mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-31 13:41:03 +00:00 
			
		
		
		
	 767e374dce
			
		
	
	
		767e374dce
		
	
	
	
	
		
			
			Since Embree v3.13.0 supports AARCH64, switch back to the official repo instead of using Embree-aarch64. `thirdparty/embree/patches/godot-changes.patch` should now contain an accurate diff of the changes done to the library.
		
			
				
	
	
		
			364 lines
		
	
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			364 lines
		
	
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2009-2021 Intel Corporation
 | |
| // SPDX-License-Identifier: Apache-2.0
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include "../common/ray.h"
 | |
| #include "cylinder.h"
 | |
| #include "plane.h"
 | |
| #include "line_intersector.h"
 | |
| #include "curve_intersector_precalculations.h"
 | |
| 
 | |
| namespace embree
 | |
| {
 | |
|   namespace isa
 | |
|   {
 | |
|     static const size_t numJacobianIterations = 5;
 | |
| #if defined(__AVX__)
 | |
|     static const size_t numBezierSubdivisions = 2;
 | |
| #else
 | |
|     static const size_t numBezierSubdivisions = 3;
 | |
| #endif
 | |
| 
 | |
|     struct BezierCurveHit
 | |
|     {
 | |
|       __forceinline BezierCurveHit() {}
 | |
| 
 | |
|       __forceinline BezierCurveHit(const float t, const float u, const Vec3fa& Ng)
 | |
|         : t(t), u(u), v(0.0f), Ng(Ng) {}
 | |
| 
 | |
|       __forceinline BezierCurveHit(const float t, const float u, const float v, const Vec3fa& Ng)
 | |
|         : t(t), u(u), v(v), Ng(Ng) {}
 | |
|       
 | |
|       __forceinline void finalize() {}
 | |
|       
 | |
|     public:
 | |
|       float t;
 | |
|       float u;
 | |
|       float v; 
 | |
|       Vec3fa Ng;
 | |
|     };
 | |
|     
 | |
|     template<typename NativeCurve3ff, typename Ray, typename Epilog>
 | |
|     __forceinline bool intersect_bezier_iterative_debug(const Ray& ray, const float dt, const NativeCurve3ff& curve, size_t i,
 | |
|                                                         const vfloatx& u, const BBox<vfloatx>& tp, const BBox<vfloatx>& h0, const BBox<vfloatx>& h1, 
 | |
|                                                         const Vec3vfx& Ng, const Vec4vfx& dP0du, const Vec4vfx& dP3du,
 | |
|                                                         const Epilog& epilog)
 | |
|     {
 | |
|       if (tp.lower[i]+dt > ray.tfar) return false;
 | |
|       Vec3fa Ng_o = Vec3fa(Ng.x[i],Ng.y[i],Ng.z[i]);
 | |
|       if (h0.lower[i] == tp.lower[i]) Ng_o = -Vec3fa(dP0du.x[i],dP0du.y[i],dP0du.z[i]);
 | |
|       if (h1.lower[i] == tp.lower[i]) Ng_o = +Vec3fa(dP3du.x[i],dP3du.y[i],dP3du.z[i]);
 | |
|       BezierCurveHit hit(tp.lower[i]+dt,u[i],Ng_o);
 | |
|       return epilog(hit);
 | |
|     }
 | |
| 
 | |
|     template<typename NativeCurve3ff, typename Ray, typename Epilog> 
 | |
|      __forceinline bool intersect_bezier_iterative_jacobian(const Ray& ray, const float dt, const NativeCurve3ff& curve, float u, float t, const Epilog& epilog)
 | |
|     {
 | |
