mirror of
				https://github.com/godotengine/godot.git
				synced 2025-11-03 23:21:15 +00:00 
			
		
		
		
	This updates our local copy to commit 5ec8339b6fc491e3f09a34a4516e82787f053fcc. We need a recent master commit for some new features that we use in Godot (see #25543 and #28909). To avoid warnings generated by Bullet headers included in our own module, we include those headers with -isystem on GCC and Clang. Fixes #29503.
		
			
				
	
	
		
			908 lines
		
	
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			908 lines
		
	
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*
 | 
						|
Copyright (c) 2003-2013 Gino van den Bergen / Erwin Coumans  http://bulletphysics.org
 | 
						|
 | 
						|
This software is provided 'as-is', without any express or implied warranty.
 | 
						|
In no event will the authors be held liable for any damages arising from the use of this software.
 | 
						|
Permission is granted to anyone to use this software for any purpose, 
 | 
						|
including commercial applications, and to alter it and redistribute it freely, 
 | 
						|
subject to the following restrictions:
 | 
						|
 | 
						|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 | 
						|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 | 
						|
3. This notice may not be removed or altered from any source distribution.
 | 
						|
*/
 | 
						|
 | 
						|
#ifndef B3_SIMD__QUATERNION_H_
 | 
						|
#define B3_SIMD__QUATERNION_H_
 | 
						|
 | 
						|
#include "b3Vector3.h"
 | 
						|
#include "b3QuadWord.h"
 | 
						|
 | 
						|
#ifdef B3_USE_SSE
 | 
						|
 | 
						|
const __m128 B3_ATTRIBUTE_ALIGNED16(b3vOnes) = {1.0f, 1.0f, 1.0f, 1.0f};
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(B3_USE_SSE) || defined(B3_USE_NEON)
 | 
						|
 | 
						|
const b3SimdFloat4 B3_ATTRIBUTE_ALIGNED16(b3vQInv) = {-0.0f, -0.0f, -0.0f, +0.0f};
 | 
						|
const b3SimdFloat4 B3_ATTRIBUTE_ALIGNED16(b3vPPPM) = {+0.0f, +0.0f, +0.0f, -0.0f};
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
/**@brief The b3Quaternion implements quaternion to perform linear algebra rotations in combination with b3Matrix3x3, b3Vector3 and b3Transform. */
 | 
						|
class b3Quaternion : public b3QuadWord
 | 
						|
{
 | 
						|
public:
 | 
						|
	/**@brief No initialization constructor */
 | 
						|
	b3Quaternion() {}
 | 
						|
 | 
						|
#if (defined(B3_USE_SSE_IN_API) && defined(B3_USE_SSE)) || defined(B3_USE_NEON)
 | 
						|
	// Set Vector
 | 
						|
	B3_FORCE_INLINE b3Quaternion(const b3SimdFloat4 vec)
 | 
						|
	{
 | 
						|
		mVec128 = vec;
 | 
						|
	}
 | 
						|
 | 
						|
	// Copy constructor
 | 
						|
	B3_FORCE_INLINE b3Quaternion(const b3Quaternion& rhs)
 | 
						|
	{
 | 
						|
		mVec128 = rhs.mVec128;
 | 
						|
	}
 | 
						|
 | 
						|
	// Assignment Operator
 | 
						|
	B3_FORCE_INLINE b3Quaternion&
 | 
						|
	operator=(const b3Quaternion& v)
 | 
						|
	{
 | 
						|
		mVec128 = v.mVec128;
 | 
						|
 | 
						|
		return *this;
 | 
						|
	}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
	//		template <typename b3Scalar>
 | 
						|
	//		explicit Quaternion(const b3Scalar *v) : Tuple4<b3Scalar>(v) {}
 | 
						|
	/**@brief Constructor from scalars */
 | 
						|
	b3Quaternion(const b3Scalar& _x, const b3Scalar& _y, const b3Scalar& _z, const b3Scalar& _w)
 | 
						|
		: b3QuadWord(_x, _y, _z, _w)
 | 
						|
	{
 | 
						|
		//b3Assert(!((_x==1.f) && (_y==0.f) && (_z==0.f) && (_w==0.f)));
 | 
						|
	}
 | 
						|
	/**@brief Axis angle Constructor
 | 
						|
   * @param axis The axis which the rotation is around
 | 
						|
   * @param angle The magnitude of the rotation around the angle (Radians) */
 | 
						|
	b3Quaternion(const b3Vector3& _axis, const b3Scalar& _angle)
 | 
						|
	{
 | 
						|
		setRotation(_axis, _angle);
 | 
						|
	}
 | 
						|
	/**@brief Constructor from Euler angles
 | 
						|
   * @param yaw Angle around Y unless B3_EULER_DEFAULT_ZYX defined then Z
 | 
						|
   * @param pitch Angle around X unless B3_EULER_DEFAULT_ZYX defined then Y
 | 
						|
   * @param roll Angle around Z unless B3_EULER_DEFAULT_ZYX defined then X */
 | 
						|
	b3Quaternion(const b3Scalar& yaw, const b3Scalar& pitch, const b3Scalar& roll)
 | 
						|
	{
 | 
						|
#ifndef B3_EULER_DEFAULT_ZYX
 | 
						|
		setEuler(yaw, pitch, roll);
 | 
						|
#else
 | 
						|
		setEulerZYX(yaw, pitch, roll);
 | 
						|
#endif
 | 
						|
	}
 | 
						|
	/**@brief Set the rotation using axis angle notation 
 | 
						|
   * @param axis The axis around which to rotate
 | 
						|
   * @param angle The magnitude of the rotation in Radians */
 | 
						|
	void setRotation(const b3Vector3& axis1, const b3Scalar& _angle)
 | 
						|
	{
 | 
						|
		b3Vector3 axis = axis1;
 | 
						|
		axis.safeNormalize();
 | 
						|
		
 | 
						|
		b3Scalar d = axis.length();
 | 
						|
