mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-31 05:31:01 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			974 lines
		
	
	
	
		
			33 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			974 lines
		
	
	
	
		
			33 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /********************************************************************
 | |
|  *                                                                  *
 | |
|  * THIS FILE IS PART OF THE OggTheora SOFTWARE CODEC SOURCE CODE.   *
 | |
|  * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS     *
 | |
|  * GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE *
 | |
|  * IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING.       *
 | |
|  *                                                                  *
 | |
|  * THE Theora SOURCE CODE IS COPYRIGHT (C) 2002-2011                *
 | |
|  * by the Xiph.Org Foundation http://www.xiph.org/                  *
 | |
|  *                                                                  *
 | |
|  ********************************************************************
 | |
| 
 | |
|   function: mode selection code
 | |
|   last mod: $Id$
 | |
| 
 | |
|  ********************************************************************/
 | |
| #include <stdio.h>
 | |
| #include <limits.h>
 | |
| #include <math.h>
 | |
| #include <string.h>
 | |
| #include "collect.h"
 | |
| 
 | |
| #if defined(OC_COLLECT_METRICS)
 | |
| 
 | |
| int              OC_HAS_MODE_METRICS;
 | |
| double           OC_MODE_RD_WEIGHT_SATD[OC_LOGQ_BINS][3][2][OC_COMP_BINS];
 | |
| double           OC_MODE_RD_WEIGHT_SAD[OC_LOGQ_BINS][3][2][OC_COMP_BINS];
 | |
| oc_mode_metrics  OC_MODE_METRICS_SATD[OC_LOGQ_BINS-1][3][2][OC_COMP_BINS];
 | |
| oc_mode_metrics  OC_MODE_METRICS_SAD[OC_LOGQ_BINS-1][3][2][OC_COMP_BINS];
 | |
| const char      *OC_MODE_METRICS_FILENAME="modedec.stats";
 | |
| 
 | |
| void oc_mode_metrics_add(oc_mode_metrics *_metrics,
 | |
|  double _w,int _s,int _q,int _r,double _d){
 | |
|   if(_metrics->w>0){
 | |
|     double ds;
 | |
|     double dq;
 | |
|     double dr;
 | |
|     double dd;
 | |
|     double ds2;
 | |
|     double dq2;
 | |
|     double s2;
 | |
|     double sq;
 | |
|     double q2;
 | |
|     double sr;
 | |
|     double qr;
 | |
|     double sd;
 | |
|     double qd;
 | |
|     double s2q;
 | |
|     double sq2;
 | |
|     double w;
 | |
|     double wa;
 | |
|     double rwa;
 | |
|     double rwa2;
 | |
|     double rwb;
 | |
|     double rwb2;
 | |
|     double rw2;
 | |
|     double rw3;
 | |
|     double rw4;
 | |
|     wa=_metrics->w;
 | |
|     ds=_s-_metrics->s/wa;
 | |
|     dq=_q-_metrics->q/wa;
 | |
|     dr=_r-_metrics->r/wa;
 | |
|     dd=_d-_metrics->d/wa;
 | |
|     ds2=ds*ds;
 | |
|     dq2=dq*dq;
 | |
|     s2=_metrics->s2;
 | |
|     sq=_metrics->sq;
 | |
|     q2=_metrics->q2;
 | |
|     sr=_metrics->sr;
 | |
|     qr=_metrics->qr;
 | |
|     sd=_metrics->sd;
 | |
|     qd=_metrics->qd;
 | |
|     s2q=_metrics->s2q;
 | |
|     sq2=_metrics->sq2;
 | |
|     w=wa+_w;
 | |
|     rwa=wa/w;
 | |
|     rwb=_w/w;
 | |
|     rwa2=rwa*rwa;
 | |
|     rwb2=rwb*rwb;
 | |
|     rw2=wa*rwb;
 | |
|     rw3=rw2*(rwa2-rwb2);
 | |
|     rw4=_w*rwa2*rwa2+wa*rwb2*rwb2;
 | |
|     _metrics->s2q2+=-2*(ds*sq2+dq*s2q)*rwb
 | |
|      +(ds2*q2+4*ds*dq*sq+dq2*s2)*rwb2+ds2*dq2*rw4;
 | |
|     _metrics->s2q+=(-2*ds*sq-dq*s2)*rwb+ds2*dq*rw3;
 | |
|     _metrics->sq2+=(-ds*q2-2*dq*sq)*rwb+ds*dq2*rw3;
 | |
|     _metrics->sqr+=(-ds*qr-dq*sr-dr*sq)*rwb+ds*dq*dr*rw3;
 | |
|     _metrics->sqd+=(-ds*qd-dq*sd-dd*sq)*rwb+ds*dq*dd*rw3;
 | |
|     _metrics->s2+=ds2*rw2;
 | |
|     _metrics->sq+=ds*dq*rw2;
 | |
|     _metrics->q2+=dq2*rw2;
 | |
|     _metrics->sr+=ds*dr*rw2;
 | |
|     _metrics->qr+=dq*dr*rw2;
 | |
|     _metrics->r2+=dr*dr*rw2;
 | |
|     _metrics->sd+=ds*dd*rw2;
 | |
|     _metrics->qd+=dq*dd*rw2;
 | |
|     _metrics->d2+=dd*dd*rw2;
 | |
|   }
 | |
|   _metrics->w+=_w;
 | |
|   _metrics->s+=_s*_w;
 | |
|   _metrics->q+=_q*_w;
 | |
|   _metrics->r+=_r*_w;
 | |
|   _metrics->d+=_d*_w;
 | |
| }
 | |
| 
 | |
| void oc_mode_metrics_merge(oc_mode_metrics *_dst,
 | |
|  const oc_mode_metrics *_src,int _n){
 | |
|   int i;
 | |
|   /*Find a non-empty set of metrics.*/
 | |
|   for(i=0;i<_n&&_src[i].w==0;i++);
 | |
|   if(i>=_n){
 | |
|     memset(_dst,0,sizeof(*_dst));
 | |
|     return;
 | |
|   }
 | |
|   memcpy(_dst,_src+i,sizeof(*_dst));
 | |
|   /*And iterate over the remaining non-empty sets of metrics.*/
 | |
|   for(i++;i<_n;i++)if(_src[i].w!=0){
 | |
|     double ds;
 | |
|     double dq;
 | |
|     double dr;
 | |
|     double dd;