|       const Vec3fa org = zero;
 | |
|       const Vec3fa dir = ray.dir;
 | |
|       const float length_ray_dir = length(dir);
 | |
| 
 | |
|       /* error of curve evaluations is propertional to largest coordinate */
 | |
|       const BBox3ff box = curve.bounds();
 | |
|       const float P_err = 16.0f*float(ulp)*reduce_max(max(abs(box.lower),abs(box.upper)));
 | |
|      
 | |
|       for (size_t i=0; i<numJacobianIterations; i++) 
 | |
|       {
 | |
|         const Vec3fa Q = madd(Vec3fa(t),dir,org);
 | |
|         //const Vec3fa dQdu = zero;
 | |
|         const Vec3fa dQdt = dir;
 | |
|         const float Q_err = 16.0f*float(ulp)*length_ray_dir*t; // works as org=zero here
 | |
|            
 | |
|         Vec3ff P,dPdu,ddPdu; curve.eval(u,P,dPdu,ddPdu);
 | |
|         //const Vec3fa dPdt = zero;
 | |
| 
 | |
|         const Vec3fa R = Q-P;
 | |
|         const float len_R = length(R); //reduce_max(abs(R));
 | |
|         const float R_err = max(Q_err,P_err);
 | |
|         const Vec3fa dRdu = /*dQdu*/-dPdu;
 | |
|         const Vec3fa dRdt = dQdt;//-dPdt;
 | |
| 
 | |
|         const Vec3fa T = normalize(dPdu);
 | |
|         const Vec3fa dTdu = dnormalize(dPdu,ddPdu);
 | |
|         //const Vec3fa dTdt = zero;
 | |
|         const float cos_err = P_err/length(dPdu);
 | |
| 
 | |
|         /* Error estimate for dot(R,T):
 | |
| 
 | |
|            dot(R,T) = cos(R,T) |R| |T|
 | |
|                     = (cos(R,T) +- cos_error) * (|R| +- |R|_err) * (|T| +- |T|_err)
 | |
|                     = cos(R,T)*|R|*|T| 
 | |
|                       +- cos(R,T)*(|R|*|T|_err + |T|*|R|_err)
 | |
|                       +- cos_error*(|R| + |T|)
 | |
|                       +- lower order terms
 | |
|            with cos(R,T) being in [0,1] and |T| = 1 we get:
 | |
|              dot(R,T)_err = |R|*|T|_err + |R|_err = cos_error*(|R|+1)
 | |
|         */
 | |
|               
 | |
|         const float f = dot(R,T);
 | |
|         const float f_err = len_R*P_err + R_err + cos_err*(1.0f+len_R);
 | |
|         const float dfdu = dot(dRdu,T) + dot(R,dTdu);
 | |
|         const float dfdt = dot(dRdt,T);// + dot(R,dTdt);
 | |
| 
 | |
|         const float K = dot(R,R)-sqr(f);
 | |
|         const float dKdu = /*2.0f*/(dot(R,dRdu)-f*dfdu);
 | |
|         const float dKdt = /*2.0f*/(dot(R,dRdt)-f*dfdt);
 | |
|         const float rsqrt_K = rsqrt(K);
 | |
| 
 | |
|         const float g = sqrt(K)-P.w;
 | |
|         const float g_err = R_err + f_err + 16.0f*float(ulp)*box.upper.w;
 | |
|         const float dgdu = /*0.5f*/dKdu*rsqrt_K-dPdu.w;
 | |
|         const float dgdt = /*0.5f*/dKdt*rsqrt_K;//-dPdt.w;
 | |
| 
 | |
|         const LinearSpace2f J = LinearSpace2f(dfdu,dfdt,dgdu,dgdt);
 | |
|         const Vec2f dut = rcp(J)*Vec2f(f,g);
 | |
|         const Vec2f ut = Vec2f(u,t) - dut;
 | |
|         u = ut.x; t = ut.y;
 | |
| 
 | |
|         if (abs(f) < f_err && abs(g) < g_err)
 | |
|         {
 | |
|           t+=dt;
 | |
|           if (!(ray.tnear() <= t && t <= ray.tfar)) return false; // rejects NaNs
