mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-31 05:31:01 +00:00 
			
		
		
		
	 767e374dce
			
		
	
	
		767e374dce
		
	
	
	
	
		
			
			Since Embree v3.13.0 supports AARCH64, switch back to the official repo instead of using Embree-aarch64. `thirdparty/embree/patches/godot-changes.patch` should now contain an accurate diff of the changes done to the library.
		
			
				
	
	
		
			525 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			525 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2009-2021 Intel Corporation
 | |
| // SPDX-License-Identifier: Apache-2.0
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| // Transcendental functions from "ispc": https://github.com/ispc/ispc/
 | |
| // Most of the transcendental implementations in ispc code come from
 | |
| // Solomon Boulos's "syrah": https://github.com/boulos/syrah/
 | |
| 
 | |
| #include "../simd/simd.h"
 | |
| 
 | |
| namespace embree
 | |
| {
 | |
| 
 | |
| namespace fastapprox
 | |
| {
 | |
| 
 | |
| template <typename T>
 | |
| __forceinline T sin(const T &v)
 | |
| {
 | |
|   static const float piOverTwoVec = 1.57079637050628662109375;
 | |
|   static const float twoOverPiVec = 0.636619746685028076171875;
 | |
|   auto scaled = v * twoOverPiVec;
 | |
|   auto kReal = floor(scaled);
 | |
|   auto k = toInt(kReal);
 | |
| 
 | |
|   // Reduced range version of x
 | |
|   auto x = v - kReal * piOverTwoVec;
 | |
|   auto kMod4 = k & 3;
 | |
|   auto sinUseCos = (kMod4 == 1 | kMod4 == 3);
 | |
|   auto flipSign = (kMod4 > 1);
 | |
| 
 | |
|   // These coefficients are from sollya with fpminimax(sin(x)/x, [|0, 2,
 | |
|   // 4, 6, 8, 10|], [|single...|], [0;Pi/2]);
 | |
|   static const float sinC2  = -0.16666667163372039794921875;
 | |
|   static const float sinC4  = +8.333347737789154052734375e-3;
 | |
|   static const float sinC6  = -1.9842604524455964565277099609375e-4;
 | |
|   static const float sinC8  = +2.760012648650445044040679931640625e-6;
 | |
|   static const float sinC10 = -2.50293279435709337121807038784027099609375e-8;
 | |
| 
 | |
|   static const float cosC2  = -0.5;
 | |
|   static const float cosC4  = +4.166664183139801025390625e-2;
 | |
|   static const float cosC6  = -1.388833043165504932403564453125e-3;
 | |
|   static const float cosC8  = +2.47562347794882953166961669921875e-5;
 | |
|   static const float cosC10 = -2.59630184018533327616751194000244140625e-7;
 | |
| 
 | |
|   auto outside = select(sinUseCos, 1., x);
 | |
|   auto c2  = select(sinUseCos, T(cosC2),  T(sinC2));
 | |
|   auto c4  = select(sinUseCos, T(cosC4),  T(sinC4));
 | |
|   auto c6  = select(sinUseCos, T(cosC6),  T(sinC6));
 | |
|   auto c8  = select(sinUseCos, T(cosC8),  T(sinC8));
 | |
|   auto c10 = select(sinUseCos, T(cosC10), T(sinC10));
 | |
| 
 | |
|   auto x2 = x * x;
 | |
|   auto formula = x2 * c10 + c8;
 | |
|   formula = x2 * formula + c6;
 | |
|   formula = x2 * formula + c4;
 | |
|   formula = x2 * formula + c2;
 | |
|   formula = x2 * formula + 1.;
 | |
|   formula *= outside;
 | |
| 
 | |
|   formula = select(flipSign, -formula, formula);
 | |
|   return formula;
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| __forceinline T cos(const T &v)
 | |
| {
 | |
|   static const float piOverTwoVec = 1.57079637050628662109375;
 | |
|   static const float twoOverPiVec = 0.636619746685028076171875;
 | |
|   auto scaled = v * twoOverPiVec;
 | |
|   auto kReal = floor(scaled);
 | |
|   auto k = toInt(kReal);
 | |
| 
 | |
|   // Reduced range version of x
 | |
