_index];
 | |
| 
 | |
| 	ERR_FAIL_INDEX_V(gltf_node->mesh, state->meshes.size(), nullptr);
 | |
| 
 | |
| 	EditorSceneImporterMeshNode3D *mi = memnew(EditorSceneImporterMeshNode3D);
 | |
| 	print_verbose("glTF: Creating mesh for: " + gltf_node->get_name());
 | |
| 
 | |
| 	Ref<GLTFMesh> mesh = state->meshes.write[gltf_node->mesh];
 | |
| 	if (mesh.is_null()) {
 | |
| 		return mi;
 | |
| 	}
 | |
| 	Ref<EditorSceneImporterMesh> import_mesh = mesh->get_mesh();
 | |
| 	if (import_mesh.is_null()) {
 | |
| 		return mi;
 | |
| 	}
 | |
| 	mi->set_mesh(import_mesh);
 | |
| 	for (int i = 0; i < mesh->get_blend_weights().size(); i++) {
 | |
| 		mi->set("blend_shapes/" + mesh->get_mesh()->get_blend_shape_name(i), mesh->get_blend_weights()[i]);
 | |
| 	}
 | |
| 	return mi;
 | |
| }
 | |
| 
 | |
| Node3D *GLTFDocument::_generate_light(Ref<GLTFState> state, Node *scene_parent, const GLTFNodeIndex node_index) {
 | |
| 	Ref<GLTFNode> gltf_node = state->nodes[node_index];
 | |
| 
 | |
| 	ERR_FAIL_INDEX_V(gltf_node->light, state->lights.size(), nullptr);
 | |
| 
 | |
| 	print_verbose("glTF: Creating light for: " + gltf_node->get_name());
 | |
| 
 | |
| 	Ref<GLTFLight> l = state->lights[gltf_node->light];
 | |
| 
 | |
| 	float intensity = l->intensity;
 | |
| 	if (intensity > 10) {
 | |
| 		// GLTF spec has the default around 1, but Blender defaults lights to 100.
 | |
| 		// The only sane way to handle this is to check where it came from and
 | |
| 		// handle it accordingly. If it's over 10, it probably came from Blender.
 | |
| 		intensity /= 100;
 | |
| 	}
 | |
| 
 | |
| 	if (l->type == "directional") {
 | |
| 		DirectionalLight3D *light = memnew(DirectionalLight3D);
 | |
| 		light->set_param(Light3D::PARAM_ENERGY, intensity);
 | |
| 		light->set_color(l->color);
 | |
| 		return light;
 | |
| 	}
 | |
| 
 | |
| 	const float range = CLAMP(l->range, 0, 4096);
 | |
| 	// Doubling the range will double the effective brightness, so we need double attenuation (half brightness).
 | |
| 	// We want to have double intensity give double brightness, so we need half the attenuation.
 | |
| 	const float attenuation = range / intensity;
 | |
| 	if (l->type == "point") {
 | |
| 		OmniLight3D *light = memnew(OmniLight3D);
 | |
| 		light->set_param(OmniLight3D::PARAM_ATTENUATION, attenuation);
 | |
| 		light->set_param(OmniLight3D::PARAM_RANGE, range);
 | |
| 		light->set_color(l->color);
 | |
| 		return light;
 | |
| 	}
 | |
| 	if (l->type == "spot") {
 | |
| 		SpotLight3D *light = memnew(SpotLight3D);
 | |
| 		light->set_param(SpotLight3D::PARAM_ATTENUATION, attenuation);
 | |
| 		light->set_param(SpotLight3D::PARAM_RANGE, range);
 | |
| 		light->set_param(SpotLight3D::PARAM_SPOT_ANGLE, Math::rad2deg(l->outer_cone_angle));
 | |
| 		light->set_color(l->color);
 | |
| 
 | |
| 		// Line of best fit derived from guessing, see https://www.desmos.com/calculator/biiflubp8b
 | |
| 		// The points in desmos are not exact, except for (1, infinity).
 | |
| 		float angle_ratio = l->inner_cone_angle / l->outer_cone_angle;
 | |
| 		float angle_attenuation = 0.2 / (1 - angle_ratio) - 0.1;
 | |
| 		light->set_param(SpotLight3D::PARAM_SPOT_ATTENUATION, angle_attenuation);
 | |
| 		return light;
 | |
| 	}
 | |
| 	return memnew(Node3D);
 | |
| }
 | |
| 
 | |
| Camera3D *GLTFDocument::_generate_camera(Ref<GLTFState> state, Node *scene_parent, const GLTFNodeIndex node_index) {
 | |
| 	Ref<GLTFNode> gltf_node = state->nodes[node_index];
 | |
| 
 | |
| 	ERR_FAIL_INDEX_V(gltf_node->camera, state->cameras.size(), nullptr);
 | |
| 
 | |
| 	Camera3D *camera = memnew(Camera3D);
 | |
| 	print_verbose("glTF: Creating camera for: " + gltf_node->get_name());
 | |
| 
 | |
| 	Ref<GLTFCamera> c = state->cameras[gltf_node->camera];
 | |
| 	if (c->get_perspective()) {
 | |
| 		camera->set_perspective(c->get_fov_size(), c->get_znear(), c->get_zfar());
 | |
| 	} else {
 | |
| 		camera->set_orthogonal(c->get_fov_size(), c->get_znear(), c->get_zfar());
 | |
| 	}
 | |
| 
 | |
| 	return camera;
 | |
| }
 | |
| 
 | |
| GLTFCameraIndex GLTFDocument::_convert_camera(Ref<GLTFState> state, Camera3D *p_camera) {
 | |
| 	print_verbose("glTF: Converting camera: " + p_camera->get_name());
 | |
| 
 | |
| 	Ref<GLTFCamera> c;
 | |
| 	c.instantiate();
 | |
| 
 | |
| 	if (p_camera->get_projection() == Camera3D::Projection::PROJECTION_PERSPECTIVE) {
 | |
| 		c->set_perspective(true);
 | |
| 		c->set_fov_size(p_camera->get_fov());
 | |
| 		c->set_zfar(p_camera->get_far());
 | |
| 		c->set_znear(p_camera->get_near());
 | |
| 	} else {
 | |
| 		c->set_fov_size(p_camera->get_fov());
 | |
| 		c->set_zfar(p_camera->get_far());
 | |
| 		c->set_znear(p_camera->get_near());
 | |
| 	}
 | |
| 	GLTFCameraIndex camera_index = state->cameras.size();
 | |
| 	state->cameras.push_back(c);
 | |
| 	return camera_index;
 | |
| }
 | |
| 
 | |
| GLTFLightIndex GLTFDocument::_convert_light(Ref<GLTFState> state, Light3D *p_light) {
 | |
| 	print_verbose("glTF: Converting light: " + p_light->get_name());
 | |
| 
 | |
| 	Ref<GLTFLight> l;
 | |
| 	l.instantiate();
 | |
| 	l->color = p_light->get_color();
 | |
| 	if (cast_to<DirectionalLight3D>(p_light)) {
 | |
| 		l->type = "directional";
 | |
| 		DirectionalLight3D *light = cast_to<DirectionalLight3D>(p_light);
 | |
| 		l->intensity = light->get_param(DirectionalLight3D::PARAM_ENERGY);
 | |
| 		l->range = FLT_MAX; // Range for directional lights is infinite in Godot.
 | |
| 	} else if (cast_to<OmniLight3D>(p_light)) {
 | |
| 		l->type = "point";
 | |
| 		OmniLight3D *light = cast_to<OmniLight3D>(p_light);
 | |
| 		l->range = light->get_param(OmniLight3D::PARAM_RANGE);
 | |
| 		float attenuation = p_light->get_param(OmniLight3D::PARAM_ATTENUATION);
 | |
| 		l->intensity = l->range / attenuation;
 | |
| 	} else if (cast_to<SpotLight3D>(p_light)) {
 | |
| 		l->type = "spot";
 | |
| 		SpotLight3D *light = cast_to<SpotLight3D>(p_light);
 | |
| 		l->range = light->get_param(SpotLight3D::PARAM_RANGE);
 | |
| 		float attenuation = light->get_param(SpotLight3D::PARAM_ATTENUATION);
 | |
| 		l->intensity = l->range / attenuation;
 | |
| 		l->outer_cone_angle = Math::deg2rad(light->get_param(SpotLight3D::PARAM_SPOT_ANGLE));
 | |
| 
 | |
| 		// This equation is the inverse of the import equation (which has a desmos link).
 | |
| 		float angle_ratio = 1 - (0.2 / (0.1 + light->get_param(SpotLight3D::PARAM_SPOT_ATTENUATION)));
 | |
| 		angle_ratio = MAX(0, angle_ratio);
 | |
| 		l->inner_cone_angle = l->outer_cone_angle * angle_ratio;
 | |
| 	}
 | |
| 
 | |
| 	GLTFLightIndex light_index = state->lights.size();
 | |
| 	state->lights.push_back(l);
 | |
| 	return light_index;
 | |
| }
 | |
| 
 | |
| GLTFSkeletonIndex GLTFDocument::_convert_skeleton(Ref<GLTFState> state, Skeleton3D *p_skeleton) {
 | |
| 	print_verbose("glTF: Converting skeleton: " + p_skeleton->get_name());
 | |
| 	Ref<GLTFSkeleton> gltf_skeleton;
 | |
| 	gltf_skeleton.instantiate();
 | |
| 	gltf_skeleton->set_name(_gen_unique_name(state, p_skeleton->get_name()));
 | |
| 	gltf_skeleton->godot_skeleton = p_skeleton;
 | |
| 	GLTFSkeletonIndex skeleton_i = state->skeletons.size();
 | |
| 	state->skeletons.push_back(gltf_skeleton);
 | |
| 	return skeleton_i;
 | |
| }
 | |
| 
 | |
| void GLTFDocument::_convert_spatial(Ref<GLTFState> state, Node3D *p_spatial, Ref<GLTFNode> p_node) {
 | |
| 	Transform3D xform = p_spatial->get_transform();
 | |
| 	p_node->scale = xform.basis.get_scale();
 | |
| 	p_node->rotation = xform.basis.get_rotation_quaternion();
 | |
| 	p_node->translation = xform.origin;
 | |
| }
 | |
| 
 | |
| Node3D *GLTFDocument::_generate_spatial(Ref<GLTFState> state, Node *scene_parent, const GLTFNodeIndex node_index) {
 | |
| 	Ref<GLTFNode> gltf_node = state->nodes[node_index];
 | |
| 
 | |
| 	Node3D *spatial = memnew(Node3D);
 | |
| 	print_verbose("glTF: Converting spatial: " + gltf_node->get_name());
 | |
| 
 | |
| 	return spatial;
 | |
| }
 | |
| void GLTFDocument::_convert_scene_node(Ref<GLTFState> state, Node *p_current, Node *p_root, const GLTFNodeIndex p_gltf_parent, const GLTFNodeIndex p_gltf_root) {
 | |
| 	bool retflag = true;
 | |
| 	_check_visibility(p_current, retflag);
 | |
| 	if (retflag) {
 | |
| 		return;
 | |
| 	}
 | |
| 	Ref<GLTFNode> gltf_node;
 | |
| 	gltf_node.instantiate();
 | |
| 	gltf_node->set_name(_gen_unique_name(state, p_current->get_name()));
 | |
| 	if (cast_to<Node3D>(p_current)) {
 | |
| 		Node3D *spatial = cast_to<Node3D>(p_current);
 | |
| 		_convert_spatial(state, spatial, gltf_node);
 | |
| 	}
 | |
| 	if (cast_to<MeshInstance3D>(p_current)) {
 | |
| 		Node3D *spatial = cast_to<Node3D>(p_current);
 | |
| 		_convert_mesh_to_gltf(p_current, state, spatial, gltf_node);
 | |
| 	} else if (cast_to<BoneAttachment3D>(p_current)) {
 | |
| 		_convert_bone_attachment_to_gltf(p_current, state, gltf_node, retflag);
 | |
| 		// TODO 2020-12-21 iFire Handle the case of objects under the bone attachment.
 | |
| 		return;
 | |
| 	} else if (cast_to<Skeleton3D>(p_current)) {
 | |
| 		_convert_skeleton_to_gltf(p_current, state, p_gltf_parent, p_gltf_root, gltf_node, p_root);
 | |
| 		// We ignore the Godot Engine node that is the skeleton.