 | |
|     double ds2;
 | |
|     double dq2;
 | |
|     double s2a;
 | |
|     double s2b;
 | |
|     double sqa;
 | |
|     double sqb;
 | |
|     double q2a;
 | |
|     double q2b;
 | |
|     double sra;
 | |
|     double srb;
 | |
|     double qra;
 | |
|     double qrb;
 | |
|     double sda;
 | |
|     double sdb;
 | |
|     double qda;
 | |
|     double qdb;
 | |
|     double s2qa;
 | |
|     double s2qb;
 | |
|     double sq2a;
 | |
|     double sq2b;
 | |
|     double w;
 | |
|     double wa;
 | |
|     double wb;
 | |
|     double rwa;
 | |
|     double rwb;
 | |
|     double rwa2;
 | |
|     double rwb2;
 | |
|     double rw2;
 | |
|     double rw3;
 | |
|     double rw4;
 | |
|     wa=_dst->w;
 | |
|     wb=_src[i].w;
 | |
|     ds=_src[i].s/wb-_dst->s/wa;
 | |
|     dq=_src[i].q/wb-_dst->q/wa;
 | |
|     dr=_src[i].r/wb-_dst->r/wa;
 | |
|     dd=_src[i].d/wb-_dst->d/wa;
 | |
|     ds2=ds*ds;
 | |
|     dq2=dq*dq;
 | |
|     s2a=_dst->s2;
 | |
|     sqa=_dst->sq;
 | |
|     q2a=_dst->q2;
 | |
|     sra=_dst->sr;
 | |
|     qra=_dst->qr;
 | |
|     sda=_dst->sd;
 | |
|     qda=_dst->qd;
 | |
|     s2qa=_dst->s2q;
 | |
|     sq2a=_dst->sq2;
 | |
|     s2b=_src[i].s2;
 | |
|     sqb=_src[i].sq;
 | |
|     q2b=_src[i].q2;
 | |
|     srb=_src[i].sr;
 | |
|     qrb=_src[i].qr;
 | |
|     sdb=_src[i].sd;
 | |
|     qdb=_src[i].qd;
 | |
|     s2qb=_src[i].s2q;
 | |
|     sq2b=_src[i].sq2;
 | |
|     w=wa+wb;
 | |
|     if(w==0)rwa=rwb=0;
 | |
|     else{
 | |
|       rwa=wa/w;
 | |
|       rwb=wb/w;
 | |
|     }
 | |
|     rwa2=rwa*rwa;
 | |
|     rwb2=rwb*rwb;
 | |
|     rw2=wa*rwb;
 | |
|     rw3=rw2*(rwa2-rwb2);
 | |
|     rw4=wb*rwa2*rwa2+wa*rwb2*rwb2;
 | |
|     /*
 | |
|     (1,1,1) ->
 | |
|      (0,0,0)#
 | |
|      (1,0,0) C(1,1)*C(1,0)*C(1,0)->  d^{1,0,0}*(rwa*B_{0,1,1}-rwb*A_{0,1,1})
 | |
|      (0,1,0) C(1,0)*C(1,1)*C(1,0)->  d^{0,1,0}*(rwa*B_{1,0,1}-rwb*A_{1,0,1})
 | |
|      (0,0,1) C(1,0)*C(1,0)*C(1,1)->  d^{0,0,1}*(rwa*B_{1,1,0}-rwb*A_{1,1,0})
 | |
|      (1,1,0)*
 | |
|      (1,0,1)*
 | |
|      (0,1,1)*
 | |
|      (1,1,1) C(1,1)*C(1,1)*C(1,1)->  d^{1,1,1}*(rwa^3*wb-rwb^3*wa)
 | |
|     (2,1) ->
 | |
|      (0,0)#
 | |
|      (1,0) C(2,1)*C(1,1)->2*d^{1,0}*(rwa*B_{1,1}-rwb*A_{1,1})
 | |
|      (0,1) C(2,0)*C(1,1)->  d^{0,1}*(rwa*B_{2,0}-rwb*A_{2,0})
 | |
|      (2,0)*
 | |
|      (1,1)*
 | |
|      (2,1) C(2,2)*C(1,1)->  d^{2,1}*(rwa^3*wb-rwb^3*wa)
 | |
|     (2,2) ->
 | |
|      (0,0)#
 | |
|      (1,0) C(2,1)*C(2,0)->2*d^{1,0}*(rwa*B_{1,2}-rwb*A_{1,2})
 | |
|      (0,1) C(2,0)*C(2,1)->2*d^{0,1}*(rwa*B_{2,1}-rwb*A_{2,1})
 | |
|      (2,0) C(2,2)*C(2,0)->  d^{2,0}*(rwa^2*B_{0,2}+rwb^2*A_{0,2})
 | |
|      (1,1) C(2,1)*C(2,1)->4*d^{1,1}*(rwa^2*B_{1,1}+rwb^2*A_{1,1})
 | |
|      (0,2) C(2,0)*C(2,2)->  d^{0,2}*(rwa^2*B_{2,0}+rwb^2*A_{2,0})
 | |
|      (1,2)*
 | |
|      (2,1)*
 | |
|      (2,2) C(2,2)*C(2,2)*d^{2,2}*(rwa^4*wb+rwb^4*wa)
 | |
|     */
 | |
|     _dst->s2q2+=_src[i].s2q2+2*(ds*(rwa*sq2b-rwb*sq2a)+dq*(rwa*s2qb-rwb*s2qa))
 | |
|      +ds2*(rwa2*q2b+rwb2*q2a)+4*ds*dq*(rwa2*sqb+rwb2*sqa)
 | |
|      +dq2*(rwa2*s2b+rwb2*s2a)+ds2*dq2*rw4;
 | |
|     _dst->s2q+=_src[i].s2q+2*ds*(rwa*sqb-rwb*sqa)
 | |
|      +dq*(rwa*s2b-rwb*s2a)+ds2*dq*rw3;
 | |
|     _dst->sq2+=_src[i].sq2+ds*(rwa*q2b-rwb*q2a)
 | |
|      +2*dq*(rwa*sqb-rwb*sqa)+ds*dq2*rw3;
 | |
|     _dst->sqr+=_src[i].sqr+ds*(rwa*qrb-rwb*qra)+dq*(rwa*srb-rwb*sra)
 | |
|      +dr*(rwa*sqb-rwb*sqa)+ds*dq*dr*rw3;
 | |
|     _dst->sqd+=_src[i].sqd+ds*(rwa*qdb-rwb*qda)+dq*(rwa*sdb-rwb*sda)
 | |
|      +dd*(rwa*sqb-rwb*sqa)+ds*dq*dd*rw3;
 | |
|     _dst->s2+=_src[i].s2+ds2*rw2;
 | |
|     _dst->sq+=_src[i].sq+ds*dq*rw2;
 | |
|     _dst->q2+=_src[i].q2+dq2*rw2;
 | |
|     _dst->sr+=_src[i].sr+ds*dr*rw2;
 | |
|     _dst->qr+=_src[i].qr+dq*dr*rw2;
 | |
|     _dst->r2+=_src[i].r2+dr*dr*rw2;
 | |
|     _dst->sd+=_src[i].sd+ds*dd*rw2;
 | |
|     _dst->qd+=_src[i].qd+dq*dd*rw2;
 | |
|     _dst->d2+=_src[i].d2+dd*dd*rw2;
 | |
|     _dst->w+=_src[i].w;
 | |
|     _dst->s+=_src[i].s;
 | |
|     _dst->q+=_src[i].q;
 | |
|     _dst->r+=_src[i].r;
 | |
|     _dst->d+=_src[i].d;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*Adjust a single corner of a set of metric bins to minimize the squared
 | |
|    prediction error of R and D.
 | |
|   Each bin is assumed to cover a quad like so:
 | |
|     (s0,q0)    (s1,q0)
 | |
|        A----------B
 | |
|        |          |
 | |
|        |          |
 | |
|        |          |
 | |
|        |          |
 | |
|        C----------Z
 | |
|     (s0,q1)    (s1,q1)
 | |
|   The values A, B, and C are fixed, and Z is the free parameter.
