mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-31 13:41:03 +00:00 
			
		
		
		
	 46ae64cd60
			
		
	
	
		46ae64cd60
		
	
	
	
	
		
			
			This reverts commit e00426c512.
The way we handle platform-specific intrinsics is not good, so the
current state will not compile on armv8. This commit also requires
SSE4.1 support, which is likely not a good idea for portable binaries.
We'll have to redo this with more caution after 3.2 is released, or
we might simply drop opus as we're only using it as dependency for
theora right now.
Fixes #33606.
		
	
			
		
			
				
	
	
		
			280 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			280 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /***********************************************************************
 | |
| Copyright (c) 2006-2011, Skype Limited. All rights reserved.
 | |
| Redistribution and use in source and binary forms, with or without
 | |
| modification, are permitted provided that the following conditions
 | |
| are met:
 | |
| - Redistributions of source code must retain the above copyright notice,
 | |
| this list of conditions and the following disclaimer.
 | |
| - Redistributions in binary form must reproduce the above copyright
 | |
| notice, this list of conditions and the following disclaimer in the
 | |
| documentation and/or other materials provided with the distribution.
 | |
| - Neither the name of Internet Society, IETF or IETF Trust, nor the
 | |
| names of specific contributors, may be used to endorse or promote
 | |
| products derived from this software without specific prior written
 | |
| permission.
 | |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 | |
| AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
| IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
| ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 | |
| LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 | |
| CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 | |
| SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 | |
| INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 | |
| CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 | |
| ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 | |
| POSSIBILITY OF SUCH DAMAGE.
 | |
| ***********************************************************************/
 | |
| 
 | |
| #ifdef HAVE_CONFIG_H
 | |
| #include "config.h"
 | |
| #endif
 | |
| 
 | |
| #include "SigProc_FIX.h"
 | |
| #include "define.h"
 | |
| #include "tuning_parameters.h"
 | |
| #include "pitch.h"
 | |
| 
 | |
| #define MAX_FRAME_SIZE              384             /* subfr_length * nb_subfr = ( 0.005 * 16000 + 16 ) * 4 = 384 */
 | |
| 
 | |
| #define QA                          25
 | |
| #define N_BITS_HEAD_ROOM            2
 | |
| #define MIN_RSHIFTS                 -16
 | |
| #define MAX_RSHIFTS                 (32 - QA)
 | |
| 
 | |
| /* Compute reflection coefficients from input signal */
 | |
| void silk_burg_modified_c(
 | |
|     opus_int32                  *res_nrg,           /* O    Residual energy                                             */
 | |
|     opus_int                    *res_nrg_Q,         /* O    Residual energy Q value                                     */
 | |
|     opus_int32                  A_Q16[],            /* O    Prediction coefficients (length order)                      */
 | |
|     const opus_int16            x[],                /* I    Input signal, length: nb_subfr * ( D + subfr_length )       */
 | |
|     const opus_int32            minInvGain_Q30,     /* I    Inverse of max prediction gain                              */
 | |
|     const opus_int              subfr_length,       /* I    Input signal subframe length (incl. D preceding samples)    */
 | |
|     const opus_int              nb_subfr,           /* I    Number of subframes stacked in x                            */
