mirror of
				https://github.com/godotengine/godot.git
				synced 2025-10-31 21:51:22 +00:00 
			
		
		
		
	 b5334d14f7
			
		
	
	
		b5334d14f7
		
			
		
	
	
	
	
		
			
			Happy new year to the wonderful Godot community!
2020 has been a tough year for most of us personally, but a good year for
Godot development nonetheless with a huge amount of work done towards Godot
4.0 and great improvements backported to the long-lived 3.2 branch.
We've had close to 400 contributors to engine code this year, authoring near
7,000 commit! (And that's only for the `master` branch and for the engine code,
there's a lot more when counting docs, demos and other first-party repos.)
Here's to a great year 2021 for all Godot users 🎆
		
	
			
		
			
				
	
	
		
			250 lines
		
	
	
	
		
			9.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			250 lines
		
	
	
	
		
			9.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*************************************************************************/
 | |
| /*  quat.cpp                                                             */
 | |
| /*************************************************************************/
 | |
| /*                       This file is part of:                           */
 | |
| /*                           GODOT ENGINE                                */
 | |
| /*                      https://godotengine.org                          */
 | |
| /*************************************************************************/
 | |
| /* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur.                 */
 | |
| /* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md).   */
 | |
| /*                                                                       */
 | |
| /* Permission is hereby granted, free of charge, to any person obtaining */
 | |
| /* a copy of this software and associated documentation files (the       */
 | |
| /* "Software"), to deal in the Software without restriction, including   */
 | |
| /* without limitation the rights to use, copy, modify, merge, publish,   */
 | |
| /* distribute, sublicense, and/or sell copies of the Software, and to    */
 | |
| /* permit persons to whom the Software is furnished to do so, subject to */
 | |
| /* the following conditions:                                             */
 | |
| /*                                                                       */
 | |
| /* The above copyright notice and this permission notice shall be        */
 | |
| /* included in all copies or substantial portions of the Software.       */
 | |
| /*                                                                       */
 | |
| /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,       */
 | |
| /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF    */
 | |
| /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
 | |
| /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY  */
 | |
| /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,  */
 | |
| /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE     */
 | |
| /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                */
 | |
| /*************************************************************************/
 | |
| 
 | |
| #include "quat.h"
 | |
| 
 | |
| #include "core/math/basis.h"
 | |
| #include "core/string/print_string.h"
 | |
| 
 | |
| // set_euler_xyz expects a vector containing the Euler angles in the format
 | |
| // (ax,ay,az), where ax is the angle of rotation around x axis,
 | |
| // and similar for other axes.
 | |
| // This implementation uses XYZ convention (Z is the first rotation).
 | |
| void Quat::set_euler_xyz(const Vector3 &p_euler) {
 | |
| 	real_t half_a1 = p_euler.x * 0.5;
 | |
| 	real_t half_a2 = p_euler.y * 0.5;
 | |
| 	real_t half_a3 = p_euler.z * 0.5;
 | |
| 
 | |
| 	// R = X(a1).Y(a2).Z(a3) convention for Euler angles.
 | |
| 	// Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-2)
 | |