 | |
|   Then, for example, R_i is predicted via bilinear interpolation as
 | |
|     x_i=(s_i-s0)/(s1-s0)
 | |
|     y_i=(q_i-q0)/(q1-q0)
 | |
|     dRds1_i=A+(B-A)*x_i
 | |
|     dRds2_i=C+(Z-C)*x_i
 | |
|     R_i=dRds1_i+(dRds2_i-dRds1_i)*y_i
 | |
|   To find the Z that minimizes the squared prediction error over i, this can
 | |
|    be rewritten as
 | |
|     R_i-(A+(B-A)*x_i+(C-A)*y_i+(A-B-C)*x_i*y_i)=x_i*y_i*Z
 | |
|   Letting X={...,x_i*y_i,...}^T and
 | |
|    Y={...,R_i-(A+(B-A)*x_i+(C-A)*y_i+(A-B-C)*x_i*y_i),...}^T,
 | |
|    the optimal Z is given by Z=(X^T.Y)/(X^T.X).
 | |
|   Now, we need to compute these dot products without actually storing data for
 | |
|    each sample.
 | |
|   Starting with X^T.X, we have
 | |
|    X^T.X = sum(x_i^2*y_i^2) = sum((s_i-s0)^2*(q_i-q0)^2)/((s1-s0)^2*(q1-q0)^2).
 | |
|   Expanding the interior of the sum in a monomial basis of s_i and q_i gives
 | |
|     s0^2*q0^2  *(1)
 | |
|      -2*s0*q0^2*(s_i)
 | |
|      -2*s0^2*q0*(q_i)
 | |
|      +q0^2     *(s_i^2)
 | |
|      +4*s0*q0  *(s_i*q_i)
 | |
|      +s0^2     *(q_i^2)
 | |
|      -2*q0     *(s_i^2*q_i)
 | |
|      -2*s0     *(s_i*q_i^2)
 | |
|      +1        *(s_i^2*q_i^2).
 | |
|   However, computing things directly in this basis leads to gross numerical
 | |
|    errors, as most of the terms will have similar size and destructive
 | |
|    cancellation results.
 | |
|   A much better basis is the central (co-)moment basis:
 | |
|     {1,s_i-sbar,q_i-qbar,(s_i-sbar)^2,(s_i-sbar)*(q_i-qbar),(q_i-qbar)^2,
 | |
|      (s_i-sbar)^2*(q_i-qbar),(s_i-sbar)*(q_i-qbar)^2,(s_i-sbar)^2*(q_i-qbar)^2},
 | |
|    where sbar and qbar are the average s and q values over the bin,
 | |
|    respectively.
 | |
|   In that basis, letting ds=sbar-s0 and dq=qbar-q0, (s_i-s0)^2*(q_i-q0)^2 is
 | |
|     ds^2*dq^2*(1)
 | |
|      +dq^2   *((s_i-sbar)^2)
 | |
|      +4*ds*dq*((s_i-sbar)*(q_i-qbar))
 | |
|      +ds^2   *((q_i-qbar)^2)
 | |
|      +2*dq   *((s_i-sbar)^2*(q_i-qbar))
 | |
|      +2*ds   *((s_i-sbar)*(q_i-qbar)^2)
 | |
|      +1      *((s_i-sbar)^2*(q_i-qbar)^2).
 | |
|   With these expressions in the central (co-)moment bases, all we need to do
 | |
|    is compute sums over the (co-)moment terms, which can be done
 | |
|    incrementally (see oc_mode_metrics_add() and oc_mode_metrics_merge()),
 | |
|    with no need to store the individual samples.
 | |
|   Now, for X^T.Y, we have
 | |
|     X^T.Y = sum((R_i-A-((B-A)/(s1-s0))*(s_i-s0)-((C-A)/(q1-q0))*(q_i-q0)
 | |
|      -((A-B-C)/((s1-s0)*(q1-q0)))*(s_i-s0)*(q_i-q0))*(s_i-s0)*(q_i-q0))/
 | |
|      ((s1-s0)*(q1-q0)),
 | |
|    or, rewriting the constants to simplify notation,
 | |
|     X^T.Y = sum((C0+C1*(s_i-s0)+C2*(q_i-q0)
 | |
|      +C3*(s_i-s0)*(q_i-q0)+R_i)*(s_i-s0)*(q_i-q0))/((s1-s0)*(q1-q0)).
 | |
|   Again, converting to the central (co-)moment basis, the interior of the
 | |
|    above sum is
 | |
|     ds*dq*(rbar+C0+C1*ds+C2*dq+C3*ds*dq)  *(1)
 | |
|      +(C1*dq+C3*dq^2)                     *((s_i-sbar)^2)
 | |
|      +(rbar+C0+2*C1*ds+2*C2*dq+4*C3*ds*dq)*((s_i-sbar)*(q_i-qbar))
 | |
|      +(C2*ds+C3*ds^2)                     *((q_i-qbar)^2)
 | |
|      +dq                                  *((s_i-sbar)*(r_i-rbar))
 | |
|      +ds                                  *((q_i-qbar)*(r_i-rbar))
 | |
|      +(C1+2*C3*dq)                        *((s_i-sbar)^2*(q_i-qbar))
 | |
|      +(C2+2*C3*ds)                        *((s_i-sbar)*(q_i-qbar)^2)
 | |
|      +1                                   *((s_i-sbar)*(q_i-qbar)*(r_i-rbar))
 | |
|      +C3                                  *((s_i-sbar)^2*(q_i-qbar)^2).
 | |
|   You might think it would be easier (if perhaps slightly less robust) to
 | |
|    accumulate terms directly around s0 and q0.
