mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-31 13:41:03 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			72 lines
		
	
	
	
		
			1.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			72 lines
		
	
	
	
		
			1.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| 
 | |
| #include "equation-solver.h"
 | |
| 
 | |
| #define _USE_MATH_DEFINES
 | |
| #include <cmath>
 | |
| 
 | |
| namespace msdfgen {
 | |
| 
 | |
| int solveQuadratic(double x[2], double a, double b, double c) {
 | |
|     // a == 0 -> linear equation
 | |
|     if (a == 0 || fabs(b) > 1e12*fabs(a)) {
 | |
|         // a == 0, b == 0 -> no solution
 | |
|         if (b == 0) {
 | |
|             if (c == 0)
 | |
|                 return -1; // 0 == 0
 | |
|             return 0;
 | |
|         }
 | |
|         x[0] = -c/b;
 | |
|         return 1;
 | |
|     }
 | |
|     double dscr = b*b-4*a*c;
 | |
|     if (dscr > 0) {
 | |
|         dscr = sqrt(dscr);
 | |
|         x[0] = (-b+dscr)/(2*a);
 | |
|         x[1] = (-b-dscr)/(2*a);
 | |
|         return 2;
 | |
|     } else if (dscr == 0) {
 | |
|         x[0] = -b/(2*a);
 | |
|         return 1;
 | |
|     } else
 | |
|         return 0;
 | |
| }
 | |
| 
 | |
| static int solveCubicNormed(double x[3], double a, double b, double c) {
 | |
|     double a2 = a*a;
 | |
|     double q = 1/9.*(a2-3*b);
 | |
|     double r = 1/54.*(a*(2*a2-9*b)+27*c);
 | |
|     double r2 = r*r;
 | |
|     double q3 = q*q*q;
 | |
|     a *= 1/3.;
 | |
|     if (r2 < q3) {
 | |
|         double t = r/sqrt(q3);
 | |
|         if (t < -1) t = -1;
 | |
|         if (t > 1) t = 1;
 | |
|         t = acos(t);
 | |
|         q = -2*sqrt(q);
 | |
|         x[0] = q*cos(1/3.*t)-a;
 | |
|         x[1] = q*cos(1/3.*(t+2*M_PI))-a;
 | |
|         x[2] = q*cos(1/3.*(t-2*M_PI))-a;
 | |
|         return 3;
 | |
|     } else {
 | |
|         double u = (r < 0 ? 1 : -1)*pow(fabs(r)+sqrt(r2-q3), 1/3.); 
 | |
|         double v = u == 0 ? 0 : q/u;
 | |
|         x[0] = (u+v)-a;
 | |
|         if (u == v || fabs(u-v) < 1e-12*fabs(u+v)) {
 | |
|             x[1] = -.5*(u+v)-a;
 | |
|             return 2;
 | |
|         }
 | |
|         return 1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| int solveCubic(double x[3], double a, double b, double c, double d) {
 | |
|     if (a != 0) {
 | |
|         double bn = b/a;
 | |
|         if (fabs(bn) < 1e6) // Above this ratio, the numerical error gets larger than if we treated a as zero
 | |
|             return solveCubicNormed(x, bn, c/a, d/a);
 | |
|     }
 | |
|     return solveQuadratic(x, b, c, d);
 | |
| }
 | |
| 
 | |
| }
 | 