 | |
| 		return;
 | |
| 	} else if (cast_to<MultiMeshInstance3D>(p_current)) {
 | |
| 		_convert_mult_mesh_instance_to_gltf(p_current, p_gltf_parent, p_gltf_root, gltf_node, state, p_root);
 | |
| #ifdef MODULE_CSG_ENABLED
 | |
| 	} else if (cast_to<CSGShape3D>(p_current)) {
 | |
| 		if (p_current->get_parent() && cast_to<CSGShape3D>(p_current)->is_root_shape()) {
 | |
| 			_convert_csg_shape_to_gltf(p_current, p_gltf_parent, gltf_node, state);
 | |
| 		}
 | |
| #endif // MODULE_CSG_ENABLED
 | |
| #ifdef MODULE_GRIDMAP_ENABLED
 | |
| 	} else if (cast_to<GridMap>(p_current)) {
 | |
| 		_convert_grid_map_to_gltf(p_current, p_gltf_parent, p_gltf_root, gltf_node, state, p_root);
 | |
| #endif // MODULE_GRIDMAP_ENABLED
 | |
| 	} else if (cast_to<Camera3D>(p_current)) {
 | |
| 		Camera3D *camera = Object::cast_to<Camera3D>(p_current);
 | |
| 		_convert_camera_to_gltf(camera, state, camera, gltf_node);
 | |
| 	} else if (cast_to<Light3D>(p_current)) {
 | |
| 		Light3D *light = Object::cast_to<Light3D>(p_current);
 | |
| 		_convert_light_to_gltf(light, state, light, gltf_node);
 | |
| 	} else if (cast_to<AnimationPlayer>(p_current)) {
 | |
| 		AnimationPlayer *animation_player = Object::cast_to<AnimationPlayer>(p_current);
 | |
| 		_convert_animation_player_to_gltf(animation_player, state, p_gltf_parent, p_gltf_root, gltf_node, p_current, p_root);
 | |
| 	}
 | |
| 	GLTFNodeIndex current_node_i = state->nodes.size();
 | |
| 	GLTFNodeIndex gltf_root = p_gltf_root;
 | |
| 	if (gltf_root == -1) {
 | |
| 		gltf_root = current_node_i;
 | |
| 		Array scenes;
 | |
| 		scenes.push_back(gltf_root);
 | |
| 		state->json["scene"] = scenes;
 | |
| 	}
 | |
| 	_create_gltf_node(state, p_current, current_node_i, p_gltf_parent, gltf_root, gltf_node);
 | |
| 	for (int node_i = 0; node_i < p_current->get_child_count(); node_i++) {
 | |
| 		_convert_scene_node(state, p_current->get_child(node_i), p_root, current_node_i, gltf_root);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef MODULE_CSG_ENABLED
 | |
| void GLTFDocument::_convert_csg_shape_to_gltf(Node *p_current, GLTFNodeIndex p_gltf_parent, Ref<GLTFNode> gltf_node, Ref<GLTFState> state) {
 | |
| 	CSGShape3D *csg = Object::cast_to<CSGShape3D>(p_current);
 | |
| 	csg->call("_update_shape");
 | |
| 	Array meshes = csg->get_meshes();
 | |
| 	if (meshes.size() != 2) {
 | |
| 		return;
 | |
| 	}
 | |
| 	Ref<Material> mat;
 | |
| 	if (csg->get_material_override().is_valid()) {
 | |
| 		mat = csg->get_material_override();
 | |
| 	}
 | |
| 	Ref<GLTFMesh> gltf_mesh;
 | |
| 	gltf_mesh.instantiate();
 | |
| 	Ref<EditorSceneImporterMesh> import_mesh;
 | |
| 	import_mesh.instantiate();
 | |
| 	Ref<ArrayMesh> array_mesh = csg->get_meshes()[1];
 | |
| 	for (int32_t surface_i = 0; surface_i < array_mesh->get_surface_count(); surface_i++) {
 | |
| 		import_mesh->add_surface(Mesh::PrimitiveType::PRIMITIVE_TRIANGLES, array_mesh->surface_get_arrays(surface_i), Array(), Dictionary(), mat, array_mesh->surface_get_name(surface_i));
 | |
| 	}
 | |
| 	gltf_mesh->set_mesh(import_mesh);
 | |
| 	GLTFMeshIndex mesh_i = state->meshes.size();
 | |
| 	state->meshes.push_back(gltf_mesh);
 | |
| 	gltf_node->mesh = mesh_i;
 | |
| 	gltf_node->xform = csg->get_meshes()[0];
 | |
| 	gltf_node->set_name(_gen_unique_name(state, csg->get_name()));
 | |
| }
 | |
| #endif // MODULE_CSG_ENABLED
 | |
| 
 | |
| void GLTFDocument::_create_gltf_node(Ref<GLTFState> state, Node *p_scene_parent, GLTFNodeIndex current_node_i,
 | |
| 		GLTFNodeIndex p_parent_node_index, GLTFNodeIndex p_root_gltf_node, Ref<GLTFNode> gltf_node) {
 | |
| 	state->scene_nodes.insert(current_node_i, p_scene_parent);
 | |
| 	state->nodes.push_back(gltf_node);
 | |
| 	if (current_node_i == p_parent_node_index) {
 | |
| 		return;
 | |
| 	}
 | |
| 	if (p_parent_node_index == -1) {
 | |
| 		return;
 | |
| 	}
 | |
| 	state->nodes.write[p_parent_node_index]->children.push_back(current_node_i);
 | |
| }
 | |
| 
 | |
| void GLTFDocument::_convert_animation_player_to_gltf(AnimationPlayer *animation_player, Ref<GLTFState> state, const GLTFNodeIndex &p_gltf_current, const GLTFNodeIndex &p_gltf_root_index, Ref<GLTFNode> p_gltf_node, Node *p_scene_parent, Node *p_root) {
 | |
| 	ERR_FAIL_COND(!animation_player);
 | |
| 	state->animation_players.push_back(animation_player);
 | |
| 	print_verbose(String("glTF: Converting animation player: ") + animation_player->get_name());
 | |
| }
 | |
| 
 | |
| void GLTFDocument::_check_visibility(Node *p_node, bool &retflag) {
 | |
| 	retflag = true;
 | |
| 	Node3D *spatial = Object::cast_to<Node3D>(p_node);
 | |
| 	Node2D *node_2d = Object::cast_to<Node2D>(p_node);
 | |
| 	if (node_2d && !node_2d->is_visible()) {
 | |
| 		return;
 | |
| 	}
 | |
| 	if (spatial && !spatial->is_visible()) {
 | |
| 		return;
 | |
| 	}
 | |
| 	retflag = false;
 | |
| }
 | |
| 
 | |
| void GLTFDocument::_convert_camera_to_gltf(Camera3D *camera, Ref<GLTFState> state, Node3D *spatial, Ref<GLTFNode> gltf_node) {
 | |
| 	ERR_FAIL_COND(!camera);
 | |
| 	GLTFCameraIndex camera_index = _convert_camera(state, camera);
 | |
| 	if (camera_index != -1) {
 | |
| 		gltf_node->camera = camera_index;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void GLTFDocument::_convert_light_to_gltf(Light3D *light, Ref<GLTFState> state, Node3D *spatial, Ref<GLTFNode> gltf_node) {
 | |
| 	ERR_FAIL_COND(!light);
 | |
| 	GLTFLightIndex light_index = _convert_light(state, light);
 | |
| 	if (light_index != -1) {
 | |
| 		gltf_node->light = light_index;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef MODULE_GRIDMAP_ENABLED
 | |
| void GLTFDocument::_convert_grid_map_to_gltf(Node *p_scene_parent, const GLTFNodeIndex &p_parent_node_index, const GLTFNodeIndex &p_root_node_index, Ref<GLTFNode> gltf_node, Ref<GLTFState> state, Node *p_root_node) {
 | |
| 	GridMap *grid_map = Object::cast_to<GridMap>(p_scene_parent);
 | |
| 	ERR_FAIL_COND(!grid_map);
 | |
| 	Array cells = grid_map->get_used_cells();
 | |
| 	for (int32_t k = 0; k < cells.size(); k++) {
 | |
| 		GLTFNode *new_gltf_node = memnew(GLTFNode);
 | |
| 		gltf_node->children.push_back(state->nodes.size());
 | |
| 		state->nodes.push_back(new_gltf_node);
 | |
| 		Vector3 cell_location = cells[k];
 | |
| 		int32_t cell = grid_map->get_cell_item(
 | |
| 				Vector3(cell_location.x, cell_location.y, cell_location.z));
 | |
| 		EditorSceneImporterMeshNode3D *import_mesh_node = memnew(EditorSceneImporterMeshNode3D);
 | |
| 		import_mesh_node->set_mesh(grid_map->get_mesh_library()->get_item_mesh(cell));
 | |
| 		Transform3D cell_xform;
 | |
| 		cell_xform.basis.set_orthogonal_index(
 | |
| 				grid_map->get_cell_item_orientation(
 | |
| 						Vector3(cell_location.x, cell_location.y, cell_location.z)));
 | |
| 		cell_xform.basis.scale(Vector3(grid_map->get_cell_scale(),
 | |
| 				grid_map->get_cell_scale(),
 | |
| 				grid_map->get_cell_scale()));
 | |
| 		cell_xform.set_origin(grid_map->map_to_world(
 | |
| 				Vector3(cell_location.x, cell_location.y, cell_location.z)));
 | |
| 		Ref<GLTFMesh> gltf_mesh;
 | |
| 		gltf_mesh.instantiate();
 | |
| 		gltf_mesh = import_mesh_node;
 | |
| 		new_gltf_node->mesh = state->meshes.size();
 | |
| 		state->meshes.push_back(gltf_mesh);
 | |
| 		new_gltf_node->xform = cell_xform * grid_map->get_transform();
 | |
| 		new_gltf_node->set_name(_gen_unique_name(state, grid_map->get_mesh_library()->get_item_name(cell)));
 | |
| 	}
 | |
| }
 | |
| #endif // MODULE_GRIDMAP_ENABLED
 | |
| 
 | |
| void GLTFDocument::_convert_mult_mesh_instance_to_gltf(Node *p_scene_parent, const GLTFNodeIndex &p_parent_node_index, const GLTFNodeIndex &p_root_node_index, Ref<GLTFNode> gltf_node, Ref<GLTFState> state, Node *p_root_node) {
 | |
| 	MultiMeshInstance3D *multi_mesh_instance = Object::cast_to<MultiMeshInstance3D>(p_scene_parent);
 | |
| 	ERR_FAIL_COND(!multi_mesh_instance);
 | |
| 	Ref<MultiMesh> multi_mesh = multi_mesh_instance->get_multimesh();
 | |
| 	if (multi_mesh.is_valid()) {
 | |
| 		for (int32_t instance_i = 0; instance_i < multi_mesh->get_instance_count();
 | |
| 				instance_i++) {
 | |
| 			GLTFNode *new_gltf_node = memnew(GLTFNode);
 | |
| 			Transform3D transform;
 | |
| 			if (multi_mesh->get_transform_format() == MultiMesh::TRANSFORM_2D) {
 | |
| 				Transform2D xform_2d = multi_mesh->get_instance_transform_2d(instance_i);
 | |
| 				transform.origin =
 | |
| 						Vector3(xform_2d.get_origin().x, 0, xform_2d.get_origin().y);
 | |
| 				real_t rotation = xform_2d.get_rotation();
 | |
| 				Quaternion quaternion(Vector3(0, 1, 0), rotation);
 | |
| 				Size2 scale = xform_2d.get_scale();
 | |
| 				transform.basis.set_quaternion_scale(quaternion,
 | |
| 						Vector3(scale.x, 0, scale.y));
 | |
| 				transform =
 | |
| 						multi_mesh_instance->get_transform() * transform;
 | |
| 			} else if (multi_mesh->get_transform_format() == MultiMesh::TRANSFORM_3D) {
 | |
| 				transform = multi_mesh_instance->get_transform() *
 | |
| 							multi_mesh->get_instance_transform(instance_i);
 | |
| 			}
 | |
| 			Ref<ArrayMesh> mm = multi_mesh->get_mesh();
 | |
| 			if (mm.is_valid()) {
 | |
| 				Ref<EditorSceneImporterMesh> mesh;
 | |
| 				mesh.instantiate();
 | |
| 				for (int32_t surface_i = 0; surface_i < mm->get_surface_count(); surface_i++) {
 | |
| 					Array surface = mm->surface_get_arrays(surface_i);
 | |
| 					mesh->add_surface(mm->surface_get_primitive_type(surface_i), surface, Array(), Dictionary(),
 | |
| 							mm->surface_get_material(surface_i), mm->get_name());
 | |
| 				}
 | |
| 				Ref<GLTFMesh> gltf_mesh;
 | |
| 				gltf_mesh.instantiate();
 | |
| 				gltf_mesh->set_name(multi_mesh->get_name());
 | |
| 				gltf_mesh->set_mesh(mesh);
 | |
| 				new_gltf_node->mesh = state->meshes.size();
 | |
| 				state->meshes.push_back(gltf_mesh);
 | |
| 			}
 | |
| 			new_gltf_node->xform = transform;
 | |
| 			new_gltf_node->set_name(_gen_unique_name(state, multi_mesh_instance->get_name()));
 | |
| 			gltf_node->children.push_back(state->nodes.size());
 | |
| 			state->nodes.push_back(new_gltf_node);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void GLTFDocument::_convert_skeleton_to_gltf(Node *p_scene_parent, Ref<GLTFState> state, const GLTFNodeIndex &p_parent_node_index, const GLTFNodeIndex &p_root_node_index, Ref<GLTFNode> gltf_node, Node *p_root_node) {
 | |
| 	Skeleton3D *skeleton = Object::cast_to<Skeleton3D>(p_scene_parent);
 | |
| 	if (skeleton) {
 | |
| 		// Remove placeholder skeleton3d node by not creating the gltf node
 | |
| 		// Skins are per mesh
 | |
| 		for (int node_i = 0; node_i < skeleton->get_child_count(); node_i++) {
 | |