 | |
|   However, we update each corner of the bins in turn, so we would have to
 | |
|    change basis to move the sums from corner to corner anyway.*/
 | |
| double oc_mode_metrics_solve(double *_r,double *_d,
 | |
|  const oc_mode_metrics *_metrics,const int *_s0,const int *_s1,
 | |
|  const int *_q0,const int *_q1,
 | |
|  const double *_ra,const double *_rb,const double *_rc,
 | |
|  const double *_da,const double *_db,const double *_dc,int _n){
 | |
|   double xx;
 | |
|   double rxy;
 | |
|   double dxy;
 | |
|   double wt;
 | |
|   int i;
 | |
|   xx=rxy=dxy=wt=0;
 | |
|   for(i=0;i<_n;i++)if(_metrics[i].w>0){
 | |
|     double s10;
 | |
|     double q10;
 | |
|     double sq10;
 | |
|     double ds;
 | |
|     double dq;
 | |
|     double ds2;
 | |
|     double dq2;
 | |
|     double r;
 | |
|     double d;
 | |
|     double s2;
 | |
|     double sq;
 | |
|     double q2;
 | |
|     double sr;
 | |
|     double qr;
 | |
|     double sd;
 | |
|     double qd;
 | |
|     double s2q;
 | |
|     double sq2;
 | |
|     double sqr;
 | |
|     double sqd;
 | |
|     double s2q2;
 | |
|     double c0;
 | |
|     double c1;
 | |
|     double c2;
 | |
|     double c3;
 | |
|     double w;
 | |
|     w=_metrics[i].w;
 | |
|     wt+=w;
 | |
|     s10=_s1[i]-_s0[i];
 | |
|     q10=_q1[i]-_q0[i];
 | |
|     sq10=s10*q10;
 | |
|     ds=_metrics[i].s/w-_s0[i];
 | |
|     dq=_metrics[i].q/w-_q0[i];
 | |
|     ds2=ds*ds;
 | |
|     dq2=dq*dq;
 | |
|     s2=_metrics[i].s2;
 | |
|     sq=_metrics[i].sq;
 | |
|     q2=_metrics[i].q2;
 | |
|     s2q=_metrics[i].s2q;
 | |
|     sq2=_metrics[i].sq2;
 | |
|     s2q2=_metrics[i].s2q2;
 | |
|     xx+=(dq2*(ds2*w+s2)+4*ds*dq*sq+ds2*q2+2*(dq*s2q+ds*sq2)+s2q2)/(sq10*sq10);
 | |
|     r=_metrics[i].r/w;
 | |
|     sr=_metrics[i].sr;
 | |
|     qr=_metrics[i].qr;
 | |
|     sqr=_metrics[i].sqr;
 | |
|     c0=-_ra[i];
 | |
|     c1=-(_rb[i]-_ra[i])/s10;
 | |
|     c2=-(_rc[i]-_ra[i])/q10;
 | |
|     c3=-(_ra[i]-_rb[i]-_rc[i])/sq10;
 | |
|     rxy+=(ds*dq*(r+c0+c1*ds+c2*dq+c3*ds*dq)*w+(c1*dq+c3*dq2)*s2
 | |
|      +(r+c0+2*(c1*ds+(c2+2*c3*ds)*dq))*sq+(c2*ds+c3*ds2)*q2+dq*sr+ds*qr
 | |
|      +(c1+2*c3*dq)*s2q+(c2+2*c3*ds)*sq2+sqr+c3*s2q2)/sq10;
 | |
|     d=_metrics[i].d/w;
 | |
|     sd=_metrics[i].sd;
 | |
|     qd=_metrics[i].qd;
 | |
|     sqd=_metrics[i].sqd;
 | |
|     c0=-_da[i];
 | |
|     c1=-(_db[i]-_da[i])/s10;
 | |
|     c2=-(_dc[i]-_da[i])/q10;
 | |
|     c3=-(_da[i]-_db[i]-_dc[i])/sq10;
 | |
|     dxy+=(ds*dq*(d+c0+c1*ds+c2*dq+c3*ds*dq)*w+(c1*dq+c3*dq2)*s2
 | |
|      +(d+c0+2*(c1*ds+(c2+2*c3*ds)*dq))*sq+(c2*ds+c3*ds2)*q2+dq*sd+ds*qd
 | |
|      +(c1+2*c3*dq)*s2q+(c2+2*c3*ds)*sq2+sqd+c3*s2q2)/sq10;
 | |
|   }
 | |
|   if(xx>1E-3){
 | |
|     *_r=rxy/xx;
 | |
|     *_d=dxy/xx;
 | |
|   }
 | |
|   else{
 | |
|     *_r=0;
 | |
|     *_d=0;
 | |
|   }
 | |
|   return wt;
 | |
| }
 | |
| 
 | |
| /*Compile collected SATD/logq/rate/RMSE metrics into a form that's immediately
 | |
|    useful for mode decision.*/
 | |
| void oc_mode_metrics_update(oc_mode_metrics (*_metrics)[3][2][OC_COMP_BINS],
 | |
|  int _niters_min,int _reweight,oc_mode_rd (*_table)[3][2][OC_COMP_BINS],
 | |
|  int _shift,double (*_weight)[3][2][OC_COMP_BINS]){
 | |
|   int niters;
 | |
|   int prevdr;
 | |
|   int prevdd;
 | |
|   int dr;
 | |
|   int dd;
 | |
|   int pli;
 | |
|   int qti;
 | |
|   int qi;
 | |
|   int si;
 | |
|   dd=dr=INT_MAX;
 | |
|   niters=0;
 | |
|   /*The encoder interpolates rate and RMSE terms bilinearly from an
 | |
|      OC_LOGQ_BINS by OC_COMP_BINS grid of sample points in _table.
 | |
|     To find the sample values at the grid points that minimize the total
 | |
|      squared prediction error actually requires solving a relatively sparse
 | |
|      linear system with a number of variables equal to the number of grid
 | |
|      points.
 | |
|     Instead of writing a general sparse linear system solver, we just use
 | |
|      Gauss-Seidel iteration, i.e., we update one grid point at time until
 | |
|      they stop changing.*/
 | |
|   do{
 | |
|     prevdr=dr;
 | |
|     prevdd=dd;
 | |
|     dd=dr=0;
 | |
|     for(pli=0;pli<3;pli++){
 | |
|       for(qti=0;qti<2;qti++){
 | |
|         for(qi=0;qi<OC_LOGQ_BINS;qi++){
 | |
|           for(si=0;si<OC_COMP_BINS;si++){
 | |
|             oc_mode_metrics m[4];
 | |
|             int             s0[4];
 | |
|             int             s1[4];
 | |
|             int             q0[4];
 | |
|             int             q1[4];
 | |
|             double          ra[4];
 | |
|             double          rb[4];
 | |
|             double          rc[4];
 | |
|             double          da[4];
 | |
|             double          db[4];
 | |
|             double          dc[4];
 | |
|             double          r;
 | |
|             double          d;
 | |
|             int             rate;
 | |
|             int             rmse;
 | |
|             int             ds;
 | |
|             int             n;
 | |
|             n=0;
 | |
|             /*Collect the statistics for the (up to) four bins grid point
 | |
|                (si,qi) touches.*/
 | |
|             if(qi>0&&si>0){
 | |
|               q0[n]=OC_MODE_LOGQ[qi-1][pli][qti];
 | |
|               q1[n]=OC_MODE_LOGQ[qi][pli][qti];
 | |
|               s0[n]=si-1<<_shift;
 | |
|               s1[n]=si<<_shift;
 | |
|               ra[n]=ldexp(_table[qi-1][pli][qti][si-1].rate,-OC_BIT_SCALE);
 | |
|               da[n]=ldexp(_table[qi-1][pli][qti][si-1].rmse,-OC_RMSE_SCALE);
 | |