		b3Assert(d != b3Scalar(0.0));
 | 
						|
		if (d < B3_EPSILON)
 | 
						|
		{
 | 
						|
			setValue(0, 0, 0, 1);
 | 
						|
		}
 | 
						|
		else
 | 
						|
		{
 | 
						|
			b3Scalar s = b3Sin(_angle * b3Scalar(0.5)) / d;
 | 
						|
			setValue(axis.getX() * s, axis.getY() * s, axis.getZ() * s,
 | 
						|
				b3Cos(_angle * b3Scalar(0.5)));
 | 
						|
		}
 | 
						|
	}
 | 
						|
	/**@brief Set the quaternion using Euler angles
 | 
						|
   * @param yaw Angle around Y
 | 
						|
   * @param pitch Angle around X
 | 
						|
   * @param roll Angle around Z */
 | 
						|
	void setEuler(const b3Scalar& yaw, const b3Scalar& pitch, const b3Scalar& roll)
 | 
						|
	{
 | 
						|
		b3Scalar halfYaw = b3Scalar(yaw) * b3Scalar(0.5);
 | 
						|
		b3Scalar halfPitch = b3Scalar(pitch) * b3Scalar(0.5);
 | 
						|
		b3Scalar halfRoll = b3Scalar(roll) * b3Scalar(0.5);
 | 
						|
		b3Scalar cosYaw = b3Cos(halfYaw);
 | 
						|
		b3Scalar sinYaw = b3Sin(halfYaw);
 | 
						|
		b3Scalar cosPitch = b3Cos(halfPitch);
 | 
						|
		b3Scalar sinPitch = b3Sin(halfPitch);
 | 
						|
		b3Scalar cosRoll = b3Cos(halfRoll);
 | 
						|
		b3Scalar sinRoll = b3Sin(halfRoll);
 | 
						|
		setValue(cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw,
 | 
						|
				 cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw,
 | 
						|
				 sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw,
 | 
						|
				 cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw);
 | 
						|
	}
 | 
						|
 | 
						|
	/**@brief Set the quaternion using euler angles 
 | 
						|
   * @param yaw Angle around Z
 | 
						|
   * @param pitch Angle around Y
 | 
						|
   * @param roll Angle around X */
 | 
						|
	void setEulerZYX(const b3Scalar& yawZ, const b3Scalar& pitchY, const b3Scalar& rollX)
 | 
						|
	{
 | 
						|
		b3Scalar halfYaw = b3Scalar(yawZ) * b3Scalar(0.5);
 | 
						|
		b3Scalar halfPitch = b3Scalar(pitchY) * b3Scalar(0.5);
 | 
						|
		b3Scalar halfRoll = b3Scalar(rollX) * b3Scalar(0.5);
 | 
						|
		b3Scalar cosYaw = b3Cos(halfYaw);
 | 
						|
		b3Scalar sinYaw = b3Sin(halfYaw);
 | 
						|
		b3Scalar cosPitch = b3Cos(halfPitch);
 | 
						|
		b3Scalar sinPitch = b3Sin(halfPitch);
 | 
						|
		b3Scalar cosRoll = b3Cos(halfRoll);
 | 
						|
		b3Scalar sinRoll = b3Sin(halfRoll);
 | 
						|
		setValue(sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw,   //x
 | 
						|
				 cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw,   //y
 | 
						|
				 cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw,   //z
 | 
						|
				 cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw);  //formerly yzx
 | 
						|
		normalize();
 | 
						|
	}
 | 
						|
 | 
						|
	/**@brief Get the euler angles from this quaternion
 | 
						|
	   * @param yaw Angle around Z
 | 
						|
	   * @param pitch Angle around Y
 | 
						|
	   * @param roll Angle around X */
 | 
						|
	void getEulerZYX(b3Scalar& yawZ, b3Scalar& pitchY, b3Scalar& rollX) const
 | 
						|
	{
 | 
						|
		b3Scalar squ;
 | 
						|
		b3Scalar sqx;
 | 
						|
		b3Scalar sqy;
 | 
						|
		b3Scalar sqz;
 | 
						|
		b3Scalar sarg;
 | 
						|
		sqx = m_floats[0] * m_floats[0];
 | 
						|
		sqy = m_floats[1] * m_floats[1];
 | 
						|
		sqz = m_floats[2] * m_floats[2];
 | 
						|
		squ = m_floats[3] * m_floats[3];
 | 
						|
		rollX = b3Atan2(2 * (m_floats[1] * m_floats[2] + m_floats[3] * m_floats[0]), squ - sqx - sqy + sqz);
 | 
						|
		sarg = b3Scalar(-2.) * (m_floats[0] * m_floats[2] - m_floats[3] * m_floats[1]);
 | 
						|
		pitchY = sarg <= b3Scalar(-1.0) ? b3Scalar(-0.5) * B3_PI : (sarg >= b3Scalar(1.0) ? b3Scalar(0.5) * B3_PI : b3Asin(sarg));
 | 
						|
		yawZ = b3Atan2(2 * (m_floats[0] * m_floats[1] + m_floats[3] * m_floats[2]), squ + sqx - sqy - sqz);
 | 
						|
	}
 | 
						|
 | 
						|
	/**@brief Add two quaternions
 | 
						|
   * @param q The quaternion to add to this one */
 | 
						|
	B3_FORCE_INLINE b3Quaternion& operator+=(const b3Quaternion& q)
 | 
						|
	{
 | 
						|
#if defined(B3_USE_SSE_IN_API) && defined(B3_USE_SSE)
 | 
						|
		mVec128 = _mm_add_ps(mVec128, q.mVec128);
 | 
						|
#elif defined(B3_USE_NEON)
 | 
						|
		mVec128 = vaddq_f32(mVec128, q.mVec128);
 | 
						|
#else
 | 
						|
		m_floats[0] += q.getX();
 | 
						|
		m_floats[1] += q.getY();
 | 
						|
		m_floats[2] += q.getZ();
 | 
						|
		m_floats[3] += q.m_floats[3];
 | 
						|
#endif
 | 
						|
		return *this;
 | 
						|
	}
 | 
						|
 | 
						|
	/**@brief Subtract out a quaternion
 | 
						|
   * @param q The quaternion to subtract from this one */
 | 
						|
	b3Quaternion& operator-=(const b3Quaternion& q)
 | 
						|
	{
 | 
						|
#if defined(B3_USE_SSE_IN_API) && defined(B3_USE_SSE)
 | 
						|
		mVec128 = _mm_sub_ps(mVec128, q.mVec128);
 | 
						|
#elif defined(B3_USE_NEON)
 | 
						|
		mVec128 = vsubq_f32(mVec128, q.mVec128);
 | 