 | |
|           if (!(u >= 0.0f && u <= 1.0f)) return false; // rejects NaNs
 | |
|           const Vec3fa R = normalize(Q-P);
 | |
|           const Vec3fa U = madd(Vec3fa(dPdu.w),R,dPdu);
 | |
|           const Vec3fa V = cross(dPdu,R);
 | |
|           BezierCurveHit hit(t,u,cross(V,U));
 | |
|           return epilog(hit);
 | |
|         }
 | |
|       }
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     template<typename NativeCurve3ff, typename Ray, typename Epilog>
 | |
|     bool intersect_bezier_recursive_jacobian(const Ray& ray, const float dt, const NativeCurve3ff& curve,
 | |
|                                              float u0, float u1, unsigned int depth, const Epilog& epilog)
 | |
|     {
 | |
| #if defined(__AVX__)
 | |
|       enum { VSIZEX_ = 8 };
 | |
|       typedef vbool8 vboolx; // maximally 8-wide to work around KNL issues
 | |
|       typedef vint8 vintx; 
 | |
|       typedef vfloat8 vfloatx;
 | |
| #else
 | |
|       enum { VSIZEX_ = 4 };
 | |
|       typedef vbool4 vboolx;
 | |
|       typedef vint4 vintx; 
 | |
|       typedef vfloat4 vfloatx;
 | |
| #endif
 | |
|       typedef Vec3<vfloatx> Vec3vfx;
 | |
|       typedef Vec4<vfloatx> Vec4vfx;
 | |
|     
 | |
|       unsigned int maxDepth = numBezierSubdivisions;
 | |
|       bool found = false;
 | |
|       const Vec3fa org = zero;
 | |
|       const Vec3fa dir = ray.dir;
 | |
| 
 | |
|       unsigned int sptr = 0;
 | |
|       const unsigned int stack_size = numBezierSubdivisions+1; // +1 because of unstable workaround below
 | |
|       struct StackEntry {
 | |
|         vboolx valid;
 | |
|         vfloatx tlower;
 | |
|         float u0;
 | |
|         float u1;
 | |
|         unsigned int depth;
 | |
|       };
 | |
|       StackEntry stack[stack_size];
 | |
|       goto entry;
 | |
| 
 | |
|        /* terminate if stack is empty */
 | |
|       while (sptr)
 | |
|       {
 | |
|         /* pop from stack */
 | |
|         {
 | |
|           sptr--;
 | |
|           vboolx valid = stack[sptr].valid;
 | |
|           const vfloatx tlower = stack[sptr].tlower;
 | |
|           valid &= tlower+dt <= ray.tfar;
 | |
|           if (none(valid)) continue;
 | |
|           u0 = stack[sptr].u0;
 | |
|           u1 = stack[sptr].u1;
 | |
|           depth = stack[sptr].depth;
 | |
|           const size_t i = select_min(valid,tlower); clear(valid,i);
 | |
|           stack[sptr].valid = valid;
 | |
|           if (any(valid)) sptr++; // there are still items on the stack
 | |
| 
 | |
|           /* process next segment */
 | |
|           const vfloatx vu0 = lerp(u0,u1,vfloatx(step)*(1.0f/(vfloatx::size-1)));
 | |
|           u0 = vu0[i+0];
 | |
|           u1 = vu0[i+1];
 | |
|         }
 | |
|       entry:
 | |
| 
 | |
|         /* subdivide curve */
 | |
|         const float dscale = (u1-u0)*(1.0f/(3.0f*(vfloatx::size-1)));
 | |
|         const vfloatx vu0 = lerp(u0,u1,vfloatx(step)*(1.0f/(vfloatx::size-1)));
 | |
|         Vec4vfx P0, dP0du; curve.template veval<VSIZEX_>(vu0,P0,dP0du); dP0du = dP0du * Vec4vfx(dscale);