|               rb[n]=ldexp(_table[qi-1][pli][qti][si].rate,-OC_BIT_SCALE);
 | |
|               db[n]=ldexp(_table[qi-1][pli][qti][si].rmse,-OC_RMSE_SCALE);
 | |
|               rc[n]=ldexp(_table[qi][pli][qti][si-1].rate,-OC_BIT_SCALE);
 | |
|               dc[n]=ldexp(_table[qi][pli][qti][si-1].rmse,-OC_RMSE_SCALE);
 | |
|               *(m+n++)=*(_metrics[qi-1][pli][qti]+si-1);
 | |
|             }
 | |
|             if(qi>0){
 | |
|               ds=si+1<OC_COMP_BINS?1:-1;
 | |
|               q0[n]=OC_MODE_LOGQ[qi-1][pli][qti];
 | |
|               q1[n]=OC_MODE_LOGQ[qi][pli][qti];
 | |
|               s0[n]=si+ds<<_shift;
 | |
|               s1[n]=si<<_shift;
 | |
|               ra[n]=ldexp(_table[qi-1][pli][qti][si+ds].rate,-OC_BIT_SCALE);
 | |
|               da[n]=
 | |
|                ldexp(_table[qi-1][pli][qti][si+ds].rmse,-OC_RMSE_SCALE);
 | |
|               rb[n]=ldexp(_table[qi-1][pli][qti][si].rate,-OC_BIT_SCALE);
 | |
|               db[n]=ldexp(_table[qi-1][pli][qti][si].rmse,-OC_RMSE_SCALE);
 | |
|               rc[n]=ldexp(_table[qi][pli][qti][si+ds].rate,-OC_BIT_SCALE);
 | |
|               dc[n]=ldexp(_table[qi][pli][qti][si+ds].rmse,-OC_RMSE_SCALE);
 | |
|               *(m+n++)=*(_metrics[qi-1][pli][qti]+si);
 | |
|             }
 | |
|             if(qi+1<OC_LOGQ_BINS&&si>0){
 | |
|               q0[n]=OC_MODE_LOGQ[qi+1][pli][qti];
 | |
|               q1[n]=OC_MODE_LOGQ[qi][pli][qti];
 | |
|               s0[n]=si-1<<_shift;
 | |
|               s1[n]=si<<_shift;
 | |
|               ra[n]=ldexp(_table[qi+1][pli][qti][si-1].rate,-OC_BIT_SCALE);
 | |
|               da[n]=ldexp(_table[qi+1][pli][qti][si-1].rmse,-OC_RMSE_SCALE);
 | |
|               rb[n]=ldexp(_table[qi+1][pli][qti][si].rate,-OC_BIT_SCALE);
 | |
|               db[n]=ldexp(_table[qi+1][pli][qti][si].rmse,-OC_RMSE_SCALE);
 | |
|               rc[n]=ldexp(_table[qi][pli][qti][si-1].rate,-OC_BIT_SCALE);
 | |
|               dc[n]=ldexp(_table[qi][pli][qti][si-1].rmse,-OC_RMSE_SCALE);
 | |
|               *(m+n++)=*(_metrics[qi][pli][qti]+si-1);
 | |
|             }
 | |
|             if(qi+1<OC_LOGQ_BINS){
 | |
|               ds=si+1<OC_COMP_BINS?1:-1;
 | |
|               q0[n]=OC_MODE_LOGQ[qi+1][pli][qti];
 | |
|               q1[n]=OC_MODE_LOGQ[qi][pli][qti];
 | |
|               s0[n]=si+ds<<_shift;
 | |
|               s1[n]=si<<_shift;
 | |
|               ra[n]=ldexp(_table[qi+1][pli][qti][si+ds].rate,-OC_BIT_SCALE);
 | |
|               da[n]=
 | |
|                ldexp(_table[qi+1][pli][qti][si+ds].rmse,-OC_RMSE_SCALE);
 | |
|               rb[n]=ldexp(_table[qi+1][pli][qti][si].rate,-OC_BIT_SCALE);
 | |
|               db[n]=ldexp(_table[qi+1][pli][qti][si].rmse,-OC_RMSE_SCALE);
 | |
|               rc[n]=ldexp(_table[qi][pli][qti][si+ds].rate,-OC_BIT_SCALE);
 | |
|               dc[n]=ldexp(_table[qi][pli][qti][si+ds].rmse,-OC_RMSE_SCALE);
 | |
|               *(m+n++)=*(_metrics[qi][pli][qti]+si);
 | |
|             }
 | |
|             /*On the first pass, initialize with a simple weighted average of
 | |
|                the neighboring bins.*/
 | |
|             if(!OC_HAS_MODE_METRICS&&niters==0){
 | |
|               double w;
 | |
|               w=r=d=0;
 | |
|               while(n-->0){
 | |
|                 w+=m[n].w;
 | |
|                 r+=m[n].r;
 | |
|                 d+=m[n].d;
 | |
|               }
 | |
|               r=w>1E-3?r/w:0;
 | |
|               d=w>1E-3?d/w:0;
 | |
|               _weight[qi][pli][qti][si]=w;
 | |
|             }
 | |
|             else{
 | |
|               /*Update the grid point and save the weight for later.*/
 | |
|               _weight[qi][pli][qti][si]=
 | |
|                oc_mode_metrics_solve(&r,&d,m,s0,s1,q0,q1,ra,rb,rc,da,db,dc,n);
 | |
|             }
 | |
|             rate=OC_CLAMPI(-32768,(int)(ldexp(r,OC_BIT_SCALE)+0.5),32767);
 | |
|             rmse=OC_CLAMPI(-32768,(int)(ldexp(d,OC_RMSE_SCALE)+0.5),32767);
 | |
|             dr+=abs(rate-_table[qi][pli][qti][si].rate);
 | |
|             dd+=abs(rmse-_table[qi][pli][qti][si].rmse);
 | |
|             _table[qi][pli][qti][si].rate=(ogg_int16_t)rate;
 | |
|             _table[qi][pli][qti][si].rmse=(ogg_int16_t)rmse;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   /*After a fixed number of initial iterations, only iterate so long as the
 | |
|      total change is decreasing.
 | |
|     This ensures we don't oscillate forever, which is a danger, as all of our
 | |
|      results are rounded fairly coarsely.*/
 | |
|   while((dr>0||dd>0)&&(niters++<_niters_min||(dr<prevdr&&dd<prevdd)));
 | |
|   if(_reweight){
 | |
|     /*Now, reduce the values of the optimal solution until we get enough
 | |
|        samples in each bin to overcome the constant OC_ZWEIGHT factor.
 | |
|       This encourages sampling under-populated bins and prevents a single large
 | |
|        sample early on from discouraging coding in that bin ever again.*/
 | |
|     for(pli=0;pli<3;pli++){
 | |
|       for(qti=0;qti<2;qti++){
 | |
|         for(qi=0;qi<OC_LOGQ_BINS;qi++){
 | |
|           for(si=0;si<OC_COMP_BINS;si++){
 | |
|             double wt;
 | |
|             wt=_weight[qi][pli][qti][si];
 | |
|             wt/=OC_ZWEIGHT+wt;
 | |
|             _table[qi][pli][qti][si].rate=(ogg_int16_t)
 | |
|              (_table[qi][pli][qti][si].rate*wt+0.5);
 | |
|             _table[qi][pli][qti][si].rmse=(ogg_int16_t)
 | |
|              (_table[qi][pli][qti][si].rmse*wt+0.5);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*Dump the in memory mode metrics to a file.