| 			_convert_scene_node(state, skeleton->get_child(node_i), p_root_node, p_parent_node_index, p_root_node_index);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void GLTFDocument::_convert_bone_attachment_to_gltf(Node *p_scene_parent, Ref<GLTFState> state, Ref<GLTFNode> gltf_node, bool &retflag) {
 | |
| 	retflag = true;
 | |
| 	BoneAttachment3D *bone_attachment = Object::cast_to<BoneAttachment3D>(p_scene_parent);
 | |
| 	if (bone_attachment) {
 | |
| 		Node *node = bone_attachment->get_parent();
 | |
| 		while (node) {
 | |
| 			Skeleton3D *bone_attachment_skeleton = Object::cast_to<Skeleton3D>(node);
 | |
| 			if (bone_attachment_skeleton) {
 | |
| 				for (GLTFSkeletonIndex skeleton_i = 0; skeleton_i < state->skeletons.size(); skeleton_i++) {
 | |
| 					if (state->skeletons[skeleton_i]->godot_skeleton != bone_attachment_skeleton) {
 | |
| 						continue;
 | |
| 					}
 | |
| 					state->skeletons.write[skeleton_i]->bone_attachments.push_back(bone_attachment);
 | |
| 					break;
 | |
| 				}
 | |
| 				break;
 | |
| 			}
 | |
| 			node = node->get_parent();
 | |
| 		}
 | |
| 		gltf_node.unref();
 | |
| 		return;
 | |
| 	}
 | |
| 	retflag = false;
 | |
| }
 | |
| 
 | |
| void GLTFDocument::_convert_mesh_to_gltf(Node *p_scene_parent, Ref<GLTFState> state, Node3D *spatial, Ref<GLTFNode> gltf_node) {
 | |
| 	MeshInstance3D *mi = Object::cast_to<MeshInstance3D>(p_scene_parent);
 | |
| 	if (mi) {
 | |
| 		GLTFMeshIndex gltf_mesh_index = _convert_mesh_instance(state, mi);
 | |
| 		if (gltf_mesh_index != -1) {
 | |
| 			gltf_node->mesh = gltf_mesh_index;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void GLTFDocument::_generate_scene_node(Ref<GLTFState> state, Node *scene_parent, Node3D *scene_root, const GLTFNodeIndex node_index) {
 | |
| 	Ref<GLTFNode> gltf_node = state->nodes[node_index];
 | |
| 
 | |
| 	if (gltf_node->skeleton >= 0) {
 | |
| 		_generate_skeleton_bone_node(state, scene_parent, scene_root, node_index);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	Node3D *current_node = nullptr;
 | |
| 
 | |
| 	// Is our parent a skeleton
 | |
| 	Skeleton3D *active_skeleton = Object::cast_to<Skeleton3D>(scene_parent);
 | |
| 
 | |
| 	const bool non_bone_parented_to_skeleton = active_skeleton;
 | |
| 
 | |
| 	// skinned meshes must not be placed in a bone attachment.
 | |
| 	if (non_bone_parented_to_skeleton && gltf_node->skin < 0) {
 | |
| 		// Bone Attachment - Parent Case
 | |
| 		BoneAttachment3D *bone_attachment = _generate_bone_attachment(state, active_skeleton, node_index, gltf_node->parent);
 | |
| 
 | |
| 		scene_parent->add_child(bone_attachment);
 | |
| 		bone_attachment->set_owner(scene_root);
 | |
| 
 | |
| 		// There is no gltf_node that represent this, so just directly create a unique name
 | |
| 		bone_attachment->set_name(_gen_unique_name(state, "BoneAttachment3D"));
 | |
| 
 | |
| 		// We change the scene_parent to our bone attachment now. We do not set current_node because we want to make the node
 | |
| 		// and attach it to the bone_attachment
 | |
| 		scene_parent = bone_attachment;
 | |
| 	}
 | |
| 	if (gltf_node->mesh >= 0) {
 | |
| 		current_node = _generate_mesh_instance(state, scene_parent, node_index);
 | |
| 	} else if (gltf_node->camera >= 0) {
 | |
| 		current_node = _generate_camera(state, scene_parent, node_index);
 | |
| 	} else if (gltf_node->light >= 0) {
 | |
| 		current_node = _generate_light(state, scene_parent, node_index);
 | |
| 	}
 | |
| 
 | |
| 	// We still have not managed to make a node.
 | |
| 	if (!current_node) {
 | |
| 		current_node = _generate_spatial(state, scene_parent, node_index);
 | |
| 	}
 | |
| 
 | |
| 	scene_parent->add_child(current_node);
 | |
| 	if (current_node != scene_root) {
 | |
| 		current_node->set_owner(scene_root);
 | |
| 	}
 | |
| 	current_node->set_transform(gltf_node->xform);
 | |
| 	current_node->set_name(gltf_node->get_name());
 | |
| 
 | |
| 	state->scene_nodes.insert(node_index, current_node);
 | |
| 
 | |
| 	for (int i = 0; i < gltf_node->children.size(); ++i) {
 | |
| 		_generate_scene_node(state, current_node, scene_root, gltf_node->children[i]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void GLTFDocument::_generate_skeleton_bone_node(Ref<GLTFState> state, Node *scene_parent, Node3D *scene_root, const GLTFNodeIndex node_index) {
 | |
| 	Ref<GLTFNode> gltf_node = state->nodes[node_index];
 | |
| 
 | |
| 	Node3D *current_node = nullptr;
 | |
| 
 | |
| 	Skeleton3D *skeleton = state->skeletons[gltf_node->skeleton]->godot_skeleton;
 | |
| 	// In this case, this node is already a bone in skeleton.
 | |
| 	const bool is_skinned_mesh = (gltf_node->skin >= 0 && gltf_node->mesh >= 0);
 | |
| 	const bool requires_extra_node = (gltf_node->mesh >= 0 || gltf_node->camera >= 0 || gltf_node->light >= 0);
 | |
| 
 | |
| 	Skeleton3D *active_skeleton = Object::cast_to<Skeleton3D>(scene_parent);
 | |
| 	if (active_skeleton != skeleton) {
 | |
| 		if (active_skeleton) {
 | |
| 			// Bone Attachment - Direct Parented Skeleton Case
 | |
| 			BoneAttachment3D *bone_attachment = _generate_bone_attachment(state, active_skeleton, node_index, gltf_node->parent);
 | |
| 
 | |
| 			scene_parent->add_child(bone_attachment);
 | |
| 			bone_attachment->set_owner(scene_root);
 | |
| 
 | |
| 			// There is no gltf_node that represent this, so just directly create a unique name
 | |
| 			bone_attachment->set_name(_gen_unique_name(state, "BoneAttachment3D"));
 | |
| 
 | |
| 			// We change the scene_parent to our bone attachment now. We do not set current_node because we want to make the node
 | |
| 			// and attach it to the bone_attachment
 | |
| 			scene_parent = bone_attachment;
 | |
| 			WARN_PRINT(vformat("glTF: Generating scene detected direct parented Skeletons at node %d", node_index));
 | |
| 		}
 | |
| 
 | |
| 		// Add it to the scene if it has not already been added
 | |
| 		if (skeleton->get_parent() == nullptr) {
 | |
| 			scene_parent->add_child(skeleton);
 | |
| 			skeleton->set_owner(scene_root);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	active_skeleton = skeleton;
 | |
| 	current_node = skeleton;
 | |
| 
 | |
| 	if (requires_extra_node) {
 | |
| 		// skinned meshes must not be placed in a bone attachment.
 | |
| 		if (!is_skinned_mesh) {
 | |
| 			// Bone Attachment - Same Node Case
 | |
| 			BoneAttachment3D *bone_attachment = _generate_bone_attachment(state, active_skeleton, node_index, node_index);
 | |
| 
 | |
| 			scene_parent->add_child(bone_attachment);
 | |
| 			bone_attachment->set_owner(scene_root);
 | |
| 
 | |
| 			// There is no gltf_node that represent this, so just directly create a unique name
 | |
| 			bone_attachment->set_name(_gen_unique_name(state, "BoneAttachment3D"));
 | |
| 
 | |
| 			// We change the scene_parent to our bone attachment now. We do not set current_node because we want to make the node
 | |
| 			// and attach it to the bone_attachment
 | |
| 			scene_parent = bone_attachment;
 | |
| 		}
 | |
| 
 | |
| 		// We still have not managed to make a node
 | |
| 		if (gltf_node->mesh >= 0) {
 | |
| 			current_node = _generate_mesh_instance(state, scene_parent, node_index);
 | |
| 		} else if (gltf_node->camera >= 0) {
 | |
| 			current_node = _generate_camera(state, scene_parent, node_index);
 | |
| 		} else if (gltf_node->light >= 0) {
 | |
| 			current_node = _generate_light(state, scene_parent, node_index);
 | |
| 		}
 | |
| 
 | |
| 		scene_parent->add_child(current_node);
 | |
| 		if (current_node != scene_root) {
 | |
| 			current_node->set_owner(scene_root);
 | |
| 		}
 | |
| 		// Do not set transform here. Transform is already applied to our bone.
 | |
| 		current_node->set_name(gltf_node->get_name());
 | |
| 	}
 | |
| 
 | |
| 	state->scene_nodes.insert(node_index, current_node);
 | |
| 
 | |
| 	for (int i = 0; i < gltf_node->children.size(); ++i) {
 | |
| 		_generate_scene_node(state, active_skeleton, scene_root, gltf_node->children[i]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| struct EditorSceneImporterGLTFInterpolate {
 | |
| 	T lerp(const T &a, const T &b, float c) const {
 | |
| 		return a + (b - a) * c;
 | |
| 	}
 | |
| 
 | |
| 	T catmull_rom(const T &p0, const T &p1, const T &p2, const T &p3, float t) {
 | |
| 		const float t2 = t * t;
 | |
| 		const float t3 = t2 * t;
 | |
| 
 | |
| 		return 0.5f * ((2.0f * p1) + (-p0 + p2) * t + (2.0f * p0 - 5.0f * p1 + 4.0f * p2 - p3) * t2 + (-p0 + 3.0f * p1 - 3.0f * p2 + p3) * t3);
 | |
| 	}
 | |
| 
 | |
| 	T bezier(T start, T control_1, T control_2, T end, float t) {
 | |
| 		/* Formula from Wikipedia article on Bezier curves. */
 | |
| 		const real_t omt = (1.0 - t);
 | |
| 		const real_t omt2 = omt * omt;
 | |
| 		const real_t omt3 = omt2 * omt;
 | |
| 		const real_t t2 = t * t;
 | |
| 		const real_t t3 = t2 * t;
 | |
| 
 | |
| 		return start * omt3 + control_1 * omt2 * t * 3.0 + control_2 * omt * t2 * 3.0 + end * t3;
 | |
| 	}
 | |
| };
 | |
| 
 | |
| // thank you for existing, partial specialization
 | |
| template <>
 | |
| struct EditorSceneImporterGLTFInterpolate<Quaternion> {
 | |
| 	Quaternion lerp(const Quaternion &a, const Quaternion &b, const float c) const {
 | |
| 		ERR_FAIL_COND_V_MSG(!a.is_normalized(), Quaternion(), "The quaternion \"a\" must be normalized.");
 | |
| 		ERR_FAIL_COND_V_MSG(!b.is_normalized(), Quaternion(), "The quaternion \"b\" must be normalized.");
 | |
| 
 | |
| 		return a.slerp(b, c).normalized();
 | |
| 	}
 | |
| 
 | |
| 	Quaternion catmull_rom(const Quaternion &p0, const Quaternion &p1, const Quaternion &p2, const Quaternion &p3, const float c) {
 | |
| 		ERR_FAIL_COND_V_MSG(!p1.is_normalized(), Quaternion(), "The quaternion \"p1\" must be normalized.");
 | |
| 		ERR_FAIL_COND_V_MSG(!p2.is_normalized(), Quaternion(), "The quaternion \"p2\" must be normalized.");
 | |
| 
 | |
| 		return p1.slerp(p2, c).normalized();
 | |
| 	}
 | |
| 
 | |
| 	Quaternion bezier(const Quaternion start, const Quaternion control_1, const Quaternion control_2, const Quaternion end, const float t) {
 | |
| 		ERR_FAIL_COND_V_MSG(!start.is_normalized(), Quaternion(), "The start quaternion must be normalized.");
 | |
| 		ERR_FAIL_COND_V_MSG(!end.is_normalized(), Quaternion(), "The end quaternion must be normalized.");
 | |
| 
 | |
| 		return start.slerp(end, t).normalized();
 | |
| 	}
 | |
| };
 | |
| 
 | |
| template <class T>
 | |
| T GLTFDocument::_interpolate_track(const Vector<float> &p_times, const Vector<T> &p_values, const float p_time, const GLTFAnimation::Interpolation p_interp) {
 | |
| 	ERR_FAIL_COND_V(!p_values.size(), T());
 | |
| 	if (p_times.size() != p_values.size()) {
 | |
| 		ERR_PRINT_ONCE("The interpolated values are not corresponding to its times.");
 | |
| 		return p_values[0];
 | |
| 	}
 | |
| 	//could use binary search, worth it?