|   auto x = v - kReal * piOverTwoVec;
 | |
| 
 | |
|   auto kMod4 = k & 3;
 | |
|   auto cosUseCos = (kMod4 == 0 | kMod4 == 2);
 | |
|   auto flipSign = (kMod4 == 1 | kMod4 == 2);
 | |
| 
 | |
|   const float sinC2  = -0.16666667163372039794921875;
 | |
|   const float sinC4  = +8.333347737789154052734375e-3;
 | |
|   const float sinC6  = -1.9842604524455964565277099609375e-4;
 | |
|   const float sinC8  = +2.760012648650445044040679931640625e-6;
 | |
|   const float sinC10 = -2.50293279435709337121807038784027099609375e-8;
 | |
| 
 | |
|   const float cosC2  = -0.5;
 | |
|   const float cosC4  = +4.166664183139801025390625e-2;
 | |
|   const float cosC6  = -1.388833043165504932403564453125e-3;
 | |
|   const float cosC8  = +2.47562347794882953166961669921875e-5;
 | |
|   const float cosC10 = -2.59630184018533327616751194000244140625e-7;
 | |
| 
 | |
|   auto outside = select(cosUseCos, 1., x);
 | |
|   auto c2  = select(cosUseCos, T(cosC2),  T(sinC2));
 | |
|   auto c4  = select(cosUseCos, T(cosC4),  T(sinC4));
 | |
|   auto c6  = select(cosUseCos, T(cosC6),  T(sinC6));
 | |
|   auto c8  = select(cosUseCos, T(cosC8),  T(sinC8));
 | |
|   auto c10 = select(cosUseCos, T(cosC10), T(sinC10));
 | |
| 
 | |
|   auto x2 = x * x;
 | |
|   auto formula = x2 * c10 + c8;
 | |
|   formula = x2 * formula + c6;
 | |
|   formula = x2 * formula + c4;
 | |
|   formula = x2 * formula + c2;
 | |
|   formula = x2 * formula + 1.;
 | |
|   formula *= outside;
 | |
| 
 | |
|   formula = select(flipSign, -formula, formula);
 | |
|   return formula;
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| __forceinline void sincos(const T &v, T &sinResult, T &cosResult)
 | |
| {
 | |
|   const float piOverTwoVec = 1.57079637050628662109375;
 | |
|   const float twoOverPiVec = 0.636619746685028076171875;
 | |
|   auto scaled = v * twoOverPiVec;
 | |
|   auto kReal = floor(scaled);
 | |
|   auto k = toInt(kReal);
 | |
| 
 | |
|   // Reduced range version of x
 | |
|   auto x = v - kReal * piOverTwoVec;
 | |
|   auto kMod4 = k & 3;
 | |
|   auto cosUseCos = ((kMod4 == 0) | (kMod4 == 2));
 | |
|   auto sinUseCos = ((kMod4 == 1) | (kMod4 == 3));
 | |
|   auto sinFlipSign = (kMod4 > 1);
 | |
|   auto cosFlipSign = ((kMod4 == 1) | (kMod4 == 2));
 | |
| 
 | |
|   const float oneVec = +1.;
 | |
|   const float sinC2  = -0.16666667163372039794921875;
 | |
|   const float sinC4  = +8.333347737789154052734375e-3;
 | |
|   const float sinC6  = -1.9842604524455964565277099609375e-4;
 | |
|   const float sinC8  = +2.760012648650445044040679931640625e-6;
 | |
|   const float sinC10 = -2.50293279435709337121807038784027099609375e-8;
 | |
| 
 | |
|   const float cosC2  = -0.5;
 | |
|   const float cosC4  = +4.166664183139801025390625e-2;
 | |
|   const float cosC6  = -1.388833043165504932403564453125e-3;
 | |
|   const float cosC8  = +2.47562347794882953166961669921875e-5;
 | |
|   const float cosC10 = -2.59630184018533327616751194000244140625e-7;
 | |
| 
 | |
|   auto x2 = x * x;
 | |
| 
 | |
|   auto sinFormula = x2 * sinC10 + sinC8;
 | |
|   auto cosFormula = x2 * cosC10 + cosC8;
 | |
|   sinFormula = x2 * sinFormula + sinC6;
 | |
|   cosFormula = x2 * cosFormula + cosC6;
 | |
| 
 | |
|   sinFormula = x2 * sinFormula + sinC4;
 | |
|   cosFormula = x2 * cosFormula + cosC4;
 | |
| 
 | |
|   sinFormula = x2 * sinFormula + sinC2;
 | |
|   cosFormula = x2 * cosFormula + cosC2;
 | |
| 
 | |
|   sinFormula = x2 * sinFormula + oneVec;
 | |
|   cosFormula = x2 * cosFormula + oneVec;
 | |
| 
 | |