						|
#else
 | 
						|
		m_floats[0] -= q.getX();
 | 
						|
		m_floats[1] -= q.getY();
 | 
						|
		m_floats[2] -= q.getZ();
 | 
						|
		m_floats[3] -= q.m_floats[3];
 | 
						|
#endif
 | 
						|
		return *this;
 | 
						|
	}
 | 
						|
 | 
						|
	/**@brief Scale this quaternion
 | 
						|
   * @param s The scalar to scale by */
 | 
						|
	b3Quaternion& operator*=(const b3Scalar& s)
 | 
						|
	{
 | 
						|
#if defined(B3_USE_SSE_IN_API) && defined(B3_USE_SSE)
 | 
						|
		__m128 vs = _mm_load_ss(&s);  //	(S 0 0 0)
 | 
						|
		vs = b3_pshufd_ps(vs, 0);     //	(S S S S)
 | 
						|
		mVec128 = _mm_mul_ps(mVec128, vs);
 | 
						|
#elif defined(B3_USE_NEON)
 | 
						|
		mVec128 = vmulq_n_f32(mVec128, s);
 | 
						|
#else
 | 
						|
		m_floats[0] *= s;
 | 
						|
		m_floats[1] *= s;
 | 
						|
		m_floats[2] *= s;
 | 
						|
		m_floats[3] *= s;
 | 
						|
#endif
 | 
						|
		return *this;
 | 
						|
	}
 | 
						|
 | 
						|
	/**@brief Multiply this quaternion by q on the right
 | 
						|
   * @param q The other quaternion 
 | 
						|
   * Equivilant to this = this * q */
 | 
						|
	b3Quaternion& operator*=(const b3Quaternion& q)
 | 
						|
	{
 | 
						|
#if defined(B3_USE_SSE_IN_API) && defined(B3_USE_SSE)
 | 
						|
		__m128 vQ2 = q.get128();
 | 
						|
 | 
						|
		__m128 A1 = b3_pshufd_ps(mVec128, B3_SHUFFLE(0, 1, 2, 0));
 | 
						|
		__m128 B1 = b3_pshufd_ps(vQ2, B3_SHUFFLE(3, 3, 3, 0));
 | 
						|
 | 
						|
		A1 = A1 * B1;
 | 
						|
 | 
						|
		__m128 A2 = b3_pshufd_ps(mVec128, B3_SHUFFLE(1, 2, 0, 1));
 | 
						|
		__m128 B2 = b3_pshufd_ps(vQ2, B3_SHUFFLE(2, 0, 1, 1));
 | 
						|
 | 
						|
		A2 = A2 * B2;
 | 
						|
 | 
						|
		B1 = b3_pshufd_ps(mVec128, B3_SHUFFLE(2, 0, 1, 2));
 | 
						|
		B2 = b3_pshufd_ps(vQ2, B3_SHUFFLE(1, 2, 0, 2));
 | 
						|
 | 
						|
		B1 = B1 * B2;  //	A3 *= B3
 | 
						|
 | 
						|
		mVec128 = b3_splat_ps(mVec128, 3);  //	A0
 | 
						|
		mVec128 = mVec128 * vQ2;            //	A0 * B0
 | 
						|
 | 
						|
		A1 = A1 + A2;                  //	AB12
 | 
						|
		mVec128 = mVec128 - B1;        //	AB03 = AB0 - AB3
 | 
						|
		A1 = _mm_xor_ps(A1, b3vPPPM);  //	change sign of the last element
 | 
						|
		mVec128 = mVec128 + A1;        //	AB03 + AB12
 | 
						|
 | 
						|
#elif defined(B3_USE_NEON)
 | 
						|
 | 
						|
		float32x4_t vQ1 = mVec128;
 | 
						|
		float32x4_t vQ2 = q.get128();
 | 
						|
		float32x4_t A0, A1, B1, A2, B2, A3, B3;
 | 
						|
		float32x2_t vQ1zx, vQ2wx, vQ1yz, vQ2zx, vQ2yz, vQ2xz;
 | 
						|
 | 
						|
		{
 | 
						|
			float32x2x2_t tmp;
 | 
						|
			tmp = vtrn_f32(vget_high_f32(vQ1), vget_low_f32(vQ1));  // {z x}, {w y}
 | 
						|
			vQ1zx = tmp.val[0];
 | 
						|
 | 
						|
			tmp = vtrn_f32(vget_high_f32(vQ2), vget_low_f32(vQ2));  // {z x}, {w y}
 | 
						|
			vQ2zx = tmp.val[0];
 | 
						|
		}
 | 
						|
		vQ2wx = vext_f32(vget_high_f32(vQ2), vget_low_f32(vQ2), 1);
 | 
						|
 | 
						|
		vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1);
 | 
						|
 | 
						|
		vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1);
 | 
						|
		vQ2xz = vext_f32(vQ2zx, vQ2zx, 1);
 | 
						|
 | 
						|
		A1 = vcombine_f32(vget_low_f32(vQ1), vQ1zx);                     // X Y  z x
 | 
						|
		B1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ2), 1), vQ2wx);  // W W  W X
 | 
						|
 | 
						|
		A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1));
 | 
						|
		B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1));
 | 
						|
 | 
						|
		A3 = vcombine_f32(vQ1zx, vQ1yz);  // Z X Y Z
 | 
						|
		B3 = vcombine_f32(vQ2yz, vQ2xz);  // Y Z x z
 | 
						|
 | 
						|
		A1 = vmulq_f32(A1, B1);
 | 
						|
		A2 = vmulq_f32(A2, B2);
 | 
						|
		A3 = vmulq_f32(A3, B3);                           //	A3 *= B3
 | 
						|
		A0 = vmulq_lane_f32(vQ2, vget_high_f32(vQ1), 1);  //	A0 * B0
 | 
						|
 | 
						|
		A1 = vaddq_f32(A1, A2);  //	AB12 = AB1 + AB2
 | 
						|
		A0 = vsubq_f32(A0, A3);  //	AB03 = AB0 - AB3
 | 
						|
 | 
						|
		//	change the sign of the last element
 | 
						|
		A1 = (b3SimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)b3vPPPM);
 | 
						|
		A0 = vaddq_f32(A0, A1);  //	AB03 + AB12
 | 
						|
 | 
						|
		mVec128 = A0;
 | 
						|
#else
 | 
						|
		setValue(
 | 
						|
			m_floats[3] * q.getX() + m_floats[0] * q.m_floats[3] + m_floats[1] * q.getZ() - m_floats[2] * q.getY(),
 | 
						|
			m_floats[3] * q.getY() + m_floats[1] * q.m_floats[3] + m_floats[2] * q.getX() - m_floats[0] * q.getZ(),
 | 
						|
			m_floats[3] * q.getZ() + m_floats[2] * q.m_floats[3] + m_floats[0] * q.getY() - m_floats[1] * q.getX(),
 | 
						|
			m_floats[3] * q.m_floats[3] - m_floats[0] * q.getX() - m_floats[1] * q.getY() - m_floats[2] * q.getZ());
 | 
						|
#endif
 | 
						|
		return *this;
 | 
						|
	}
 | 
						|
	/**@brief Return the dot product between this quaternion and another