 | |
| 	int idx = -1;
 | |
| 	for (int i = 0; i < p_times.size(); i++) {
 | |
| 		if (p_times[i] > p_time) {
 | |
| 			break;
 | |
| 		}
 | |
| 		idx++;
 | |
| 	}
 | |
| 
 | |
| 	EditorSceneImporterGLTFInterpolate<T> interp;
 | |
| 
 | |
| 	switch (p_interp) {
 | |
| 		case GLTFAnimation::INTERP_LINEAR: {
 | |
| 			if (idx == -1) {
 | |
| 				return p_values[0];
 | |
| 			} else if (idx >= p_times.size() - 1) {
 | |
| 				return p_values[p_times.size() - 1];
 | |
| 			}
 | |
| 
 | |
| 			const float c = (p_time - p_times[idx]) / (p_times[idx + 1] - p_times[idx]);
 | |
| 
 | |
| 			return interp.lerp(p_values[idx], p_values[idx + 1], c);
 | |
| 		} break;
 | |
| 		case GLTFAnimation::INTERP_STEP: {
 | |
| 			if (idx == -1) {
 | |
| 				return p_values[0];
 | |
| 			} else if (idx >= p_times.size() - 1) {
 | |
| 				return p_values[p_times.size() - 1];
 | |
| 			}
 | |
| 
 | |
| 			return p_values[idx];
 | |
| 		} break;
 | |
| 		case GLTFAnimation::INTERP_CATMULLROMSPLINE: {
 | |
| 			if (idx == -1) {
 | |
| 				return p_values[1];
 | |
| 			} else if (idx >= p_times.size() - 1) {
 | |
| 				return p_values[1 + p_times.size() - 1];
 | |
| 			}
 | |
| 
 | |
| 			const float c = (p_time - p_times[idx]) / (p_times[idx + 1] - p_times[idx]);
 | |
| 
 | |
| 			return interp.catmull_rom(p_values[idx - 1], p_values[idx], p_values[idx + 1], p_values[idx + 3], c);
 | |
| 		} break;
 | |
| 		case GLTFAnimation::INTERP_CUBIC_SPLINE: {
 | |
| 			if (idx == -1) {
 | |
| 				return p_values[1];
 | |
| 			} else if (idx >= p_times.size() - 1) {
 | |
| 				return p_values[(p_times.size() - 1) * 3 + 1];
 | |
| 			}
 | |
| 
 | |
| 			const float c = (p_time - p_times[idx]) / (p_times[idx + 1] - p_times[idx]);
 | |
| 
 | |
| 			const T from = p_values[idx * 3 + 1];
 | |
| 			const T c1 = from + p_values[idx * 3 + 2];
 | |
| 			const T to = p_values[idx * 3 + 4];
 | |
| 			const T c2 = to + p_values[idx * 3 + 3];
 | |
| 
 | |
| 			return interp.bezier(from, c1, c2, to, c);
 | |
| 		} break;
 | |
| 	}
 | |
| 
 | |
| 	ERR_FAIL_V(p_values[0]);
 | |
| }
 | |
| 
 | |
| void GLTFDocument::_import_animation(Ref<GLTFState> state, AnimationPlayer *ap, const GLTFAnimationIndex index, const int bake_fps) {
 | |
| 	Ref<GLTFAnimation> anim = state->animations[index];
 | |
| 
 | |
| 	String name = anim->get_name();
 | |
| 	if (name.is_empty()) {
 | |
| 		// No node represent these, and they are not in the hierarchy, so just make a unique name
 | |
| 		name = _gen_unique_name(state, "Animation");
 | |
| 	}
 | |
| 
 | |
| 	Ref<Animation> animation;
 | |
| 	animation.instantiate();
 | |
| 	animation->set_name(name);
 | |
| 
 | |
| 	if (anim->get_loop()) {
 | |
| 		animation->set_loop(true);
 | |
| 	}
 | |
| 
 | |
| 	float length = 0.0;
 | |
| 
 | |
| 	for (Map<int, GLTFAnimation::Track>::Element *track_i = anim->get_tracks().front(); track_i; track_i = track_i->next()) {
 | |
| 		const GLTFAnimation::Track &track = track_i->get();
 | |
| 		//need to find the path: for skeletons, weight tracks will affect the mesh
 | |
| 		NodePath node_path;
 | |
| 		//for skeletons, transform tracks always affect bones
 | |
| 		NodePath transform_node_path;
 | |
| 
 | |
| 		GLTFNodeIndex node_index = track_i->key();
 | |
| 
 | |
| 		const Ref<GLTFNode> gltf_node = state->nodes[track_i->key()];
 | |
| 
 | |
| 		Node *root = ap->get_parent();
 | |
| 		ERR_FAIL_COND(root == nullptr);
 | |
| 		Map<GLTFNodeIndex, Node *>::Element *node_element = state->scene_nodes.find(node_index);
 | |
| 		ERR_CONTINUE_MSG(node_element == nullptr, vformat("Unable to find node %d for animation", node_index));
 | |
| 		node_path = root->get_path_to(node_element->get());
 | |
| 
 | |
| 		if (gltf_node->skeleton >= 0) {
 | |
| 			const Skeleton3D *sk = state->skeletons[gltf_node->skeleton]->godot_skeleton;
 | |
| 			ERR_FAIL_COND(sk == nullptr);
 | |
| 
 | |
| 			const String path = ap->get_parent()->get_path_to(sk);
 | |
| 			const String bone = gltf_node->get_name();
 | |
| 			transform_node_path = path + ":" + bone;
 | |
| 		} else {
 | |
| 			transform_node_path = node_path;
 | |
| 		}
 | |
| 
 | |
| 		for (int i = 0; i < track.rotation_track.times.size(); i++) {
 | |
| 			length = MAX(length, track.rotation_track.times[i]);
 | |
| 		}
 | |
| 		for (int i = 0; i < track.translation_track.times.size(); i++) {
 | |
| 			length = MAX(length, track.translation_track.times[i]);
 | |
| 		}
 | |
| 		for (int i = 0; i < track.scale_track.times.size(); i++) {
 | |
| 			length = MAX(length, track.scale_track.times[i]);
 | |
| 		}
 | |
| 
 | |
| 		for (int i = 0; i < track.weight_tracks.size(); i++) {
 | |
| 			for (int j = 0; j < track.weight_tracks[i].times.size(); j++) {
 | |
| 				length = MAX(length, track.weight_tracks[i].times[j]);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// Animated TRS properties will not affect a skinned mesh.
 | |
| 		const bool transform_affects_skinned_mesh_instance = gltf_node->skeleton < 0 && gltf_node->skin >= 0;
 | |
| 		if ((track.rotation_track.values.size() || track.translation_track.values.size() || track.scale_track.values.size()) && !transform_affects_skinned_mesh_instance) {
 | |
| 			//make transform track
 | |
| 			int track_idx = animation->get_track_count();
 | |
| 			animation->add_track(Animation::TYPE_TRANSFORM3D);
 | |
| 			animation->track_set_path(track_idx, transform_node_path);
 | |
| 			//first determine animation length
 | |
| 
 | |
| 			const double increment = 1.0 / bake_fps;
 | |
| 			double time = 0.0;
 | |
| 
 | |
| 			Vector3 base_pos;
 | |
| 			Quaternion base_rot;
 | |
| 			Vector3 base_scale = Vector3(1, 1, 1);
 | |
| 
 | |
| 			if (!track.rotation_track.values.size()) {
 | |
| 				base_rot = state->nodes[track_i->key()]->rotation.normalized();
 | |
| 			}
 | |
| 
 | |
| 			if (!track.translation_track.values.size()) {
 | |
| 				base_pos = state->nodes[track_i->key()]->translation;
 | |
| 			}
 | |
| 
 | |
| 			if (!track.scale_track.values.size()) {
 | |
| 				base_scale = state->nodes[track_i->key()]->scale;
 | |
| 			}
 | |
| 
 | |
| 			bool last = false;
 | |
| 			while (true) {
 | |
| 				Vector3 pos = base_pos;
 | |
| 				Quaternion rot = base_rot;
 | |
| 				Vector3 scale = base_scale;
 | |
| 
 | |
| 				if (track.translation_track.times.size()) {
 | |
| 					pos = _interpolate_track<Vector3>(track.translation_track.times, track.translation_track.values, time, track.translation_track.interpolation);
 | |
| 				}
 | |
| 
 | |
| 				if (track.rotation_track.times.size()) {
 | |
| 					rot = _interpolate_track<Quaternion>(track.rotation_track.times, track.rotation_track.values, time, track.rotation_track.interpolation);
 | |
| 				}
 | |
| 
 | |
| 				if (track.scale_track.times.size()) {
 | |
| 					scale = _interpolate_track<Vector3>(track.scale_track.times, track.scale_track.values, time, track.scale_track.interpolation);
 | |
| 				}
 | |
| 
 | |
| 				if (gltf_node->skeleton >= 0) {
 | |
| 					Transform3D xform;
 | |
| 					xform.basis.set_quaternion_scale(rot, scale);
 | |
| 					xform.origin = pos;
 | |
| 
 | |
| 					const Skeleton3D *skeleton = state->skeletons[gltf_node->skeleton]->godot_skeleton;
 | |
| 					const int bone_idx = skeleton->find_bone(gltf_node->get_name());
 | |
| 					xform = skeleton->get_bone_rest(bone_idx).affine_inverse() * xform;
 | |
| 
 | |
| 					rot = xform.basis.get_rotation_quaternion();
 | |
| 					rot.normalize();
 | |
| 					scale = xform.basis.get_scale();
 | |
| 					pos = xform.origin;
 | |
| 				}
 | |
| 
 | |
| 				animation->transform_track_insert_key(track_idx, time, pos, rot, scale);
 | |
| 
 | |
| 				if (last) {
 | |
| 					break;
 | |
| 				}
 | |
| 				time += increment;
 | |
| 				if (time >= length) {
 | |
| 					last = true;
 | |
| 					time = length;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		for (int i = 0; i < track.weight_tracks.size(); i++) {
 | |
| 			ERR_CONTINUE(gltf_node->mesh < 0 || gltf_node->mesh >= state->meshes.size());
 | |
| 			Ref<GLTFMesh> mesh = state->meshes[gltf_node->mesh];
 | |
| 			ERR_CONTINUE(mesh.is_null());
 | |
| 			ERR_CONTINUE(mesh->get_mesh().is_null());
 | |
| 			ERR_CONTINUE(mesh->get_mesh()->get_mesh().is_null());
 | |
| 			const String prop = "blend_shapes/" + mesh->get_mesh()->get_blend_shape_name(i);
 | |
| 
 | |
| 			const String blend_path = String(node_path) + ":" + prop;
 | |
| 
 | |
| 			const int track_idx = animation->get_track_count();
 | |
| 			animation->add_track(Animation::TYPE_VALUE);
 | |
| 			animation->track_set_path(track_idx, blend_path);
 | |
| 
 | |
| 			// Only LINEAR and STEP (NEAREST) can be supported out of the box by Godot's Animation,
 | |
| 			// the other modes have to be baked.