 | |
|         const Vec4vfx P3 = shift_right_1(P0);
 | |
|         const Vec4vfx dP3du = shift_right_1(dP0du); 
 | |
|         const Vec4vfx P1 = P0 + dP0du; 
 | |
|         const Vec4vfx P2 = P3 - dP3du;
 | |
|         
 | |
|         /* calculate bounding cylinders */
 | |
|         const vfloatx rr1 = sqr_point_to_line_distance(Vec3vfx(dP0du),Vec3vfx(P3-P0));
 | |
|         const vfloatx rr2 = sqr_point_to_line_distance(Vec3vfx(dP3du),Vec3vfx(P3-P0));
 | |
|         const vfloatx maxr12 = sqrt(max(rr1,rr2));
 | |
|         const vfloatx one_plus_ulp  = 1.0f+2.0f*float(ulp);
 | |
|         const vfloatx one_minus_ulp = 1.0f-2.0f*float(ulp);
 | |
|         vfloatx r_outer = max(P0.w,P1.w,P2.w,P3.w)+maxr12;
 | |
|         vfloatx r_inner = min(P0.w,P1.w,P2.w,P3.w)-maxr12;
 | |
|         r_outer = one_plus_ulp*r_outer;
 | |
|         r_inner = max(0.0f,one_minus_ulp*r_inner);
 | |
|         const CylinderN<vfloatx::size> cylinder_outer(Vec3vfx(P0),Vec3vfx(P3),r_outer);
 | |
|         const CylinderN<vfloatx::size> cylinder_inner(Vec3vfx(P0),Vec3vfx(P3),r_inner);
 | |
|         vboolx valid = true; clear(valid,vfloatx::size-1);
 | |
|         
 | |
|         /* intersect with outer cylinder */
 | |
|         BBox<vfloatx> tc_outer; vfloatx u_outer0; Vec3vfx Ng_outer0; vfloatx u_outer1; Vec3vfx Ng_outer1;
 | |
|         valid &= cylinder_outer.intersect(org,dir,tc_outer,u_outer0,Ng_outer0,u_outer1,Ng_outer1);
 | |
|         if (none(valid)) continue;
 | |
|         
 | |
|         /* intersect with cap-planes */
 | |
|         BBox<vfloatx> tp(ray.tnear()-dt,ray.tfar-dt);
 | |
|         tp = embree::intersect(tp,tc_outer);
 | |
|         BBox<vfloatx> h0 = HalfPlaneN<vfloatx::size>(Vec3vfx(P0),+Vec3vfx(dP0du)).intersect(org,dir);
 | |
|         tp = embree::intersect(tp,h0);
 | |
|         BBox<vfloatx> h1 = HalfPlaneN<vfloatx::size>(Vec3vfx(P3),-Vec3vfx(dP3du)).intersect(org,dir);
 | |
|         tp = embree::intersect(tp,h1);
 | |
|         valid &= tp.lower <= tp.upper;
 | |
|         if (none(valid)) continue;
 | |
|         
 | |
|         /* clamp and correct u parameter */
 | |
|         u_outer0 = clamp(u_outer0,vfloatx(0.0f),vfloatx(1.0f));
 | |
|         u_outer1 = clamp(u_outer1,vfloatx(0.0f),vfloatx(1.0f));
 | |
|         u_outer0 = lerp(u0,u1,(vfloatx(step)+u_outer0)*(1.0f/float(vfloatx::size)));
 | |
|         u_outer1 = lerp(u0,u1,(vfloatx(step)+u_outer1)*(1.0f/float(vfloatx::size)));
 | |
|         
 | |
|         /* intersect with inner cylinder */
 | |
|         BBox<vfloatx> tc_inner;
 | |
|         vfloatx u_inner0 = zero; Vec3vfx Ng_inner0 = zero; vfloatx u_inner1 = zero; Vec3vfx Ng_inner1 = zero;
 | |
|         const vboolx valid_inner = cylinder_inner.intersect(org,dir,tc_inner,u_inner0,Ng_inner0,u_inner1,Ng_inner1);
 | |
|         
 | |
|         /* at the unstable area we subdivide deeper */
 | |
|         const vboolx unstable0 = (!valid_inner) | (abs(dot(Vec3vfx(Vec3fa(ray.dir)),Ng_inner0)) < 0.3f);
