mirror of
				https://github.com/godotengine/godot.git
				synced 2025-11-03 23:21:15 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			638 lines
		
	
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			638 lines
		
	
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*************************************************************************/
 | 
						|
/*  math_2d.cpp                                                          */
 | 
						|
/*************************************************************************/
 | 
						|
/*                       This file is part of:                           */
 | 
						|
/*                           GODOT ENGINE                                */
 | 
						|
/*                      https://godotengine.org                          */
 | 
						|
/*************************************************************************/
 | 
						|
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur.                 */
 | 
						|
/* Copyright (c) 2014-2017 Godot Engine contributors (cf. AUTHORS.md)    */
 | 
						|
/*                                                                       */
 | 
						|
/* Permission is hereby granted, free of charge, to any person obtaining */
 | 
						|
/* a copy of this software and associated documentation files (the       */
 | 
						|
/* "Software"), to deal in the Software without restriction, including   */
 | 
						|
/* without limitation the rights to use, copy, modify, merge, publish,   */
 | 
						|
/* distribute, sublicense, and/or sell copies of the Software, and to    */
 | 
						|
/* permit persons to whom the Software is furnished to do so, subject to */
 | 
						|
/* the following conditions:                                             */
 | 
						|
/*                                                                       */
 | 
						|
/* The above copyright notice and this permission notice shall be        */
 | 
						|
/* included in all copies or substantial portions of the Software.       */
 | 
						|
/*                                                                       */
 | 
						|
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */
 | 
						|
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */
 | 
						|
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
 | 
						|
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */
 | 
						|
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */
 | 
						|
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */
 | 
						|
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */
 | 
						|
/*************************************************************************/
 | 
						|
#include "math_2d.h"
 | 
						|
 | 
						|
real_t Vector2::angle() const {
 | 
						|
 | 
						|
	return Math::atan2(y, x);
 | 
						|
}
 | 
						|
 | 
						|
real_t Vector2::length() const {
 | 
						|
 | 
						|
	return Math::sqrt(x * x + y * y);
 | 
						|
}
 | 
						|
 | 
						|
real_t Vector2::length_squared() const {
 | 
						|
 | 
						|
	return x * x + y * y;
 | 
						|
}
 | 
						|
 | 
						|
void Vector2::normalize() {
 | 
						|
 | 
						|
	real_t l = x * x + y * y;
 | 
						|
	if (l != 0) {
 | 
						|
 | 
						|
		l = Math::sqrt(l);
 | 
						|
		x /= l;
 | 
						|
		y /= l;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
Vector2 Vector2::normalized() const {
 | 
						|
 | 
						|
	Vector2 v = *this;
 | 
						|
	v.normalize();
 | 
						|
	return v;
 | 
						|
}
 | 
						|
 | 
						|
bool Vector2::is_normalized() const {
 | 
						|
	// use length_squared() instead of length() to avoid sqrt(), makes it more stringent.