 | |
| 			GLTFAnimation::Interpolation gltf_interp = track.weight_tracks[i].interpolation;
 | |
| 			if (gltf_interp == GLTFAnimation::INTERP_LINEAR || gltf_interp == GLTFAnimation::INTERP_STEP) {
 | |
| 				animation->track_set_interpolation_type(track_idx, gltf_interp == GLTFAnimation::INTERP_STEP ? Animation::INTERPOLATION_NEAREST : Animation::INTERPOLATION_LINEAR);
 | |
| 				for (int j = 0; j < track.weight_tracks[i].times.size(); j++) {
 | |
| 					const float t = track.weight_tracks[i].times[j];
 | |
| 					const float attribs = track.weight_tracks[i].values[j];
 | |
| 					animation->track_insert_key(track_idx, t, attribs);
 | |
| 				}
 | |
| 			} else {
 | |
| 				// CATMULLROMSPLINE or CUBIC_SPLINE have to be baked, apologies.
 | |
| 				const double increment = 1.0 / bake_fps;
 | |
| 				double time = 0.0;
 | |
| 				bool last = false;
 | |
| 				while (true) {
 | |
| 					_interpolate_track<float>(track.weight_tracks[i].times, track.weight_tracks[i].values, time, gltf_interp);
 | |
| 					if (last) {
 | |
| 						break;
 | |
| 					}
 | |
| 					time += increment;
 | |
| 					if (time >= length) {
 | |
| 						last = true;
 | |
| 						time = length;
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	animation->set_length(length);
 | |
| 
 | |
| 	ap->add_animation(name, animation);
 | |
| }
 | |
| 
 | |
| void GLTFDocument::_convert_mesh_instances(Ref<GLTFState> state) {
 | |
| 	for (GLTFNodeIndex mi_node_i = 0; mi_node_i < state->nodes.size(); ++mi_node_i) {
 | |
| 		Ref<GLTFNode> node = state->nodes[mi_node_i];
 | |
| 
 | |
| 		if (node->mesh < 0) {
 | |
| 			continue;
 | |
| 		}
 | |
| 		Array json_skins;
 | |
| 		if (state->json.has("skins")) {
 | |
| 			json_skins = state->json["skins"];
 | |
| 		}
 | |
| 		Map<GLTFNodeIndex, Node *>::Element *mi_element = state->scene_nodes.find(mi_node_i);
 | |
| 		if (!mi_element) {
 | |
| 			continue;
 | |
| 		}
 | |
| 		MeshInstance3D *mi = Object::cast_to<MeshInstance3D>(mi_element->get());
 | |
| 		ERR_CONTINUE(!mi);
 | |
| 		Transform3D mi_xform = mi->get_transform();
 | |
| 		node->scale = mi_xform.basis.get_scale();
 | |
| 		node->rotation = mi_xform.basis.get_rotation_quaternion();
 | |
| 		node->translation = mi_xform.origin;
 | |
| 
 | |
| 		Dictionary json_skin;
 | |
| 		Skeleton3D *skeleton = Object::cast_to<Skeleton3D>(mi->get_node(mi->get_skeleton_path()));
 | |
| 		if (!skeleton) {
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (!skeleton->get_bone_count()) {
 | |
| 			continue;
 | |
| 		}
 | |
| 		Ref<Skin> skin = mi->get_skin();
 | |
| 		if (skin.is_null()) {
 | |
| 			skin = skeleton->register_skin(nullptr)->get_skin();
 | |
| 		}
 | |
| 		Ref<GLTFSkin> gltf_skin;
 | |
| 		gltf_skin.instantiate();
 | |
| 		Array json_joints;
 | |
| 		GLTFSkeletonIndex skeleton_gltf_i = -1;
 | |
| 
 | |
| 		NodePath skeleton_path = mi->get_skeleton_path();
 | |
| 		bool is_unique = true;
 | |
| 		for (int32_t skin_i = 0; skin_i < state->skins.size(); skin_i++) {
 | |
| 			Ref<GLTFSkin> prev_gltf_skin = state->skins.write[skin_i];
 | |
| 			if (gltf_skin.is_null()) {
 | |
| 				continue;
 | |
| 			}
 | |
| 			GLTFSkeletonIndex prev_skeleton = prev_gltf_skin->get_skeleton();
 | |
| 			if (prev_skeleton == -1 || prev_skeleton >= state->skeletons.size()) {
 | |
| 				continue;
 | |
| 			}
 | |
| 			if (prev_gltf_skin->get_godot_skin() == skin && state->skeletons[prev_skeleton]->godot_skeleton == skeleton) {
 | |
| 				node->skin = skin_i;
 | |
| 				node->skeleton = prev_skeleton;
 | |
| 				is_unique = false;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		if (!is_unique) {
 | |
| 			continue;
 | |
| 		}
 | |
| 		GLTFSkeletonIndex skeleton_i = _convert_skeleton(state, skeleton);
 | |
| 		skeleton_gltf_i = skeleton_i;
 | |
| 		ERR_CONTINUE(skeleton_gltf_i == -1);
 | |
| 		gltf_skin->skeleton = skeleton_gltf_i;
 | |
| 		Ref<GLTFSkeleton> gltf_skeleton = state->skeletons.write[skeleton_gltf_i];
 | |
| 		for (int32_t bind_i = 0; bind_i < skin->get_bind_count(); bind_i++) {
 | |
| 			String godot_bone_name = skin->get_bind_name(bind_i);
 | |
| 			if (godot_bone_name.is_empty()) {
 | |
| 				int32_t bone = skin->get_bind_bone(bind_i);
 | |
| 				godot_bone_name = skeleton->get_bone_name(bone);
 | |
| 			}
 | |
| 			if (skeleton->find_bone(godot_bone_name) == -1) {
 | |
| 				godot_bone_name = skeleton->get_bone_name(0);
 | |
| 			}
 | |
| 			BoneId bone_index = skeleton->find_bone(godot_bone_name);
 | |
| 			ERR_CONTINUE(bone_index == -1);
 | |
| 			Ref<GLTFNode> joint_node;
 | |
| 			joint_node.instantiate();
 | |
| 			String gltf_bone_name = _gen_unique_bone_name(state, skeleton_gltf_i, godot_bone_name);
 | |
| 			joint_node->set_name(gltf_bone_name);
 | |
| 
 | |
| 			Transform3D bone_rest_xform = skeleton->get_bone_rest(bone_index);
 | |
| 			joint_node->scale = bone_rest_xform.basis.get_scale();
 | |
| 			joint_node->rotation = bone_rest_xform.basis.get_rotation_quaternion();
 | |
| 			joint_node->translation = bone_rest_xform.origin;
 | |
| 			joint_node->joint = true;
 | |
| 
 | |
| 			int32_t joint_node_i = state->nodes.size();
 | |
| 			state->nodes.push_back(joint_node);
 | |
| 			gltf_skeleton->godot_bone_node.insert(bone_index, joint_node_i);
 | |
| 			int32_t joint_index = gltf_skin->joints.size();
 | |
| 			gltf_skin->joint_i_to_bone_i.insert(joint_index, bone_index);
 | |
| 			gltf_skin->joints.push_back(joint_node_i);
 | |
| 			gltf_skin->joints_original.push_back(joint_node_i);
 | |
| 			gltf_skin->inverse_binds.push_back(skin->get_bind_pose(bind_i));
 | |
| 			json_joints.push_back(joint_node_i);
 | |
| 			for (Map<GLTFNodeIndex, Node *>::Element *skin_scene_node_i = state->scene_nodes.front(); skin_scene_node_i; skin_scene_node_i = skin_scene_node_i->next()) {
 | |
| 				if (skin_scene_node_i->get() == skeleton) {
 | |
| 					gltf_skin->skin_root = skin_scene_node_i->key();
 | |
| 					json_skin["skeleton"] = skin_scene_node_i->key();
 | |
| 				}
 | |
| 			}
 | |
| 			gltf_skin->godot_skin = skin;
 | |
| 			gltf_skin->set_name(_gen_unique_name(state, skin->get_name()));
 | |
| 		}
 | |
| 		for (int32_t bind_i = 0; bind_i < skin->get_bind_count(); bind_i++) {
 | |
| 			String bone_name = skeleton->get_bone_name(bind_i);
 | |
| 			String godot_bone_name = skin->get_bind_name(bind_i);
 | |
| 			int32_t bone = -1;
 | |
| 			if (skin->get_bind_bone(bind_i) != -1) {
 | |
| 				bone = skin->get_bind_bone(bind_i);
 | |
| 				godot_bone_name = skeleton->get_bone_name(bone);
 | |
| 			}
 | |
| 			bone = skeleton->find_bone(godot_bone_name);
 | |
| 			if (bone == -1) {
 | |
| 				continue;
 | |
| 			}
 | |
| 			BoneId bone_parent = skeleton->get_bone_parent(bone);
 | |
| 			GLTFNodeIndex joint_node_i = gltf_skeleton->godot_bone_node[bone];
 | |
| 			ERR_CONTINUE(joint_node_i >= state->nodes.size());
 | |
| 			if (bone_parent != -1) {
 | |
| 				GLTFNodeIndex parent_joint_gltf_node = gltf_skin->joints[bone_parent];
 | |
| 				Ref<GLTFNode> parent_joint_node = state->nodes.write[parent_joint_gltf_node];
 | |
| 				parent_joint_node->children.push_back(joint_node_i);
 | |
| 			} else {
 | |
| 				Node *node_parent = skeleton->get_parent();
 | |
| 				ERR_CONTINUE(!node_parent);
 | |
| 				for (Map<GLTFNodeIndex, Node *>::Element *E = state->scene_nodes.front(); E; E = E->next()) {
 | |
| 					if (E->get() == node_parent) {
 | |
| 						GLTFNodeIndex gltf_node_i = E->key();
 | |
| 						Ref<GLTFNode> gltf_node = state->nodes.write[gltf_node_i];
 | |
| 						gltf_node->children.push_back(joint_node_i);
 | |
| 						break;
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		_expand_skin(state, gltf_skin);
 | |
| 		node->skin = state->skins.size();
 | |
| 		state->skins.push_back(gltf_skin);
 | |
| 
 | |
| 		json_skin["inverseBindMatrices"] = _encode_accessor_as_xform(state, gltf_skin->inverse_binds, false);
 | |
| 		json_skin["joints"] = json_joints;
 | |
| 		json_skin["name"] = gltf_skin->get_name();
 | |
| 		json_skins.push_back(json_skin);
 | |
| 		state->json["skins"] = json_skins;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| float GLTFDocument::solve_metallic(float p_dielectric_specular, float diffuse, float specular, float p_one_minus_specular_strength) {
 | |
| 	if (specular <= p_dielectric_specular) {
 | |
| 		return 0.0f;
 | |
| 	}
 | |
| 
 | |
| 	const float a = p_dielectric_specular;
 | |
| 	const float b = diffuse * p_one_minus_specular_strength / (1.0f - p_dielectric_specular) + specular - 2.0f * p_dielectric_specular;
 | |
| 	const float c = p_dielectric_specular - specular;
 | |
| 	const float D = b * b - 4.0f * a * c;
 | |
| 	return CLAMP((-b + Math::sqrt(D)) / (2.0f * a), 0.0f, 1.0f);
 | |
| }
 | |
| 
 | |
| float GLTFDocument::get_perceived_brightness(const Color p_color) {
 | |
| 	const Color coeff = Color(R_BRIGHTNESS_COEFF, G_BRIGHTNESS_COEFF, B_BRIGHTNESS_COEFF);
 | |
| 	const Color value = coeff * (p_color * p_color);
 | |
| 
 | |
| 	const float r = value.r;
 | |
| 	const float g = value.g;
 | |
| 	const float b = value.b;
 | |
| 
 | |
| 	return Math::sqrt(r + g + b);
 | |
| }
 | |
| 
 | |
| float GLTFDocument::get_max_component(const Color &p_color) {
 | |
| 	const float r = p_color.r;
 | |
| 	const float g = p_color.g;
 | |
| 	const float b = p_color.b;
 | |
| 
 | |
| 	return MAX(MAX(r, g), b);
 | |
| }
 | |
| 
 | |
| void GLTFDocument::_process_mesh_instances(Ref<GLTFState> state, Node *scene_root) {
 | |
| 	for (GLTFNodeIndex node_i = 0; node_i < state->nodes.size(); ++node_i) {
 | |
| 		Ref<GLTFNode> node = state->nodes[node_i];
 | |
| 
 | |
| 		if (node->skin >= 0 && node->mesh >= 0) {
 | |
| 			const GLTFSkinIndex skin_i = node->skin;
 | |
| 
 | |
| 			Map<GLTFNodeIndex, Node *>::Element *mi_element = state->scene_nodes.find(node_i);
 | |
| 			ERR_CONTINUE_MSG(mi_element == nullptr, vformat("Unable to find node %d", node_i));
 | |
| 
 | |
| 			EditorSceneImporterMeshNode3D *mi = Object::cast_to<EditorSceneImporterMeshNode3D>(mi_element->get());
 | |
