mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-31 13:41:03 +00:00 
			
		
		
		
	 767e374dce
			
		
	
	
		767e374dce
		
	
	
	
	
		
			
			Since Embree v3.13.0 supports AARCH64, switch back to the official repo instead of using Embree-aarch64. `thirdparty/embree/patches/godot-changes.patch` should now contain an accurate diff of the changes done to the library.
		
			
				
	
	
		
			361 lines
		
	
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			361 lines
		
	
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2009-2021 Intel Corporation
 | |
| // SPDX-License-Identifier: Apache-2.0
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include "linearspace2.h"
 | |
| #include "linearspace3.h"
 | |
| #include "quaternion.h"
 | |
| #include "bbox.h"
 | |
| #include "vec4.h"
 | |
| 
 | |
| namespace embree
 | |
| {
 | |
|   #define VectorT typename L::Vector
 | |
|   #define ScalarT typename L::Vector::Scalar
 | |
| 
 | |
|   ////////////////////////////////////////////////////////////////////////////////
 | |
|   // Affine Space
 | |
|   ////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
|   template<typename L>
 | |
|     struct AffineSpaceT
 | |
|     {
 | |
|       L l;           /*< linear part of affine space */
 | |
|       VectorT p;     /*< affine part of affine space */
 | |
| 
 | |
|       ////////////////////////////////////////////////////////////////////////////////
 | |
|       // Constructors, Assignment, Cast, Copy Operations
 | |
|       ////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
|       __forceinline AffineSpaceT           ( )                           { }
 | |
|       __forceinline AffineSpaceT           ( const AffineSpaceT& other ) { l = other.l; p = other.p; }
 | |
|       __forceinline AffineSpaceT           ( const L           & other ) { l = other  ; p = VectorT(zero); }
 | |
|       __forceinline AffineSpaceT& operator=( const AffineSpaceT& other ) { l = other.l; p = other.p; return *this; }
 | |
| 
 | |
|       __forceinline AffineSpaceT( const VectorT& vx, const VectorT& vy, const VectorT& vz, const VectorT& p ) : l(vx,vy,vz), p(p) {}
 | |
|       __forceinline AffineSpaceT( const L& l, const VectorT& p ) : l(l), p(p) {}
 | |
| 
 | |
|       template<typename L1> __forceinline AffineSpaceT( const AffineSpaceT<L1>& s ) : l(s.l), p(s.p) {}
 | |
| 
 | |
|       ////////////////////////////////////////////////////////////////////////////////
 | |
|       // Constants
 | |
|       ////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
|       __forceinline AffineSpaceT( ZeroTy ) : l(zero), p(zero) {}
 | |
|       __forceinline AffineSpaceT( OneTy )  : l(one),  p(zero) {}
 | |
| 
 | |
|       /*! return matrix for scaling */
 | |
|       static __forceinline AffineSpaceT scale(const VectorT& s) { return L::scale(s); }
 | |
| 
 | |
|       /*! return matrix for translation */
 | |
|       static __forceinline AffineSpaceT translate(const VectorT& p) { return AffineSpaceT(one,p); }
 | |
| 
 | |
|       /*! return matrix for rotation, only in 2D */