 | 
						|
	return Math::is_equal_approx(length_squared(), 1.0);
 | 
						|
}
 | 
						|
 | 
						|
real_t Vector2::distance_to(const Vector2 &p_vector2) const {
 | 
						|
 | 
						|
	return Math::sqrt((x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y));
 | 
						|
}
 | 
						|
 | 
						|
real_t Vector2::distance_squared_to(const Vector2 &p_vector2) const {
 | 
						|
 | 
						|
	return (x - p_vector2.x) * (x - p_vector2.x) + (y - p_vector2.y) * (y - p_vector2.y);
 | 
						|
}
 | 
						|
 | 
						|
real_t Vector2::angle_to(const Vector2 &p_vector2) const {
 | 
						|
 | 
						|
	return Math::atan2(cross(p_vector2), dot(p_vector2));
 | 
						|
}
 | 
						|
 | 
						|
real_t Vector2::angle_to_point(const Vector2 &p_vector2) const {
 | 
						|
 | 
						|
	return Math::atan2(y - p_vector2.y, x - p_vector2.x);
 | 
						|
}
 | 
						|
 | 
						|
real_t Vector2::dot(const Vector2 &p_other) const {
 | 
						|
 | 
						|
	return x * p_other.x + y * p_other.y;
 | 
						|
}
 | 
						|
 | 
						|
real_t Vector2::cross(const Vector2 &p_other) const {
 | 
						|
 | 
						|
	return x * p_other.y - y * p_other.x;
 | 
						|
}
 | 
						|
 | 
						|
Vector2 Vector2::cross(real_t p_other) const {
 | 
						|
 | 
						|
	return Vector2(p_other * y, -p_other * x);
 | 
						|
}
 | 
						|
 | 
						|
Vector2 Vector2::operator+(const Vector2 &p_v) const {
 | 
						|
 | 
						|
	return Vector2(x + p_v.x, y + p_v.y);
 | 
						|
}
 | 
						|
void Vector2::operator+=(const Vector2 &p_v) {
 | 
						|
 | 
						|
	x += p_v.x;
 | 
						|
	y += p_v.y;
 | 
						|
}
 | 
						|
Vector2 Vector2::operator-(const Vector2 &p_v) const {
 | 
						|
 | 
						|
	return Vector2(x - p_v.x, y - p_v.y);
 | 
						|
}
 | 
						|
void Vector2::operator-=(const Vector2 &p_v) {
 | 
						|
 | 
						|
	x -= p_v.x;
 | 
						|
	y -= p_v.y;
 | 
						|
}
 | 
						|
 | 
						|
Vector2 Vector2::operator*(const Vector2 &p_v1) const {
 | 
						|
 | 
						|
	return Vector2(x * p_v1.x, y * p_v1.y);
 | 
						|
};
 | 
						|
 | 
						|
Vector2 Vector2::operator*(const real_t &rvalue) const {
 | 
						|
 | 
						|
	return Vector2(x * rvalue, y * rvalue);
 | 
						|
};
 | 
						|
void Vector2::operator*=(const real_t &rvalue) {
 | 
						|
 | 
						|
	x *= rvalue;
 | 
						|
	y *= rvalue;
 | 
						|
};
 | 
						|
 | 
						|
Vector2 Vector2::operator/(const Vector2 &p_v1) const {
 | 
						|
 | 
						|
	return Vector2(x / p_v1.x, y / p_v1.y);
 | 
						|
};
 | 
						|
 | 
						|
Vector2 Vector2::operator/(const real_t &rvalue) const {
 | 
						|
 | 
						|
	return Vector2(x / rvalue, y / rvalue);
 | 
						|
};
 | 
						|
 | 
						|
void Vector2::operator/=(const real_t &rvalue) {
 | 
						|
 | 
						|
	x /= rvalue;
 | 
						|
	y /= rvalue;
 | 
						|
};
 | 
						|
 | 
						|
Vector2 Vector2::operator-() const {
 | 
						|
 | 
						|
	return Vector2(-x, -y);
 | 
						|
}
 | 
						|
 | 
						|
bool Vector2::operator==(const Vector2 &p_vec2) const {
 | 