| 			ERR_CONTINUE_MSG(mi == nullptr, vformat("Unable to cast node %d of type %s to EditorSceneImporterMeshNode3D", node_i, mi_element->get()->get_class_name()));
 | |
| 
 | |
| 			const GLTFSkeletonIndex skel_i = state->skins.write[node->skin]->skeleton;
 | |
| 			Ref<GLTFSkeleton> gltf_skeleton = state->skeletons.write[skel_i];
 | |
| 			Skeleton3D *skeleton = gltf_skeleton->godot_skeleton;
 | |
| 			ERR_CONTINUE_MSG(skeleton == nullptr, vformat("Unable to find Skeleton for node %d skin %d", node_i, skin_i));
 | |
| 
 | |
| 			mi->get_parent()->remove_child(mi);
 | |
| 			skeleton->add_child(mi);
 | |
| 			mi->set_owner(skeleton->get_owner());
 | |
| 
 | |
| 			mi->set_skin(state->skins.write[skin_i]->godot_skin);
 | |
| 			mi->set_skeleton_path(mi->get_path_to(skeleton));
 | |
| 			mi->set_transform(Transform3D());
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| GLTFAnimation::Track GLTFDocument::_convert_animation_track(Ref<GLTFState> state, GLTFAnimation::Track p_track, Ref<Animation> p_animation, Transform3D p_bone_rest, int32_t p_track_i, GLTFNodeIndex p_node_i) {
 | |
| 	Animation::InterpolationType interpolation = p_animation->track_get_interpolation_type(p_track_i);
 | |
| 
 | |
| 	GLTFAnimation::Interpolation gltf_interpolation = GLTFAnimation::INTERP_LINEAR;
 | |
| 	if (interpolation == Animation::InterpolationType::INTERPOLATION_LINEAR) {
 | |
| 		gltf_interpolation = GLTFAnimation::INTERP_LINEAR;
 | |
| 	} else if (interpolation == Animation::InterpolationType::INTERPOLATION_NEAREST) {
 | |
| 		gltf_interpolation = GLTFAnimation::INTERP_STEP;
 | |
| 	} else if (interpolation == Animation::InterpolationType::INTERPOLATION_CUBIC) {
 | |
| 		gltf_interpolation = GLTFAnimation::INTERP_CUBIC_SPLINE;
 | |
| 	}
 | |
| 	Animation::TrackType track_type = p_animation->track_get_type(p_track_i);
 | |
| 	int32_t key_count = p_animation->track_get_key_count(p_track_i);
 | |
| 	Vector<float> times;
 | |
| 	times.resize(key_count);
 | |
| 	String path = p_animation->track_get_path(p_track_i);
 | |
| 	for (int32_t key_i = 0; key_i < key_count; key_i++) {
 | |
| 		times.write[key_i] = p_animation->track_get_key_time(p_track_i, key_i);
 | |
| 	}
 | |
| 	const float BAKE_FPS = 30.0f;
 | |
| 	if (track_type == Animation::TYPE_TRANSFORM3D) {
 | |
| 		p_track.translation_track.times = times;
 | |
| 		p_track.translation_track.interpolation = gltf_interpolation;
 | |
| 		p_track.rotation_track.times = times;
 | |
| 		p_track.rotation_track.interpolation = gltf_interpolation;
 | |
| 		p_track.scale_track.times = times;
 | |
| 		p_track.scale_track.interpolation = gltf_interpolation;
 | |
| 
 | |
| 		p_track.scale_track.values.resize(key_count);
 | |
| 		p_track.scale_track.interpolation = gltf_interpolation;
 | |
| 		p_track.translation_track.values.resize(key_count);
 | |
| 		p_track.translation_track.interpolation = gltf_interpolation;
 | |
| 		p_track.rotation_track.values.resize(key_count);
 | |
| 		p_track.rotation_track.interpolation = gltf_interpolation;
 | |
| 		for (int32_t key_i = 0; key_i < key_count; key_i++) {
 | |
| 			Vector3 translation;
 | |
| 			Quaternion rotation;
 | |
| 			Vector3 scale;
 | |
| 			Error err = p_animation->transform_track_get_key(p_track_i, key_i, &translation, &rotation, &scale);
 | |
| 			ERR_CONTINUE(err != OK);
 | |
| 			Transform3D xform;
 | |
| 			xform.basis.set_quaternion_scale(rotation, scale);
 | |
| 			xform.origin = translation;
 | |
| 			xform = p_bone_rest * xform;
 | |
| 			p_track.translation_track.values.write[key_i] = xform.get_origin();
 | |
| 			p_track.rotation_track.values.write[key_i] = xform.basis.get_rotation_quaternion();
 | |
| 			p_track.scale_track.values.write[key_i] = xform.basis.get_scale();
 | |
| 		}
 | |
| 	} else if (path.find(":transform") != -1) {
 | |
| 		p_track.translation_track.times = times;
 | |
| 		p_track.translation_track.interpolation = gltf_interpolation;
 | |
| 		p_track.rotation_track.times = times;
 | |
| 		p_track.rotation_track.interpolation = gltf_interpolation;
 | |
| 		p_track.scale_track.times = times;
 | |
| 		p_track.scale_track.interpolation = gltf_interpolation;
 | |
| 
 | |
| 		p_track.scale_track.values.resize(key_count);
 | |
| 		p_track.scale_track.interpolation = gltf_interpolation;
 | |
| 		p_track.translation_track.values.resize(key_count);
 | |
| 		p_track.translation_track.interpolation = gltf_interpolation;
 | |
| 		p_track.rotation_track.values.resize(key_count);
 | |
| 		p_track.rotation_track.interpolation = gltf_interpolation;
 | |
| 		for (int32_t key_i = 0; key_i < key_count; key_i++) {
 | |
| 			Transform3D xform = p_animation->track_get_key_value(p_track_i, key_i);
 | |
| 			p_track.translation_track.values.write[key_i] = xform.get_origin();
 | |
| 			p_track.rotation_track.values.write[key_i] = xform.basis.get_rotation_quaternion();
 | |
| 			p_track.scale_track.values.write[key_i] = xform.basis.get_scale();
 | |
| 		}
 | |
| 	} else if (track_type == Animation::TYPE_VALUE) {
 | |
| 		if (path.find("/rotation_quat") != -1) {
 | |
| 			p_track.rotation_track.times = times;
 | |
| 			p_track.rotation_track.interpolation = gltf_interpolation;
 | |
| 
 | |
| 			p_track.rotation_track.values.resize(key_count);
 | |
| 			p_track.rotation_track.interpolation = gltf_interpolation;
 | |
| 
 | |
| 			for (int32_t key_i = 0; key_i < key_count; key_i++) {
 | |
| 				Quaternion rotation_track = p_animation->track_get_key_value(p_track_i, key_i);
 | |
| 				p_track.rotation_track.values.write[key_i] = rotation_track;
 | |
| 			}
 | |
| 		} else if (path.find(":translation") != -1) {
 | |
| 			p_track.translation_track.times = times;
 | |
| 			p_track.translation_track.interpolation = gltf_interpolation;
 | |
| 
 | |
| 			p_track.translation_track.values.resize(key_count);
 | |
| 			p_track.translation_track.interpolation = gltf_interpolation;
 | |
| 
 | |
| 			for (int32_t key_i = 0; key_i < key_count; key_i++) {
 | |
| 				Vector3 translation = p_animation->track_get_key_value(p_track_i, key_i);
 | |
| 				p_track.translation_track.values.write[key_i] = translation;
 | |
| 			}
 | |
| 		} else if (path.find(":rotation") != -1) {
 | |
| 			p_track.rotation_track.times = times;
 | |
| 			p_track.rotation_track.interpolation = gltf_interpolation;
 | |
| 
 | |
| 			p_track.rotation_track.values.resize(key_count);
 | |
| 			p_track.rotation_track.interpolation = gltf_interpolation;
 | |
| 
 | |
| 			for (int32_t key_i = 0; key_i < key_count; key_i++) {
 | |
| 				Vector3 rotation_radian = p_animation->track_get_key_value(p_track_i, key_i);
 | |
| 				p_track.rotation_track.values.write[key_i] = Quaternion(rotation_radian);
 | |
| 			}
 | |
| 		} else if (path.find(":scale") != -1) {
 | |
| 			p_track.scale_track.times = times;
 | |
| 			p_track.scale_track.interpolation = gltf_interpolation;
 | |
| 
 | |
| 			p_track.scale_track.values.resize(key_count);
 | |
| 			p_track.scale_track.interpolation = gltf_interpolation;
 | |
| 
 | |
| 			for (int32_t key_i = 0; key_i < key_count; key_i++) {
 | |
| 				Vector3 scale_track = p_animation->track_get_key_value(p_track_i, key_i);
 | |
| 				p_track.scale_track.values.write[key_i] = scale_track;
 | |
| 			}
 | |
| 		}
 | |
| 	} else if (track_type == Animation::TYPE_BEZIER) {
 | |
| 		if (path.find("/scale") != -1) {
 | |
| 			const int32_t keys = p_animation->track_get_key_time(p_track_i, key_count - 1) * BAKE_FPS;
 | |
| 			if (!p_track.scale_track.times.size()) {
 | |
| 				Vector<float> new_times;
 | |
| 				new_times.resize(keys);
 | |
| 				for (int32_t key_i = 0; key_i < keys; key_i++) {
 | |
| 					new_times.write[key_i] = key_i / BAKE_FPS;
 | |
| 				}
 | |
| 				p_track.scale_track.times = new_times;
 | |
| 				p_track.scale_track.interpolation = gltf_interpolation;
 | |
| 
 | |
| 				p_track.scale_track.values.resize(keys);
 | |
| 
 | |
| 				for (int32_t key_i = 0; key_i < keys; key_i++) {
 | |
| 					p_track.scale_track.values.write[key_i] = Vector3(1.0f, 1.0f, 1.0f);
 | |
| 				}
 | |
| 				p_track.scale_track.interpolation = gltf_interpolation;
 | |
| 			}
 | |
| 
 | |
| 			for (int32_t key_i = 0; key_i < keys; key_i++) {
 | |
| 				Vector3 bezier_track = p_track.scale_track.values[key_i];
 | |
| 				if (path.find("/scale:x") != -1) {
 | |
| 					bezier_track.x = p_animation->bezier_track_interpolate(p_track_i, key_i / BAKE_FPS);
 | |
| 					bezier_track.x = p_bone_rest.affine_inverse().basis.get_scale().x * bezier_track.x;
 | |
| 				} else if (path.find("/scale:y") != -1) {
 | |
| 					bezier_track.y = p_animation->bezier_track_interpolate(p_track_i, key_i / BAKE_FPS);
 | |
| 					bezier_track.y = p_bone_rest.affine_inverse().basis.get_scale().y * bezier_track.y;
 | |
| 				} else if (path.find("/scale:z") != -1) {
 | |
| 					bezier_track.z = p_animation->bezier_track_interpolate(p_track_i, key_i / BAKE_FPS);
 | |
| 					bezier_track.z = p_bone_rest.affine_inverse().basis.get_scale().z * bezier_track.z;
 | |
| 				}
 | |
| 				p_track.scale_track.values.write[key_i] = bezier_track;
 | |
| 			}
 | |
| 		} else if (path.find("/translation") != -1) {
 | |
| 			const int32_t keys = p_animation->track_get_key_time(p_track_i, key_count - 1) * BAKE_FPS;
 | |
| 			if (!p_track.translation_track.times.size()) {
 | |
| 				Vector<float> new_times;
 | |
| 				new_times.resize(keys);
 | |
| 				for (int32_t key_i = 0; key_i < keys; key_i++) {
 | |
| 					new_times.write[key_i] = key_i / BAKE_FPS;
 | |
| 				}
 | |
| 				p_track.translation_track.times = new_times;
 | |
| 				p_track.translation_track.interpolation = gltf_interpolation;
 | |
| 
 | |
| 				p_track.translation_track.values.resize(keys);
 | |
| 				p_track.translation_track.interpolation = gltf_interpolation;
 | |
| 			}
 | |
| 
 | |
| 			for (int32_t key_i = 0; key_i < keys; key_i++) {
 | |
| 				Vector3 bezier_track = p_track.translation_track.values[key_i];
 | |
| 				if (path.find("/translation:x") != -1) {
 | |
| 					bezier_track.x = p_animation->bezier_track_interpolate(p_track_i, key_i / BAKE_FPS);