|   sinFormula *= x;
 | |
| 
 | |
|   sinResult = select(sinUseCos, cosFormula, sinFormula);
 | |
|   cosResult = select(cosUseCos, cosFormula, sinFormula);
 | |
| 
 | |
|   sinResult = select(sinFlipSign, -sinResult, sinResult);
 | |
|   cosResult = select(cosFlipSign, -cosResult, cosResult);
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| __forceinline T tan(const T &v)
 | |
| {
 | |
|   const float piOverFourVec = 0.785398185253143310546875;
 | |
|   const float fourOverPiVec = 1.27323949337005615234375;
 | |
| 
 | |
|   auto xLt0 = v < 0.;
 | |
|   auto y = select(xLt0, -v, v);
 | |
|   auto scaled = y * fourOverPiVec;
 | |
| 
 | |
|   auto kReal = floor(scaled);
 | |
|   auto k = toInt(kReal);
 | |
| 
 | |
|   auto x = y - kReal * piOverFourVec;
 | |
| 
 | |
|   // If k & 1, x -= Pi/4
 | |
|   auto needOffset = (k & 1) != 0;
 | |
|   x = select(needOffset, x - piOverFourVec, x);
 | |
| 
 | |
|   // If k & 3 == (0 or 3) let z = tan_In...(y) otherwise z = -cot_In0To...
 | |
|   auto kMod4 = k & 3;
 | |
|   auto useCotan = (kMod4 == 1) | (kMod4 == 2);
 | |
| 
 | |
|   const float oneVec = 1.0;
 | |
| 
 | |
|   const float tanC2  = +0.33333075046539306640625;
 | |
|   const float tanC4  = +0.13339905440807342529296875;
 | |
|   const float tanC6  = +5.3348250687122344970703125e-2;
 | |
|   const float tanC8  = +2.46033705770969390869140625e-2;
 | |
|   const float tanC10 = +2.892402000725269317626953125e-3;
 | |
|   const float tanC12 = +9.500005282461643218994140625e-3;
 | |
| 
 | |
|   const float cotC2  = -0.3333333432674407958984375;
 | |
|   const float cotC4  = -2.222204394638538360595703125e-2;
 | |
|   const float cotC6  = -2.11752182804048061370849609375e-3;
 | |
|   const float cotC8  = -2.0846328698098659515380859375e-4;
 | |
|   const float cotC10 = -2.548247357481159269809722900390625e-5;
 | |
|   const float cotC12 = -3.5257363606433500535786151885986328125e-7;
 | |
| 
 | |
|   auto x2 = x * x;
 | |
|   T z;
 | |
|   if (any(useCotan))
 | |
|   {
 | |
|     auto cotVal = x2 * cotC12 + cotC10;
 | |
|     cotVal = x2 * cotVal + cotC8;
 | |
|     cotVal = x2 * cotVal + cotC6;
 | |
|     cotVal = x2 * cotVal + cotC4;
 | |
|     cotVal = x2 * cotVal + cotC2;
 | |
|     cotVal = x2 * cotVal + oneVec;
 | |
|     // The equation is for x * cot(x) but we need -x * cot(x) for the tan part.
 | |
|     cotVal /= -x;
 | |
|     z = cotVal;
 | |
|   }
 | |
|   auto useTan = !useCotan;
 | |
|   if (any(useTan))
 | |
|   {
 | |
|     auto tanVal = x2 * tanC12 + tanC10;
 | |
|     tanVal = x2 * tanVal + tanC8;
 | |
|     tanVal = x2 * tanVal + tanC6;
 | |
|     tanVal = x2 * tanVal + tanC4;
 | |
|     tanVal = x2 * tanVal + tanC2;
 | |
|     tanVal = x2 * tanVal + oneVec;
 | |
|     // Equation was for tan(x)/x
 | |
|     tanVal *= x;
 | |
|     z = select(useTan, tanVal, z);
 | |
|   }
 | |
|   return select(xLt0, -z, z);
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| __forceinline T asin(const T &x0)
 | |
| {
 | |
|   auto isneg = (x0 < 0.f);
 | |
|   auto x = abs(x0);
 | |
|   auto isnan = (x > 1.f);
 | |
| 
 | |
|   // sollya
 | |
|   // fpminimax(((asin(x)-pi/2)/-sqrt(1-x)), [|0,1,2,3,4,5|],[|single...|],
 | |
|   //           [1e-20;.9999999999999999]);
 | |
|   // avg error: 1.1105439e-06, max error 1.3187528e-06
 | |
|   auto v = 1.57079517841339111328125f +
 | |
|            x * (-0.21450997889041900634765625f +
 | |
|                 x * (8.78556668758392333984375e-2f +
 | |
|                      x * (-4.489909112453460693359375e-2f +
