mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-30 21:21:10 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			259 lines
		
	
	
	
		
			7.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			259 lines
		
	
	
	
		
			7.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /* -----------------------------------------------------------------------------
 | |
| 
 | |
|     Copyright (c) 2006 Simon Brown                          si@sjbrown.co.uk
 | |
| 
 | |
|     Permission is hereby granted, free of charge, to any person obtaining
 | |
|     a copy of this software and associated documentation files (the
 | |
|     "Software"), to deal in the Software without restriction, including
 | |
|     without limitation the rights to use, copy, modify, merge, publish,
 | |
|     distribute, sublicense, and/or sell copies of the Software, and to
 | |
|     permit persons to whom the Software is furnished to do so, subject to
 | |
|     the following conditions:
 | |
| 
 | |
|     The above copyright notice and this permission notice shall be included
 | |
|     in all copies or substantial portions of the Software.
 | |
| 
 | |
|     THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 | |
|     OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 | |
|     MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
 | |
|     IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
 | |
|     CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
 | |
|     TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
 | |
|     SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 | |
| 
 | |
|    -------------------------------------------------------------------------- */
 | |
| 
 | |
| /*! @file
 | |
| 
 | |
|     The symmetric eigensystem solver algorithm is from
 | |
|     http://www.geometrictools.com/Documentation/EigenSymmetric3x3.pdf
 | |
| */
 | |
| 
 | |
| #include "maths.h"
 | |
| #include "simd.h"
 | |
| #include <cfloat>
 | |
| 
 | |
| namespace squish {
 | |
| 
 | |
| Sym3x3 ComputeWeightedCovariance( int n, Vec3 const* points, float const* weights )
 | |
| {
 | |
|     // compute the centroid
 | |
|     float total = 0.0f;
 | |
|     Vec3 centroid( 0.0f );
 | |
|     for( int i = 0; i < n; ++i )
 | |
|     {
 | |
|         total += weights[i];
 | |
|         centroid += weights[i]*points[i];
 | |
|     }
 | |
|     if( total > FLT_EPSILON )
 | |
|         centroid /= total;
 | |
| 
 | |
|     // accumulate the covariance matrix
 | |
|     Sym3x3 covariance( 0.0f );
 | |
|     for( int i = 0; i < n; ++i )
 | |
|     {
 | |
|         Vec3 a = points[i] - centroid;
 | |
|         Vec3 b = weights[i]*a;
 | |
| 
 | |
|         covariance[0] += a.X()*b.X();
 | |
|         covariance[1] += a.X()*b.Y();
 | |
|         covariance[2] += a.X()*b.Z();
 | |
|         covariance[3] += a.Y()*b.Y();
 | |
|         covariance[4] += a.Y()*b.Z();
 | |
|         covariance[5] += a.Z()*b.Z();
 | |
|     }
 | |
| 
 | |
|     // return it
 | |
|     return covariance;
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| 
 | |
| static Vec3 GetMultiplicity1Evector( Sym3x3 const& matrix, float evalue )
 | |
| {
 | |
|     // compute M
 | |
|     Sym3x3 m;
 | |
|     m[0] = matrix[0] - evalue;
 | |
|     m[1] = matrix[1];
 | |
|     m[2] = matrix[2];
 | |
|     m[3] = matrix[3] - evalue;
 | |
|     m[4] = matrix[4];
 | |
|     m[5] = matrix[5] - evalue;
 | |
| 
 | |
|     // compute U
 | |
|     Sym3x3 u;
 | |
|     u[0] = m[3]*m[5] - m[4]*m[4];
 | |
|     u[1] = m[2]*m[4] - m[1]*m[5];
 | |
|     u[2] = m[1]*m[4] - m[2]*m[3];
 | |
|     u[3] = m[0]*m[5] - m[2]*m[2];
 | |
|     u[4] = m[1]*m[2] - m[4]*m[0];
 | |
|     u[5] = m[0]*m[3] - m[1]*m[1];
 | |
| 
 | |
|     // find the largest component
 | |
|     float mc = std::fabs( u[0] );
 | |
|     int mi = 0;
 | |
|     for( int i = 1; i < 6; ++i )
 | |
|     {
 | |
|         float c = std::fabs( u[i] );
 | |
|         if( c > mc )
 | |
|         {
 | |
|             mc = c;
 | |
|             mi = i;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // pick the column with this component
 | |
|     switch( mi )
 | |
|     {
 | |
|     case 0:
 | |
|         return Vec3( u[0], u[1], u[2] );
 | |
| 
 | |
|     case 1:
 | |
|     case 3:
 | |
|         return Vec3( u[1], u[3], u[4] );
 | |
| 
 | |
|     default:
 | |
|         return Vec3( u[2], u[4], u[5] );
 | |
|     }
 | |
| }
 | |
| 
 | |
| static Vec3 GetMultiplicity2Evector( Sym3x3 const& matrix, float evalue )
 | |
| {
 | |
|     // compute M
 | |
|     Sym3x3 m;
 | |
|     m[0] = matrix[0] - evalue;
 | |
|     m[1] = matrix[1];
 | |
|     m[2] = matrix[2];
 | |