 | |
| 					bezier_track.x = p_bone_rest.affine_inverse().origin.x * bezier_track.x;
 | |
| 				} else if (path.find("/translation:y") != -1) {
 | |
| 					bezier_track.y = p_animation->bezier_track_interpolate(p_track_i, key_i / BAKE_FPS);
 | |
| 					bezier_track.y = p_bone_rest.affine_inverse().origin.y * bezier_track.y;
 | |
| 				} else if (path.find("/translation:z") != -1) {
 | |
| 					bezier_track.z = p_animation->bezier_track_interpolate(p_track_i, key_i / BAKE_FPS);
 | |
| 					bezier_track.z = p_bone_rest.affine_inverse().origin.z * bezier_track.z;
 | |
| 				}
 | |
| 				p_track.translation_track.values.write[key_i] = bezier_track;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return p_track;
 | |
| }
 | |
| 
 | |
| void GLTFDocument::_convert_animation(Ref<GLTFState> state, AnimationPlayer *ap, String p_animation_track_name) {
 | |
| 	Ref<Animation> animation = ap->get_animation(p_animation_track_name);
 | |
| 	Ref<GLTFAnimation> gltf_animation;
 | |
| 	gltf_animation.instantiate();
 | |
| 	gltf_animation->set_name(_gen_unique_name(state, p_animation_track_name));
 | |
| 
 | |
| 	for (int32_t track_i = 0; track_i < animation->get_track_count(); track_i++) {
 | |
| 		if (!animation->track_is_enabled(track_i)) {
 | |
| 			continue;
 | |
| 		}
 | |
| 		String orig_track_path = animation->track_get_path(track_i);
 | |
| 		if (String(orig_track_path).find(":translation") != -1) {
 | |
| 			const Vector<String> node_suffix = String(orig_track_path).split(":translation");
 | |
| 			const NodePath path = node_suffix[0];
 | |
| 			const Node *node = ap->get_parent()->get_node_or_null(path);
 | |
| 			for (Map<GLTFNodeIndex, Node *>::Element *translation_scene_node_i = state->scene_nodes.front(); translation_scene_node_i; translation_scene_node_i = translation_scene_node_i->next()) {
 | |
| 				if (translation_scene_node_i->get() == node) {
 | |
| 					GLTFNodeIndex node_index = translation_scene_node_i->key();
 | |
| 					Map<int, GLTFAnimation::Track>::Element *translation_track_i = gltf_animation->get_tracks().find(node_index);
 | |
| 					GLTFAnimation::Track track;
 | |
| 					if (translation_track_i) {
 | |
| 						track = translation_track_i->get();
 | |
| 					}
 | |
| 					track = _convert_animation_track(state, track, animation, Transform3D(), track_i, node_index);
 | |
| 					gltf_animation->get_tracks().insert(node_index, track);
 | |
| 				}
 | |
| 			}
 | |
| 		} else if (String(orig_track_path).find(":rotation_degrees") != -1) {
 | |
| 			const Vector<String> node_suffix = String(orig_track_path).split(":rotation_degrees");
 | |
| 			const NodePath path = node_suffix[0];
 | |
| 			const Node *node = ap->get_parent()->get_node_or_null(path);
 | |
| 			for (Map<GLTFNodeIndex, Node *>::Element *rotation_degree_scene_node_i = state->scene_nodes.front(); rotation_degree_scene_node_i; rotation_degree_scene_node_i = rotation_degree_scene_node_i->next()) {
 | |
| 				if (rotation_degree_scene_node_i->get() == node) {
 | |
| 					GLTFNodeIndex node_index = rotation_degree_scene_node_i->key();
 | |
| 					Map<int, GLTFAnimation::Track>::Element *rotation_degree_track_i = gltf_animation->get_tracks().find(node_index);
 | |
| 					GLTFAnimation::Track track;
 | |
| 					if (rotation_degree_track_i) {
 | |
| 						track = rotation_degree_track_i->get();
 | |
| 					}
 | |
| 					track = _convert_animation_track(state, track, animation, Transform3D(), track_i, node_index);
 | |
| 					gltf_animation->get_tracks().insert(node_index, track);
 | |
| 				}
 | |
| 			}
 | |
| 		} else if (String(orig_track_path).find(":scale") != -1) {
 | |
| 			const Vector<String> node_suffix = String(orig_track_path).split(":scale");
 | |
| 			const NodePath path = node_suffix[0];
 | |
| 			const Node *node = ap->get_parent()->get_node_or_null(path);
 | |
| 			for (Map<GLTFNodeIndex, Node *>::Element *scale_scene_node_i = state->scene_nodes.front(); scale_scene_node_i; scale_scene_node_i = scale_scene_node_i->next()) {
 | |
| 				if (scale_scene_node_i->get() == node) {
 | |
| 					GLTFNodeIndex node_index = scale_scene_node_i->key();
 | |
| 					Map<int, GLTFAnimation::Track>::Element *scale_track_i = gltf_animation->get_tracks().find(node_index);
 | |
| 					GLTFAnimation::Track track;
 | |
| 					if (scale_track_i) {
 | |
| 						track = scale_track_i->get();
 | |
| 					}
 | |
| 					track = _convert_animation_track(state, track, animation, Transform3D(), track_i, node_index);
 | |
| 					gltf_animation->get_tracks().insert(node_index, track);
 | |
| 				}
 | |
| 			}
 | |
| 		} else if (String(orig_track_path).find(":transform") != -1) {
 | |
| 			const Vector<String> node_suffix = String(orig_track_path).split(":transform");
 | |
| 			const NodePath path = node_suffix[0];
 | |
| 			const Node *node = ap->get_parent()->get_node_or_null(path);
 | |
| 			for (Map<GLTFNodeIndex, Node *>::Element *transform_track_i = state->scene_nodes.front(); transform_track_i; transform_track_i = transform_track_i->next()) {
 | |
| 				if (transform_track_i->get() == node) {
 | |
| 					GLTFAnimation::Track track;
 | |
| 					track = _convert_animation_track(state, track, animation, Transform3D(), track_i, transform_track_i->key());
 | |
| 					gltf_animation->get_tracks().insert(transform_track_i->key(), track);
 | |
| 				}
 | |
| 			}
 | |
| 		} else if (String(orig_track_path).find(":blend_shapes/") != -1) {
 | |
| 			const Vector<String> node_suffix = String(orig_track_path).split(":blend_shapes/");
 | |
| 			const NodePath path = node_suffix[0];
 | |
| 			const String suffix = node_suffix[1];
 | |
| 			const Node *node = ap->get_parent()->get_node_or_null(path);
 | |
| 			for (Map<GLTFNodeIndex, Node *>::Element *transform_track_i = state->scene_nodes.front(); transform_track_i; transform_track_i = transform_track_i->next()) {
 | |
| 				if (transform_track_i->get() == node) {
 | |
| 					const MeshInstance3D *mi = Object::cast_to<MeshInstance3D>(node);
 | |
| 					if (!mi) {
 | |
| 						continue;
 | |
| 					}
 | |
| 					Ref<ArrayMesh> array_mesh = mi->get_mesh();
 | |
| 					if (array_mesh.is_null()) {
 | |
| 						continue;
 | |
| 					}
 | |
| 					if (node_suffix.size() != 2) {
 | |
| 						continue;
 | |
| 					}
 | |
| 					GLTFNodeIndex mesh_index = -1;
 | |
| 					for (GLTFNodeIndex node_i = 0; node_i < state->scene_nodes.size(); node_i++) {
 | |
| 						if (state->scene_nodes[node_i] == node) {
 | |
| 							mesh_index = node_i;
 | |
| 							break;
 | |
| 						}
 | |
| 					}
 | |
| 					ERR_CONTINUE(mesh_index == -1);
 | |
| 					Ref<Mesh> mesh = mi->get_mesh();
 | |
| 					ERR_CONTINUE(mesh.is_null());
 | |
| 					for (int32_t shape_i = 0; shape_i < mesh->get_blend_shape_count(); shape_i++) {
 | |
| 						if (mesh->get_blend_shape_name(shape_i) != suffix) {
 | |
| 							continue;
 | |
| 						}
 | |
| 						GLTFAnimation::Track track;
 | |
| 						Map<int, GLTFAnimation::Track>::Element *blend_shape_track_i = gltf_animation->get_tracks().find(mesh_index);
 | |
| 						if (blend_shape_track_i) {
 | |
| 							track = blend_shape_track_i->get();
 | |
| 						}
 | |
| 						Animation::InterpolationType interpolation = animation->track_get_interpolation_type(track_i);
 | |
| 
 | |
| 						GLTFAnimation::Interpolation gltf_interpolation = GLTFAnimation::INTERP_LINEAR;
 | |
| 						if (interpolation == Animation::InterpolationType::INTERPOLATION_LINEAR) {
 | |
| 							gltf_interpolation = GLTFAnimation::INTERP_LINEAR;
 | |
| 						} else if (interpolation == Animation::InterpolationType::INTERPOLATION_NEAREST) {
 | |
| 							gltf_interpolation = GLTFAnimation::INTERP_STEP;
 | |
| 						} else if (interpolation == Animation::InterpolationType::INTERPOLATION_CUBIC) {
 | |
| 							gltf_interpolation = GLTFAnimation::INTERP_CUBIC_SPLINE;
 | |
| 						}
 | |
| 						Animation::TrackType track_type = animation->track_get_type(track_i);
 | |
| 						if (track_type == Animation::TYPE_VALUE) {
 | |
| 							int32_t key_count = animation->track_get_key_count(track_i);
 | |
| 							GLTFAnimation::Channel<float> weight;
 | |
| 							weight.interpolation = gltf_interpolation;
 | |
| 							weight.times.resize(key_count);
 | |
| 							for (int32_t time_i = 0; time_i < key_count; time_i++) {
 | |
| 								weight.times.write[time_i] = animation->track_get_key_time(track_i, time_i);
 | |
| 							}
 | |
| 							weight.values.resize(key_count);
 | |
| 							for (int32_t value_i = 0; value_i < key_count; value_i++) {
 | |
| 								weight.values.write[value_i] = animation->track_get_key_value(track_i, value_i);
 | |
| 							}
 | |
| 							track.weight_tracks.push_back(weight);
 | |
| 						}
 | |
| 						gltf_animation->get_tracks()[mesh_index] = track;
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 		} else if (String(orig_track_path).find(":") != -1) {
 | |
| 			//Process skeleton
 | |
| 			const Vector<String> node_suffix = String(orig_track_path).split(":");
 | |
| 			const String node = node_suffix[0];
 | |
| 			const NodePath node_path = node;
 | |
| 			const String suffix = node_suffix[1];
 | |
| 			Node *godot_node = ap->get_parent()->get_node_or_null(node_path);
 | |
| 			Skeleton3D *skeleton = nullptr;
 | |
| 			GLTFSkeletonIndex skeleton_gltf_i = -1;
 | |
| 			for (GLTFSkeletonIndex skeleton_i = 0; skeleton_i < state->skeletons.size(); skeleton_i++) {
 | |
| 				if (state->skeletons[skeleton_i]->godot_skeleton == cast_to<Skeleton3D>(godot_node)) {
 | |
| 					skeleton = state->skeletons[skeleton_i]->godot_skeleton;
 | |
| 					skeleton_gltf_i = skeleton_i;
 | |
| 					ERR_CONTINUE(!skeleton);
 | |
| 					Ref<GLTFSkeleton> skeleton_gltf = state->skeletons[skeleton_gltf_i];
 | |
| 					int32_t bone = skeleton->find_bone(suffix);
 | |
| 					ERR_CONTINUE(bone == -1);
 | |
| 					Transform3D xform = skeleton->get_bone_rest(bone);
 | |
| 					if (!skeleton_gltf->godot_bone_node.has(bone)) {
 | |
| 						continue;
 | |
| 					}