 | |
|         const vboolx unstable1 = (!valid_inner) | (abs(dot(Vec3vfx(Vec3fa(ray.dir)),Ng_inner1)) < 0.3f);
 | |
|       
 | |
|         /* subtract the inner interval from the current hit interval */
 | |
|         BBox<vfloatx> tp0, tp1;
 | |
|         subtract(tp,tc_inner,tp0,tp1);
 | |
|         vboolx valid0 = valid & (tp0.lower <= tp0.upper);
 | |
|         vboolx valid1 = valid & (tp1.lower <= tp1.upper);
 | |
|         if (none(valid0 | valid1)) continue;
 | |
|         
 | |
|         /* iterate over all first hits front to back */
 | |
|         const vintx termDepth0 = select(unstable0,vintx(maxDepth+1),vintx(maxDepth));
 | |
|         vboolx recursion_valid0 = valid0 & (depth < termDepth0);
 | |
|         valid0 &= depth >= termDepth0;
 | |
|         
 | |
|         while (any(valid0))
 | |
|         {
 | |
|           const size_t i = select_min(valid0,tp0.lower); clear(valid0,i);
 | |
|           found = found | intersect_bezier_iterative_jacobian(ray,dt,curve,u_outer0[i],tp0.lower[i],epilog);
 | |
|           //found = found | intersect_bezier_iterative_debug   (ray,dt,curve,i,u_outer0,tp0,h0,h1,Ng_outer0,dP0du,dP3du,epilog);
 | |
|           valid0 &= tp0.lower+dt <= ray.tfar;
 | |
|         }
 | |
|         valid1 &= tp1.lower+dt <= ray.tfar;
 | |
|         
 | |
|         /* iterate over all second hits front to back */
 | |
|         const vintx termDepth1 = select(unstable1,vintx(maxDepth+1),vintx(maxDepth));
 | |
|         vboolx recursion_valid1 = valid1 & (depth < termDepth1);
 | |
|         valid1 &= depth >= termDepth1;
 | |
|         while (any(valid1))
 | |
|         {
 | |
|           const size_t i = select_min(valid1,tp1.lower); clear(valid1,i);
 | |
|           found = found | intersect_bezier_iterative_jacobian(ray,dt,curve,u_outer1[i],tp1.upper[i],epilog);
 | |
|           //found = found | intersect_bezier_iterative_debug   (ray,dt,curve,i,u_outer1,tp1,h0,h1,Ng_outer1,dP0du,dP3du,epilog);
 | |
|           valid1 &= tp1.lower+dt <= ray.tfar;
 | |
|         }
 | |
| 
 | |
|         /* push valid segments to stack */
 | |
|         recursion_valid0 &= tp0.lower+dt <= ray.tfar;
 | |
|         recursion_valid1 &= tp1.lower+dt <= ray.tfar;
 | |
|         const vboolx recursion_valid = recursion_valid0 | recursion_valid1;
 | |
|         if (any(recursion_valid))
 | |
|         {
 | |
|           assert(sptr < stack_size);
 | |
|           stack[sptr].valid = recursion_valid;
 | |
|           stack[sptr].tlower = select(recursion_valid0,tp0.lower,tp1.lower);
 | |
|           stack[sptr].u0 = u0;
 | |
|           stack[sptr].u1 = u1;
 | |
|           stack[sptr].depth = depth+1;
 | |
|           sptr++;
 | |
|         }
 | |
|       }
 | |
|       return found;
 | |
|     }
 | |
| 
 | |
|     template<template<typename Ty> class NativeCurve>
 | |
|     struct SweepCurve1Intersector1
 | |
|     {
 | |
|       typedef NativeCurve<Vec3ff> NativeCurve3ff;
 | |
|       
 | |
|       template<typename Epilog>
 | |
|       __noinline bool intersect(const CurvePrecalculations1& pre, Ray& ray,