 | 
						|
   * @param q The other quaternion */
 | 
						|
	b3Scalar dot(const b3Quaternion& q) const
 | 
						|
	{
 | 
						|
#if defined(B3_USE_SSE_IN_API) && defined(B3_USE_SSE)
 | 
						|
		__m128 vd;
 | 
						|
 | 
						|
		vd = _mm_mul_ps(mVec128, q.mVec128);
 | 
						|
 | 
						|
		__m128 t = _mm_movehl_ps(vd, vd);
 | 
						|
		vd = _mm_add_ps(vd, t);
 | 
						|
		t = _mm_shuffle_ps(vd, vd, 0x55);
 | 
						|
		vd = _mm_add_ss(vd, t);
 | 
						|
 | 
						|
		return _mm_cvtss_f32(vd);
 | 
						|
#elif defined(B3_USE_NEON)
 | 
						|
		float32x4_t vd = vmulq_f32(mVec128, q.mVec128);
 | 
						|
		float32x2_t x = vpadd_f32(vget_low_f32(vd), vget_high_f32(vd));
 | 
						|
		x = vpadd_f32(x, x);
 | 
						|
		return vget_lane_f32(x, 0);
 | 
						|
#else
 | 
						|
		return m_floats[0] * q.getX() +
 | 
						|
			   m_floats[1] * q.getY() +
 | 
						|
			   m_floats[2] * q.getZ() +
 | 
						|
			   m_floats[3] * q.m_floats[3];
 | 
						|
#endif
 | 
						|
	}
 | 
						|
 | 
						|
	/**@brief Return the length squared of the quaternion */
 | 
						|
	b3Scalar length2() const
 | 
						|
	{
 | 
						|
		return dot(*this);
 | 
						|
	}
 | 
						|
 | 
						|
	/**@brief Return the length of the quaternion */
 | 
						|
	b3Scalar length() const
 | 
						|
	{
 | 
						|
		return b3Sqrt(length2());
 | 
						|
	}
 | 
						|
 | 
						|
	/**@brief Normalize the quaternion 
 | 
						|
   * Such that x^2 + y^2 + z^2 +w^2 = 1 */
 | 
						|
	b3Quaternion& normalize()
 | 
						|
	{
 | 
						|
#if defined(B3_USE_SSE_IN_API) && defined(B3_USE_SSE)
 | 
						|
		__m128 vd;
 | 
						|
 | 
						|
		vd = _mm_mul_ps(mVec128, mVec128);
 | 
						|
 | 
						|
		__m128 t = _mm_movehl_ps(vd, vd);
 | 
						|
		vd = _mm_add_ps(vd, t);
 | 
						|
		t = _mm_shuffle_ps(vd, vd, 0x55);
 | 
						|
		vd = _mm_add_ss(vd, t);
 | 
						|
 | 
						|
		vd = _mm_sqrt_ss(vd);
 | 
						|
		vd = _mm_div_ss(b3vOnes, vd);
 | 
						|
		vd = b3_pshufd_ps(vd, 0);  // splat
 | 
						|
		mVec128 = _mm_mul_ps(mVec128, vd);
 | 
						|
 | 
						|
		return *this;
 | 
						|
#else
 | 
						|
		return *this /= length();
 | 
						|
#endif
 | 
						|
	}
 | 
						|
 | 
						|
	/**@brief Return a scaled version of this quaternion
 | 
						|
   * @param s The scale factor */
 | 
						|
	B3_FORCE_INLINE b3Quaternion
 | 
						|
	operator*(const b3Scalar& s) const
 | 
						|
	{
 | 
						|
#if defined(B3_USE_SSE_IN_API) && defined(B3_USE_SSE)
 | 
						|
		__m128 vs = _mm_load_ss(&s);  //	(S 0 0 0)
 | 
						|
		vs = b3_pshufd_ps(vs, 0x00);  //	(S S S S)
 | 
						|
 | 
						|
		return b3Quaternion(_mm_mul_ps(mVec128, vs));
 | 
						|
#elif defined(B3_USE_NEON)
 | 
						|
		return b3Quaternion(vmulq_n_f32(mVec128, s));
 | 
						|
#else
 | 
						|
		return b3Quaternion(getX() * s, getY() * s, getZ() * s, m_floats[3] * s);
 | 
						|
#endif
 | 
						|
	}
 | 
						|
 | 
						|
	/**@brief Return an inversely scaled versionof this quaternion
 | 
						|
   * @param s The inverse scale factor */
 | 
						|
	b3Quaternion operator/(const b3Scalar& s) const
 | 
						|
	{
 | 
						|
		b3Assert(s != b3Scalar(0.0));
 | 
						|
		return *this * (b3Scalar(1.0) / s);
 | 
						|
	}
 | 
						|
 | 
						|
	/**@brief Inversely scale this quaternion
 | 
						|
   * @param s The scale factor */
 | 
						|
	b3Quaternion& operator/=(const b3Scalar& s)
 | 
						|
	{
 | 
						|
		b3Assert(s != b3Scalar(0.0));
 | 
						|
		return *this *= b3Scalar(1.0) / s;
 | 
						|
	}
 | 
						|
 | 
						|
	/**@brief Return a normalized version of this quaternion */
 | 
						|
	b3Quaternion normalized() const
 | 
						|
	{
 | 
						|
		return *this / length();
 | 
						|
	}
 | 
						|
	/**@brief Return the angle between this quaternion and the other 
 | 
						|
   * @param q The other quaternion */
 | 
						|
	b3Scalar angle(const b3Quaternion& q) const
 | 
						|
	{
 | 
						|
		b3Scalar s = b3Sqrt(length2() * q.length2());
 | 
						|
		b3Assert(s != b3Scalar(0.0));
 | 
						|
		return b3Acos(dot(q) / s);
 | 
						|
	}
 | 
						|
	/**@brief Return the angle of rotation represented by this quaternion */
 | 
						|
	b3Scalar getAngle() const
 | 
						|
	{
 | 
						|
		b3Scalar s = b3Scalar(2.) * b3Acos(m_floats[3]);
 | 
						|
		return s;
 | 
						|
	}
 | 
						|
 | 
						|
	/**@brief Return the axis of the rotation represented by this quaternion */
 | 
						|
	b3Vector3 getAxis() const
 | 
						|
	{
 | 
						|
		b3Scalar s_squared = 1.f - m_floats[3] * m_floats[3];
 | 
						|
 | 
						|
		if (s_squared < b3Scalar(10.) * B3_EPSILON)  //Check for divide by zero
 | 
						|
			return b3MakeVector3(1.0, 0.0, 0.0);     // Arbitrary
 | 
						|
		b3Scalar s = 1.f / b3Sqrt(s_squared);
 | 
						|
		return b3MakeVector3(m_floats[0] * s, m_floats[1] * s, m_floats[2] * s);
 | 
						|
	}
 | 
						|
