mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-31 05:31:01 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			378 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			378 lines
		
	
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*************************************************************************/
 | |
| /* Copyright (c) 2011-2021 Ivan Fratric and contributors.                */
 | |
| /*                                                                       */
 | |
| /* Permission is hereby granted, free of charge, to any person obtaining */
 | |
| /* a copy of this software and associated documentation files (the       */
 | |
| /* "Software"), to deal in the Software without restriction, including   */
 | |
| /* without limitation the rights to use, copy, modify, merge, publish,   */
 | |
| /* distribute, sublicense, and/or sell copies of the Software, and to    */
 | |
| /* permit persons to whom the Software is furnished to do so, subject to */
 | |
| /* the following conditions:                                             */
 | |
| /*                                                                       */
 | |
| /* The above copyright notice and this permission notice shall be        */
 | |
| /* included in all copies or substantial portions of the Software.       */
 | |
| /*                                                                       */
 | |
| /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */
 | |
| /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */
 | |
| /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
 | |
| /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */
 | |
| /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */
 | |
| /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */
 | |
| /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */
 | |
| /*************************************************************************/
 | |
| 
 | |
| #ifndef POLYPARTITION_H
 | |
| #define POLYPARTITION_H
 | |
| 
 | |
| #include "core/math/vector2.h"
 | |
| #include "core/templates/list.h"
 | |
| #include "core/templates/rb_set.h"
 | |
| 
 | |
| typedef double tppl_float;
 | |
| 
 | |
| enum TPPLOrientation {
 | |
|   TPPL_ORIENTATION_CW = -1,
 | |
|   TPPL_ORIENTATION_NONE = 0,
 | |
|   TPPL_ORIENTATION_CCW = 1,
 | |
| };
 | |
| 
 | |
| enum TPPLVertexType {
 | |
|   TPPL_VERTEXTYPE_REGULAR = 0,
 | |
|   TPPL_VERTEXTYPE_START = 1,
 | |
|   TPPL_VERTEXTYPE_END = 2,
 | |
|   TPPL_VERTEXTYPE_SPLIT = 3,
 | |
|   TPPL_VERTEXTYPE_MERGE = 4,
 | |
| };
 | |
| 
 | |
| // 2D point structure.
 | |
| typedef Vector2 TPPLPoint;
 | |
| 
 | |
| // Polygon implemented as an array of points with a "hole" flag.
 | |
| class TPPLPoly {
 | |
|   protected:
 | |
|   TPPLPoint *points;
 | |
|   long numpoints;
 | |
|   bool hole;
 | |
| 
 | |
|   public:
 | |
|   // Constructors and destructors.
 | |
|   TPPLPoly();
 | |
|   ~TPPLPoly();
 | |
| 
 | |
|   TPPLPoly(const TPPLPoly &src);
 | |
|   TPPLPoly &operator=(const TPPLPoly &src);
 | |
| 
 | |
|   // Getters and setters.
 | |
|   long GetNumPoints() const {
 | |
|     return numpoints;
 | |
|   }
 | |
| 
 | |
|   bool IsHole() const {
 | |
|     return hole;
 | |
|   }
 | |
| 
 | |
|   void SetHole(bool p_hole) {
 | |
|     this->hole = p_hole;
 | |
|   }
 | |
| 
 | |
|   TPPLPoint &GetPoint(long i) {
 | |
|     return points[i];
 | |
|   }
 | |
| 
 | |
|   const TPPLPoint &GetPoint(long i) const {
 | |
|     return points[i];
 | |
|   }
 | |
| 
 | |
|   TPPLPoint *GetPoints() {
 | |
|     return points;
 | |
|   }
 | |
| 
 | |
|   TPPLPoint &operator[](int i) {
 | |
|     return points[i];
 | |
|   }
 | |
| 
 | |
|   const TPPLPoint &operator[](int i) const {
 | |
|     return points[i];
 | |
|   }
 | |
| 
 | |
|   // Clears the polygon points.
 | |
|   void Clear();
 | |
| 
 | |
|   // Inits the polygon with numpoints vertices.
 | |
|   void Init(long numpoints);
 | |
| 
 | |
|   // Creates a triangle with points p1, p2, and p3.
 | |
|   void Triangle(TPPLPoint &p1, TPPLPoint &p2, TPPLPoint &p3);
 | |
| 
 | |
|   // Inverts the orfer of vertices.
 | |
|   void Invert();
 | |
| 
 | |
|   // Returns the orientation of the polygon.
 | |
|   // Possible values:
 | |
|   //    TPPL_ORIENTATION_CCW: Polygon vertices are in counter-clockwise order.
 | |
|   //    TPPL_ORIENTATION_CW: Polygon vertices are in clockwise order.