 | |
|       static __forceinline AffineSpaceT rotate(const ScalarT& r) { return L::rotate(r); }
 | |
| 
 | |
|       /*! return matrix for rotation around arbitrary point (2D) or axis (3D) */
 | |
|       static __forceinline AffineSpaceT rotate(const VectorT& u, const ScalarT& r) { return L::rotate(u,r); }
 | |
| 
 | |
|       /*! return matrix for rotation around arbitrary axis and point, only in 3D */
 | |
|       static __forceinline AffineSpaceT rotate(const VectorT& p, const VectorT& u, const ScalarT& r) { return translate(+p) * rotate(u,r) * translate(-p);  }
 | |
| 
 | |
|       /*! return matrix for looking at given point, only in 3D */
 | |
|       static __forceinline AffineSpaceT lookat(const VectorT& eye, const VectorT& point, const VectorT& up) {
 | |
|         VectorT Z = normalize(point-eye);
 | |
|         VectorT U = normalize(cross(up,Z));
 | |
|         VectorT V = normalize(cross(Z,U));
 | |
|         return AffineSpaceT(L(U,V,Z),eye);
 | |
|       }
 | |
| 
 | |
|     };
 | |
|   
 | |
|   // template specialization to get correct identity matrix for type AffineSpace3fa
 | |
|   template<>
 | |
|     __forceinline AffineSpaceT<LinearSpace3ff>::AffineSpaceT( OneTy )  : l(one),  p(0.f, 0.f, 0.f, 1.f) {}
 | |
| 
 | |
|   ////////////////////////////////////////////////////////////////////////////////
 | |
|   // Unary Operators
 | |
|   ////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
|   template<typename L> __forceinline AffineSpaceT<L> operator -( const AffineSpaceT<L>& a ) { return AffineSpaceT<L>(-a.l,-a.p); }
 | |
|   template<typename L> __forceinline AffineSpaceT<L> operator +( const AffineSpaceT<L>& a ) { return AffineSpaceT<L>(+a.l,+a.p); }
 | |
|   template<typename L> __forceinline AffineSpaceT<L>        rcp( const AffineSpaceT<L>& a ) { L il = rcp(a.l); return AffineSpaceT<L>(il,-(il*a.p)); }
 | |
| 
 | |
|   ////////////////////////////////////////////////////////////////////////////////
 | |
|   // Binary Operators
 | |
|   ////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
|   template<typename L> __forceinline const AffineSpaceT<L> operator +( const AffineSpaceT<L>& a, const AffineSpaceT<L>& b ) { return AffineSpaceT<L>(a.l+b.l,a.p+b.p); }
 | |
|   template<typename L> __forceinline const AffineSpaceT<L> operator -( const AffineSpaceT<L>& a, const AffineSpaceT<L>& b ) { return AffineSpaceT<L>(a.l-b.l,a.p-b.p); }
 | |
| 
 | |
|   template<typename L> __forceinline const AffineSpaceT<L> operator *( const ScalarT        & a, const AffineSpaceT<L>& b ) { return AffineSpaceT<L>(a*b.l,a*b.p); }
 | |
|   template<typename L> __forceinline const AffineSpaceT<L> operator *( const AffineSpaceT<L>& a, const AffineSpaceT<L>& b ) { return AffineSpaceT<L>(a.l*b.l,a.l*b.p+a.p); }
 | |
|   template<typename L> __forceinline const AffineSpaceT<L> operator /( const AffineSpaceT<L>& a, const AffineSpaceT<L>& b ) { return a * rcp(b); }
 | |
|   template<typename L> __forceinline const AffineSpaceT<L> operator /( const AffineSpaceT<L>& a, const ScalarT        & b ) { return a * rcp(b); }