| 	// a3 is the angle of the first rotation, following the notation in this reference.
 | |
| 
 | |
| 	real_t cos_a1 = Math::cos(half_a1);
 | |
| 	real_t sin_a1 = Math::sin(half_a1);
 | |
| 	real_t cos_a2 = Math::cos(half_a2);
 | |
| 	real_t sin_a2 = Math::sin(half_a2);
 | |
| 	real_t cos_a3 = Math::cos(half_a3);
 | |
| 	real_t sin_a3 = Math::sin(half_a3);
 | |
| 
 | |
| 	set(sin_a1 * cos_a2 * cos_a3 + sin_a2 * sin_a3 * cos_a1,
 | |
| 			-sin_a1 * sin_a3 * cos_a2 + sin_a2 * cos_a1 * cos_a3,
 | |
| 			sin_a1 * sin_a2 * cos_a3 + sin_a3 * cos_a1 * cos_a2,
 | |
| 			-sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3);
 | |
| }
 | |
| 
 | |
| // get_euler_xyz returns a vector containing the Euler angles in the format
 | |
| // (ax,ay,az), where ax is the angle of rotation around x axis,
 | |
| // and similar for other axes.
 | |
| // This implementation uses XYZ convention (Z is the first rotation).
 | |
| Vector3 Quat::get_euler_xyz() const {
 | |
| 	Basis m(*this);
 | |
| 	return m.get_euler_xyz();
 | |
| }
 | |
| 
 | |
| // set_euler_yxz expects a vector containing the Euler angles in the format
 | |
| // (ax,ay,az), where ax is the angle of rotation around x axis,
 | |
| // and similar for other axes.
 | |
| // This implementation uses YXZ convention (Z is the first rotation).
 | |
| void Quat::set_euler_yxz(const Vector3 &p_euler) {
 | |
| 	real_t half_a1 = p_euler.y * 0.5;
 | |
| 	real_t half_a2 = p_euler.x * 0.5;
 | |
| 	real_t half_a3 = p_euler.z * 0.5;
 | |
| 
 | |
| 	// R = Y(a1).X(a2).Z(a3) convention for Euler angles.
 | |
| 	// Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-6)
 | |
| 	// a3 is the angle of the first rotation, following the notation in this reference.
 | |
| 
 | |
| 	real_t cos_a1 = Math::cos(half_a1);
 | |
| 	real_t sin_a1 = Math::sin(half_a1);
 | |
| 	real_t cos_a2 = Math::cos(half_a2);
 | |
| 	real_t sin_a2 = Math::sin(half_a2);
 | |
| 	real_t cos_a3 = Math::cos(half_a3);
 | |
| 	real_t sin_a3 = Math::sin(half_a3);
 | |
| 
 | |
| 	set(sin_a1 * cos_a2 * sin_a3 + cos_a1 * sin_a2 * cos_a3,
 | |
| 			sin_a1 * cos_a2 * cos_a3 - cos_a1 * sin_a2 * sin_a3,
 | |
| 			-sin_a1 * sin_a2 * cos_a3 + cos_a1 * cos_a2 * sin_a3,
 | |
| 			sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3);
 | |
| }
 | |
| 
 | |
| // get_euler_yxz returns a vector containing the Euler angles in the format
 | |
| // (ax,ay,az), where ax is the angle of rotation around x axis,
 | |
| // and similar for other axes.
 | |
| // This implementation uses YXZ convention (Z is the first rotation).
 | |
| Vector3 Quat::get_euler_yxz() const {
 | |
| #ifdef MATH_CHECKS
 | |
| 	ERR_FAIL_COND_V_MSG(!is_normalized(), Vector3(0, 0, 0), "The quaternion must be normalized.");
 | |
| #endif
 | |
| 	Basis m(*this);
 | |
| 	return m.get_euler_yxz();
 | |
| }
 | |
| 
 | |
| void Quat::operator*=(const Quat &p_q) {
 | |
| 	set(w * p_q.x + x * p_q.w + y * p_q.z - z * p_q.y,
 | |
| 			w * p_q.y + y * p_q.w + z * p_q.x - x * p_q.z,
 | |
| 			w * p_q.z + z * p_q.w + x * p_q.y - y * p_q.x,
 | |
| 			w * p_q.w - x * p_q.x - y * p_q.y - z * p_q.z);
 | |
| }
 | |
| 
 | |
| Quat Quat::operator*(const Quat &p_q) const {
 | |
| 	Quat r = *this;
 | |
| 	r *= p_q;
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| bool Quat::is_equal_approx(const Quat &p_quat) const {
 | |
| 	return Math::is_equal_approx(x, p_quat.x) && Math::is_equal_approx(y, p_quat.y) && Math::is_equal_approx(z, p_quat.z) && Math::is_equal_approx(w, p_quat.w);
 | |
| }
 | |
| 
 | |
| real_t Quat::length() const {
 | |
| 	return Math::sqrt(length_squared());
 | |
| }
 | |
| 
 | |
| void Quat::normalize() {
 | |
| 	*this /= length();
 | |
| }
 | |
| 
 | |
| Quat Quat::normalized() const {
 | |
| 	return *this / length();
 | |
| }
 | |
| 
 | |
| bool Quat::is_normalized() const {
 | |
| 	return Math::is_equal_approx(length_squared(), 1.0, UNIT_EPSILON); //use less epsilon
 | |
| }
 | |
| 
 | |
| Quat Quat::inverse() const {
 | |