 | |
|                                 IntersectContext* context,
 | |
|                                 const CurveGeometry* geom, const unsigned int primID,
 | |
|                                 const Vec3ff& v0, const Vec3ff& v1, const Vec3ff& v2, const Vec3ff& v3,
 | |
|                                 const Epilog& epilog)
 | |
|       {
 | |
|         STAT3(normal.trav_prims,1,1,1);
 | |
| 
 | |
|         /* move ray closer to make intersection stable */
 | |
|         NativeCurve3ff curve0(v0,v1,v2,v3);
 | |
|         curve0 = enlargeRadiusToMinWidth(context,geom,ray.org,curve0);
 | |
|         const float dt = dot(curve0.center()-ray.org,ray.dir)*rcp(dot(ray.dir,ray.dir));
 | |
|         const Vec3ff ref(madd(Vec3fa(dt),ray.dir,ray.org),0.0f);
 | |
|         const NativeCurve3ff curve1 = curve0-ref;
 | |
|         return intersect_bezier_recursive_jacobian(ray,dt,curve1,0.0f,1.0f,1,epilog);
 | |
|       }
 | |
|     };
 | |
| 
 | |
|     template<template<typename Ty> class NativeCurve, int K>
 | |
|     struct SweepCurve1IntersectorK
 | |
|     {
 | |
|       typedef NativeCurve<Vec3ff> NativeCurve3ff;
 | |
|       
 | |
|       struct Ray1
 | |
|       {
 | |
|         __forceinline Ray1(RayK<K>& ray, size_t k)
 | |
|           : org(ray.org.x[k],ray.org.y[k],ray.org.z[k]), dir(ray.dir.x[k],ray.dir.y[k],ray.dir.z[k]), _tnear(ray.tnear()[k]), tfar(ray.tfar[k]) {}
 | |
| 
 | |
|         Vec3fa org;
 | |
|         Vec3fa dir;
 | |
|         float _tnear;
 | |
|         float& tfar;
 | |
| 
 | |
|         __forceinline float& tnear() { return _tnear; }
 | |
|         //__forceinline float& tfar()  { return _tfar; }
 | |
|         __forceinline const float& tnear() const { return _tnear; }
 | |
|         //__forceinline const float& tfar()  const { return _tfar; }
 | |
|         
 | |
|       };
 | |
| 
 | |
|       template<typename Epilog>
 | |
|       __forceinline bool intersect(const CurvePrecalculationsK<K>& pre, RayK<K>& vray, size_t k,
 | |
|                                    IntersectContext* context,
 | |
|                                    const CurveGeometry* geom, const unsigned int primID,
 | |
|                                    const Vec3ff& v0, const Vec3ff& v1, const Vec3ff& v2, const Vec3ff& v3,
 | |
|                                    const Epilog& epilog)
 | |
|       {
 | |
|         STAT3(normal.trav_prims,1,1,1);
 | |
|         Ray1 ray(vray,k);
 | |
| 
 | |
|         /* move ray closer to make intersection stable */
 | |
|         NativeCurve3ff curve0(v0,v1,v2,v3);
 | |
|         curve0 = enlargeRadiusToMinWidth(context,geom,ray.org,curve0);
 | |
|         const float dt = dot(curve0.center()-ray.org,ray.dir)*rcp(dot(ray.dir,ray.dir));
 | |
|         const Vec3ff ref(madd(Vec3fa(dt),ray.dir,ray.org),0.0f);
 | |
|         const NativeCurve3ff curve1 = curve0-ref;
 | |
|         return intersect_bezier_recursive_jacobian(ray,dt,curve1,0.0f,1.0f,1,epilog);
 | |
|       }
 | |
|     };
 | |
|   }
 | |
| }
 |