 | |
|     const opus_int              D,                  /* I    Order                                                       */
 | |
|     int                         arch                /* I    Run-time architecture                                       */
 | |
| )
 | |
| {
 | |
|     opus_int         k, n, s, lz, rshifts, reached_max_gain;
 | |
|     opus_int32       C0, num, nrg, rc_Q31, invGain_Q30, Atmp_QA, Atmp1, tmp1, tmp2, x1, x2;
 | |
|     const opus_int16 *x_ptr;
 | |
|     opus_int32       C_first_row[ SILK_MAX_ORDER_LPC ];
 | |
|     opus_int32       C_last_row[  SILK_MAX_ORDER_LPC ];
 | |
|     opus_int32       Af_QA[       SILK_MAX_ORDER_LPC ];
 | |
|     opus_int32       CAf[ SILK_MAX_ORDER_LPC + 1 ];
 | |
|     opus_int32       CAb[ SILK_MAX_ORDER_LPC + 1 ];
 | |
|     opus_int32       xcorr[ SILK_MAX_ORDER_LPC ];
 | |
|     opus_int64       C0_64;
 | |
| 
 | |
|     silk_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE );
 | |
| 
 | |
|     /* Compute autocorrelations, added over subframes */
 | |
|     C0_64 = silk_inner_prod16_aligned_64( x, x, subfr_length*nb_subfr, arch );
 | |
|     lz = silk_CLZ64(C0_64);
 | |
|     rshifts = 32 + 1 + N_BITS_HEAD_ROOM - lz;
 | |
|     if (rshifts > MAX_RSHIFTS) rshifts = MAX_RSHIFTS;
 | |
|     if (rshifts < MIN_RSHIFTS) rshifts = MIN_RSHIFTS;
 | |
| 
 | |
|     if (rshifts > 0) {
 | |
|         C0 = (opus_int32)silk_RSHIFT64(C0_64, rshifts );
 | |
|     } else {
 | |
|         C0 = silk_LSHIFT32((opus_int32)C0_64, -rshifts );
 | |
|     }
 | |
| 
 | |
|     CAb[ 0 ] = CAf[ 0 ] = C0 + silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ) + 1;                                /* Q(-rshifts) */
 | |
|     silk_memset( C_first_row, 0, SILK_MAX_ORDER_LPC * sizeof( opus_int32 ) );
 | |
|     if( rshifts > 0 ) {
 | |
|         for( s = 0; s < nb_subfr; s++ ) {
 | |
|             x_ptr = x + s * subfr_length;
 | |
|             for( n = 1; n < D + 1; n++ ) {
 | |
|                 C_first_row[ n - 1 ] += (opus_int32)silk_RSHIFT64(
 | |
|                     silk_inner_prod16_aligned_64( x_ptr, x_ptr + n, subfr_length - n, arch ), rshifts );
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         for( s = 0; s < nb_subfr; s++ ) {
 | |
|             int i;
 | |
|             opus_int32 d;
 | |
|             x_ptr = x + s * subfr_length;
 | |
|             celt_pitch_xcorr(x_ptr, x_ptr + 1, xcorr, subfr_length - D, D, arch );
 | |
|             for( n = 1; n < D + 1; n++ ) {
 | |
|                for ( i = n + subfr_length - D, d = 0; i < subfr_length; i++ )
 | |
|                   d = MAC16_16( d, x_ptr[ i ], x_ptr[ i - n ] );
 | |
|                xcorr[ n - 1 ] += d;
 | |
|             }
 | |
|             for( n = 1; n < D + 1; n++ ) {
 | |
|                 C_first_row[ n - 1 ] += silk_LSHIFT32( xcorr[ n - 1 ], -rshifts );
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     silk_memcpy( C_last_row, C_first_row, SILK_MAX_ORDER_LPC * sizeof( opus_int32 ) );
 | |
| 
 | |
|     /* Initialize */
 | |
|     CAb[ 0 ] = CAf[ 0 ] = C0 + silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ) + 1;                                /* Q(-rshifts) */
 | |
| 
 | |
|     invGain_Q30 = (opus_int32)1 << 30;
 | |
|     reached_max_gain = 0;
 | |
|     for( n = 0; n < D; n++ ) {
 | |
|         /* Update first row of correlation matrix (without first element) */
 | |
|         /* Update last row of correlation matrix (without last element, stored in reversed order) */
 | |
|         /* Update C * Af */
 | |
|         /* Update C * flipud(Af) (stored in reversed order) */
 | |
|         if( rshifts > -2 ) {
 | |
|             for( s = 0; s < nb_subfr; s++ ) {
 | |
|                 x_ptr = x + s * subfr_length;
 | |
|                 x1  = -silk_LSHIFT32( (opus_int32)x_ptr[ n ],                    16 - rshifts );        /* Q(16-rshifts) */