 | 
						|
	/**@brief Return the inverse of this quaternion */
 | 
						|
	b3Quaternion inverse() const
 | 
						|
	{
 | 
						|
#if defined(B3_USE_SSE_IN_API) && defined(B3_USE_SSE)
 | 
						|
		return b3Quaternion(_mm_xor_ps(mVec128, b3vQInv));
 | 
						|
#elif defined(B3_USE_NEON)
 | 
						|
		return b3Quaternion((b3SimdFloat4)veorq_s32((int32x4_t)mVec128, (int32x4_t)b3vQInv));
 | 
						|
#else
 | 
						|
		return b3Quaternion(-m_floats[0], -m_floats[1], -m_floats[2], m_floats[3]);
 | 
						|
#endif
 | 
						|
	}
 | 
						|
 | 
						|
	/**@brief Return the sum of this quaternion and the other 
 | 
						|
   * @param q2 The other quaternion */
 | 
						|
	B3_FORCE_INLINE b3Quaternion
 | 
						|
	operator+(const b3Quaternion& q2) const
 | 
						|
	{
 | 
						|
#if defined(B3_USE_SSE_IN_API) && defined(B3_USE_SSE)
 | 
						|
		return b3Quaternion(_mm_add_ps(mVec128, q2.mVec128));
 | 
						|
#elif defined(B3_USE_NEON)
 | 
						|
		return b3Quaternion(vaddq_f32(mVec128, q2.mVec128));
 | 
						|
#else
 | 
						|
		const b3Quaternion& q1 = *this;
 | 
						|
		return b3Quaternion(q1.getX() + q2.getX(), q1.getY() + q2.getY(), q1.getZ() + q2.getZ(), q1.m_floats[3] + q2.m_floats[3]);
 | 
						|
#endif
 | 
						|
	}
 | 
						|
 | 
						|
	/**@brief Return the difference between this quaternion and the other 
 | 
						|
   * @param q2 The other quaternion */
 | 
						|
	B3_FORCE_INLINE b3Quaternion
 | 
						|
	operator-(const b3Quaternion& q2) const
 | 
						|
	{
 | 
						|
#if defined(B3_USE_SSE_IN_API) && defined(B3_USE_SSE)
 | 
						|
		return b3Quaternion(_mm_sub_ps(mVec128, q2.mVec128));
 | 
						|
#elif defined(B3_USE_NEON)
 | 
						|
		return b3Quaternion(vsubq_f32(mVec128, q2.mVec128));
 | 
						|
#else
 | 
						|
		const b3Quaternion& q1 = *this;
 | 
						|
		return b3Quaternion(q1.getX() - q2.getX(), q1.getY() - q2.getY(), q1.getZ() - q2.getZ(), q1.m_floats[3] - q2.m_floats[3]);
 | 
						|
#endif
 | 
						|
	}
 | 
						|
 | 
						|
	/**@brief Return the negative of this quaternion 
 | 
						|
   * This simply negates each element */
 | 
						|
	B3_FORCE_INLINE b3Quaternion operator-() const
 | 
						|
	{
 | 
						|
#if defined(B3_USE_SSE_IN_API) && defined(B3_USE_SSE)
 | 
						|
		return b3Quaternion(_mm_xor_ps(mVec128, b3vMzeroMask));
 | 
						|
#elif defined(B3_USE_NEON)
 | 
						|
		return b3Quaternion((b3SimdFloat4)veorq_s32((int32x4_t)mVec128, (int32x4_t)b3vMzeroMask));
 | 
						|
#else
 | 
						|
		const b3Quaternion& q2 = *this;
 | 
						|
		return b3Quaternion(-q2.getX(), -q2.getY(), -q2.getZ(), -q2.m_floats[3]);
 | 
						|
#endif
 | 
						|
	}
 | 
						|
	/**@todo document this and it's use */
 | 
						|
	B3_FORCE_INLINE b3Quaternion farthest(const b3Quaternion& qd) const
 | 
						|
	{
 | 
						|
		b3Quaternion diff, sum;
 | 
						|
		diff = *this - qd;
 | 
						|
		sum = *this + qd;
 | 
						|
		if (diff.dot(diff) > sum.dot(sum))
 | 
						|
			return qd;
 | 
						|
		return (-qd);
 | 
						|
	}
 | 
						|
 | 
						|
	/**@todo document this and it's use */
 | 
						|
	B3_FORCE_INLINE b3Quaternion nearest(const b3Quaternion& qd) const
 | 
						|
	{
 | 
						|
		b3Quaternion diff, sum;
 | 
						|
		diff = *this - qd;
 | 
						|
		sum = *this + qd;
 | 
						|
		if (diff.dot(diff) < sum.dot(sum))
 | 
						|
			return qd;
 | 
						|
		return (-qd);
 | 
						|
	}
 | 
						|
 | 
						|
	/**@brief Return the quaternion which is the result of Spherical Linear Interpolation between this and the other quaternion
 | 
						|
   * @param q The other quaternion to interpolate with 
 | 
						|
   * @param t The ratio between this and q to interpolate.  If t = 0 the result is this, if t=1 the result is q.
 | 
						|
   * Slerp interpolates assuming constant velocity.  */
 | 
						|
	b3Quaternion slerp(const b3Quaternion& q, const b3Scalar& t) const
 | 
						|
	{
 | 
						|
		b3Scalar magnitude = b3Sqrt(length2() * q.length2());
 | 
						|
		b3Assert(magnitude > b3Scalar(0));
 | 
						|
 | 
						|
		b3Scalar product = dot(q) / magnitude;
 | 
						|
		if (b3Fabs(product) < b3Scalar(1))
 | 
						|
		{
 | 
						|
			// Take care of long angle case see http://en.wikipedia.org/wiki/Slerp
 | 
						|
			const b3Scalar sign = (product < 0) ? b3Scalar(-1) : b3Scalar(1);
 | 
						|
 | 
						|
			const b3Scalar theta = b3Acos(sign * product);
 | 
						|
			const b3Scalar s1 = b3Sin(sign * t * theta);
 | 
						|
			const b3Scalar d = b3Scalar(1.0) / b3Sin(theta);
 | 
						|
			const b3Scalar s0 = b3Sin((b3Scalar(1.0) - t) * theta);
 | 
						|
 | 
						|
			return b3Quaternion(
 | 
						|
				(m_floats[0] * s0 + q.getX() * s1) * d,
 | 
						|
				(m_floats[1] * s0 + q.getY() * s1) * d,
 | 
						|
				(m_floats[2] * s0 + q.getZ() * s1) * d,
 | 
						|
				(m_floats[3] * s0 + q.m_floats[3] * s1) * d);
 | 
						|
		}
 | 
						|
		else
 | 
						|
