mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-31 05:31:01 +00:00 
			
		
		
		
	 767e374dce
			
		
	
	
		767e374dce
		
	
	
	
	
		
			
			Since Embree v3.13.0 supports AARCH64, switch back to the official repo instead of using Embree-aarch64. `thirdparty/embree/patches/godot-changes.patch` should now contain an accurate diff of the changes done to the library.
		
			
				
	
	
		
			337 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			337 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright 2009-2021 Intel Corporation
 | |
| // SPDX-License-Identifier: Apache-2.0
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include "geometry.h"
 | |
| #include "buffer.h"
 | |
| 
 | |
| namespace embree
 | |
| {
 | |
|   /*! Quad Mesh */
 | |
|   struct QuadMesh : public Geometry
 | |
|   {
 | |
|     /*! type of this geometry */
 | |
|     static const Geometry::GTypeMask geom_type = Geometry::MTY_QUAD_MESH;
 | |
|     
 | |
|     /*! triangle indices */
 | |
|     struct Quad
 | |
|     {
 | |
|       uint32_t v[4];
 | |
| 
 | |
|       /*! outputs triangle indices */
 | |
|       __forceinline friend embree_ostream operator<<(embree_ostream cout, const Quad& q) {
 | |
|         return cout << "Quad {" << q.v[0] << ", " << q.v[1] << ", " << q.v[2] << ", " << q.v[3] << " }";
 | |
|       }
 | |
|     };
 | |
| 
 | |
|   public:
 | |
| 
 | |
|     /*! quad mesh construction */
 | |
|     QuadMesh (Device* device); 
 | |
|   
 | |
|     /* geometry interface */
 | |
|   public:
 | |
|     void setMask(unsigned mask);
 | |
|     void setNumTimeSteps (unsigned int numTimeSteps);
 | |
|     void setVertexAttributeCount (unsigned int N);
 | |
|     void setBuffer(RTCBufferType type, unsigned int slot, RTCFormat format, const Ref<Buffer>& buffer, size_t offset, size_t stride, unsigned int num);
 | |
|     void* getBuffer(RTCBufferType type, unsigned int slot);
 | |
|     void updateBuffer(RTCBufferType type, unsigned int slot);
 | |
|     void commit();
 | |
|     bool verify();
 | |
|     void interpolate(const RTCInterpolateArguments* const args);
 | |
|     void addElementsToCount (GeometryCounts & counts) const;
 | |
| 
 | |
|     template<int N>
 | |
|       void interpolate_impl(const RTCInterpolateArguments* const args)
 | |
|     {
 | |
|       unsigned int primID = args->primID;
 | |
|       float u = args->u;
 | |
|       float v = args->v;
 | |
|       RTCBufferType bufferType = args->bufferType;
 | |
|       unsigned int bufferSlot = args->bufferSlot;
 | |
|       float* P = args->P;
 | |
|       float* dPdu = args->dPdu;
 | |
|       float* dPdv = args->dPdv;
 | |
|       float* ddPdudu = args->ddPdudu;
 | |
|       float* ddPdvdv = args->ddPdvdv;
 | |
|       float* ddPdudv = args->ddPdudv;
 | |
|       unsigned int valueCount = args->valueCount;
 | |
|       
 | |
|       /* calculate base pointer and stride */
 | |
|       assert((bufferType == RTC_BUFFER_TYPE_VERTEX && bufferSlot < numTimeSteps) ||
 | |
|              (bufferType == RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE && bufferSlot <= vertexAttribs.size()));
 | |
|       const char* src = nullptr; 
 | |
|       size_t stride = 0;
 | |
|       if (bufferType == RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE) {
 | |
|         src    = vertexAttribs[bufferSlot].getPtr();
 | |
|         stride = vertexAttribs[bufferSlot].getStride();
 | |
|       } else {
 | |
|         src    = vertices[bufferSlot].getPtr();
 | |
|         stride = vertices[bufferSlot].getStride();
 | |
|       }
 | |
|       
 | |
|       for (unsigned int i=0; i<valueCount; i+=N)
 | |
|       {
 | |
|         const vbool<N> valid = vint<N>((int)i)+vint<N>(step) < vint<N>(int(valueCount));
 | |
|         const size_t ofs = i*sizeof(float);
 | |
|         const Quad& tri = quad(primID);
 | |
|         const vfloat<N> p0 = mem<vfloat<N>>::loadu(valid,(float*)&src[tri.v[0]*stride+ofs]);