 | |
|                 x2  = -silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], 16 - rshifts );        /* Q(16-rshifts) */
 | |
|                 tmp1 = silk_LSHIFT32( (opus_int32)x_ptr[ n ],                    QA - 16 );             /* Q(QA-16) */
 | |
|                 tmp2 = silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], QA - 16 );             /* Q(QA-16) */
 | |
|                 for( k = 0; k < n; k++ ) {
 | |
|                     C_first_row[ k ] = silk_SMLAWB( C_first_row[ k ], x1, x_ptr[ n - k - 1 ]            ); /* Q( -rshifts ) */
 | |
|                     C_last_row[ k ]  = silk_SMLAWB( C_last_row[ k ],  x2, x_ptr[ subfr_length - n + k ] ); /* Q( -rshifts ) */
 | |
|                     Atmp_QA = Af_QA[ k ];
 | |
|                     tmp1 = silk_SMLAWB( tmp1, Atmp_QA, x_ptr[ n - k - 1 ]            );                 /* Q(QA-16) */
 | |
|                     tmp2 = silk_SMLAWB( tmp2, Atmp_QA, x_ptr[ subfr_length - n + k ] );                 /* Q(QA-16) */
 | |
|                 }
 | |
|                 tmp1 = silk_LSHIFT32( -tmp1, 32 - QA - rshifts );                                       /* Q(16-rshifts) */
 | |
|                 tmp2 = silk_LSHIFT32( -tmp2, 32 - QA - rshifts );                                       /* Q(16-rshifts) */
 | |
|                 for( k = 0; k <= n; k++ ) {
 | |
|                     CAf[ k ] = silk_SMLAWB( CAf[ k ], tmp1, x_ptr[ n - k ]                    );        /* Q( -rshift ) */
 | |
|                     CAb[ k ] = silk_SMLAWB( CAb[ k ], tmp2, x_ptr[ subfr_length - n + k - 1 ] );        /* Q( -rshift ) */
 | |
|                 }
 | |
|             }
 | |
|         } else {
 | |
|             for( s = 0; s < nb_subfr; s++ ) {
 | |
|                 x_ptr = x + s * subfr_length;
 | |
|                 x1  = -silk_LSHIFT32( (opus_int32)x_ptr[ n ],                    -rshifts );            /* Q( -rshifts ) */
 | |
|                 x2  = -silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], -rshifts );            /* Q( -rshifts ) */
 | |
|                 tmp1 = silk_LSHIFT32( (opus_int32)x_ptr[ n ],                    17 );                  /* Q17 */
 | |
|                 tmp2 = silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], 17 );                  /* Q17 */
 | |
|                 for( k = 0; k < n; k++ ) {
 | |
|                     C_first_row[ k ] = silk_MLA( C_first_row[ k ], x1, x_ptr[ n - k - 1 ]            ); /* Q( -rshifts ) */
 | |
|                     C_last_row[ k ]  = silk_MLA( C_last_row[ k ],  x2, x_ptr[ subfr_length - n + k ] ); /* Q( -rshifts ) */
 | |
|                     Atmp1 = silk_RSHIFT_ROUND( Af_QA[ k ], QA - 17 );                                   /* Q17 */
 | |
|                     /* We sometimes have get overflows in the multiplications (even beyond +/- 2^32),
 | |
|                        but they cancel each other and the real result seems to always fit in a 32-bit
 | |
|                        signed integer. This was determined experimentally, not theoretically (unfortunately). */
 | |
|                     tmp1 = silk_MLA_ovflw( tmp1, x_ptr[ n - k - 1 ],            Atmp1 );                      /* Q17 */
 | |
|                     tmp2 = silk_MLA_ovflw( tmp2, x_ptr[ subfr_length - n + k ], Atmp1 );                      /* Q17 */
 | |
|                 }
 | |
|                 tmp1 = -tmp1;                                                                           /* Q17 */
 | |
|                 tmp2 = -tmp2;                                                                           /* Q17 */
 | |
|                 for( k = 0; k <= n; k++ ) {
 | |
|                     CAf[ k ] = silk_SMLAWW( CAf[ k ], tmp1,
 | |
|                         silk_LSHIFT32( (opus_int32)x_ptr[ n - k ], -rshifts - 1 ) );                    /* Q( -rshift ) */
 | |