 | |
|   //    TPPL_ORIENTATION_NONE: The polygon has no (measurable) area.
 | |
|   TPPLOrientation GetOrientation() const;
 | |
| 
 | |
|   // Sets the polygon orientation.
 | |
|   // Possible values:
 | |
|   //    TPPL_ORIENTATION_CCW: Sets vertices in counter-clockwise order.
 | |
|   //    TPPL_ORIENTATION_CW: Sets vertices in clockwise order.
 | |
|   //    TPPL_ORIENTATION_NONE: Reverses the orientation of the vertices if there
 | |
|   //       is one, otherwise does nothing (if orientation is already NONE).
 | |
|   void SetOrientation(TPPLOrientation orientation);
 | |
| 
 | |
|   // Checks whether a polygon is valid or not.
 | |
|   inline bool Valid() const { return this->numpoints >= 3; }
 | |
| };
 | |
| 
 | |
| #ifdef TPPL_ALLOCATOR
 | |
| typedef List<TPPLPoly, TPPL_ALLOCATOR(TPPLPoly)> TPPLPolyList;
 | |
| #else
 | |
| typedef List<TPPLPoly> TPPLPolyList;
 | |
| #endif
 | |
| 
 | |
| class TPPLPartition {
 | |
|   protected:
 | |
|   struct PartitionVertex {
 | |
|     bool isActive;
 | |
|     bool isConvex;
 | |
|     bool isEar;
 | |
| 
 | |
|     TPPLPoint p;
 | |
|     tppl_float angle;
 | |
|     PartitionVertex *previous;
 | |
|     PartitionVertex *next;
 | |
| 
 | |
|     PartitionVertex();
 | |
|   };
 | |
| 
 | |
|   struct MonotoneVertex {
 | |
|     TPPLPoint p;
 | |
|     long previous;
 | |
|     long next;
 | |
|   };
 | |
| 
 | |
|   class VertexSorter {
 | |
|     MonotoneVertex *vertices;
 | |
| 
 | |
| public:
 | |
|     VertexSorter(MonotoneVertex *v) :
 | |
|             vertices(v) {}
 | |
|     bool operator()(long index1, long index2);
 | |
|   };
 | |
| 
 | |
|   struct Diagonal {
 | |
|     long index1;
 | |
|     long index2;
 | |
|   };
 | |
| 
 | |
| #ifdef TPPL_ALLOCATOR
 | |
|   typedef List<Diagonal, TPPL_ALLOCATOR(Diagonal)> DiagonalList;
 | |
| #else
 | |
|   typedef List<Diagonal> DiagonalList;
 | |
| #endif
 | |
| 
 | |
|   // Dynamic programming state for minimum-weight triangulation.
 | |
|   struct DPState {
 | |
|     bool visible;
 | |
|     tppl_float weight;
 | |
|     long bestvertex;
 | |
|   };
 | |
| 
 | |
|   // Dynamic programming state for convex partitioning.
 | |
|   struct DPState2 {
 | |
|     bool visible;
 | |
|     long weight;
 | |
|     DiagonalList pairs;
 | |
|   };
 | |
| 
 | |
|   // Edge that intersects the scanline.
 | |
|   struct ScanLineEdge {
 | |
|     mutable long index;
 | |
|     TPPLPoint p1;
 | |
|     TPPLPoint p2;
 | |
| 
 | |
|     // Determines if the edge is to the left of another edge.
 | |
|     bool operator<(const ScanLineEdge &other) const;
 | |
| 
 | |
|     bool IsConvex(const TPPLPoint &p1, const TPPLPoint &p2, const TPPLPoint &p3) const;
 | |
|   };
 | |
| 
 | |
|   // Standard helper functions.
 | |
|   bool IsConvex(TPPLPoint &p1, TPPLPoint &p2, TPPLPoint &p3);
 | |
|   bool IsReflex(TPPLPoint &p1, TPPLPoint &p2, TPPLPoint &p3);
 | |
|   bool IsInside(TPPLPoint &p1, TPPLPoint &p2, TPPLPoint &p3, TPPLPoint &p);
 | |
| 
 | |
|   bool InCone(TPPLPoint &p1, TPPLPoint &p2, TPPLPoint &p3, TPPLPoint &p);
 | |
|   bool InCone(PartitionVertex *v, TPPLPoint &p);
 | |
| 
 | |
|   int Intersects(TPPLPoint &p11, TPPLPoint &p12, TPPLPoint &p21, TPPLPoint &p22);
 | |
| 
 | |
|   TPPLPoint Normalize(const TPPLPoint &p);
 | |
|   tppl_float Distance(const TPPLPoint &p1, const TPPLPoint &p2);
 | |
| 
 | |
|   // Helper functions for Triangulate_EC.