						|
 | 
						|
	return x == p_vec2.x && y == p_vec2.y;
 | 
						|
}
 | 
						|
bool Vector2::operator!=(const Vector2 &p_vec2) const {
 | 
						|
 | 
						|
	return x != p_vec2.x || y != p_vec2.y;
 | 
						|
}
 | 
						|
Vector2 Vector2::floor() const {
 | 
						|
 | 
						|
	return Vector2(Math::floor(x), Math::floor(y));
 | 
						|
}
 | 
						|
 | 
						|
Vector2 Vector2::rotated(real_t p_by) const {
 | 
						|
 | 
						|
	Vector2 v;
 | 
						|
	v.set_rotation(angle() + p_by);
 | 
						|
	v *= length();
 | 
						|
	return v;
 | 
						|
}
 | 
						|
 | 
						|
Vector2 Vector2::project(const Vector2 &p_vec) const {
 | 
						|
 | 
						|
	Vector2 v1 = p_vec;
 | 
						|
	Vector2 v2 = *this;
 | 
						|
	return v2 * (v1.dot(v2) / v2.dot(v2));
 | 
						|
}
 | 
						|
 | 
						|
Vector2 Vector2::snapped(const Vector2 &p_by) const {
 | 
						|
 | 
						|
	return Vector2(
 | 
						|
			Math::stepify(x, p_by.x),
 | 
						|
			Math::stepify(y, p_by.y));
 | 
						|
}
 | 
						|
 | 
						|
Vector2 Vector2::clamped(real_t p_len) const {
 | 
						|
 | 
						|
	real_t l = length();
 | 
						|
	Vector2 v = *this;
 | 
						|
	if (l > 0 && p_len < l) {
 | 
						|
 | 
						|
		v /= l;
 | 
						|
		v *= p_len;
 | 
						|
	}
 | 
						|
 | 
						|
	return v;
 | 
						|
}
 | 
						|
 | 
						|
Vector2 Vector2::cubic_interpolate(const Vector2 &p_b, const Vector2 &p_pre_a, const Vector2 &p_post_b, real_t p_t) const {
 | 
						|
 | 
						|
	Vector2 p0 = p_pre_a;
 | 
						|
	Vector2 p1 = *this;
 | 
						|
	Vector2 p2 = p_b;
 | 
						|
	Vector2 p3 = p_post_b;
 | 
						|
 | 
						|
	real_t t = p_t;
 | 
						|
	real_t t2 = t * t;
 | 
						|
	real_t t3 = t2 * t;
 | 
						|
 | 
						|
	Vector2 out;
 | 
						|
	out = 0.5 * ((p1 * 2.0) +
 | 
						|
						(-p0 + p2) * t +
 | 
						|
						(2.0 * p0 - 5.0 * p1 + 4 * p2 - p3) * t2 +
 | 
						|
						(-p0 + 3.0 * p1 - 3.0 * p2 + p3) * t3);
 | 
						|
	return out;
 | 
						|
 | 
						|
	/*
 | 
						|
	real_t mu = p_t;
 | 
						|
	real_t mu2 = mu*mu;
 | 
						|
 | 
						|
	Vector2 a0 = p_post_b - p_b - p_pre_a + *this;
 | 
						|
	Vector2 a1 = p_pre_a - *this - a0;
 | 
						|
	Vector2 a2 = p_b - p_pre_a;
 | 
						|
	Vector2 a3 = *this;
 | 
						|
 | 
						|
	return ( a0*mu*mu2 + a1*mu2 + a2*mu + a3 );
 | 
						|
*/
 | 
						|
	/*
 | 
						|
	real_t t = p_t;
 | 
						|
	real_t t2 = t*t;
 | 
						|
	real_t t3 = t2*t;
 | 
						|
 | 
						|
	real_t a =  2.0*t3- 3.0*t2 + 1;
 | 
						|
	real_t b = -2.0*t3+ 3.0*t2;
 | 
						|
	real_t c =    t3- 2.0*t2 + t;
 | 
						|
	real_t d =    t3- t2;
 | 
						|
 | 
						|
	Vector2 p_a=*this;
 | 
						|
 | 
						|
	return Vector2(
 | 
						|
		(a * p_a.x) + (b *p_b.x) + (c * p_pre_a.x) + (d * p_post_b.x),
 | 
						|
		(a * p_a.y) + (b *p_b.y) + (c * p_pre_a.y) + (d * p_post_b.y)
 | 
						|
	);
 | 
						|
*/
 | 
						|
}
 | 
						|
 | 
						|
// slide returns the component of the vector along the given plane, specified by its normal vector.