		{
 | 
						|
			return *this;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	static const b3Quaternion& getIdentity()
 | 
						|
	{
 | 
						|
		static const b3Quaternion identityQuat(b3Scalar(0.), b3Scalar(0.), b3Scalar(0.), b3Scalar(1.));
 | 
						|
		return identityQuat;
 | 
						|
	}
 | 
						|
 | 
						|
	B3_FORCE_INLINE const b3Scalar& getW() const { return m_floats[3]; }
 | 
						|
};
 | 
						|
 | 
						|
/**@brief Return the product of two quaternions */
 | 
						|
B3_FORCE_INLINE b3Quaternion
 | 
						|
operator*(const b3Quaternion& q1, const b3Quaternion& q2)
 | 
						|
{
 | 
						|
#if defined(B3_USE_SSE_IN_API) && defined(B3_USE_SSE)
 | 
						|
	__m128 vQ1 = q1.get128();
 | 
						|
	__m128 vQ2 = q2.get128();
 | 
						|
	__m128 A0, A1, B1, A2, B2;
 | 
						|
 | 
						|
	A1 = b3_pshufd_ps(vQ1, B3_SHUFFLE(0, 1, 2, 0));  // X Y  z x     //      vtrn
 | 
						|
	B1 = b3_pshufd_ps(vQ2, B3_SHUFFLE(3, 3, 3, 0));  // W W  W X     // vdup vext
 | 
						|
 | 
						|
	A1 = A1 * B1;
 | 
						|
 | 
						|
	A2 = b3_pshufd_ps(vQ1, B3_SHUFFLE(1, 2, 0, 1));  // Y Z  X Y     // vext
 | 
						|
	B2 = b3_pshufd_ps(vQ2, B3_SHUFFLE(2, 0, 1, 1));  // z x  Y Y     // vtrn vdup
 | 
						|
 | 
						|
	A2 = A2 * B2;
 | 
						|
 | 
						|
	B1 = b3_pshufd_ps(vQ1, B3_SHUFFLE(2, 0, 1, 2));  // z x Y Z      // vtrn vext
 | 
						|
	B2 = b3_pshufd_ps(vQ2, B3_SHUFFLE(1, 2, 0, 2));  // Y Z x z      // vext vtrn
 | 
						|
 | 
						|
	B1 = B1 * B2;  //	A3 *= B3
 | 
						|
 | 
						|
	A0 = b3_splat_ps(vQ1, 3);  //	A0
 | 
						|
	A0 = A0 * vQ2;             //	A0 * B0
 | 
						|
 | 
						|
	A1 = A1 + A2;  //	AB12
 | 
						|
	A0 = A0 - B1;  //	AB03 = AB0 - AB3
 | 
						|
 | 
						|
	A1 = _mm_xor_ps(A1, b3vPPPM);  //	change sign of the last element
 | 
						|
	A0 = A0 + A1;                  //	AB03 + AB12
 | 
						|
 | 
						|
	return b3Quaternion(A0);
 | 
						|
 | 
						|
#elif defined(B3_USE_NEON)
 | 
						|
 | 
						|
	float32x4_t vQ1 = q1.get128();
 | 
						|
	float32x4_t vQ2 = q2.get128();
 | 
						|
	float32x4_t A0, A1, B1, A2, B2, A3, B3;
 | 
						|
	float32x2_t vQ1zx, vQ2wx, vQ1yz, vQ2zx, vQ2yz, vQ2xz;
 | 
						|
 | 
						|
	{
 | 
						|
		float32x2x2_t tmp;
 | 
						|
		tmp = vtrn_f32(vget_high_f32(vQ1), vget_low_f32(vQ1));  // {z x}, {w y}
 | 
						|
		vQ1zx = tmp.val[0];
 | 
						|
 | 
						|
		tmp = vtrn_f32(vget_high_f32(vQ2), vget_low_f32(vQ2));  // {z x}, {w y}
 | 
						|
		vQ2zx = tmp.val[0];
 | 
						|
	}
 | 
						|
	vQ2wx = vext_f32(vget_high_f32(vQ2), vget_low_f32(vQ2), 1);
 | 
						|
 | 
						|
	vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1);
 | 
						|
 | 
						|
	vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1);
 | 
						|
	vQ2xz = vext_f32(vQ2zx, vQ2zx, 1);
 | 
						|
 | 
						|
	A1 = vcombine_f32(vget_low_f32(vQ1), vQ1zx);                     // X Y  z x
 | 
						|
	B1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ2), 1), vQ2wx);  // W W  W X
 | 
						|
 | 
						|
	A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1));
 | 
						|
	B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1));
 | 
						|
 | 
						|
	A3 = vcombine_f32(vQ1zx, vQ1yz);  // Z X Y Z
 | 
						|
	B3 = vcombine_f32(vQ2yz, vQ2xz);  // Y Z x z
 | 
						|
 | 
						|
	A1 = vmulq_f32(A1, B1);
 | 
						|
	A2 = vmulq_f32(A2, B2);
 | 
						|
	A3 = vmulq_f32(A3, B3);                           //	A3 *= B3
 | 
						|
	A0 = vmulq_lane_f32(vQ2, vget_high_f32(vQ1), 1);  //	A0 * B0
 | 
						|
 | 
						|
	A1 = vaddq_f32(A1, A2);  //	AB12 = AB1 + AB2
 | 
						|
	A0 = vsubq_f32(A0, A3);  //	AB03 = AB0 - AB3
 | 
						|
 | 
						|
	//	change the sign of the last element
 | 
						|
	A1 = (b3SimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)b3vPPPM);
 | 
						|
	A0 = vaddq_f32(A0, A1);  //	AB03 + AB12
 | 
						|
 | 
						|
	return b3Quaternion(A0);
 | 
						|
 | 
						|
#else
 | 
						|
	return b3Quaternion(
 | 
						|
		q1.getW() * q2.getX() + q1.getX() * q2.getW() + q1.getY() * q2.getZ() - q1.getZ() * q2.getY(),
 | 
						|
		q1.getW() * q2.getY() + q1.getY() * q2.getW() + q1.getZ() * q2.getX() - q1.getX() * q2.getZ(),
 | 
						|
		q1.getW() * q2.getZ() + q1.getZ() * q2.getW() + q1.getX() * q2.getY() - q1.getY() * q2.getX(),
 | 
						|
		q1.getW() * q2.getW() - q1.getX() * q2.getX() - q1.getY() * q2.getY() - q1.getZ() * q2.getZ());
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
B3_FORCE_INLINE b3Quaternion
 | 
						|
operator*(const b3Quaternion& q, const b3Vector3& w)
 | 
						|
{
 | 
						|
#if defined(B3_USE_SSE_IN_API) && defined(B3_USE_SSE)
 | 
						|
	__m128 vQ1 = q.get128();
 | 
						|
	__m128 vQ2 = w.get128();
 | 
						|
	__m128 A1, B1, A2, B2, A3, B3;
 | 
						|
 | 
						|
	A1 = b3_pshufd_ps(vQ1, B3_SHUFFLE(3, 3, 3, 0));
 | 
						|
	B1 = b3_pshufd_ps(vQ2, B3_SHUFFLE(0, 1, 2, 0));
 | 
						|
 | 
						|
	A1 = A1 * B1;