 | |
|                           x * (1.928029954433441162109375e-2f +
 | |
|                                x * (-4.3095736764371395111083984375e-3f)))));
 | |
| 
 | |
|   v *= -sqrt(1.f - x);
 | |
|   v = v + 1.57079637050628662109375f;
 | |
| 
 | |
|   v = select(v < 0.f, T(0.f), v);
 | |
|   v = select(isneg, -v, v);
 | |
|   v = select(isnan, T(cast_i2f(0x7fc00000)), v);
 | |
| 
 | |
|   return v;
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| __forceinline T acos(const T &v)
 | |
| {
 | |
|   return 1.57079637050628662109375f - asin(v);
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| __forceinline T atan(const T &v)
 | |
| {
 | |
|   const float piOverTwoVec = 1.57079637050628662109375;
 | |
|   // atan(-x) = -atan(x) (so flip from negative to positive first)
 | |
|   // If x > 1 -> atan(x) = Pi/2 - atan(1/x)
 | |
|   auto xNeg = v < 0.f;
 | |
|   auto xFlipped = select(xNeg, -v, v);
 | |
| 
 | |
|   auto xGt1 = xFlipped > 1.;
 | |
|   auto x = select(xGt1, rcpSafe(xFlipped), xFlipped);
 | |
| 
 | |
|   // These coefficients approximate atan(x)/x
 | |
|   const float atanC0  = +0.99999988079071044921875;
 | |
|   const float atanC2  = -0.3333191573619842529296875;
 | |
|   const float atanC4  = +0.199689209461212158203125;
 | |
|   const float atanC6  = -0.14015688002109527587890625;
 | |
|   const float atanC8  = +9.905083477497100830078125e-2;
 | |
|   const float atanC10 = -5.93664981424808502197265625e-2;
 | |
|   const float atanC12 = +2.417283318936824798583984375e-2;
 | |
|   const float atanC14 = -4.6721356920897960662841796875e-3;
 | |
| 
 | |
|   auto x2 = x * x;
 | |
|   auto result = x2 * atanC14 + atanC12;
 | |
|   result = x2 * result + atanC10;
 | |
|   result = x2 * result + atanC8;
 | |
|   result = x2 * result + atanC6;
 | |
|   result = x2 * result + atanC4;
 | |
|   result = x2 * result + atanC2;
 | |
|   result = x2 * result + atanC0;
 | |
|   result *= x;
 | |
| 
 | |
|   result = select(xGt1, piOverTwoVec - result, result);
 | |
|   result = select(xNeg, -result, result);
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| __forceinline T atan2(const T &y, const T &x)
 | |
| {
 | |
|   const float piVec = 3.1415926536;
 | |
|   // atan2(y, x) =
 | |
|   //
 | |
|   // atan2(y > 0, x = +-0) ->  Pi/2
 | |
|   // atan2(y < 0, x = +-0) -> -Pi/2
 | |
|   // atan2(y = +-0, x < +0) -> +-Pi
 | |
|   // atan2(y = +-0, x >= +0) -> +-0
 | |
|   //
 | |
|   // atan2(y >= 0, x < 0) ->  Pi + atan(y/x)
 | |
|   // atan2(y <  0, x < 0) -> -Pi + atan(y/x)
 | |
|   // atan2(y, x > 0) -> atan(y/x)
 | |
|   //
 | |
|   // and then a bunch of code for dealing with infinities.
 | |
|   auto yOverX = y * rcpSafe(x);
 | |
|   auto atanArg = atan(yOverX);
 | |
|   auto xLt0 = x < 0.f;
 | |
|   auto yLt0 = y < 0.f;
 | |
|   auto offset = select(xLt0,
 | |
|                 select(yLt0, T(-piVec), T(piVec)), 0.f);
 | |
|   return offset + atanArg;
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| __forceinline T exp(const T &v)
 | |
| {
 | |
|   const float ln2Part1 = 0.6931457519;
 | |
|   const float ln2Part2 = 1.4286067653e-6;
 | |
|   const float oneOverLn2 = 1.44269502162933349609375;
 | |
| 
 | |
|   auto scaled = v * oneOverLn2;
 | |
|   auto kReal = floor(scaled);
 | |
|   auto k = toInt(kReal);
 | |
| 
 | |
|   // Reduced range version of x
 | |
|   auto x = v - kReal * ln2Part1;
 | |
|   x -= kReal * ln2Part2;
 | |
| 
 | |
|   // These coefficients are for e^x in [0, ln(2)]
 | |
|   const float one = 1.;