 | |
|         const vfloat<N> p1 = mem<vfloat<N>>::loadu(valid,(float*)&src[tri.v[1]*stride+ofs]);
 | |
|         const vfloat<N> p2 = mem<vfloat<N>>::loadu(valid,(float*)&src[tri.v[2]*stride+ofs]);
 | |
|         const vfloat<N> p3 = mem<vfloat<N>>::loadu(valid,(float*)&src[tri.v[3]*stride+ofs]);      
 | |
|         const vbool<N> left = u+v <= 1.0f;
 | |
|         const vfloat<N> Q0 = select(left,p0,p2);
 | |
|         const vfloat<N> Q1 = select(left,p1,p3);
 | |
|         const vfloat<N> Q2 = select(left,p3,p1);
 | |
|         const vfloat<N> U  = select(left,u,vfloat<N>(1.0f)-u);
 | |
|         const vfloat<N> V  = select(left,v,vfloat<N>(1.0f)-v);
 | |
|         const vfloat<N> W  = 1.0f-U-V;
 | |
|         if (P) {
 | |
|           mem<vfloat<N>>::storeu(valid,P+i,madd(W,Q0,madd(U,Q1,V*Q2)));
 | |
|         }
 | |
|         if (dPdu) { 
 | |
|           assert(dPdu); mem<vfloat<N>>::storeu(valid,dPdu+i,select(left,Q1-Q0,Q0-Q1));
 | |
|           assert(dPdv); mem<vfloat<N>>::storeu(valid,dPdv+i,select(left,Q2-Q0,Q0-Q2));
 | |
|         }
 | |
|         if (ddPdudu) { 
 | |
|           assert(ddPdudu); mem<vfloat<N>>::storeu(valid,ddPdudu+i,vfloat<N>(zero));
 | |
|           assert(ddPdvdv); mem<vfloat<N>>::storeu(valid,ddPdvdv+i,vfloat<N>(zero));
 | |
|           assert(ddPdudv); mem<vfloat<N>>::storeu(valid,ddPdudv+i,vfloat<N>(zero));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|         
 | |
|   public:
 | |
| 
 | |
|     /*! returns number of vertices */
 | |
|     __forceinline size_t numVertices() const {
 | |
|       return vertices[0].size();
 | |
|     }
 | |
|     
 | |
|     /*! returns i'th quad */
 | |
|     __forceinline const Quad& quad(size_t i) const {
 | |
|       return quads[i];
 | |
|     }
 | |
| 
 | |
|     /*! returns i'th vertex of itime'th timestep */
 | |
|     __forceinline const Vec3fa vertex(size_t i) const {
 | |
|       return vertices0[i];
 | |
|     }
 | |
| 
 | |
|     /*! returns i'th vertex of itime'th timestep */
 | |
|     __forceinline const char* vertexPtr(size_t i) const {
 | |
|       return vertices0.getPtr(i);
 | |
|     }
 | |
| 
 | |
|     /*! returns i'th vertex of itime'th timestep */
 | |
|     __forceinline const Vec3fa vertex(size_t i, size_t itime) const {
 | |
|       return vertices[itime][i];
 | |
|     }
 | |
| 
 | |
|     /*! returns i'th vertex of itime'th timestep */
 | |
|     __forceinline const char* vertexPtr(size_t i, size_t itime) const {
 | |
|       return vertices[itime].getPtr(i);
 | |
|     }
 | |
| 
 | |
|     /*! calculates the bounds of the i'th quad */
 | |
|     __forceinline BBox3fa bounds(size_t i) const 
 | |
|     {
 | |
|       const Quad& q = quad(i);
 | |
|       const Vec3fa v0 = vertex(q.v[0]);
 | |
|       const Vec3fa v1 = vertex(q.v[1]);
 | |
|       const Vec3fa v2 = vertex(q.v[2]);
 | |
|       const Vec3fa v3 = vertex(q.v[3]);
 | |
|       return BBox3fa(min(v0,v1,v2,v3),max(v0,v1,v2,v3));
 | |
|     }
 | |
| 
 | |
|     /*! calculates the bounds of the i'th quad at the itime'th timestep */
 | |
|     __forceinline BBox3fa bounds(size_t i, size_t itime) const
 | |
|     {
 | |
|       const Quad& q = quad(i);
 | |
|       const Vec3fa v0 = vertex(q.v[0],itime);
 | |
|       const Vec3fa v1 = vertex(q.v[1],itime);
 | |
|       const Vec3fa v2 = vertex(q.v[2],itime);
 | |
|       const Vec3fa v3 = vertex(q.v[3],itime);
 | |
|       return BBox3fa(min(v0,v1,v2,v3),max(v0,v1,v2,v3));
 | |
|     }
 | |
| 
 | |
|     /*! check if the i'th primitive is valid at the itime'th timestep */
 | |
|     __forceinline bool valid(size_t i, size_t itime) const {
 | |
|       return valid(i, make_range(itime, itime));
 | |
|     }
 | |
| 
 | |
|     /*! check if the i'th primitive is valid between the specified time range */
 | |