 | 
						|
 | 
						|
	A2 = b3_pshufd_ps(vQ1, B3_SHUFFLE(1, 2, 0, 1));
 | 
						|
	B2 = b3_pshufd_ps(vQ2, B3_SHUFFLE(2, 0, 1, 1));
 | 
						|
 | 
						|
	A2 = A2 * B2;
 | 
						|
 | 
						|
	A3 = b3_pshufd_ps(vQ1, B3_SHUFFLE(2, 0, 1, 2));
 | 
						|
	B3 = b3_pshufd_ps(vQ2, B3_SHUFFLE(1, 2, 0, 2));
 | 
						|
 | 
						|
	A3 = A3 * B3;  //	A3 *= B3
 | 
						|
 | 
						|
	A1 = A1 + A2;                  //	AB12
 | 
						|
	A1 = _mm_xor_ps(A1, b3vPPPM);  //	change sign of the last element
 | 
						|
	A1 = A1 - A3;                  //	AB123 = AB12 - AB3
 | 
						|
 | 
						|
	return b3Quaternion(A1);
 | 
						|
 | 
						|
#elif defined(B3_USE_NEON)
 | 
						|
 | 
						|
	float32x4_t vQ1 = q.get128();
 | 
						|
	float32x4_t vQ2 = w.get128();
 | 
						|
	float32x4_t A1, B1, A2, B2, A3, B3;
 | 
						|
	float32x2_t vQ1wx, vQ2zx, vQ1yz, vQ2yz, vQ1zx, vQ2xz;
 | 
						|
 | 
						|
	vQ1wx = vext_f32(vget_high_f32(vQ1), vget_low_f32(vQ1), 1);
 | 
						|
	{
 | 
						|
		float32x2x2_t tmp;
 | 
						|
 | 
						|
		tmp = vtrn_f32(vget_high_f32(vQ2), vget_low_f32(vQ2));  // {z x}, {w y}
 | 
						|
		vQ2zx = tmp.val[0];
 | 
						|
 | 
						|
		tmp = vtrn_f32(vget_high_f32(vQ1), vget_low_f32(vQ1));  // {z x}, {w y}
 | 
						|
		vQ1zx = tmp.val[0];
 | 
						|
	}
 | 
						|
 | 
						|
	vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1);
 | 
						|
 | 
						|
	vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1);
 | 
						|
	vQ2xz = vext_f32(vQ2zx, vQ2zx, 1);
 | 
						|
 | 
						|
	A1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ1), 1), vQ1wx);  // W W  W X
 | 
						|
	B1 = vcombine_f32(vget_low_f32(vQ2), vQ2zx);                     // X Y  z x
 | 
						|
 | 
						|
	A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1));
 | 
						|
	B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1));
 | 
						|
 | 
						|
	A3 = vcombine_f32(vQ1zx, vQ1yz);  // Z X Y Z
 | 
						|
	B3 = vcombine_f32(vQ2yz, vQ2xz);  // Y Z x z
 | 
						|
 | 
						|
	A1 = vmulq_f32(A1, B1);
 | 
						|
	A2 = vmulq_f32(A2, B2);
 | 
						|
	A3 = vmulq_f32(A3, B3);  //	A3 *= B3
 | 
						|
 | 
						|
	A1 = vaddq_f32(A1, A2);  //	AB12 = AB1 + AB2
 | 
						|
 | 
						|
	//	change the sign of the last element
 | 
						|
	A1 = (b3SimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)b3vPPPM);
 | 
						|
 | 
						|
	A1 = vsubq_f32(A1, A3);  //	AB123 = AB12 - AB3
 | 
						|
 | 
						|
	return b3Quaternion(A1);
 | 
						|
 | 
						|
#else
 | 
						|
	return b3Quaternion(
 | 
						|
		q.getW() * w.getX() + q.getY() * w.getZ() - q.getZ() * w.getY(),
 | 
						|
		q.getW() * w.getY() + q.getZ() * w.getX() - q.getX() * w.getZ(),
 | 
						|
		q.getW() * w.getZ() + q.getX() * w.getY() - q.getY() * w.getX(),
 | 
						|
		-q.getX() * w.getX() - q.getY() * w.getY() - q.getZ() * w.getZ());
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
B3_FORCE_INLINE b3Quaternion
 | 
						|
operator*(const b3Vector3& w, const b3Quaternion& q)
 | 
						|
{
 | 
						|
#if defined(B3_USE_SSE_IN_API) && defined(B3_USE_SSE)
 | 
						|
	__m128 vQ1 = w.get128();
 | 
						|
	__m128 vQ2 = q.get128();
 | 
						|
	__m128 A1, B1, A2, B2, A3, B3;
 | 
						|
 | 
						|
	A1 = b3_pshufd_ps(vQ1, B3_SHUFFLE(0, 1, 2, 0));  // X Y  z x
 | 
						|
	B1 = b3_pshufd_ps(vQ2, B3_SHUFFLE(3, 3, 3, 0));  // W W  W X
 | 
						|
 | 
						|
	A1 = A1 * B1;
 | 
						|
 | 
						|
	A2 = b3_pshufd_ps(vQ1, B3_SHUFFLE(1, 2, 0, 1));
 | 
						|
	B2 = b3_pshufd_ps(vQ2, B3_SHUFFLE(2, 0, 1, 1));
 | 
						|
 | 
						|
	A2 = A2 * B2;
 | 
						|
 | 
						|
	A3 = b3_pshufd_ps(vQ1, B3_SHUFFLE(2, 0, 1, 2));
 | 
						|
	B3 = b3_pshufd_ps(vQ2, B3_SHUFFLE(1, 2, 0, 2));
 | 
						|
 | 
						|
	A3 = A3 * B3;  //	A3 *= B3
 | 
						|
 | 
						|
	A1 = A1 + A2;                  //	AB12
 | 
						|
	A1 = _mm_xor_ps(A1, b3vPPPM);  //	change sign of the last element
 | 
						|
	A1 = A1 - A3;                  //	AB123 = AB12 - AB3
 | 
						|
 | 
						|
	return b3Quaternion(A1);
 | 
						|
 | 
						|
#elif defined(B3_USE_NEON)
 | 
						|
 | 
						|
	float32x4_t vQ1 = w.get128();
 | 
						|
	float32x4_t vQ2 = q.get128();
 | 
						|
	float32x4_t A1, B1, A2, B2, A3, B3;
 | 
						|
	float32x2_t vQ1zx, vQ2wx, vQ1yz, vQ2zx, vQ2yz, vQ2xz;
 | 
						|
 | 
						|
	{
 | 
						|
		float32x2x2_t tmp;
 | 
						|
 | 
						|
		tmp = vtrn_f32(vget_high_f32(vQ1), vget_low_f32(vQ1));  // {z x}, {w y}
 | 
						|
		vQ1zx = tmp.val[0];
 | 
						|
 | 
						|
		tmp = vtrn_f32(vget_high_f32(vQ2), vget_low_f32(vQ2));  // {z x}, {w y}
 | 
						|
		vQ2zx = tmp.val[0];
 | 
						|
	}
 | 
						|
	vQ2wx = vext_f32(vget_high_f32(vQ2), vget_low_f32(vQ2), 1);
 | 
						|
 | 
						|
	vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1);
 | 
						|
 | 
						|
	vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1);
 | 
						|
	vQ2xz = vext_f32(vQ2zx, vQ2zx, 1);
 | 