 | |
| 					GLTFNodeIndex node_i = skeleton_gltf->godot_bone_node[bone];
 | |
| 					Map<int, GLTFAnimation::Track>::Element *property_track_i = gltf_animation->get_tracks().find(node_i);
 | |
| 					GLTFAnimation::Track track;
 | |
| 					if (property_track_i) {
 | |
| 						track = property_track_i->get();
 | |
| 					}
 | |
| 					track = _convert_animation_track(state, track, animation, xform, track_i, node_i);
 | |
| 					gltf_animation->get_tracks()[node_i] = track;
 | |
| 				}
 | |
| 			}
 | |
| 		} else if (String(orig_track_path).find(":") == -1) {
 | |
| 			ERR_CONTINUE(!ap->get_parent());
 | |
| 			for (int32_t node_i = 0; node_i < ap->get_parent()->get_child_count(); node_i++) {
 | |
| 				const Node *child = ap->get_parent()->get_child(node_i);
 | |
| 				const Node *node = child->get_node_or_null(orig_track_path);
 | |
| 				for (Map<GLTFNodeIndex, Node *>::Element *scene_node_i = state->scene_nodes.front(); scene_node_i; scene_node_i = scene_node_i->next()) {
 | |
| 					if (scene_node_i->get() == node) {
 | |
| 						GLTFNodeIndex node_index = scene_node_i->key();
 | |
| 						Map<int, GLTFAnimation::Track>::Element *node_track_i = gltf_animation->get_tracks().find(node_index);
 | |
| 						GLTFAnimation::Track track;
 | |
| 						if (node_track_i) {
 | |
| 							track = node_track_i->get();
 | |
| 						}
 | |
| 						track = _convert_animation_track(state, track, animation, Transform3D(), track_i, node_index);
 | |
| 						gltf_animation->get_tracks().insert(node_index, track);
 | |
| 						break;
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	if (gltf_animation->get_tracks().size()) {
 | |
| 		state->animations.push_back(gltf_animation);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| Error GLTFDocument::parse(Ref<GLTFState> state, String p_path, bool p_read_binary) {
 | |
| 	Error err;
 | |
| 	FileAccessRef f = FileAccess::open(p_path, FileAccess::READ, &err);
 | |
| 	if (!f) {
 | |
| 		return err;
 | |
| 	}
 | |
| 	uint32_t magic = f->get_32();
 | |
| 	if (magic == 0x46546C67) {
 | |
| 		//binary file
 | |
| 		//text file
 | |
| 		err = _parse_glb(p_path, state);
 | |
| 		if (err) {
 | |
| 			return FAILED;
 | |
| 		}
 | |
| 	} else {
 | |
| 		//text file
 | |
| 		err = _parse_json(p_path, state);
 | |
| 		if (err) {
 | |
| 			return FAILED;
 | |
| 		}
 | |
| 	}
 | |
| 	f->close();
 | |
| 
 | |
| 	// get file's name, use for scene name if none
 | |
| 	state->filename = p_path.get_file().get_slice(".", 0);
 | |
| 
 | |
| 	ERR_FAIL_COND_V(!state->json.has("asset"), Error::FAILED);
 | |
| 
 | |
| 	Dictionary asset = state->json["asset"];
 | |
| 
 | |
| 	ERR_FAIL_COND_V(!asset.has("version"), Error::FAILED);
 | |
| 
 | |
| 	String version = asset["version"];
 | |
| 
 | |
| 	state->major_version = version.get_slice(".", 0).to_int();
 | |
| 	state->minor_version = version.get_slice(".", 1).to_int();
 | |
| 
 | |
| 	/* STEP 0 PARSE SCENE */
 | |
| 	err = _parse_scenes(state);
 | |
| 	if (err != OK) {
 | |
| 		return Error::FAILED;
 | |
| 	}
 | |
| 
 | |
| 	/* STEP 1 PARSE NODES */
 | |
| 	err = _parse_nodes(state);
 | |
| 	if (err != OK) {
 | |
| 		return Error::FAILED;
 | |
| 	}
 | |
| 
 | |
| 	/* STEP 2 PARSE BUFFERS */
 | |
| 	err = _parse_buffers(state, p_path.get_base_dir());
 | |
| 	if (err != OK) {
 | |
| 		return Error::FAILED;
 | |
| 	}
 | |
| 
 | |
| 	/* STEP 3 PARSE BUFFER VIEWS */
 | |
| 	err = _parse_buffer_views(state);
 | |
| 	if (err != OK) {
 | |
| 		return Error::FAILED;
 | |
| 	}
 | |
| 
 | |
| 	/* STEP 4 PARSE ACCESSORS */
 | |
| 	err = _parse_accessors(state);
 | |
| 	if (err != OK) {
 | |
| 		return Error::FAILED;
 | |
| 	}
 | |
| 
 | |
| 	/* STEP 5 PARSE IMAGES */
 | |
| 	err = _parse_images(state, p_path.get_base_dir());
 | |
| 	if (err != OK) {
 | |
| 		return Error::FAILED;
 | |
| 	}
 | |
| 
 | |
| 	/* STEP 6 PARSE TEXTURES */
 | |
| 	err = _parse_textures(state);
 | |
| 	if (err != OK) {
 | |
| 		return Error::FAILED;
 | |
| 	}
 | |
| 
 | |
| 	/* STEP 7 PARSE TEXTURES */
 | |
| 	err = _parse_materials(state);
 | |
| 	if (err != OK) {
 | |
| 		return Error::FAILED;
 | |
| 	}
 | |
| 
 | |
| 	/* STEP 9 PARSE SKINS */
 | |
| 	err = _parse_skins(state);
 | |
| 	if (err != OK) {
 | |
| 		return Error::FAILED;
 | |
| 	}
 | |
| 
 | |
| 	/* STEP 10 DETERMINE SKELETONS */
 | |
| 	err = _determine_skeletons(state);
 | |
| 	if (err != OK) {
 | |
| 		return Error::FAILED;
 | |
| 	}
 | |
| 
 | |
| 	/* STEP 11 CREATE SKELETONS */
 | |
| 	err = _create_skeletons(state);
 | |
| 	if (err != OK) {
 | |
| 		return Error::FAILED;
 | |
| 	}
 | |
| 
 | |
| 	/* STEP 12 CREATE SKINS */
 | |
| 	err = _create_skins(state);
 | |
| 	if (err != OK) {
 | |
| 		return Error::FAILED;
 | |
| 	}
 | |
| 
 | |
| 	/* STEP 13 PARSE MESHES (we have enough info now) */
 | |
| 	err = _parse_meshes(state);
 | |
| 	if (err != OK) {
 | |
| 		return Error::FAILED;
 | |
| 	}
 | |
| 
 | |
| 	/* STEP 14 PARSE LIGHTS */
 | |
| 	err = _parse_lights(state);
 | |
| 	if (err != OK) {
 | |
| 		return Error::FAILED;
 | |
| 	}
 | |
| 
 | |
| 	/* STEP 15 PARSE CAMERAS */
 | |
| 	err = _parse_cameras(state);
 | |
| 	if (err != OK) {
 | |
| 		return Error::FAILED;
 | |
| 	}
 | |
| 
 | |
| 	/* STEP 16 PARSE ANIMATIONS */
 | |
| 	err = _parse_animations(state);
 | |
| 	if (err != OK) {
 | |
| 		return Error::FAILED;
 | |
| 	}
 | |
| 
 | |
| 	/* STEP 17 ASSIGN SCENE NAMES */
 | |
| 	_assign_scene_names(state);
 | |
| 
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| Dictionary GLTFDocument::_serialize_texture_transform_uv2(Ref<BaseMaterial3D> p_material) {
 | |
| 	Dictionary extension;
 | |
| 	Ref<BaseMaterial3D> mat = p_material;
 | |
| 	if (mat.is_valid()) {
 | |
| 		Dictionary texture_transform;
 | |
| 		Array offset;
 | |
| 		offset.resize(2);
 | |
| 		offset[0] = mat->get_uv2_offset().x;
 | |
| 		offset[1] = mat->get_uv2_offset().y;
 | |
| 		texture_transform["offset"] = offset;
 | |
| 		Array scale;
 | |
| 		scale.resize(2);
 | |
| 		scale[0] = mat->get_uv2_scale().x;
 | |
| 		scale[1] = mat->get_uv2_scale().y;
 | |
| 		texture_transform["scale"] = scale;
 | |
| 		// Godot doesn't support texture rotation
 | |
| 		extension["KHR_texture_transform"] = texture_transform;
 | |
| 	}
 | |
| 	return extension;
 | |
| }
 | |
| 
 | |
| Dictionary GLTFDocument::_serialize_texture_transform_uv1(Ref<BaseMaterial3D> p_material) {
 | |
| 	Dictionary extension;
 | |
| 	if (p_material.is_valid()) {
 | |
| 		Dictionary texture_transform;
 | |
| 		Array offset;
 | |
| 		offset.resize(2);
 | |
| 		offset[0] = p_material->get_uv1_offset().x;
 | |
| 		offset[1] = p_material->get_uv1_offset().y;
 | |
| 		texture_transform["offset"] = offset;
 | |
| 		Array scale;
 | |
| 		scale.resize(2);
 | |
| 		scale[0] = p_material->get_uv1_scale().x;
 | |
| 		scale[1] = p_material->get_uv1_scale().y;
 | |
| 		texture_transform["scale"] = scale;
 | |
| 		// Godot doesn't support texture rotation
 | |
| 		extension["KHR_texture_transform"] = texture_transform;
 | |
| 	}
 | |
| 	return extension;
 | |
| }
 | |
| 
 | |
| Error GLTFDocument::_serialize_version(Ref<GLTFState> state) {
 | |
| 	const String version = "2.0";
 | |
| 	state->major_version = version.get_slice(".", 0).to_int();
 | |
| 	state->minor_version = version.get_slice(".", 1).to_int();
 | |
| 	Dictionary asset;
 | |
| 	asset["version"] = version;
 | |
| 
 | |
| 	String hash = VERSION_HASH;
 | |
| 	asset["generator"] = String(VERSION_FULL_NAME) + String("@") + (hash.length() == 0 ? String("unknown") : hash);
 | |
| 	state->json["asset"] = asset;
 | |
| 	ERR_FAIL_COND_V(!asset.has("version"), Error::FAILED);
 | |
| 	ERR_FAIL_COND_V(!state->json.has("asset"), Error::FAILED);
 | |
| 	return OK;
 | |
| }
 | |
| 
 | |
| Error GLTFDocument::_serialize_file(Ref<GLTFState> state, const String p_path) {
 | |
| 	Error err = FAILED;
 | |
| 	if (p_path.to_lower().ends_with("glb")) {
 | |
| 		err = _encode_buffer_glb(state, p_path);
 | |
| 		ERR_FAIL_COND_V(err != OK, err);
 | |
| 		FileAccessRef f = FileAccess::open(p_path, FileAccess::WRITE, &err);
 | |
| 		ERR_FAIL_COND_V(!f, FAILED);
 | |
| 
 | |
| 		String json = Variant(state->json).to_json_string();
 | |
| 
 | |
| 		const uint32_t magic = 0x46546C67; // GLTF
 | |
| 		const int32_t header_size = 12;
 | |
| 		const int32_t chunk_header_size = 8;
 | |
| 
 | |
| 		for (int32_t pad_i = 0; pad_i < (chunk_header_size + json.utf8().length()) % 4; pad_i++) {
 | |
| 			json += " ";
 | |
| 		}
 | |
| 		CharString cs = json.utf8();
 | |
| 		const uint32_t text_chunk_length = cs.length();
 | |
| 
 | |
| 		const uint32_t text_chunk_type = 0x4E4F534A; //JSON
 | |
| 		int32_t binary_data_length = 0;
 | |
| 		if (state->buffers.size()) {
 | |
| 			binary_data_length = state->buffers[0].size();
 | |
| 		}
 | |
| 		const int32_t binary_chunk_length = binary_data_length;
 | |
| 		const int32_t binary_chunk_type = 0x004E4942; //BIN
 | |
| 
 | |
| 		f->create(FileAccess::ACCESS_RESOURCES);
 | |
| 		f->store_32(magic);
 | |
| 		f->store_32(state->major_version); // version
 | |
| 		f->store_32(header_size + chunk_header_size + text_chunk_length + chunk_header_size + binary_data_length); // length
 | |
| 		f->store_32(text_chunk_length);
 | |
| 		f->store_32(text_chunk_type);
 | |
| 		f->store_buffer((uint8_t *)&cs[0], cs.length());
 | |
| 		if (binary_chunk_length) {
 | |
| 			f->store_32(binary_chunk_length);
 | |
| 			f->store_32(binary_chunk_type);
 | |
| 			f->store_buffer(state->buffers[0].ptr(), binary_data_length);
 | |
| 		}
 | |
| 
 | |
| 		f->close();
 | |
| 	} else {
 | |
| 		err = _encode_buffer_bins(state, p_path);
 | |
| 		ERR_FAIL_COND_V(err != OK, err);
 | |
| 		FileAccessRef f = FileAccess::open(p_path, FileAccess::WRITE, &err);
 | |
| 		ERR_FAIL_COND_V(!f, FAILED);
 | |
| 
 | |
| 		f->create(FileAccess::ACCESS_RESOURCES);
 | |
| 		String json = Variant(state->json).to_json_string();
 | |
| 		f->store_string(json);
 | |
| 		f->close();
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | 