| #ifdef MATH_CHECKS
 | |
| 	ERR_FAIL_COND_V_MSG(!is_normalized(), Quat(), "The quaternion must be normalized.");
 | |
| #endif
 | |
| 	return Quat(-x, -y, -z, w);
 | |
| }
 | |
| 
 | |
| Quat Quat::slerp(const Quat &p_to, const real_t &p_weight) const {
 | |
| #ifdef MATH_CHECKS
 | |
| 	ERR_FAIL_COND_V_MSG(!is_normalized(), Quat(), "The start quaternion must be normalized.");
 | |
| 	ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quat(), "The end quaternion must be normalized.");
 | |
| #endif
 | |
| 	Quat to1;
 | |
| 	real_t omega, cosom, sinom, scale0, scale1;
 | |
| 
 | |
| 	// calc cosine
 | |
| 	cosom = dot(p_to);
 | |
| 
 | |
| 	// adjust signs (if necessary)
 | |
| 	if (cosom < 0.0) {
 | |
| 		cosom = -cosom;
 | |
| 		to1.x = -p_to.x;
 | |
| 		to1.y = -p_to.y;
 | |
| 		to1.z = -p_to.z;
 | |
| 		to1.w = -p_to.w;
 | |
| 	} else {
 | |
| 		to1.x = p_to.x;
 | |
| 		to1.y = p_to.y;
 | |
| 		to1.z = p_to.z;
 | |
| 		to1.w = p_to.w;
 | |
| 	}
 | |
| 
 | |
| 	// calculate coefficients
 | |
| 
 | |
| 	if ((1.0 - cosom) > CMP_EPSILON) {
 | |
| 		// standard case (slerp)
 | |
| 		omega = Math::acos(cosom);
 | |
| 		sinom = Math::sin(omega);
 | |
| 		scale0 = Math::sin((1.0 - p_weight) * omega) / sinom;
 | |
| 		scale1 = Math::sin(p_weight * omega) / sinom;
 | |
| 	} else {
 | |
| 		// "from" and "to" quaternions are very close
 | |
| 		//  ... so we can do a linear interpolation
 | |
| 		scale0 = 1.0 - p_weight;
 | |
| 		scale1 = p_weight;
 | |
| 	}
 | |
| 	// calculate final values
 | |
| 	return Quat(
 | |
| 			scale0 * x + scale1 * to1.x,
 | |
| 			scale0 * y + scale1 * to1.y,
 | |
| 			scale0 * z + scale1 * to1.z,
 | |
| 			scale0 * w + scale1 * to1.w);
 | |
| }
 | |
| 
 | |
| Quat Quat::slerpni(const Quat &p_to, const real_t &p_weight) const {
 | |
| #ifdef MATH_CHECKS
 | |
| 	ERR_FAIL_COND_V_MSG(!is_normalized(), Quat(), "The start quaternion must be normalized.");
 | |
| 	ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quat(), "The end quaternion must be normalized.");
 | |
| #endif
 | |
| 	const Quat &from = *this;
 | |
| 
 | |
| 	real_t dot = from.dot(p_to);
 | |
| 
 | |
| 	if (Math::absf(dot) > 0.9999) {
 | |
| 		return from;
 | |
| 	}
 | |
| 
 | |
| 	real_t theta = Math::acos(dot),
 | |
| 		   sinT = 1.0 / Math::sin(theta),
 | |
| 		   newFactor = Math::sin(p_weight * theta) * sinT,
 | |
| 		   invFactor = Math::sin((1.0 - p_weight) * theta) * sinT;
 | |
| 
 | |
| 	return Quat(invFactor * from.x + newFactor * p_to.x,
 | |
| 			invFactor * from.y + newFactor * p_to.y,
 | |
| 			invFactor * from.z + newFactor * p_to.z,
 | |
| 			invFactor * from.w + newFactor * p_to.w);
 | |
| }
 | |
| 
 | |
| Quat Quat::cubic_slerp(const Quat &p_b, const Quat &p_pre_a, const Quat &p_post_b, const real_t &p_weight) const {
 | |
| #ifdef MATH_CHECKS
 | |
| 	ERR_FAIL_COND_V_MSG(!is_normalized(), Quat(), "The start quaternion must be normalized.");
 | |
| 	ERR_FAIL_COND_V_MSG(!p_b.is_normalized(), Quat(), "The end quaternion must be normalized.");
 | |
| #endif
 | |
| 	//the only way to do slerp :|
 | |
| 	real_t t2 = (1.0 - p_weight) * p_weight * 2;
 | |
| 	Quat sp = this->slerp(p_b, p_weight);
 | |
| 	Quat sq = p_pre_a.slerpni(p_post_b, p_weight);
 | |
| 	return sp.slerpni(sq, t2);
 | |
| }
 | |
| 
 | |
| Quat::operator String() const {
 | |
| 	return String::num(x) + ", " + String::num(y) + ", " + String::num(z) + ", " + String::num(w);
 | |
| }
 | |
| 
 | |
| void Quat::set_axis_angle(const Vector3 &axis, const real_t &angle) {
 | |
| #ifdef MATH_CHECKS
 | |
| 	ERR_FAIL_COND_MSG(!axis.is_normalized(), "The axis Vector3 must be normalized.");
 | |
| #endif
 | |
| 	real_t d = axis.length();
 | |
| 	if (d == 0) {
 | |
| 		set(0, 0, 0, 0);
 | |
| 	} else {
 | |
| 		real_t sin_angle = Math::sin(angle * 0.5);
 | |
| 		real_t cos_angle = Math::cos(angle * 0.5);
 | |
| 		real_t s = sin_angle / d;
 | |
| 		set(axis.x * s, axis.y * s, axis.z * s,
 | |
| 				cos_angle);
 | |
| 	}
 | |
| }
 |