 | |
|   void UpdateVertexReflexity(PartitionVertex *v);
 | |
|   void UpdateVertex(PartitionVertex *v, PartitionVertex *vertices, long numvertices);
 | |
| 
 | |
|   // Helper functions for ConvexPartition_OPT.
 | |
|   void UpdateState(long a, long b, long w, long i, long j, DPState2 **dpstates);
 | |
|   void TypeA(long i, long j, long k, PartitionVertex *vertices, DPState2 **dpstates);
 | |
|   void TypeB(long i, long j, long k, PartitionVertex *vertices, DPState2 **dpstates);
 | |
| 
 | |
|   // Helper functions for MonotonePartition.
 | |
|   bool Below(TPPLPoint &p1, TPPLPoint &p2);
 | |
|   void AddDiagonal(MonotoneVertex *vertices, long *numvertices, long index1, long index2,
 | |
| 	  TPPLVertexType *vertextypes, RBSet<ScanLineEdge>::Element **edgeTreeIterators,
 | |
| 	  RBSet<ScanLineEdge> *edgeTree, long *helpers);
 | |
| 
 | |
|   // Triangulates a monotone polygon, used in Triangulate_MONO.
 | |
|   int TriangulateMonotone(TPPLPoly *inPoly, TPPLPolyList *triangles);
 | |
| 
 | |
|   public:
 | |
|   // Simple heuristic procedure for removing holes from a list of polygons.
 | |
|   // It works by creating a diagonal from the right-most hole vertex
 | |
|   // to some other visible vertex.
 | |
|   // Time complexity: O(h*(n^2)), h is the # of holes, n is the # of vertices.
 | |
|   // Space complexity: O(n)
 | |
|   // params:
 | |
|   //    inpolys:
 | |
|   //       A list of polygons that can contain holes.
 | |
|   //       Vertices of all non-hole polys have to be in counter-clockwise order.
 | |
|   //       Vertices of all hole polys have to be in clockwise order.
 | |
|   //    outpolys:
 | |
|   //       A list of polygons without holes.
 | |
|   // Returns 1 on success, 0 on failure.
 | |
|   int RemoveHoles(TPPLPolyList *inpolys, TPPLPolyList *outpolys);
 | |
| 
 | |
|   // Triangulates a polygon by ear clipping.
 | |
|   // Time complexity: O(n^2), n is the number of vertices.
 | |
|   // Space complexity: O(n)
 | |
|   // params:
 | |
|   //    poly:
 | |
|   //       An input polygon to be triangulated.
 | |
|   //       Vertices have to be in counter-clockwise order.
 | |
|   //    triangles:
 | |
|   //       A list of triangles (result).
 | |
|   // Returns 1 on success, 0 on failure.
 | |
|   int Triangulate_EC(TPPLPoly *poly, TPPLPolyList *triangles);
 | |
| 
 | |
|   // Triangulates a list of polygons that may contain holes by ear clipping
 | |
|   // algorithm. It first calls RemoveHoles to get rid of the holes, and then
 | |
|   // calls Triangulate_EC for each resulting polygon.
 | |
|   // Time complexity: O(h*(n^2)), h is the # of holes, n is the # of vertices.
 | |
|   // Space complexity: O(n)
 | |
|   // params:
 | |
|   //    inpolys:
 | |
|   //       A list of polygons to be triangulated (can contain holes).
 | |
|   //       Vertices of all non-hole polys have to be in counter-clockwise order.
 | |
|   //       Vertices of all hole polys have to be in clockwise order.
 | |
|   //    triangles:
 | |
|   //       A list of triangles (result).
 | |
|   // Returns 1 on success, 0 on failure.
 | |
|   int Triangulate_EC(TPPLPolyList *inpolys, TPPLPolyList *triangles);
 | |
| 
 | |
|   // Creates an optimal polygon triangulation in terms of minimal edge length.
 | |
|   // Time complexity: O(n^3), n is the number of vertices
 | |
|   // Space complexity: O(n^2)
 | |
|   // params:
 | |
|   //    poly:
 | |
|   //       An input polygon to be triangulated.
 | |
|   //       Vertices have to be in counter-clockwise order.
 | |
|   //    triangles:
 | |
|   //       A list of triangles (result).
 | |
|   // Returns 1 on success, 0 on failure.
 | |
|   int Triangulate_OPT(TPPLPoly *poly, TPPLPolyList *triangles);
 | |
| 
 | |
|   // Triangulates a polygon by first partitioning it into monotone polygons.
 | |
|   // Time complexity: O(n*log(n)), n is the number of vertices.
 | |
|   // Space complexity: O(n)
 | |
|   // params:
 | |
|   //    poly:
 | |
|   //       An input polygon to be triangulated.
 | |
|   //       Vertices have to be in counter-clockwise order.