|     __forceinline bool valid(size_t i, const range<size_t>& itime_range) const
 | |
|     {
 | |
|       const Quad& q = quad(i);
 | |
|       if (unlikely(q.v[0] >= numVertices())) return false;
 | |
|       if (unlikely(q.v[1] >= numVertices())) return false;
 | |
|       if (unlikely(q.v[2] >= numVertices())) return false;
 | |
|       if (unlikely(q.v[3] >= numVertices())) return false;
 | |
| 
 | |
|       for (size_t itime = itime_range.begin(); itime <= itime_range.end(); itime++)
 | |
|       {
 | |
|         if (!isvalid(vertex(q.v[0],itime))) return false;
 | |
|         if (!isvalid(vertex(q.v[1],itime))) return false;
 | |
|         if (!isvalid(vertex(q.v[2],itime))) return false;
 | |
|         if (!isvalid(vertex(q.v[3],itime))) return false;
 | |
|       }
 | |
| 
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     /*! calculates the linear bounds of the i'th quad at the itimeGlobal'th time segment */
 | |
|     __forceinline LBBox3fa linearBounds(size_t i, size_t itime) const {
 | |
|       return LBBox3fa(bounds(i,itime+0),bounds(i,itime+1));
 | |
|     }
 | |
| 
 | |
|     /*! calculates the build bounds of the i'th primitive, if it's valid */
 | |
|     __forceinline bool buildBounds(size_t i, BBox3fa* bbox = nullptr) const
 | |
|     {
 | |
|       const Quad& q = quad(i);
 | |
|       if (q.v[0] >= numVertices()) return false;
 | |
|       if (q.v[1] >= numVertices()) return false;
 | |
|       if (q.v[2] >= numVertices()) return false;
 | |
|       if (q.v[3] >= numVertices()) return false;
 | |
| 
 | |
|       for (unsigned int t=0; t<numTimeSteps; t++)
 | |
|       {
 | |
|         const Vec3fa v0 = vertex(q.v[0],t);
 | |
|         const Vec3fa v1 = vertex(q.v[1],t);
 | |
|         const Vec3fa v2 = vertex(q.v[2],t);
 | |
|         const Vec3fa v3 = vertex(q.v[3],t);
 | |
| 
 | |
|         if (unlikely(!isvalid(v0) || !isvalid(v1) || !isvalid(v2) || !isvalid(v3)))
 | |
|           return false;
 | |
|       }
 | |
| 
 | |
|       if (bbox) 
 | |
|         *bbox = bounds(i);
 | |
| 
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     /*! calculates the build bounds of the i'th primitive at the itime'th time segment, if it's valid */
 | |
|     __forceinline bool buildBounds(size_t i, size_t itime, BBox3fa& bbox) const
 | |
|     {
 | |
|       const Quad& q = quad(i);
 | |
|       if (unlikely(q.v[0] >= numVertices())) return false;
 | |
|       if (unlikely(q.v[1] >= numVertices())) return false;
 | |
|       if (unlikely(q.v[2] >= numVertices())) return false;
 | |
|       if (unlikely(q.v[3] >= numVertices())) return false;
 | |
| 
 | |
|       assert(itime+1 < numTimeSteps);
 | |
|       const Vec3fa a0 = vertex(q.v[0],itime+0); if (unlikely(!isvalid(a0))) return false;
 | |
|       const Vec3fa a1 = vertex(q.v[1],itime+0); if (unlikely(!isvalid(a1))) return false;
 | |
|       const Vec3fa a2 = vertex(q.v[2],itime+0); if (unlikely(!isvalid(a2))) return false;
 | |
|       const Vec3fa a3 = vertex(q.v[3],itime+0); if (unlikely(!isvalid(a3))) return false;
 | |
|       const Vec3fa b0 = vertex(q.v[0],itime+1); if (unlikely(!isvalid(b0))) return false;
 | |
|       const Vec3fa b1 = vertex(q.v[1],itime+1); if (unlikely(!isvalid(b1))) return false;
 | |
|       const Vec3fa b2 = vertex(q.v[2],itime+1); if (unlikely(!isvalid(b2))) return false;
 | |
|       const Vec3fa b3 = vertex(q.v[3],itime+1); if (unlikely(!isvalid(b3))) return false;
 | |
|       
 | |
|       /* use bounds of first time step in builder */
 | |
|       bbox = BBox3fa(min(a0,a1,a2,a3),max(a0,a1,a2,a3));
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     /*! calculates the linear bounds of the i'th primitive for the specified time range */
 | |
|     __forceinline LBBox3fa linearBounds(size_t primID, const BBox1f& dt) const {
 | |
|       return LBBox3fa([&] (size_t itime) { return bounds(primID, itime); }, dt, time_range, fnumTimeSegments);