 | |
| 
 | |
|   template<typename L> __forceinline AffineSpaceT<L>& operator *=( AffineSpaceT<L>& a, const AffineSpaceT<L>& b ) { return a = a * b; }
 | |
|   template<typename L> __forceinline AffineSpaceT<L>& operator *=( AffineSpaceT<L>& a, const ScalarT        & b ) { return a = a * b; }
 | |
|   template<typename L> __forceinline AffineSpaceT<L>& operator /=( AffineSpaceT<L>& a, const AffineSpaceT<L>& b ) { return a = a / b; }
 | |
|   template<typename L> __forceinline AffineSpaceT<L>& operator /=( AffineSpaceT<L>& a, const ScalarT        & b ) { return a = a / b; }
 | |
| 
 | |
|   template<typename L> __forceinline VectorT xfmPoint (const AffineSpaceT<L>& m, const VectorT& p) { return madd(VectorT(p.x),m.l.vx,madd(VectorT(p.y),m.l.vy,madd(VectorT(p.z),m.l.vz,m.p))); }
 | |
|   template<typename L> __forceinline VectorT xfmVector(const AffineSpaceT<L>& m, const VectorT& v) { return xfmVector(m.l,v); }
 | |
|   template<typename L> __forceinline VectorT xfmNormal(const AffineSpaceT<L>& m, const VectorT& n) { return xfmNormal(m.l,n); }
 | |
| 
 | |
|   __forceinline const BBox<Vec3fa> xfmBounds(const AffineSpaceT<LinearSpace3<Vec3fa> >& m, const BBox<Vec3fa>& b) 
 | |
|   { 
 | |
|     BBox3fa dst = empty;
 | |
|     const Vec3fa p0(b.lower.x,b.lower.y,b.lower.z); dst.extend(xfmPoint(m,p0));
 | |
|     const Vec3fa p1(b.lower.x,b.lower.y,b.upper.z); dst.extend(xfmPoint(m,p1));
 | |
|     const Vec3fa p2(b.lower.x,b.upper.y,b.lower.z); dst.extend(xfmPoint(m,p2));
 | |
|     const Vec3fa p3(b.lower.x,b.upper.y,b.upper.z); dst.extend(xfmPoint(m,p3));
 | |
|     const Vec3fa p4(b.upper.x,b.lower.y,b.lower.z); dst.extend(xfmPoint(m,p4));
 | |
|     const Vec3fa p5(b.upper.x,b.lower.y,b.upper.z); dst.extend(xfmPoint(m,p5));
 | |
|     const Vec3fa p6(b.upper.x,b.upper.y,b.lower.z); dst.extend(xfmPoint(m,p6));
 | |
|     const Vec3fa p7(b.upper.x,b.upper.y,b.upper.z); dst.extend(xfmPoint(m,p7));
 | |
|     return dst;
 | |
|   }
 | |
| 
 | |
|   ////////////////////////////////////////////////////////////////////////////////
 | |
|   /// Comparison Operators
 | |
|   ////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
|   template<typename L> __forceinline bool operator ==( const AffineSpaceT<L>& a, const AffineSpaceT<L>& b ) { return a.l == b.l && a.p == b.p; }
 | |
|   template<typename L> __forceinline bool operator !=( const AffineSpaceT<L>& a, const AffineSpaceT<L>& b ) { return a.l != b.l || a.p != b.p; }
 | |
| 
 | |
|   ////////////////////////////////////////////////////////////////////////////////
 | |
|   /// Select
 | |
|   ////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
|   template<typename L> __forceinline AffineSpaceT<L> select ( const typename L::Vector::Scalar::Bool& s, const AffineSpaceT<L>& t, const AffineSpaceT<L>& f ) {
 | |
|     return AffineSpaceT<L>(select(s,t.l,f.l),select(s,t.p,f.p));
 | |
|   }
 | |
| 
 | |
|   ////////////////////////////////////////////////////////////////////////////////
 | |
|   // Output Operators
 | |