 | |
|   //    triangles:
 | |
|   //       A list of triangles (result).
 | |
|   // Returns 1 on success, 0 on failure.
 | |
|   int Triangulate_MONO(TPPLPoly *poly, TPPLPolyList *triangles);
 | |
| 
 | |
|   // Triangulates a list of polygons by first
 | |
|   // partitioning them into monotone polygons.
 | |
|   // Time complexity: O(n*log(n)), n is the number of vertices.
 | |
|   // Space complexity: O(n)
 | |
|   // params:
 | |
|   //    inpolys:
 | |
|   //       A list of polygons to be triangulated (can contain holes).
 | |
|   //       Vertices of all non-hole polys have to be in counter-clockwise order.
 | |
|   //       Vertices of all hole polys have to be in clockwise order.
 | |
|   //    triangles:
 | |
|   //       A list of triangles (result).
 | |
|   // Returns 1 on success, 0 on failure.
 | |
|   int Triangulate_MONO(TPPLPolyList *inpolys, TPPLPolyList *triangles);
 | |
| 
 | |
|   // Creates a monotone partition of a list of polygons that
 | |
|   // can contain holes. Triangulates a set of polygons by
 | |
|   // first partitioning them into monotone polygons.
 | |
|   // Time complexity: O(n*log(n)), n is the number of vertices.
 | |
|   // Space complexity: O(n)
 | |
|   // params:
 | |
|   //    inpolys:
 | |
|   //       A list of polygons to be triangulated (can contain holes).
 | |
|   //       Vertices of all non-hole polys have to be in counter-clockwise order.
 | |
|   //       Vertices of all hole polys have to be in clockwise order.
 | |
|   //    monotonePolys:
 | |
|   //       A list of monotone polygons (result).
 | |
|   // Returns 1 on success, 0 on failure.
 | |
|   int MonotonePartition(TPPLPolyList *inpolys, TPPLPolyList *monotonePolys);
 | |
| 
 | |
|   // Partitions a polygon into convex polygons by using the
 | |
|   // Hertel-Mehlhorn algorithm. The algorithm gives at most four times
 | |
|   // the number of parts as the optimal algorithm, however, in practice
 | |
|   // it works much better than that and often gives optimal partition.
 | |
|   // It uses triangulation obtained by ear clipping as intermediate result.
 | |
|   // Time complexity O(n^2), n is the number of vertices.
 | |
|   // Space complexity: O(n)
 | |
|   // params:
 | |
|   //    poly:
 | |
|   //       An input polygon to be partitioned.
 | |
|   //       Vertices have to be in counter-clockwise order.
 | |
|   //    parts:
 | |
|   //       Resulting list of convex polygons.
 | |
|   // Returns 1 on success, 0 on failure.
 | |
|   int ConvexPartition_HM(TPPLPoly *poly, TPPLPolyList *parts);
 | |
| 
 | |
|   // Partitions a list of polygons into convex parts by using the
 | |
|   // Hertel-Mehlhorn algorithm. The algorithm gives at most four times
 | |
|   // the number of parts as the optimal algorithm, however, in practice
 | |
|   // it works much better than that and often gives optimal partition.
 | |
|   // It uses triangulation obtained by ear clipping as intermediate result.
 | |
|   // Time complexity O(n^2), n is the number of vertices.
 | |
|   // Space complexity: O(n)
 | |
|   // params:
 | |
|   //    inpolys:
 | |
|   //       An input list of polygons to be partitioned. Vertices of
 | |
|   //       all non-hole polys have to be in counter-clockwise order.
 | |
|   //       Vertices of all hole polys have to be in clockwise order.
 | |
|   //    parts:
 | |
|   //       Resulting list of convex polygons.
 | |
|   // Returns 1 on success, 0 on failure.
 | |
|   int ConvexPartition_HM(TPPLPolyList *inpolys, TPPLPolyList *parts);
 | |
| 
 | |
|   // Optimal convex partitioning (in terms of number of resulting
 | |
|   // convex polygons) using the Keil-Snoeyink algorithm.
 | |
|   // For reference, see M. Keil, J. Snoeyink, "On the time bound for
 | |
|   // convex decomposition of simple polygons", 1998.
 | |
|   // Time complexity O(n^3), n is the number of vertices.
 | |
|   // Space complexity: O(n^3)
 | |
|   // params:
 | |
|   //    poly:
 | |
|   //       An input polygon to be partitioned.
 | |
|   //       Vertices have to be in counter-clockwise order.
 | |
|   //    parts:
 | |
|   //       Resulting list of convex polygons.
 | |
|   // Returns 1 on success, 0 on failure.
 | |
|   int ConvexPartition_OPT(TPPLPoly *poly, TPPLPolyList *parts);
 | |
| };
 | |
| 
 | |
| #endif
 | 