 | |
|     }
 | |
| 
 | |
|     /*! calculates the linear bounds of the i'th primitive for the specified time range */
 | |
|     __forceinline bool linearBounds(size_t i, const BBox1f& dt, LBBox3fa& bbox) const
 | |
|     {
 | |
|       if (!valid(i, timeSegmentRange(dt))) return false;
 | |
|       bbox = linearBounds(i, dt);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     /*! get fast access to first vertex buffer */
 | |
|     __forceinline float * getCompactVertexArray () const {
 | |
|       return (float*) vertices0.getPtr();
 | |
|     }
 | |
| 
 | |
|     /* gets version info of topology */
 | |
|     unsigned int getTopologyVersion() const {
 | |
|       return quads.modCounter;
 | |
|     }
 | |
|     
 | |
|     /* returns true if topology changed */
 | |
|     bool topologyChanged(unsigned int otherVersion) const {
 | |
|       return quads.isModified(otherVersion); // || numPrimitivesChanged;
 | |
|     }
 | |
| 
 | |
|     /* returns the projected area */
 | |
|     __forceinline float projectedPrimitiveArea(const size_t i) const {
 | |
|       const Quad& q = quad(i);
 | |
|       const Vec3fa v0 = vertex(q.v[0]);
 | |
|       const Vec3fa v1 = vertex(q.v[1]);
 | |
|       const Vec3fa v2 = vertex(q.v[2]);
 | |
|       const Vec3fa v3 = vertex(q.v[3]);
 | |
|       return areaProjectedTriangle(v0,v1,v3) +
 | |
| 	areaProjectedTriangle(v1,v2,v3);
 | |
|     }
 | |
| 
 | |
|   public:
 | |
|     BufferView<Quad> quads;                 //!< array of quads
 | |
|     BufferView<Vec3fa> vertices0;           //!< fast access to first vertex buffer
 | |
|     vector<BufferView<Vec3fa>> vertices;    //!< vertex array for each timestep
 | |
|     vector<BufferView<char>> vertexAttribs; //!< vertex attribute buffers
 | |
|   };
 | |
| 
 | |
|   namespace isa
 | |
|   {
 | |
|     struct QuadMeshISA : public QuadMesh
 | |
|     {
 | |
|       QuadMeshISA (Device* device)
 | |
|         : QuadMesh(device) {}
 | |
| 
 | |
|       PrimInfo createPrimRefArray(mvector<PrimRef>& prims, const range<size_t>& r, size_t k, unsigned int geomID) const
 | |
|       {
 | |
|         PrimInfo pinfo(empty);
 | |
|         for (size_t j=r.begin(); j<r.end(); j++)
 | |
|         {
 | |
|           BBox3fa bounds = empty;
 | |
|           if (!buildBounds(j,&bounds)) continue;
 | |
|           const PrimRef prim(bounds,geomID,unsigned(j));
 | |
|           pinfo.add_center2(prim);
 | |
|           prims[k++] = prim;
 | |
|         }
 | |
|         return pinfo;
 | |
|       }
 | |
| 
 | |
|       PrimInfo createPrimRefArrayMB(mvector<PrimRef>& prims, size_t itime, const range<size_t>& r, size_t k, unsigned int geomID) const
 | |
|       {
 | |
|         PrimInfo pinfo(empty);
 | |
|         for (size_t j=r.begin(); j<r.end(); j++)
 | |
|         {
 | |
|           BBox3fa bounds = empty;
 | |
|           if (!buildBounds(j,itime,bounds)) continue;
 | |
|           const PrimRef prim(bounds,geomID,unsigned(j));
 | |
|           pinfo.add_center2(prim);
 | |
|           prims[k++] = prim;
 | |
|         }
 | |
|         return pinfo;
 | |
|       }
 | |
|       
 | |
|       PrimInfoMB createPrimRefMBArray(mvector<PrimRefMB>& prims, const BBox1f& t0t1, const range<size_t>& r, size_t k, unsigned int geomID) const
 | |
|       {
 | |
|         PrimInfoMB pinfo(empty);
 | |
|         for (size_t j=r.begin(); j<r.end(); j++)
 | |
|         {
 | |
|           if (!valid(j, timeSegmentRange(t0t1))) continue;
 | |
|           const PrimRefMB prim(linearBounds(j,t0t1),this->numTimeSegments(),this->time_range,this->numTimeSegments(),geomID,unsigned(j));
 | |
|           pinfo.add_primref(prim);
 | |
|           prims[k++] = prim;
 | |
|         }
 | |
|         return pinfo;
 | |
|       }
 | |
|     };
 | |
|   }
 | |
| 
 | |
|   DECLARE_ISA_FUNCTION(QuadMesh*, createQuadMesh, Device*);
 | |
| }
 |