|   ////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
|   template<typename L> static embree_ostream operator<<(embree_ostream cout, const AffineSpaceT<L>& m) {
 | |
|     return cout << "{ l = " << m.l << ", p = " << m.p << " }";
 | |
|   }
 | |
| 
 | |
|   ////////////////////////////////////////////////////////////////////////////////
 | |
|   // Template Instantiations
 | |
|   ////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
|   typedef AffineSpaceT<LinearSpace2f> AffineSpace2f;
 | |
|   typedef AffineSpaceT<LinearSpace3f> AffineSpace3f;
 | |
|   typedef AffineSpaceT<LinearSpace3fa> AffineSpace3fa;
 | |
|   typedef AffineSpaceT<LinearSpace3fx> AffineSpace3fx;
 | |
|   typedef AffineSpaceT<LinearSpace3ff> AffineSpace3ff;
 | |
|   typedef AffineSpaceT<Quaternion3f > OrthonormalSpace3f;
 | |
| 
 | |
|   template<int N> using AffineSpace3vf = AffineSpaceT<LinearSpace3<Vec3<vfloat<N>>>>;
 | |
|   typedef AffineSpaceT<LinearSpace3<Vec3<vfloat<4>>>>  AffineSpace3vf4;
 | |
|   typedef AffineSpaceT<LinearSpace3<Vec3<vfloat<8>>>>  AffineSpace3vf8;
 | |
|   typedef AffineSpaceT<LinearSpace3<Vec3<vfloat<16>>>> AffineSpace3vf16;
 | |
| 
 | |
|   template<int N> using AffineSpace3vff = AffineSpaceT<LinearSpace3<Vec4<vfloat<N>>>>;
 | |
|   typedef AffineSpaceT<LinearSpace3<Vec4<vfloat<4>>>>  AffineSpace3vfa4;
 | |
|   typedef AffineSpaceT<LinearSpace3<Vec4<vfloat<8>>>>  AffineSpace3vfa8;
 | |
|   typedef AffineSpaceT<LinearSpace3<Vec4<vfloat<16>>>> AffineSpace3vfa16;
 | |
| 
 | |
|   //////////////////////////////////////////////////////////////////////////////
 | |
|   /// Interpolation
 | |
|   //////////////////////////////////////////////////////////////////////////////
 | |
|   template<typename T, typename R>
 | |
|   __forceinline AffineSpaceT<T> lerp(const AffineSpaceT<T>& M0,
 | |
|                                      const AffineSpaceT<T>& M1,
 | |
|                                      const R& t)
 | |
|   {
 | |
|     return AffineSpaceT<T>(lerp(M0.l,M1.l,t),lerp(M0.p,M1.p,t));
 | |
|   }
 | |
| 
 | |
|   // slerp interprets the 16 floats of the matrix M = D * R * S as components of
 | |
|   // three matrizes (D, R, S) that are interpolated individually.
 | |
|   template<typename T> __forceinline AffineSpaceT<LinearSpace3<Vec3<T>>>
 | |
|   slerp(const AffineSpaceT<LinearSpace3<Vec4<T>>>& M0,
 | |
|         const AffineSpaceT<LinearSpace3<Vec4<T>>>& M1,
 | |
|         const T& t)
 | |
|   {
 | |
|     QuaternionT<T> q0(M0.p.w, M0.l.vx.w, M0.l.vy.w, M0.l.vz.w);
 | |
|     QuaternionT<T> q1(M1.p.w, M1.l.vx.w, M1.l.vy.w, M1.l.vz.w);
 | |
|     QuaternionT<T> q = slerp(q0, q1, t);
 | |
| 
 | |
|     AffineSpaceT<LinearSpace3<Vec3<T>>> S = lerp(M0, M1, t);
 | |
|     AffineSpaceT<LinearSpace3<Vec3<T>>> D(one);
 | |
|     D.p.x = S.l.vx.y;
 | |
|     D.p.y = S.l.vx.z;
 | |
|     D.p.z = S.l.vy.z;
 | |
|     S.l.vx.y = 0;
 | |
|     S.l.vx.z = 0;
 | |
|     S.l.vy.z = 0;
 | |
| 
 | |
|     AffineSpaceT<LinearSpace3<Vec3<T>>> R = LinearSpace3<Vec3<T>>(q);
 | |
|     return D * R * S;
 | |
|   }