 | 
						|
Vector2 Vector2::slide(const Vector2 &p_normal) const {
 | 
						|
#ifdef MATH_CHECKS
 | 
						|
	ERR_FAIL_COND_V(p_normal.is_normalized() == false, Vector2());
 | 
						|
#endif
 | 
						|
	return *this - p_normal * this->dot(p_normal);
 | 
						|
}
 | 
						|
 | 
						|
Vector2 Vector2::bounce(const Vector2 &p_normal) const {
 | 
						|
	return -reflect(p_normal);
 | 
						|
}
 | 
						|
 | 
						|
Vector2 Vector2::reflect(const Vector2 &p_normal) const {
 | 
						|
#ifdef MATH_CHECKS
 | 
						|
	ERR_FAIL_COND_V(p_normal.is_normalized() == false, Vector2());
 | 
						|
#endif
 | 
						|
	return 2.0 * p_normal * this->dot(p_normal) - *this;
 | 
						|
}
 | 
						|
 | 
						|
bool Rect2::intersects_segment(const Point2 &p_from, const Point2 &p_to, Point2 *r_pos, Point2 *r_normal) const {
 | 
						|
 | 
						|
	real_t min = 0, max = 1;
 | 
						|
	int axis = 0;
 | 
						|
	real_t sign = 0;
 | 
						|
 | 
						|
	for (int i = 0; i < 2; i++) {
 | 
						|
		real_t seg_from = p_from[i];
 | 
						|
		real_t seg_to = p_to[i];
 | 
						|
		real_t box_begin = position[i];
 | 
						|
		real_t box_end = box_begin + size[i];
 | 
						|
		real_t cmin, cmax;
 | 
						|
		real_t csign;
 | 
						|
 | 
						|
		if (seg_from < seg_to) {
 | 
						|
 | 
						|
			if (seg_from > box_end || seg_to < box_begin)
 | 
						|
				return false;
 | 
						|
			real_t length = seg_to - seg_from;
 | 
						|
			cmin = (seg_from < box_begin) ? ((box_begin - seg_from) / length) : 0;
 | 
						|
			cmax = (seg_to > box_end) ? ((box_end - seg_from) / length) : 1;
 | 
						|
			csign = -1.0;
 | 
						|
 | 
						|
		} else {
 | 
						|
 | 
						|
			if (seg_to > box_end || seg_from < box_begin)
 | 
						|
				return false;
 | 
						|
			real_t length = seg_to - seg_from;
 | 
						|
			cmin = (seg_from > box_end) ? (box_end - seg_from) / length : 0;
 | 
						|
			cmax = (seg_to < box_begin) ? (box_begin - seg_from) / length : 1;
 | 
						|
			csign = 1.0;
 | 
						|
		}
 | 
						|
 | 
						|
		if (cmin > min) {
 | 
						|
			min = cmin;
 | 
						|
			axis = i;
 | 
						|
			sign = csign;
 | 
						|
		}
 | 
						|
		if (cmax < max)
 | 
						|
			max = cmax;
 | 
						|
		if (max < min)
 | 
						|
			return false;
 | 
						|
	}
 | 
						|
 | 
						|
	Vector2 rel = p_to - p_from;
 | 
						|
 | 
						|
	if (r_normal) {
 | 
						|
		Vector2 normal;
 | 
						|
		normal[axis] = sign;
 | 
						|
		*r_normal = normal;
 | 
						|
	}
 | 
						|
 | 
						|
	if (r_pos)
 | 
						|
		*r_pos = p_from + rel * min;
 | 
						|
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
/* Point2i */
 | 
						|
 | 
						|
Point2i Point2i::operator+(const Point2i &p_v) const {
 | 
						|
 | 
						|
	return Point2i(x + p_v.x, y + p_v.y);
 | 
						|
}
 | 
						|
void Point2i::operator+=(const Point2i &p_v) {
 | 
						|
 | 
						|
	x += p_v.x;
 | 
						|
	y += p_v.y;
 | 
						|
}
 | 
						|
Point2i Point2i::operator-(const Point2i &p_v) const {
 | 
						|
 | 
						|
	return Point2i(x - p_v.x, y - p_v.y);
 | 
						|
}
 | 
						|
void Point2i::operator-=(const Point2i &p_v) {