|     m[3] = matrix[3] - evalue;
 | |
|     m[4] = matrix[4];
 | |
|     m[5] = matrix[5] - evalue;
 | |
| 
 | |
|     // find the largest component
 | |
|     float mc = std::fabs( m[0] );
 | |
|     int mi = 0;
 | |
|     for( int i = 1; i < 6; ++i )
 | |
|     {
 | |
|         float c = std::fabs( m[i] );
 | |
|         if( c > mc )
 | |
|         {
 | |
|             mc = c;
 | |
|             mi = i;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // pick the first eigenvector based on this index
 | |
|     switch( mi )
 | |
|     {
 | |
|     case 0:
 | |
|     case 1:
 | |
|         return Vec3( -m[1], m[0], 0.0f );
 | |
| 
 | |
|     case 2:
 | |
|         return Vec3( m[2], 0.0f, -m[0] );
 | |
| 
 | |
|     case 3:
 | |
|     case 4:
 | |
|         return Vec3( 0.0f, -m[4], m[3] );
 | |
| 
 | |
|     default:
 | |
|         return Vec3( 0.0f, -m[5], m[4] );
 | |
|     }
 | |
| }
 | |
| 
 | |
| Vec3 ComputePrincipleComponent( Sym3x3 const& matrix )
 | |
| {
 | |
|     // compute the cubic coefficients
 | |
|     float c0 = matrix[0]*matrix[3]*matrix[5]
 | |
|         + 2.0f*matrix[1]*matrix[2]*matrix[4]
 | |
|         - matrix[0]*matrix[4]*matrix[4]
 | |
|         - matrix[3]*matrix[2]*matrix[2]
 | |
|         - matrix[5]*matrix[1]*matrix[1];
 | |
|     float c1 = matrix[0]*matrix[3] + matrix[0]*matrix[5] + matrix[3]*matrix[5]
 | |
|         - matrix[1]*matrix[1] - matrix[2]*matrix[2] - matrix[4]*matrix[4];
 | |
|     float c2 = matrix[0] + matrix[3] + matrix[5];
 | |
| 
 | |
|     // compute the quadratic coefficients
 | |
|     float a = c1 - ( 1.0f/3.0f )*c2*c2;
 | |
|     float b = ( -2.0f/27.0f )*c2*c2*c2 + ( 1.0f/3.0f )*c1*c2 - c0;
 | |
| 
 | |
|     // compute the root count check
 | |
|     float Q = 0.25f*b*b + ( 1.0f/27.0f )*a*a*a;
 | |
| 
 | |
|     // test the multiplicity
 | |
|     if( FLT_EPSILON < Q )
 | |
|     {
 | |
|         // only one root, which implies we have a multiple of the identity
 | |
|         return Vec3( 1.0f );
 | |
|     }
 | |
|     else if( Q < -FLT_EPSILON )
 | |
|     {
 | |
|         // three distinct roots
 | |
|         float theta = std::atan2( std::sqrt( -Q ), -0.5f*b );
 | |
|         float rho = std::sqrt( 0.25f*b*b - Q );
 | |
| 
 | |
|         float rt = std::pow( rho, 1.0f/3.0f );
 | |
|         float ct = std::cos( theta/3.0f );
 | |
|         float st = std::sin( theta/3.0f );
 | |
| 
 | |
|         float l1 = ( 1.0f/3.0f )*c2 + 2.0f*rt*ct;
 | |
|         float l2 = ( 1.0f/3.0f )*c2 - rt*( ct + ( float )sqrt( 3.0f )*st );
 | |
|         float l3 = ( 1.0f/3.0f )*c2 - rt*( ct - ( float )sqrt( 3.0f )*st );
 | |
| 
 | |
|         // pick the larger
 | |
|         if( std::fabs( l2 ) > std::fabs( l1 ) )
 | |
|             l1 = l2;
 | |
|         if( std::fabs( l3 ) > std::fabs( l1 ) )
 | |
|             l1 = l3;
 | |
| 
 | |
|         // get the eigenvector
 | |
|         return GetMultiplicity1Evector( matrix, l1 );
 | |
|     }
 | |
|     else // if( -FLT_EPSILON <= Q && Q <= FLT_EPSILON )
 | |
|     {
 | |
|         // two roots
 | |
|         float rt;
 | |
|         if( b < 0.0f )
 | |
|             rt = -std::pow( -0.5f*b, 1.0f/3.0f );
 | |
|         else
 | |
|             rt = std::pow( 0.5f*b, 1.0f/3.0f );
 | |
| 
 | |
|         float l1 = ( 1.0f/3.0f )*c2 + rt;        // repeated
 | |
|         float l2 = ( 1.0f/3.0f )*c2 - 2.0f*rt;
 | |
| 
 | |
|         // get the eigenvector
 | |
|         if( std::fabs( l1 ) > std::fabs( l2 ) )
 | |
|             return GetMultiplicity2Evector( matrix, l1 );
 | |
|         else
 | |
|             return GetMultiplicity1Evector( matrix, l2 );
 | |
|     }
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| #define POWER_ITERATION_COUNT    8
 | |
| 
 | |
| Vec3 ComputePrincipleComponent( Sym3x3 const& matrix )
 | |
| {
 | |
|     Vec4 const row0( matrix[0], matrix[1], matrix[2], 0.0f );
 | |
|     Vec4 const row1( matrix[1], matrix[3], matrix[4], 0.0f );
 | |
|     Vec4 const row2( matrix[2], matrix[4], matrix[5], 0.0f );
 | |
|     Vec4 v = VEC4_CONST( 1.0f );
 | |
|     for( int i = 0; i < POWER_ITERATION_COUNT; ++i )
 | |
|     {
 | |
|         // matrix multiply
 | |
|         Vec4 w = row0*v.SplatX();
 | |
|         w = MultiplyAdd(row1, v.SplatY(), w);
 | |
|         w = MultiplyAdd(row2, v.SplatZ(), w);
 | |
| 
 | |
|         // get max component from xyz in all channels
 | |
|         Vec4 a = Max(w.SplatX(), Max(w.SplatY(), w.SplatZ()));
 | |
| 
 | |
|         // divide through and advance
 | |
|         v = w*Reciprocal(a);
 | |
|     }
 | |
|     return v.GetVec3();
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| } // namespace squish
 | 