 | |
|   Note this data format isn't portable between different platforms.*/
 | |
| void oc_mode_metrics_dump(void){
 | |
|   FILE *fmetrics;
 | |
|   fmetrics=fopen(OC_MODE_METRICS_FILENAME,"wb");
 | |
|   if(fmetrics!=NULL){
 | |
|     (void)fwrite(OC_MODE_LOGQ,sizeof(OC_MODE_LOGQ),1,fmetrics);
 | |
|     (void)fwrite(OC_MODE_METRICS_SATD,sizeof(OC_MODE_METRICS_SATD),1,fmetrics);
 | |
|     (void)fwrite(OC_MODE_METRICS_SAD,sizeof(OC_MODE_METRICS_SAD),1,fmetrics);
 | |
|     fclose(fmetrics);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void oc_mode_metrics_print_rd(FILE *_fout,const char *_table_name,
 | |
| #if !defined(OC_COLLECT_METRICS)
 | |
|  const oc_mode_rd (*_mode_rd_table)[3][2][OC_COMP_BINS]){
 | |
| #else
 | |
|  oc_mode_rd (*_mode_rd_table)[3][2][OC_COMP_BINS]){
 | |
| #endif
 | |
|   int qii;
 | |
|   fprintf(_fout,
 | |
|    "# if !defined(OC_COLLECT_METRICS)\n"
 | |
|    "static const\n"
 | |
|    "# endif\n"
 | |
|    "oc_mode_rd %s[OC_LOGQ_BINS][3][2][OC_COMP_BINS]={\n",_table_name);
 | |
|   for(qii=0;qii<OC_LOGQ_BINS;qii++){
 | |
|     int pli;
 | |
|     fprintf(_fout,"  {\n");
 | |
|     for(pli=0;pli<3;pli++){
 | |
|       int qti;
 | |
|       fprintf(_fout,"    {\n");
 | |
|       for(qti=0;qti<2;qti++){
 | |
|         int bin;
 | |
|         int qi;
 | |
|         static const char *pl_names[3]={"Y'","Cb","Cr"};
 | |
|         static const char *qti_names[2]={"INTRA","INTER"};
 | |
|         qi=(63*qii+(OC_LOGQ_BINS-1>>1))/(OC_LOGQ_BINS-1);
 | |
|         fprintf(_fout,"      /*%s  qi=%i  %s*/\n",
 | |
|          pl_names[pli],qi,qti_names[qti]);
 | |
|         fprintf(_fout,"      {\n");
 | |
|         fprintf(_fout,"        ");
 | |
|         for(bin=0;bin<OC_COMP_BINS;bin++){
 | |
|           if(bin&&!(bin&0x3))fprintf(_fout,"\n        ");
 | |
|           fprintf(_fout,"{%5i,%5i}",
 | |
|            _mode_rd_table[qii][pli][qti][bin].rate,
 | |
|            _mode_rd_table[qii][pli][qti][bin].rmse);
 | |
|           if(bin+1<OC_COMP_BINS)fprintf(_fout,",");
 | |
|         }
 | |
|         fprintf(_fout,"\n      }");
 | |
|         if(qti<1)fprintf(_fout,",");
 | |
|         fprintf(_fout,"\n");
 | |
|       }
 | |
|       fprintf(_fout,"    }");
 | |
|       if(pli<2)fprintf(_fout,",");
 | |
|       fprintf(_fout,"\n");
 | |
|     }
 | |
|     fprintf(_fout,"  }");
 | |
|     if(qii+1<OC_LOGQ_BINS)fprintf(_fout,",");
 | |
|     fprintf(_fout,"\n");
 | |
|   }
 | |
|   fprintf(_fout,
 | |
|    "};\n"
 | |
|    "\n");
 | |
| }
 | |
| 
 | |
| void oc_mode_metrics_print(FILE *_fout){
 | |
|   int qii;
 | |
|   fprintf(_fout,
 | |
|    "/*File generated by libtheora with OC_COLLECT_METRICS"
 | |
|    " defined at compile time.*/\n"
 | |
|    "#if !defined(_modedec_H)\n"
 | |
|    "# define _modedec_H (1)\n"
 | |
|    "# include \"encint.h\"\n"
 | |
|    "\n"
 | |
|    "\n"
 | |
|    "\n"
 | |
|    "/*The log of the average quantizer for each of the OC_MODE_RD table rows\n"
 | |
|    "   (e.g., for the represented qi's, and each pli and qti), in Q10 format.\n"
 | |
|    "  The actual statistics used by the encoder will be interpolated from\n"
 | |
|    "   that table based on log_plq for the actual quantization matrix used.*/\n"
 | |
|    "# if !defined(OC_COLLECT_METRICS)\n"
 | |
|    "static const\n"
 | |
|    "# endif\n"
 | |
|    "ogg_int16_t OC_MODE_LOGQ[OC_LOGQ_BINS][3][2]={\n");
 | |
|   for(qii=0;qii<OC_LOGQ_BINS;qii++){
 | |
|     fprintf(_fout,"  { {0x%04X,0x%04X},{0x%04X,0x%04X},{0x%04X,0x%04X} }%s\n",
 | |
|      OC_MODE_LOGQ[qii][0][0],OC_MODE_LOGQ[qii][0][1],OC_MODE_LOGQ[qii][1][0],
 | |
|      OC_MODE_LOGQ[qii][1][1],OC_MODE_LOGQ[qii][2][0],OC_MODE_LOGQ[qii][2][1],
 | |
|      qii+1<OC_LOGQ_BINS?",":"");
 | |
|   }
 | |
|   fprintf(_fout,
 | |
|    "};\n"
 | |
|    "\n");
 | |
|   oc_mode_metrics_print_rd(_fout,"OC_MODE_RD_SATD",OC_MODE_RD_SATD);
 | |
|   oc_mode_metrics_print_rd(_fout,"OC_MODE_RD_SAD",OC_MODE_RD_SAD);
 | |
|   fprintf(_fout,
 | |
|    "#endif\n");
 | |
| }
 | |
| 
 | |
| 
 | |
| # if !defined(OC_COLLECT_NO_ENC_FUNCS)
 | |
| void oc_enc_mode_metrics_load(oc_enc_ctx *_enc){
 | |
|   oc_restore_fpu(&_enc->state);
 | |
|   /*Load any existing mode metrics if we haven't already.*/
 | |
|   if(!OC_HAS_MODE_METRICS){
 | |
|     FILE *fmetrics;
 | |
|     memset(OC_MODE_METRICS_SATD,0,sizeof(OC_MODE_METRICS_SATD));
 | |
|     memset(OC_MODE_METRICS_SAD,0,sizeof(OC_MODE_METRICS_SAD));
 | |
|     fmetrics=fopen(OC_MODE_METRICS_FILENAME,"rb");
 | |
|     if(fmetrics!=NULL){
 | |
|       /*Read in the binary structures as written my oc_mode_metrics_dump().
 | |
|         Note this format isn't portable between different platforms.*/
 | |
|       (void)fread(OC_MODE_LOGQ,sizeof(OC_MODE_LOGQ),1,fmetrics);
 | |
|       (void)fread(OC_MODE_METRICS_SATD,sizeof(OC_MODE_METRICS_SATD),1,fmetrics);
 | |
|       (void)fread(OC_MODE_METRICS_SAD,sizeof(OC_MODE_METRICS_SAD),1,fmetrics);
 | |
|       fclose(fmetrics);
 | |
|     }
 | |
|     else{
 | |
|       int qii;
 | |
|       int qi;
 | |
|       int pli;
 | |
|       int qti;
 | |
|       for(qii=0;qii<OC_LOGQ_BINS;qii++){
 | |
|         qi=(63*qii+(OC_LOGQ_BINS-1>>1))/(OC_LOGQ_BINS-1);
 | |
|         for(pli=0;pli<3;pli++)for(qti=0;qti<2;qti++){
 | |
|           OC_MODE_LOGQ[qii][pli][qti]=_enc->log_plq[qi][pli][qti];
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     oc_mode_metrics_update(OC_MODE_METRICS_SATD,100,1,
 | |
|      OC_MODE_RD_SATD,OC_SATD_SHIFT,OC_MODE_RD_WEIGHT_SATD);
 | |
|     oc_mode_metrics_update(OC_MODE_METRICS_SAD,100,1,
 | |
|      OC_MODE_RD_SAD,OC_SAD_SHIFT,OC_MODE_RD_WEIGHT_SAD);
 | |
|     OC_HAS_MODE_METRICS=1;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /*The following token skipping code used to also be used in the decoder (and
 | |
|    even at one point other places in the encoder).