|                     CAb[ k ] = silk_SMLAWW( CAb[ k ], tmp2,
 | |
|                         silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n + k - 1 ], -rshifts - 1 ) ); /* Q( -rshift ) */
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* Calculate nominator and denominator for the next order reflection (parcor) coefficient */
 | |
|         tmp1 = C_first_row[ n ];                                                                        /* Q( -rshifts ) */
 | |
|         tmp2 = C_last_row[ n ];                                                                         /* Q( -rshifts ) */
 | |
|         num  = 0;                                                                                       /* Q( -rshifts ) */
 | |
|         nrg  = silk_ADD32( CAb[ 0 ], CAf[ 0 ] );                                                        /* Q( 1-rshifts ) */
 | |
|         for( k = 0; k < n; k++ ) {
 | |
|             Atmp_QA = Af_QA[ k ];
 | |
|             lz = silk_CLZ32( silk_abs( Atmp_QA ) ) - 1;
 | |
|             lz = silk_min( 32 - QA, lz );
 | |
|             Atmp1 = silk_LSHIFT32( Atmp_QA, lz );                                                       /* Q( QA + lz ) */
 | |
| 
 | |
|             tmp1 = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( C_last_row[  n - k - 1 ], Atmp1 ), 32 - QA - lz );  /* Q( -rshifts ) */
 | |
|             tmp2 = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( C_first_row[ n - k - 1 ], Atmp1 ), 32 - QA - lz );  /* Q( -rshifts ) */
 | |
|             num  = silk_ADD_LSHIFT32( num,  silk_SMMUL( CAb[ n - k ],             Atmp1 ), 32 - QA - lz );  /* Q( -rshifts ) */
 | |
|             nrg  = silk_ADD_LSHIFT32( nrg,  silk_SMMUL( silk_ADD32( CAb[ k + 1 ], CAf[ k + 1 ] ),
 | |
|                                                                                 Atmp1 ), 32 - QA - lz );    /* Q( 1-rshifts ) */
 | |
|         }
 | |
|         CAf[ n + 1 ] = tmp1;                                                                            /* Q( -rshifts ) */
 | |
|         CAb[ n + 1 ] = tmp2;                                                                            /* Q( -rshifts ) */
 | |
|         num = silk_ADD32( num, tmp2 );                                                                  /* Q( -rshifts ) */
 | |
|         num = silk_LSHIFT32( -num, 1 );                                                                 /* Q( 1-rshifts ) */
 | |
| 
 | |
|         /* Calculate the next order reflection (parcor) coefficient */
 | |
|         if( silk_abs( num ) < nrg ) {
 | |
|             rc_Q31 = silk_DIV32_varQ( num, nrg, 31 );
 | |
|         } else {
 | |
|             rc_Q31 = ( num > 0 ) ? silk_int32_MAX : silk_int32_MIN;
 | |
|         }
 | |
| 
 | |
|         /* Update inverse prediction gain */
 | |
|         tmp1 = ( (opus_int32)1 << 30 ) - silk_SMMUL( rc_Q31, rc_Q31 );
 | |
|         tmp1 = silk_LSHIFT( silk_SMMUL( invGain_Q30, tmp1 ), 2 );
 | |
|         if( tmp1 <= minInvGain_Q30 ) {
 | |
|             /* Max prediction gain exceeded; set reflection coefficient such that max prediction gain is exactly hit */
 | |
|             tmp2 = ( (opus_int32)1 << 30 ) - silk_DIV32_varQ( minInvGain_Q30, invGain_Q30, 30 );            /* Q30 */
 | |
|             rc_Q31 = silk_SQRT_APPROX( tmp2 );                                                  /* Q15 */
 | |
|             if( rc_Q31 > 0 ) {
 | |
|                 /* Newton-Raphson iteration */
 | |
|                 rc_Q31 = silk_RSHIFT32( rc_Q31 + silk_DIV32( tmp2, rc_Q31 ), 1 );                       /* Q15 */
 | |
|                 rc_Q31 = silk_LSHIFT32( rc_Q31, 16 );                                                   /* Q31 */
 | |
|                 if( num < 0 ) {
 | |
|                     /* Ensure adjusted reflection coefficients has the original sign */
 | |
|                     rc_Q31 = -rc_Q31;