 | |
| 
 | |
|   // this is a specialized version for Vec3fa because that does
 | |
|   // not play along nicely with the other templated Vec3/Vec4 types
 | |
|   __forceinline AffineSpace3fa slerp(const AffineSpace3ff& M0,
 | |
|                                      const AffineSpace3ff& M1,
 | |
|                                      const float& t)
 | |
|   {
 | |
|     Quaternion3f q0(M0.p.w, M0.l.vx.w, M0.l.vy.w, M0.l.vz.w);
 | |
|     Quaternion3f q1(M1.p.w, M1.l.vx.w, M1.l.vy.w, M1.l.vz.w);
 | |
|     Quaternion3f q = slerp(q0, q1, t);
 | |
| 
 | |
|     AffineSpace3fa S = lerp(M0, M1, t);
 | |
|     AffineSpace3fa D(one);
 | |
|     D.p.x = S.l.vx.y;
 | |
|     D.p.y = S.l.vx.z;
 | |
|     D.p.z = S.l.vy.z;
 | |
|     S.l.vx.y = 0;
 | |
|     S.l.vx.z = 0;
 | |
|     S.l.vy.z = 0;
 | |
| 
 | |
|     AffineSpace3fa R = LinearSpace3fa(q);
 | |
|     return D * R * S;
 | |
|   }
 | |
|   
 | |
|   __forceinline AffineSpace3fa quaternionDecompositionToAffineSpace(const AffineSpace3ff& qd)
 | |
|   {
 | |
|     // compute affine transform from quaternion decomposition
 | |
|     Quaternion3f q(qd.p.w, qd.l.vx.w, qd.l.vy.w, qd.l.vz.w);
 | |
|     AffineSpace3fa M = qd;
 | |
|     AffineSpace3fa D(one);
 | |
|     D.p.x = M.l.vx.y;
 | |
|     D.p.y = M.l.vx.z;
 | |
|     D.p.z = M.l.vy.z;
 | |
|     M.l.vx.y = 0;
 | |
|     M.l.vx.z = 0;
 | |
|     M.l.vy.z = 0;
 | |
|     AffineSpace3fa R = LinearSpace3fa(q);
 | |
|     return D * R * M;
 | |
|   }
 | |
|   
 | |
|   __forceinline void quaternionDecomposition(const AffineSpace3ff& qd, Vec3fa& T, Quaternion3f& q, AffineSpace3fa& S)
 | |
|   {
 | |
|     q = Quaternion3f(qd.p.w, qd.l.vx.w, qd.l.vy.w, qd.l.vz.w);
 | |
|     S = qd;
 | |
|     T.x = qd.l.vx.y;
 | |
|     T.y = qd.l.vx.z;
 | |
|     T.z = qd.l.vy.z;
 | |
|     S.l.vx.y = 0;
 | |
|     S.l.vx.z = 0;
 | |
|     S.l.vy.z = 0;
 | |
|   }
 | |
| 
 | |
|   __forceinline AffineSpace3fx quaternionDecomposition(Vec3fa const& T, Quaternion3f const& q, AffineSpace3fa const& S)
 | |
|   {
 | |
|     AffineSpace3ff M = S;
 | |
|     M.l.vx.w = q.i;
 | |
|     M.l.vy.w = q.j;
 | |
|     M.l.vz.w = q.k;
 | |
|     M.p.w    = q.r;
 | |
|     M.l.vx.y = T.x;
 | |
|     M.l.vx.z = T.y;
 | |
|     M.l.vy.z = T.z;
 | |
|     return M;
 | |
|   }
 | |
| 
 | |
|   struct __aligned(16) QuaternionDecomposition
 | |
|   {
 | |
|     float scale_x = 1.f;
 | |
|     float scale_y = 1.f;
 | |
|     float scale_z = 1.f;
 | |
|     float skew_xy = 0.f;
 | |
|     float skew_xz = 0.f;
 | |
|     float skew_yz = 0.f;
 | |
|     float shift_x = 0.f;
 | |
|     float shift_y = 0.f;
 | |
|     float shift_z = 0.f;
 | |
|     float quaternion_r = 1.f;
 | |
|     float quaternion_i = 0.f;
 | |
|     float quaternion_j = 0.f;
 | |
|     float quaternion_k = 0.f;
 | |
|     float translation_x = 0.f;
 | |
|     float translation_y = 0.f;
 | |
|     float translation_z = 0.f;
 | |
|   };
 | |
| 
 | |
|   __forceinline QuaternionDecomposition quaternionDecomposition(AffineSpace3ff const& M)
 | |
|   {
 | |
|     QuaternionDecomposition qd;