 | |
|   However, it was obsoleted by other optimizations, and is now only used here.
 | |
|   It has been moved here to avoid generating the code when it's not needed.*/
 | |
| 
 | |
| /*Determines the number of blocks or coefficients to be skipped for a given
 | |
|    token value.
 | |
|   _token:      The token value to skip.
 | |
|   _extra_bits: The extra bits attached to this token.
 | |
|   Return: A positive value indicates that number of coefficients are to be
 | |
|            skipped in the current block.
 | |
|           Otherwise, the negative of the return value indicates that number of
 | |
|            blocks are to be ended.*/
 | |
| typedef ptrdiff_t (*oc_token_skip_func)(int _token,int _extra_bits);
 | |
| 
 | |
| /*Handles the simple end of block tokens.*/
 | |
| static ptrdiff_t oc_token_skip_eob(int _token,int _extra_bits){
 | |
|   int nblocks_adjust;
 | |
|   nblocks_adjust=OC_UNIBBLE_TABLE32(0,1,2,3,7,15,0,0,_token)+1;
 | |
|   return -_extra_bits-nblocks_adjust;
 | |
| }
 | |
| 
 | |
| /*The last EOB token has a special case, where an EOB run of size zero ends all
 | |
|    the remaining blocks in the frame.*/
 | |
| static ptrdiff_t oc_token_skip_eob6(int _token,int _extra_bits){
 | |
|   /*Note: We want to return -PTRDIFF_MAX, but that requires C99, which is not
 | |
|      yet available everywhere; this should be equivalent.*/
 | |
|   if(!_extra_bits)return -(~(size_t)0>>1);
 | |
|   return -_extra_bits;
 | |
| }
 | |
| 
 | |
| /*Handles the pure zero run tokens.*/
 | |
| static ptrdiff_t oc_token_skip_zrl(int _token,int _extra_bits){
 | |
|   return _extra_bits+1;
 | |
| }
 | |
| 
 | |
| /*Handles a normal coefficient value token.*/
 | |
| static ptrdiff_t oc_token_skip_val(void){
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| /*Handles a category 1A zero run/coefficient value combo token.*/
 | |
| static ptrdiff_t oc_token_skip_run_cat1a(int _token){
 | |
|   return _token-OC_DCT_RUN_CAT1A+2;
 | |
| }
 | |
| 
 | |
| /*Handles category 1b, 1c, 2a, and 2b zero run/coefficient value combo tokens.*/
 | |
| static ptrdiff_t oc_token_skip_run(int _token,int _extra_bits){
 | |
|   int run_cati;
 | |
|   int ncoeffs_mask;
 | |
|   int ncoeffs_adjust;
 | |
|   run_cati=_token-OC_DCT_RUN_CAT1B;
 | |
|   ncoeffs_mask=OC_BYTE_TABLE32(3,7,0,1,run_cati);
 | |
|   ncoeffs_adjust=OC_BYTE_TABLE32(7,11,2,3,run_cati);
 | |
|   return (_extra_bits&ncoeffs_mask)+ncoeffs_adjust;
 | |
| }
 | |
| 
 | |
| /*A jump table for computing the number of coefficients or blocks to skip for
 | |
|    a given token value.
 | |
|   This reduces all the conditional branches, etc., needed to parse these token
 | |
|    values down to one indirect jump.*/
 | |
| static const oc_token_skip_func OC_TOKEN_SKIP_TABLE[TH_NDCT_TOKENS]={
 | |
|   oc_token_skip_eob,
 | |
|   oc_token_skip_eob,
 | |
|   oc_token_skip_eob,
 | |
|   oc_token_skip_eob,
 | |
|   oc_token_skip_eob,
 | |
|   oc_token_skip_eob,
 | |
|   oc_token_skip_eob6,
 | |
|   oc_token_skip_zrl,
 | |
|   oc_token_skip_zrl,
 | |
|   (oc_token_skip_func)oc_token_skip_val,
 | |
|   (oc_token_skip_func)oc_token_skip_val,
 | |
|   (oc_token_skip_func)oc_token_skip_val,
 | |
|   (oc_token_skip_func)oc_token_skip_val,
 | |
|   (oc_token_skip_func)oc_token_skip_val,
 | |
|   (oc_token_skip_func)oc_token_skip_val,
 | |
|   (oc_token_skip_func)oc_token_skip_val,
 | |
|   (oc_token_skip_func)oc_token_skip_val,
 | |
|   (oc_token_skip_func)oc_token_skip_val,
 | |
|   (oc_token_skip_func)oc_token_skip_val,
 | |
|   (oc_token_skip_func)oc_token_skip_val,
 | |
|   (oc_token_skip_func)oc_token_skip_val,
 | |
|   (oc_token_skip_func)oc_token_skip_val,
 | |
|   (oc_token_skip_func)oc_token_skip_val,
 | |
|   (oc_token_skip_func)oc_token_skip_run_cat1a,
 | |
|   (oc_token_skip_func)oc_token_skip_run_cat1a,
 | |
|   (oc_token_skip_func)oc_token_skip_run_cat1a,
 | |
|   (oc_token_skip_func)oc_token_skip_run_cat1a,
 | |
|   (oc_token_skip_func)oc_token_skip_run_cat1a,
 | |
|   oc_token_skip_run,
 | |
|   oc_token_skip_run,
 | |
|   oc_token_skip_run,
 | |
|   oc_token_skip_run
 | |
| };
 | |
| 
 | |
| /*Determines the number of blocks or coefficients to be skipped for a given
 | |
|    token value.
 | |
|   _token:      The token value to skip.
 | |
|   _extra_bits: The extra bits attached to this token.
 | |
|   Return: A positive value indicates that number of coefficients are to be
 | |
|            skipped in the current block.
 | |
|           Otherwise, the negative of the return value indicates that number of
 | |
|            blocks are to be ended.