 | |
|                 }
 | |
|             }
 | |
|             invGain_Q30 = minInvGain_Q30;
 | |
|             reached_max_gain = 1;
 | |
|         } else {
 | |
|             invGain_Q30 = tmp1;
 | |
|         }
 | |
| 
 | |
|         /* Update the AR coefficients */
 | |
|         for( k = 0; k < (n + 1) >> 1; k++ ) {
 | |
|             tmp1 = Af_QA[ k ];                                                                  /* QA */
 | |
|             tmp2 = Af_QA[ n - k - 1 ];                                                          /* QA */
 | |
|             Af_QA[ k ]         = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( tmp2, rc_Q31 ), 1 );      /* QA */
 | |
|             Af_QA[ n - k - 1 ] = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( tmp1, rc_Q31 ), 1 );      /* QA */
 | |
|         }
 | |
|         Af_QA[ n ] = silk_RSHIFT32( rc_Q31, 31 - QA );                                          /* QA */
 | |
| 
 | |
|         if( reached_max_gain ) {
 | |
|             /* Reached max prediction gain; set remaining coefficients to zero and exit loop */
 | |
|             for( k = n + 1; k < D; k++ ) {
 | |
|                 Af_QA[ k ] = 0;
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         /* Update C * Af and C * Ab */
 | |
|         for( k = 0; k <= n + 1; k++ ) {
 | |
|             tmp1 = CAf[ k ];                                                                    /* Q( -rshifts ) */
 | |
|             tmp2 = CAb[ n - k + 1 ];                                                            /* Q( -rshifts ) */
 | |
|             CAf[ k ]         = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( tmp2, rc_Q31 ), 1 );        /* Q( -rshifts ) */
 | |
|             CAb[ n - k + 1 ] = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( tmp1, rc_Q31 ), 1 );        /* Q( -rshifts ) */
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if( reached_max_gain ) {
 | |
|         for( k = 0; k < D; k++ ) {
 | |
|             /* Scale coefficients */
 | |
|             A_Q16[ k ] = -silk_RSHIFT_ROUND( Af_QA[ k ], QA - 16 );
 | |
|         }
 | |
|         /* Subtract energy of preceding samples from C0 */
 | |
|         if( rshifts > 0 ) {
 | |
|             for( s = 0; s < nb_subfr; s++ ) {
 | |
|                 x_ptr = x + s * subfr_length;
 | |
|                 C0 -= (opus_int32)silk_RSHIFT64( silk_inner_prod16_aligned_64( x_ptr, x_ptr, D, arch ), rshifts );
 | |
|             }
 | |
|         } else {
 | |
|             for( s = 0; s < nb_subfr; s++ ) {
 | |
|                 x_ptr = x + s * subfr_length;
 | |
|                 C0 -= silk_LSHIFT32( silk_inner_prod_aligned( x_ptr, x_ptr, D, arch), -rshifts);
 | |
|             }
 | |
|         }
 | |
|         /* Approximate residual energy */
 | |
|         *res_nrg = silk_LSHIFT( silk_SMMUL( invGain_Q30, C0 ), 2 );
 | |
|         *res_nrg_Q = -rshifts;
 | |
|     } else {
 | |
|         /* Return residual energy */
 | |
|         nrg  = CAf[ 0 ];                                                                            /* Q( -rshifts ) */
 | |
|         tmp1 = (opus_int32)1 << 16;                                                                             /* Q16 */
 | |
|         for( k = 0; k < D; k++ ) {
 | |
|             Atmp1 = silk_RSHIFT_ROUND( Af_QA[ k ], QA - 16 );                                       /* Q16 */
 | |
|             nrg  = silk_SMLAWW( nrg, CAf[ k + 1 ], Atmp1 );                                         /* Q( -rshifts ) */
 | |
|             tmp1 = silk_SMLAWW( tmp1, Atmp1, Atmp1 );                                               /* Q16 */
 | |
|             A_Q16[ k ] = -Atmp1;
 | |
|         }
 | |
|         *res_nrg = silk_SMLAWW( nrg, silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ), -tmp1 );/* Q( -rshifts ) */
 | |
|         *res_nrg_Q = -rshifts;
 | |
|     }
 | |
| }
 |