 | 
						|
 | 
						|
	x -= p_v.x;
 | 
						|
	y -= p_v.y;
 | 
						|
}
 | 
						|
 | 
						|
Point2i Point2i::operator*(const Point2i &p_v1) const {
 | 
						|
 | 
						|
	return Point2i(x * p_v1.x, y * p_v1.y);
 | 
						|
};
 | 
						|
 | 
						|
Point2i Point2i::operator*(const int &rvalue) const {
 | 
						|
 | 
						|
	return Point2i(x * rvalue, y * rvalue);
 | 
						|
};
 | 
						|
void Point2i::operator*=(const int &rvalue) {
 | 
						|
 | 
						|
	x *= rvalue;
 | 
						|
	y *= rvalue;
 | 
						|
};
 | 
						|
 | 
						|
Point2i Point2i::operator/(const Point2i &p_v1) const {
 | 
						|
 | 
						|
	return Point2i(x / p_v1.x, y / p_v1.y);
 | 
						|
};
 | 
						|
 | 
						|
Point2i Point2i::operator/(const int &rvalue) const {
 | 
						|
 | 
						|
	return Point2i(x / rvalue, y / rvalue);
 | 
						|
};
 | 
						|
 | 
						|
void Point2i::operator/=(const int &rvalue) {
 | 
						|
 | 
						|
	x /= rvalue;
 | 
						|
	y /= rvalue;
 | 
						|
};
 | 
						|
 | 
						|
Point2i Point2i::operator-() const {
 | 
						|
 | 
						|
	return Point2i(-x, -y);
 | 
						|
}
 | 
						|
 | 
						|
bool Point2i::operator==(const Point2i &p_vec2) const {
 | 
						|
 | 
						|
	return x == p_vec2.x && y == p_vec2.y;
 | 
						|
}
 | 
						|
bool Point2i::operator!=(const Point2i &p_vec2) const {
 | 
						|
 | 
						|
	return x != p_vec2.x || y != p_vec2.y;
 | 
						|
}
 | 
						|
 | 
						|
void Transform2D::invert() {
 | 
						|
	// FIXME: this function assumes the basis is a rotation matrix, with no scaling.
 | 
						|
	// Transform2D::affine_inverse can handle matrices with scaling, so GDScript should eventually use that.
 | 
						|
	SWAP(elements[0][1], elements[1][0]);
 | 
						|
	elements[2] = basis_xform(-elements[2]);
 | 
						|
}
 | 
						|
 | 
						|
Transform2D Transform2D::inverse() const {
 | 
						|
 | 
						|
	Transform2D inv = *this;
 | 
						|
	inv.invert();
 | 
						|
	return inv;
 | 
						|
}
 | 
						|
 | 
						|
void Transform2D::affine_invert() {
 | 
						|
 | 
						|
	real_t det = basis_determinant();
 | 
						|
#ifdef MATH_CHECKS
 | 
						|
	ERR_FAIL_COND(det == 0);
 | 
						|
#endif
 | 
						|
	real_t idet = 1.0 / det;
 | 
						|
 | 
						|
	SWAP(elements[0][0], elements[1][1]);
 | 
						|
	elements[0] *= Vector2(idet, -idet);
 | 
						|
	elements[1] *= Vector2(-idet, idet);
 | 
						|
 | 
						|
	elements[2] = basis_xform(-elements[2]);
 | 
						|
}
 | 
						|
 | 
						|
Transform2D Transform2D::affine_inverse() const {
 | 
						|
 | 
						|
	Transform2D inv = *this;
 | 
						|
	inv.affine_invert();
 | 
						|
	return inv;
 | 
						|
}
 | 
						|
 | 
						|
void Transform2D::rotate(real_t p_phi) {
 | 
						|
	*this = Transform2D(p_phi, Vector2()) * (*this);
 | 
						|
}
 | 
						|
 | 
						|
real_t Transform2D::get_rotation() const {
 | 
						|
	real_t det = basis_determinant();
 | 
						|
	Transform2D m = orthonormalized();
 | 
						|
	if (det < 0) {
 | 
						|
		m.scale_basis(Size2(1, -1)); // convention to separate rotation and reflection for 2D is to absorb a flip along y into scaling.