 | |
|           0 will never be returned, so that at least one coefficient in one
 | |
|            block will always be decoded for every token.*/
 | |
| static ptrdiff_t oc_dct_token_skip(int _token,int _extra_bits){
 | |
|   return (*OC_TOKEN_SKIP_TABLE[_token])(_token,_extra_bits);
 | |
| }
 | |
| 
 | |
| 
 | |
| void oc_enc_mode_metrics_collect(oc_enc_ctx *_enc){
 | |
|   static const unsigned char OC_ZZI_HUFF_OFFSET[64]={
 | |
|      0,16,16,16,16,16,32,32,
 | |
|     32,32,32,32,32,32,32,48,
 | |
|     48,48,48,48,48,48,48,48,
 | |
|     48,48,48,48,64,64,64,64,
 | |
|     64,64,64,64,64,64,64,64,
 | |
|     64,64,64,64,64,64,64,64,
 | |
|     64,64,64,64,64,64,64,64
 | |
|   };
 | |
|   const oc_fragment *frags;
 | |
|   const unsigned    *frag_sad;
 | |
|   const unsigned    *frag_satd;
 | |
|   const unsigned    *frag_ssd;
 | |
|   const ptrdiff_t   *coded_fragis;
 | |
|   ptrdiff_t          ncoded_fragis;
 | |
|   ptrdiff_t          fragii;
 | |
|   double             fragw;
 | |
|   int                modelines[3][3][2];
 | |
|   int                qti;
 | |
|   int                qii;
 | |
|   int                qi;
 | |
|   int                pli;
 | |
|   int                zzi;
 | |
|   int                token;
 | |
|   int                eb;
 | |
|   oc_restore_fpu(&_enc->state);
 | |
|   /*Figure out which metric bins to use for this frame's quantizers.*/
 | |
|   for(qii=0;qii<_enc->state.nqis;qii++){
 | |
|     for(pli=0;pli<3;pli++){
 | |
|       for(qti=0;qti<2;qti++){
 | |
|         int log_plq;
 | |
|         int modeline;
 | |
|         log_plq=_enc->log_plq[_enc->state.qis[qii]][pli][qti];
 | |
|         for(modeline=0;modeline<OC_LOGQ_BINS-1&&
 | |
|          OC_MODE_LOGQ[modeline+1][pli][qti]>log_plq;modeline++);
 | |
|         modelines[qii][pli][qti]=modeline;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   qti=_enc->state.frame_type;
 | |
|   frags=_enc->state.frags;
 | |
|   frag_sad=_enc->frag_sad;
 | |
|   frag_satd=_enc->frag_satd;
 | |
|   frag_ssd=_enc->frag_ssd;
 | |
|   coded_fragis=_enc->state.coded_fragis;
 | |
|   ncoded_fragis=fragii=0;
 | |
|   /*Weight the fragments by the inverse frame size; this prevents HD content
 | |
|      from dominating the statistics.*/
 | |
|   fragw=1.0/_enc->state.nfrags;
 | |
|   for(pli=0;pli<3;pli++){
 | |
|     ptrdiff_t ti[64];
 | |
|     int       eob_token[64];
 | |
|     int       eob_run[64];
 | |
|     /*Set up token indices and eob run counts.
 | |
|       We don't bother trying to figure out the real cost of the runs that span
 | |
|        coefficients; instead we use the costs that were available when R-D
 | |
|        token optimization was done.*/
 | |
|     for(zzi=0;zzi<64;zzi++){
 | |
|       ti[zzi]=_enc->dct_token_offs[pli][zzi];
 | |
|       if(ti[zzi]>0){
 | |
|         token=_enc->dct_tokens[pli][zzi][0];
 | |
|         eb=_enc->extra_bits[pli][zzi][0];
 | |
|         eob_token[zzi]=token;
 | |
|         eob_run[zzi]=-oc_dct_token_skip(token,eb);
 | |
|       }
 | |
|       else{
 | |
|         eob_token[zzi]=OC_NDCT_EOB_TOKEN_MAX;
 | |
|         eob_run[zzi]=0;
 | |
|       }
 | |
|     }
 | |
|     /*Scan the list of coded fragments for this plane.*/
 | |
|     ncoded_fragis+=_enc->state.ncoded_fragis[pli];
 | |
|     for(;fragii<ncoded_fragis;fragii++){
 | |
|       ptrdiff_t fragi;
 | |
|       int       frag_bits;
 | |
|       int       huffi;
 | |
|       int       skip;
 | |
|       int       mb_mode;
 | |
|       unsigned  sad;
 | |
|       unsigned  satd;
 | |
|       double    sqrt_ssd;
 | |
|       int       bin;
 | |
|       int       qtj;
 | |
|       fragi=coded_fragis[fragii];
 | |
|       frag_bits=0;
 | |
|       for(zzi=0;zzi<64;){
 | |
|         if(eob_run[zzi]>0){
 | |
|           /*We've reached the end of the block.*/
 | |
|           eob_run[zzi]--;
 | |
|           break;
 | |
|         }
 | |
|         huffi=_enc->huff_idxs[qti][zzi>0][pli+1>>1]
 | |
|          +OC_ZZI_HUFF_OFFSET[zzi];
 | |
|         if(eob_token[zzi]<OC_NDCT_EOB_TOKEN_MAX){
 | |
|           /*This token caused an EOB run to be flushed.
 | |
|             Therefore it gets the bits associated with it.*/
 | |
|           frag_bits+=_enc->huff_codes[huffi][eob_token[zzi]].nbits
 | |
|            +OC_DCT_TOKEN_EXTRA_BITS[eob_token[zzi]];
 | |
|           eob_token[zzi]=OC_NDCT_EOB_TOKEN_MAX;
 | |
|         }
 | |
|         token=_enc->dct_tokens[pli][zzi][ti[zzi]];
 | |
|         eb=_enc->extra_bits[pli][zzi][ti[zzi]];
 | |
|         ti[zzi]++;
 | |
|         skip=oc_dct_token_skip(token,eb);
 | |
|         if(skip<0){
 | |
|           eob_token[zzi]=token;
 | |
|           eob_run[zzi]=-skip;
 | |
|         }
 | |
|         else{
 | |
|           /*A regular DCT value token; accumulate the bits for it.*/
 | |
|           frag_bits+=_enc->huff_codes[huffi][token].nbits
 | |
|            +OC_DCT_TOKEN_EXTRA_BITS[token];
 | |
|           zzi+=skip;
 | |
|         }
 | |
|       }
 | |
|       mb_mode=frags[fragi].mb_mode;
 | |
|       qii=frags[fragi].qii;
 | |
|       qi=_enc->state.qis[qii];
 | |
|       sad=frag_sad[fragi]<<(pli+1&2);
 | |
|       satd=frag_satd[fragi]<<(pli+1&2);
 | |
|       sqrt_ssd=sqrt(frag_ssd[fragi]);
 | |
|       qtj=mb_mode!=OC_MODE_INTRA;
 | |
|       /*Accumulate statistics.
 | |
|         The rate (frag_bits) and RMSE (sqrt(frag_ssd)) are not scaled by
 | |
|          OC_BIT_SCALE and OC_RMSE_SCALE; this lets us change the scale factor
 | |
|          yet still use old data.*/
 | |
|       bin=OC_MINI(satd>>OC_SATD_SHIFT,OC_COMP_BINS-1);
 | |
|       oc_mode_metrics_add(
 | |
|        OC_MODE_METRICS_SATD[modelines[qii][pli][qtj]][pli][qtj]+bin,
 | |
|        fragw,satd,_enc->log_plq[qi][pli][qtj],frag_bits,sqrt_ssd);
 | |
|       bin=OC_MINI(sad>>OC_SAD_SHIFT,OC_COMP_BINS-1);
 | |
|       oc_mode_metrics_add(
 | |
|        OC_MODE_METRICS_SAD[modelines[qii][pli][qtj]][pli][qtj]+bin,
 | |
|        fragw,sad,_enc->log_plq[qi][pli][qtj],frag_bits,sqrt_ssd);
 | |
|     }
 | |
|   }
 | |
|   /*Update global SA(T)D/logq/rate/RMSE estimation matrix.*/
 | |
|   oc_mode_metrics_update(OC_MODE_METRICS_SATD,4,1,
 | |
|    OC_MODE_RD_SATD,OC_SATD_SHIFT,OC_MODE_RD_WEIGHT_SATD);
 | |
|   oc_mode_metrics_update(OC_MODE_METRICS_SAD,4,1,
 | |
|    OC_MODE_RD_SAD,OC_SAD_SHIFT,OC_MODE_RD_WEIGHT_SAD);
 | |
| }
 | |
| # endif
 | |
| 
 | |
| #endif
 | 