 | |
|   const float c2 = 0.4999999105930328369140625;
 | |
|   const float c3 = 0.166668415069580078125;
 | |
|   const float c4 = 4.16539050638675689697265625e-2;
 | |
|   const float c5 = 8.378830738365650177001953125e-3;
 | |
|   const float c6 = 1.304379315115511417388916015625e-3;
 | |
|   const float c7 = 2.7555381529964506626129150390625e-4;
 | |
| 
 | |
|   auto result = x * c7 + c6;
 | |
|   result = x * result + c5;
 | |
|   result = x * result + c4;
 | |
|   result = x * result + c3;
 | |
|   result = x * result + c2;
 | |
|   result = x * result + one;
 | |
|   result = x * result + one;
 | |
| 
 | |
|   // Compute 2^k (should differ for float and double, but I'll avoid
 | |
|   // it for now and just do floats)
 | |
|   const int fpbias = 127;
 | |
|   auto biasedN = k + fpbias;
 | |
|   auto overflow = kReal > fpbias;
 | |
|   // Minimum exponent is -126, so if k is <= -127 (k + 127 <= 0)
 | |
|   // we've got underflow. -127 * ln(2) -> -88.02. So the most
 | |
|   // negative float input that doesn't result in zero is like -88.
 | |
|   auto underflow = kReal <= -fpbias;
 | |
|   const int infBits = 0x7f800000;
 | |
|   biasedN <<= 23;
 | |
|   // Reinterpret this thing as float
 | |
|   auto twoToTheN = asFloat(biasedN);
 | |
|   // Handle both doubles and floats (hopefully eliding the copy for float)
 | |
|   auto elemtype2n = twoToTheN;
 | |
|   result *= elemtype2n;
 | |
|   result = select(overflow, cast_i2f(infBits), result);
 | |
|   result = select(underflow, 0., result);
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| // Range reduction for logarithms takes log(x) -> log(2^n * y) -> n
 | |
| // * log(2) + log(y) where y is the reduced range (usually in [1/2, 1)).
 | |
| template <typename T, typename R>
 | |
| __forceinline void __rangeReduceLog(const T &input,
 | |
|                                     T &reduced,
 | |
|                                     R &exponent)
 | |
| {
 | |
|   auto intVersion = asInt(input);
 | |
|   // single precision = SEEE EEEE EMMM MMMM MMMM MMMM MMMM MMMM
 | |
|   // exponent mask    = 0111 1111 1000 0000 0000 0000 0000 0000
 | |
|   //                    0x7  0xF  0x8  0x0  0x0  0x0  0x0  0x0
 | |
|   // non-exponent     = 1000 0000 0111 1111 1111 1111 1111 1111
 | |
|   //                  = 0x8  0x0  0x7  0xF  0xF  0xF  0xF  0xF
 | |
| 
 | |
|   //const int exponentMask(0x7F800000)
 | |
|   static const int nonexponentMask = 0x807FFFFF;
 | |
| 
 | |
|   // We want the reduced version to have an exponent of -1 which is
 | |
|   // -1 + 127 after biasing or 126
 | |
|   static const int exponentNeg1 = (126l << 23);
 | |
|   // NOTE(boulos): We don't need to mask anything out since we know
 | |
|   // the sign bit has to be 0. If it's 1, we need to return infinity/nan
 | |
|   // anyway (log(x), x = +-0 -> infinity, x < 0 -> NaN).
 | |
|   auto biasedExponent = intVersion >> 23; // This number is [0, 255] but it means [-127, 128]
 | |
| 
 | |
|   auto offsetExponent = biasedExponent + 1; // Treat the number as if it were 2^{e+1} * (1.m)/2
 | |
|   exponent = offsetExponent - 127;          // get the real value
 | |
| 
 | |
|   // Blend the offset_exponent with the original input (do this in
 | |
|   // int for now, until I decide if float can have & and ¬)
 | |
|   auto blended = (intVersion & nonexponentMask) | (exponentNeg1);
 | |
|   reduced = asFloat(blended);
 | |
| }
 | |
| 
 | |
| template <typename T> struct ExponentType            { };
 | |