						|
 | 
						|
	A1 = vcombine_f32(vget_low_f32(vQ1), vQ1zx);                     // X Y  z x
 | 
						|
	B1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ2), 1), vQ2wx);  // W W  W X
 | 
						|
 | 
						|
	A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1));
 | 
						|
	B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1));
 | 
						|
 | 
						|
	A3 = vcombine_f32(vQ1zx, vQ1yz);  // Z X Y Z
 | 
						|
	B3 = vcombine_f32(vQ2yz, vQ2xz);  // Y Z x z
 | 
						|
 | 
						|
	A1 = vmulq_f32(A1, B1);
 | 
						|
	A2 = vmulq_f32(A2, B2);
 | 
						|
	A3 = vmulq_f32(A3, B3);  //	A3 *= B3
 | 
						|
 | 
						|
	A1 = vaddq_f32(A1, A2);  //	AB12 = AB1 + AB2
 | 
						|
 | 
						|
	//	change the sign of the last element
 | 
						|
	A1 = (b3SimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)b3vPPPM);
 | 
						|
 | 
						|
	A1 = vsubq_f32(A1, A3);  //	AB123 = AB12 - AB3
 | 
						|
 | 
						|
	return b3Quaternion(A1);
 | 
						|
 | 
						|
#else
 | 
						|
	return b3Quaternion(
 | 
						|
		+w.getX() * q.getW() + w.getY() * q.getZ() - w.getZ() * q.getY(),
 | 
						|
		+w.getY() * q.getW() + w.getZ() * q.getX() - w.getX() * q.getZ(),
 | 
						|
		+w.getZ() * q.getW() + w.getX() * q.getY() - w.getY() * q.getX(),
 | 
						|
		-w.getX() * q.getX() - w.getY() * q.getY() - w.getZ() * q.getZ());
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/**@brief Calculate the dot product between two quaternions */
 | 
						|
B3_FORCE_INLINE b3Scalar
 | 
						|
b3Dot(const b3Quaternion& q1, const b3Quaternion& q2)
 | 
						|
{
 | 
						|
	return q1.dot(q2);
 | 
						|
}
 | 
						|
 | 
						|
/**@brief Return the length of a quaternion */
 | 
						|
B3_FORCE_INLINE b3Scalar
 | 
						|
b3Length(const b3Quaternion& q)
 | 
						|
{
 | 
						|
	return q.length();
 | 
						|
}
 | 
						|
 | 
						|
/**@brief Return the angle between two quaternions*/
 | 
						|
B3_FORCE_INLINE b3Scalar
 | 
						|
b3Angle(const b3Quaternion& q1, const b3Quaternion& q2)
 | 
						|
{
 | 
						|
	return q1.angle(q2);
 | 
						|
}
 | 
						|
 | 
						|
/**@brief Return the inverse of a quaternion*/
 | 
						|
B3_FORCE_INLINE b3Quaternion
 | 
						|
b3Inverse(const b3Quaternion& q)
 | 
						|
{
 | 
						|
	return q.inverse();
 | 
						|
}
 | 
						|
 | 
						|
/**@brief Return the result of spherical linear interpolation betwen two quaternions 
 | 
						|
 * @param q1 The first quaternion
 | 
						|
 * @param q2 The second quaternion 
 | 
						|
 * @param t The ration between q1 and q2.  t = 0 return q1, t=1 returns q2 
 | 
						|
 * Slerp assumes constant velocity between positions. */
 | 
						|
B3_FORCE_INLINE b3Quaternion
 | 
						|
b3Slerp(const b3Quaternion& q1, const b3Quaternion& q2, const b3Scalar& t)
 | 
						|
{
 | 
						|
	return q1.slerp(q2, t);
 | 
						|
}
 | 
						|
 | 
						|
B3_FORCE_INLINE b3Quaternion
 | 
						|
b3QuatMul(const b3Quaternion& rot0, const b3Quaternion& rot1)
 | 
						|
{
 | 
						|
	return rot0 * rot1;
 | 
						|
}
 | 
						|
 | 
						|
B3_FORCE_INLINE b3Quaternion
 | 
						|
b3QuatNormalized(const b3Quaternion& orn)
 | 
						|
{
 | 
						|
	return orn.normalized();
 | 
						|
}
 | 
						|
 | 
						|
B3_FORCE_INLINE b3Vector3
 | 
						|
b3QuatRotate(const b3Quaternion& rotation, const b3Vector3& v)
 | 
						|
{
 | 
						|
	b3Quaternion q = rotation * v;
 | 
						|
	q *= rotation.inverse();
 | 
						|
#if defined(B3_USE_SSE_IN_API) && defined(B3_USE_SSE)
 | 
						|
	return b3MakeVector3(_mm_and_ps(q.get128(), b3vFFF0fMask));
 | 
						|
#elif defined(B3_USE_NEON)
 | 
						|
	return b3MakeVector3((float32x4_t)vandq_s32((int32x4_t)q.get128(), b3vFFF0Mask));
 | 
						|
#else
 | 
						|
	return b3MakeVector3(q.getX(), q.getY(), q.getZ());
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
B3_FORCE_INLINE b3Quaternion
 | 
						|
b3ShortestArcQuat(const b3Vector3& v0, const b3Vector3& v1)  // Game Programming Gems 2.10. make sure v0,v1 are normalized
 | 
						|
{
 | 
						|
	b3Vector3 c = v0.cross(v1);
 | 
						|
	b3Scalar d = v0.dot(v1);
 | 
						|
 | 
						|
	if (d < -1.0 + B3_EPSILON)
 | 
						|
	{
 | 
						|
		b3Vector3 n, unused;
 | 
						|
		b3PlaneSpace1(v0, n, unused);
 | 
						|
		return b3Quaternion(n.getX(), n.getY(), n.getZ(), 0.0f);  // just pick any vector that is orthogonal to v0
 | 
						|
	}
 | 
						|
 | 
						|
	b3Scalar s = b3Sqrt((1.0f + d) * 2.0f);
 | 
						|
	b3Scalar rs = 1.0f / s;
 | 
						|
 | 
						|
	return b3Quaternion(c.getX() * rs, c.getY() * rs, c.getZ() * rs, s * 0.5f);
 | 
						|
}
 | 
						|
 | 
						|
B3_FORCE_INLINE b3Quaternion
 | 
						|
b3ShortestArcQuatNormalize2(b3Vector3& v0, b3Vector3& v1)
 | 
						|
{
 | 
						|
	v0.normalize();
 | 
						|
	v1.normalize();
 | 
						|
	return b3ShortestArcQuat(v0, v1);
 | 
						|
}
 | 
						|
 | 
						|
#endif  //B3_SIMD__QUATERNION_H_
 |