 | 
						|
	}
 | 
						|
	return Math::atan2(m[0].y, m[0].x);
 | 
						|
}
 | 
						|
 | 
						|
void Transform2D::set_rotation(real_t p_rot) {
 | 
						|
 | 
						|
	real_t cr = Math::cos(p_rot);
 | 
						|
	real_t sr = Math::sin(p_rot);
 | 
						|
	elements[0][0] = cr;
 | 
						|
	elements[0][1] = sr;
 | 
						|
	elements[1][0] = -sr;
 | 
						|
	elements[1][1] = cr;
 | 
						|
}
 | 
						|
 | 
						|
Transform2D::Transform2D(real_t p_rot, const Vector2 &p_pos) {
 | 
						|
 | 
						|
	real_t cr = Math::cos(p_rot);
 | 
						|
	real_t sr = Math::sin(p_rot);
 | 
						|
	elements[0][0] = cr;
 | 
						|
	elements[0][1] = sr;
 | 
						|
	elements[1][0] = -sr;
 | 
						|
	elements[1][1] = cr;
 | 
						|
	elements[2] = p_pos;
 | 
						|
}
 | 
						|
 | 
						|
Size2 Transform2D::get_scale() const {
 | 
						|
	real_t det_sign = basis_determinant() > 0 ? 1 : -1;
 | 
						|
	return Size2(elements[0].length(), det_sign * elements[1].length());
 | 
						|
}
 | 
						|
 | 
						|
void Transform2D::scale(const Size2 &p_scale) {
 | 
						|
	scale_basis(p_scale);
 | 
						|
	elements[2] *= p_scale;
 | 
						|
}
 | 
						|
void Transform2D::scale_basis(const Size2 &p_scale) {
 | 
						|
 | 
						|
	elements[0][0] *= p_scale.x;
 | 
						|
	elements[0][1] *= p_scale.y;
 | 
						|
	elements[1][0] *= p_scale.x;
 | 
						|
	elements[1][1] *= p_scale.y;
 | 
						|
}
 | 
						|
void Transform2D::translate(real_t p_tx, real_t p_ty) {
 | 
						|
 | 
						|
	translate(Vector2(p_tx, p_ty));
 | 
						|
}
 | 
						|
void Transform2D::translate(const Vector2 &p_translation) {
 | 
						|
 | 
						|
	elements[2] += basis_xform(p_translation);
 | 
						|
}
 | 
						|
 | 
						|
void Transform2D::orthonormalize() {
 | 
						|
 | 
						|
	// Gram-Schmidt Process
 | 
						|
 | 
						|
	Vector2 x = elements[0];
 | 
						|
	Vector2 y = elements[1];
 | 
						|
 | 
						|
	x.normalize();
 | 
						|
	y = (y - x * (x.dot(y)));
 | 
						|
	y.normalize();
 | 
						|
 | 
						|
	elements[0] = x;
 | 
						|
	elements[1] = y;
 | 
						|
}
 | 
						|
Transform2D Transform2D::orthonormalized() const {
 | 
						|
 | 
						|
	Transform2D on = *this;
 | 
						|
	on.orthonormalize();
 | 
						|
	return on;
 | 
						|
}
 | 
						|
 | 
						|
bool Transform2D::operator==(const Transform2D &p_transform) const {
 | 
						|
 | 
						|
	for (int i = 0; i < 3; i++) {
 | 
						|
		if (elements[i] != p_transform.elements[i])
 | 
						|
			return false;
 | 
						|
	}
 | 
						|
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
bool Transform2D::operator!=(const Transform2D &p_transform) const {
 | 
						|
 | 
						|
	for (int i = 0; i < 3; i++) {
 | 
						|
		if (elements[i] != p_transform.elements[i])
 | 
						|
			return true;
 | 
						|
	}
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
void Transform2D::operator*=(const Transform2D &p_transform) {
 | 
						|
 | 
						|
	elements[2] = xform(p_transform.elements[2]);
 | 
						|
 | 
						|
	real_t x0, x1, y0, y1;
 | 
						|
 | 
						|
	x0 = tdotx(p_transform.elements[0]);
 | 
						|
	x1 = tdoty(p_transform.elements[0]);
 | 
						|
	y0 = tdotx(p_transform.elements[1]);
 | 
						|
	y1 = tdoty(p_transform.elements[1]);