| template <int N>      struct ExponentType<vfloat_impl<N>> { typedef vint<N> Ty; };
 | |
| template <>           struct ExponentType<float>     { typedef int     Ty; };
 | |
| 
 | |
| template <typename T>
 | |
| __forceinline T log(const T &v)
 | |
| {
 | |
|   T reduced;
 | |
|   typename ExponentType<T>::Ty exponent;
 | |
| 
 | |
|   const int nanBits = 0x7fc00000;
 | |
|   const int negInfBits = 0xFF800000;
 | |
|   const float nan = cast_i2f(nanBits);
 | |
|   const float negInf = cast_i2f(negInfBits);
 | |
|   auto useNan = v < 0.;
 | |
|   auto useInf = v == 0.;
 | |
|   auto exceptional = useNan | useInf;
 | |
|   const float one = 1.0;
 | |
| 
 | |
|   auto patched = select(exceptional, one, v);
 | |
|   __rangeReduceLog(patched, reduced, exponent);
 | |
| 
 | |
|   const float ln2 = 0.693147182464599609375;
 | |
| 
 | |
|   auto x1 = one - reduced;
 | |
|   const float c1 = +0.50000095367431640625;
 | |
|   const float c2 = +0.33326041698455810546875;
 | |
|   const float c3 = +0.2519190013408660888671875;
 | |
|   const float c4 = +0.17541764676570892333984375;
 | |
|   const float c5 = +0.3424419462680816650390625;
 | |
|   const float c6 = -0.599632322788238525390625;
 | |
|   const float c7 = +1.98442304134368896484375;
 | |
|   const float c8 = -2.4899270534515380859375;
 | |
|   const float c9 = +1.7491014003753662109375;
 | |
| 
 | |
|   auto result = x1 * c9 + c8;
 | |
|   result = x1 * result + c7;
 | |
|   result = x1 * result + c6;
 | |
|   result = x1 * result + c5;
 | |
|   result = x1 * result + c4;
 | |
|   result = x1 * result + c3;
 | |
|   result = x1 * result + c2;
 | |
|   result = x1 * result + c1;
 | |
|   result = x1 * result + one;
 | |
| 
 | |
|   // Equation was for -(ln(red)/(1-red))
 | |
|   result *= -x1;
 | |
|   result += toFloat(exponent) * ln2;
 | |
| 
 | |
|   return select(exceptional,
 | |
|                 select(useNan, T(nan), T(negInf)),
 | |
|                 result);
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| __forceinline T pow(const T &x, const T &y)
 | |
| {
 | |
|   auto x1 = abs(x);
 | |
|   auto z = exp(y * log(x1));
 | |
| 
 | |
|   // Handle special cases
 | |
|   const float twoOver23 = 8388608.0f;
 | |
|   auto yInt = y == round(y);
 | |
|   auto yOddInt = select(yInt, asInt(abs(y) + twoOver23) << 31, 0); // set sign bit
 | |
| 
 | |
|   // x == 0
 | |
|   z = select(x == 0.0f,
 | |
|       select(y < 0.0f, T(inf) | signmsk(x),
 | |
|       select(y == 0.0f, T(1.0f), asFloat(yOddInt) & x)), z);
 | |
| 
 | |
|   // x < 0
 | |
|   auto xNegative = x < 0.0f;
 | |
|   if (any(xNegative))
 | |
|   {
 | |
|     auto z1 = z | asFloat(yOddInt);
 | |
|     z1 = select(yInt, z1, std::numeric_limits<float>::quiet_NaN());
 | |
|     z = select(xNegative, z1, z);
 | |
|   }
 | |
| 
 | |
|   auto xFinite = isfinite(x);
 | |
|   auto yFinite = isfinite(y);
 | |
|   if (all(xFinite & yFinite))
 | |
|     return z;
 | |
| 
 | |
|   // x finite and y infinite
 | |
|   z = select(andn(xFinite, yFinite),
 | |
|       select(x1 == 1.0f, 1.0f,
 | |
|       select((x1 > 1.0f) ^ (y < 0.0f), inf, T(0.0f))), z);
 | |
| 
 | |
|   // x infinite
 | |
|   z = select(xFinite, z,
 | |
|       select(y == 0.0f, 1.0f,
 | |
|       select(y < 0.0f, T(0.0f), inf) | (asFloat(yOddInt) & x)));
 | |
| 
 | |
|   return z;
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| __forceinline T pow(const T &x, float y)
 | |
| {
 | |
|   return pow(x, T(y));
 | |
| }
 | |
| 
 | |
| } // namespace fastapprox
 | |
| 
 | |
| } // namespace embree
 |