 | |
|     qd.scale_x       = M.l.vx.x;
 | |
|     qd.scale_y       = M.l.vy.y;
 | |
|     qd.scale_z       = M.l.vz.z;
 | |
|     qd.shift_x       = M.p.x;
 | |
|     qd.shift_y       = M.p.y;
 | |
|     qd.shift_z       = M.p.z;
 | |
|     qd.translation_x = M.l.vx.y;
 | |
|     qd.translation_y = M.l.vx.z;
 | |
|     qd.translation_z = M.l.vy.z;
 | |
|     qd.skew_xy       = M.l.vy.x;
 | |
|     qd.skew_xz       = M.l.vz.x;
 | |
|     qd.skew_yz       = M.l.vz.y;
 | |
|     qd.quaternion_r  = M.p.w;
 | |
|     qd.quaternion_i  = M.l.vx.w;
 | |
|     qd.quaternion_j  = M.l.vy.w;
 | |
|     qd.quaternion_k  = M.l.vz.w;
 | |
|     return qd;
 | |
|   }
 | |
| 
 | |
|   ////////////////////////////////////////////////////////////////////////////////
 | |
|   /*
 | |
|    * ! Template Specialization for 2D: return matrix for rotation around point
 | |
|    * (rotation around arbitrarty vector is not meaningful in 2D)
 | |
|    */
 | |
|   template<> __forceinline
 | |
|   AffineSpace2f AffineSpace2f::rotate(const Vec2f& p, const float& r) {
 | |
|     return translate(+p)*AffineSpace2f(LinearSpace2f::rotate(r))*translate(-p);
 | |
|   }
 | |
| 
 | |
|   ////////////////////////////////////////////////////////////////////////////////
 | |
|   // Similarity Transform
 | |
|   //
 | |
|   // checks, if M is a similarity transformation, i.e if there exists a factor D
 | |
|   // such that for all x,y: distance(Mx, My) = D * distance(x, y)
 | |
|   ////////////////////////////////////////////////////////////////////////////////
 | |
|   __forceinline bool similarityTransform(const AffineSpace3fa& M, float* D)
 | |
|   {
 | |
|     if (D) *D = 0.f;
 | |
|     if (abs(dot(M.l.vx, M.l.vy)) > 1e-5f) return false;
 | |
|     if (abs(dot(M.l.vx, M.l.vz)) > 1e-5f) return false;
 | |
|     if (abs(dot(M.l.vy, M.l.vz)) > 1e-5f) return false;
 | |
| 
 | |
|     const float D_x = dot(M.l.vx, M.l.vx);
 | |
|     const float D_y = dot(M.l.vy, M.l.vy);
 | |
|     const float D_z = dot(M.l.vz, M.l.vz);
 | |
| 
 | |
|     if (abs(D_x - D_y) > 1e-5f ||
 | |
|         abs(D_x - D_z) > 1e-5f ||
 | |
|         abs(D_y - D_z) > 1e-5f)
 | |
|       return false;
 | |
| 
 | |
|     if (D) *D = sqrtf(D_x);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   __forceinline void AffineSpace3fa_store_unaligned(const AffineSpace3fa &source, AffineSpace3fa* ptr)
 | |
|   {
 | |
|     Vec3fa::storeu(&ptr->l.vx, source.l.vx);
 | |
|     Vec3fa::storeu(&ptr->l.vy, source.l.vy);
 | |
|     Vec3fa::storeu(&ptr->l.vz, source.l.vz);
 | |
|     Vec3fa::storeu(&ptr->p, source.p);
 | |
|   }
 | |
| 
 | |
|   __forceinline AffineSpace3fa AffineSpace3fa_load_unaligned(AffineSpace3fa* ptr)
 | |
|   {
 | |
|     AffineSpace3fa space;
 | |
|     space.l.vx = Vec3fa::loadu(&ptr->l.vx);
 | |
|     space.l.vy = Vec3fa::loadu(&ptr->l.vy);
 | |
|     space.l.vz = Vec3fa::loadu(&ptr->l.vz);
 | |
|     space.p    = Vec3fa::loadu(&ptr->p);
 | |
|     return space;
 | |
|   }
 | |
| 
 | |
|   #undef VectorT
 | |
|   #undef ScalarT
 | |
| }
 |