 | 
						|
 | 
						|
	elements[0][0] = x0;
 | 
						|
	elements[0][1] = x1;
 | 
						|
	elements[1][0] = y0;
 | 
						|
	elements[1][1] = y1;
 | 
						|
}
 | 
						|
 | 
						|
Transform2D Transform2D::operator*(const Transform2D &p_transform) const {
 | 
						|
 | 
						|
	Transform2D t = *this;
 | 
						|
	t *= p_transform;
 | 
						|
	return t;
 | 
						|
}
 | 
						|
 | 
						|
Transform2D Transform2D::scaled(const Size2 &p_scale) const {
 | 
						|
 | 
						|
	Transform2D copy = *this;
 | 
						|
	copy.scale(p_scale);
 | 
						|
	return copy;
 | 
						|
}
 | 
						|
 | 
						|
Transform2D Transform2D::basis_scaled(const Size2 &p_scale) const {
 | 
						|
 | 
						|
	Transform2D copy = *this;
 | 
						|
	copy.scale_basis(p_scale);
 | 
						|
	return copy;
 | 
						|
}
 | 
						|
 | 
						|
Transform2D Transform2D::untranslated() const {
 | 
						|
 | 
						|
	Transform2D copy = *this;
 | 
						|
	copy.elements[2] = Vector2();
 | 
						|
	return copy;
 | 
						|
}
 | 
						|
 | 
						|
Transform2D Transform2D::translated(const Vector2 &p_offset) const {
 | 
						|
 | 
						|
	Transform2D copy = *this;
 | 
						|
	copy.translate(p_offset);
 | 
						|
	return copy;
 | 
						|
}
 | 
						|
 | 
						|
Transform2D Transform2D::rotated(real_t p_phi) const {
 | 
						|
 | 
						|
	Transform2D copy = *this;
 | 
						|
	copy.rotate(p_phi);
 | 
						|
	return copy;
 | 
						|
}
 | 
						|
 | 
						|
real_t Transform2D::basis_determinant() const {
 | 
						|
 | 
						|
	return elements[0].x * elements[1].y - elements[0].y * elements[1].x;
 | 
						|
}
 | 
						|
 | 
						|
Transform2D Transform2D::interpolate_with(const Transform2D &p_transform, real_t p_c) const {
 | 
						|
 | 
						|
	//extract parameters
 | 
						|
	Vector2 p1 = get_origin();
 | 
						|
	Vector2 p2 = p_transform.get_origin();
 | 
						|
 | 
						|
	real_t r1 = get_rotation();
 | 
						|
	real_t r2 = p_transform.get_rotation();
 | 
						|
 | 
						|
	Size2 s1 = get_scale();
 | 
						|
	Size2 s2 = p_transform.get_scale();
 | 
						|
 | 
						|
	//slerp rotation
 | 
						|
	Vector2 v1(Math::cos(r1), Math::sin(r1));
 | 
						|
	Vector2 v2(Math::cos(r2), Math::sin(r2));
 | 
						|
 | 
						|
	real_t dot = v1.dot(v2);
 | 
						|
 | 
						|
	dot = (dot < -1.0) ? -1.0 : ((dot > 1.0) ? 1.0 : dot); //clamp dot to [-1,1]
 | 
						|
 | 
						|
	Vector2 v;
 | 
						|
 | 
						|
	if (dot > 0.9995) {
 | 
						|
		v = Vector2::linear_interpolate(v1, v2, p_c).normalized(); //linearly interpolate to avoid numerical precision issues
 | 
						|
	} else {
 | 
						|
		real_t angle = p_c * Math::acos(dot);
 | 
						|
		Vector2 v3 = (v2 - v1 * dot).normalized();
 | 
						|
		v = v1 * Math::cos(angle) + v3 * Math::sin(angle);
 | 
						|
	}
 | 
						|
 | 
						|
	//construct matrix
 | 
						|
	Transform2D res(Math::atan2(v.y, v.x), Vector2::linear_interpolate(p1, p2, p_c));
 | 
						|
	res.scale_basis(Vector2::linear_interpolate(s1, s2, p_c));
 | 
						|
	return res;
 | 
						|
}
 | 
						|
 | 
						|
Transform2D::operator String() const {
 | 
						|
 | 
						|
	return String(String() + elements[0] + ", " + elements[1] + ", " + elements[2]);
 | 
						|
}
 |